1 ============================================================ 2 Kaleidoscope: Extending the Language: User-defined Operators 3 ============================================================ 4 5 .. contents:: 6 :local: 7 8 Chapter 6 Introduction 9 ====================== 10 11 Welcome to Chapter 6 of the "`Implementing a language with 12 LLVM <index.html>`_" tutorial. At this point in our tutorial, we now 13 have a fully functional language that is fairly minimal, but also 14 useful. There is still one big problem with it, however. Our language 15 doesn't have many useful operators (like division, logical negation, or 16 even any comparisons besides less-than). 17 18 This chapter of the tutorial takes a wild digression into adding 19 user-defined operators to the simple and beautiful Kaleidoscope 20 language. This digression now gives us a simple and ugly language in 21 some ways, but also a powerful one at the same time. One of the great 22 things about creating your own language is that you get to decide what 23 is good or bad. In this tutorial we'll assume that it is okay to use 24 this as a way to show some interesting parsing techniques. 25 26 At the end of this tutorial, we'll run through an example Kaleidoscope 27 application that `renders the Mandelbrot set <#kicking-the-tires>`_. This gives an 28 example of what you can build with Kaleidoscope and its feature set. 29 30 User-defined Operators: the Idea 31 ================================ 32 33 The "operator overloading" that we will add to Kaleidoscope is more 34 general than languages like C++. In C++, you are only allowed to 35 redefine existing operators: you can't programatically change the 36 grammar, introduce new operators, change precedence levels, etc. In this 37 chapter, we will add this capability to Kaleidoscope, which will let the 38 user round out the set of operators that are supported. 39 40 The point of going into user-defined operators in a tutorial like this 41 is to show the power and flexibility of using a hand-written parser. 42 Thus far, the parser we have been implementing uses recursive descent 43 for most parts of the grammar and operator precedence parsing for the 44 expressions. See `Chapter 2 <LangImpl2.html>`_ for details. Without 45 using operator precedence parsing, it would be very difficult to allow 46 the programmer to introduce new operators into the grammar: the grammar 47 is dynamically extensible as the JIT runs. 48 49 The two specific features we'll add are programmable unary operators 50 (right now, Kaleidoscope has no unary operators at all) as well as 51 binary operators. An example of this is: 52 53 :: 54 55 # Logical unary not. 56 def unary!(v) 57 if v then 58 0 59 else 60 1; 61 62 # Define > with the same precedence as <. 63 def binary> 10 (LHS RHS) 64 RHS < LHS; 65 66 # Binary "logical or", (note that it does not "short circuit") 67 def binary| 5 (LHS RHS) 68 if LHS then 69 1 70 else if RHS then 71 1 72 else 73 0; 74 75 # Define = with slightly lower precedence than relationals. 76 def binary= 9 (LHS RHS) 77 !(LHS < RHS | LHS > RHS); 78 79 Many languages aspire to being able to implement their standard runtime 80 library in the language itself. In Kaleidoscope, we can implement 81 significant parts of the language in the library! 82 83 We will break down implementation of these features into two parts: 84 implementing support for user-defined binary operators and adding unary 85 operators. 86 87 User-defined Binary Operators 88 ============================= 89 90 Adding support for user-defined binary operators is pretty simple with 91 our current framework. We'll first add support for the unary/binary 92 keywords: 93 94 .. code-block:: c++ 95 96 enum Token { 97 ... 98 // operators 99 tok_binary = -11, 100 tok_unary = -12 101 }; 102 ... 103 static int gettok() { 104 ... 105 if (IdentifierStr == "for") 106 return tok_for; 107 if (IdentifierStr == "in") 108 return tok_in; 109 if (IdentifierStr == "binary") 110 return tok_binary; 111 if (IdentifierStr == "unary") 112 return tok_unary; 113 return tok_identifier; 114 115 This just adds lexer support for the unary and binary keywords, like we 116 did in `previous chapters <LangImpl5.html#lexer-extensions-for-if-then-else>`_. One nice thing 117 about our current AST, is that we represent binary operators with full 118 generalisation by using their ASCII code as the opcode. For our extended 119 operators, we'll use this same representation, so we don't need any new 120 AST or parser support. 121 122 On the other hand, we have to be able to represent the definitions of 123 these new operators, in the "def binary\| 5" part of the function 124 definition. In our grammar so far, the "name" for the function 125 definition is parsed as the "prototype" production and into the 126 ``PrototypeAST`` AST node. To represent our new user-defined operators 127 as prototypes, we have to extend the ``PrototypeAST`` AST node like 128 this: 129 130 .. code-block:: c++ 131 132 /// PrototypeAST - This class represents the "prototype" for a function, 133 /// which captures its argument names as well as if it is an operator. 134 class PrototypeAST { 135 std::string Name; 136 std::vector<std::string> Args; 137 bool IsOperator; 138 unsigned Precedence; // Precedence if a binary op. 139 140 public: 141 PrototypeAST(const std::string &name, std::vector<std::string> Args, 142 bool IsOperator = false, unsigned Prec = 0) 143 : Name(name), Args(std::move(Args)), IsOperator(IsOperator), 144 Precedence(Prec) {} 145 146 bool isUnaryOp() const { return IsOperator && Args.size() == 1; } 147 bool isBinaryOp() const { return IsOperator && Args.size() == 2; } 148 149 char getOperatorName() const { 150 assert(isUnaryOp() || isBinaryOp()); 151 return Name[Name.size()-1]; 152 } 153 154 unsigned getBinaryPrecedence() const { return Precedence; } 155 156 Function *codegen(); 157 }; 158 159 Basically, in addition to knowing a name for the prototype, we now keep 160 track of whether it was an operator, and if it was, what precedence 161 level the operator is at. The precedence is only used for binary 162 operators (as you'll see below, it just doesn't apply for unary 163 operators). Now that we have a way to represent the prototype for a 164 user-defined operator, we need to parse it: 165 166 .. code-block:: c++ 167 168 /// prototype 169 /// ::= id '(' id* ')' 170 /// ::= binary LETTER number? (id, id) 171 static std::unique_ptr<PrototypeAST> ParsePrototype() { 172 std::string FnName; 173 174 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. 175 unsigned BinaryPrecedence = 30; 176 177 switch (CurTok) { 178 default: 179 return ErrorP("Expected function name in prototype"); 180 case tok_identifier: 181 FnName = IdentifierStr; 182 Kind = 0; 183 getNextToken(); 184 break; 185 case tok_binary: 186 getNextToken(); 187 if (!isascii(CurTok)) 188 return ErrorP("Expected binary operator"); 189 FnName = "binary"; 190 FnName += (char)CurTok; 191 Kind = 2; 192 getNextToken(); 193 194 // Read the precedence if present. 195 if (CurTok == tok_number) { 196 if (NumVal < 1 || NumVal > 100) 197 return ErrorP("Invalid precedecnce: must be 1..100"); 198 BinaryPrecedence = (unsigned)NumVal; 199 getNextToken(); 200 } 201 break; 202 } 203 204 if (CurTok != '(') 205 return ErrorP("Expected '(' in prototype"); 206 207 std::vector<std::string> ArgNames; 208 while (getNextToken() == tok_identifier) 209 ArgNames.push_back(IdentifierStr); 210 if (CurTok != ')') 211 return ErrorP("Expected ')' in prototype"); 212 213 // success. 214 getNextToken(); // eat ')'. 215 216 // Verify right number of names for operator. 217 if (Kind && ArgNames.size() != Kind) 218 return ErrorP("Invalid number of operands for operator"); 219 220 return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0, 221 BinaryPrecedence); 222 } 223 224 This is all fairly straightforward parsing code, and we have already 225 seen a lot of similar code in the past. One interesting part about the 226 code above is the couple lines that set up ``FnName`` for binary 227 operators. This builds names like "binary@" for a newly defined "@" 228 operator. This then takes advantage of the fact that symbol names in the 229 LLVM symbol table are allowed to have any character in them, including 230 embedded nul characters. 231 232 The next interesting thing to add, is codegen support for these binary 233 operators. Given our current structure, this is a simple addition of a 234 default case for our existing binary operator node: 235 236 .. code-block:: c++ 237 238 Value *BinaryExprAST::codegen() { 239 Value *L = LHS->codegen(); 240 Value *R = RHS->codegen(); 241 if (!L || !R) 242 return nullptr; 243 244 switch (Op) { 245 case '+': 246 return Builder.CreateFAdd(L, R, "addtmp"); 247 case '-': 248 return Builder.CreateFSub(L, R, "subtmp"); 249 case '*': 250 return Builder.CreateFMul(L, R, "multmp"); 251 case '<': 252 L = Builder.CreateFCmpULT(L, R, "cmptmp"); 253 // Convert bool 0/1 to double 0.0 or 1.0 254 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), 255 "booltmp"); 256 default: 257 break; 258 } 259 260 // If it wasn't a builtin binary operator, it must be a user defined one. Emit 261 // a call to it. 262 Function *F = TheModule->getFunction(std::string("binary") + Op); 263 assert(F && "binary operator not found!"); 264 265 Value *Ops[2] = { L, R }; 266 return Builder.CreateCall(F, Ops, "binop"); 267 } 268 269 As you can see above, the new code is actually really simple. It just 270 does a lookup for the appropriate operator in the symbol table and 271 generates a function call to it. Since user-defined operators are just 272 built as normal functions (because the "prototype" boils down to a 273 function with the right name) everything falls into place. 274 275 The final piece of code we are missing, is a bit of top-level magic: 276 277 .. code-block:: c++ 278 279 Function *FunctionAST::codegen() { 280 NamedValues.clear(); 281 282 Function *TheFunction = Proto->codegen(); 283 if (!TheFunction) 284 return nullptr; 285 286 // If this is an operator, install it. 287 if (Proto->isBinaryOp()) 288 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); 289 290 // Create a new basic block to start insertion into. 291 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); 292 Builder.SetInsertPoint(BB); 293 294 if (Value *RetVal = Body->codegen()) { 295 ... 296 297 Basically, before codegening a function, if it is a user-defined 298 operator, we register it in the precedence table. This allows the binary 299 operator parsing logic we already have in place to handle it. Since we 300 are working on a fully-general operator precedence parser, this is all 301 we need to do to "extend the grammar". 302 303 Now we have useful user-defined binary operators. This builds a lot on 304 the previous framework we built for other operators. Adding unary 305 operators is a bit more challenging, because we don't have any framework 306 for it yet - lets see what it takes. 307 308 User-defined Unary Operators 309 ============================ 310 311 Since we don't currently support unary operators in the Kaleidoscope 312 language, we'll need to add everything to support them. Above, we added 313 simple support for the 'unary' keyword to the lexer. In addition to 314 that, we need an AST node: 315 316 .. code-block:: c++ 317 318 /// UnaryExprAST - Expression class for a unary operator. 319 class UnaryExprAST : public ExprAST { 320 char Opcode; 321 std::unique_ptr<ExprAST> Operand; 322 323 public: 324 UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand) 325 : Opcode(Opcode), Operand(std::move(Operand)) {} 326 virtual Value *codegen(); 327 }; 328 329 This AST node is very simple and obvious by now. It directly mirrors the 330 binary operator AST node, except that it only has one child. With this, 331 we need to add the parsing logic. Parsing a unary operator is pretty 332 simple: we'll add a new function to do it: 333 334 .. code-block:: c++ 335 336 /// unary 337 /// ::= primary 338 /// ::= '!' unary 339 static std::unique_ptr<ExprAST> ParseUnary() { 340 // If the current token is not an operator, it must be a primary expr. 341 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') 342 return ParsePrimary(); 343 344 // If this is a unary operator, read it. 345 int Opc = CurTok; 346 getNextToken(); 347 if (auto Operand = ParseUnary()) 348 return llvm::unique_ptr<UnaryExprAST>(Opc, std::move(Operand)); 349 return nullptr; 350 } 351 352 The grammar we add is pretty straightforward here. If we see a unary 353 operator when parsing a primary operator, we eat the operator as a 354 prefix and parse the remaining piece as another unary operator. This 355 allows us to handle multiple unary operators (e.g. "!!x"). Note that 356 unary operators can't have ambiguous parses like binary operators can, 357 so there is no need for precedence information. 358 359 The problem with this function, is that we need to call ParseUnary from 360 somewhere. To do this, we change previous callers of ParsePrimary to 361 call ParseUnary instead: 362 363 .. code-block:: c++ 364 365 /// binoprhs 366 /// ::= ('+' unary)* 367 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec, 368 std::unique_ptr<ExprAST> LHS) { 369 ... 370 // Parse the unary expression after the binary operator. 371 auto RHS = ParseUnary(); 372 if (!RHS) 373 return nullptr; 374 ... 375 } 376 /// expression 377 /// ::= unary binoprhs 378 /// 379 static std::unique_ptr<ExprAST> ParseExpression() { 380 auto LHS = ParseUnary(); 381 if (!LHS) 382 return nullptr; 383 384 return ParseBinOpRHS(0, std::move(LHS)); 385 } 386 387 With these two simple changes, we are now able to parse unary operators 388 and build the AST for them. Next up, we need to add parser support for 389 prototypes, to parse the unary operator prototype. We extend the binary 390 operator code above with: 391 392 .. code-block:: c++ 393 394 /// prototype 395 /// ::= id '(' id* ')' 396 /// ::= binary LETTER number? (id, id) 397 /// ::= unary LETTER (id) 398 static std::unique_ptr<PrototypeAST> ParsePrototype() { 399 std::string FnName; 400 401 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. 402 unsigned BinaryPrecedence = 30; 403 404 switch (CurTok) { 405 default: 406 return ErrorP("Expected function name in prototype"); 407 case tok_identifier: 408 FnName = IdentifierStr; 409 Kind = 0; 410 getNextToken(); 411 break; 412 case tok_unary: 413 getNextToken(); 414 if (!isascii(CurTok)) 415 return ErrorP("Expected unary operator"); 416 FnName = "unary"; 417 FnName += (char)CurTok; 418 Kind = 1; 419 getNextToken(); 420 break; 421 case tok_binary: 422 ... 423 424 As with binary operators, we name unary operators with a name that 425 includes the operator character. This assists us at code generation 426 time. Speaking of, the final piece we need to add is codegen support for 427 unary operators. It looks like this: 428 429 .. code-block:: c++ 430 431 Value *UnaryExprAST::codegen() { 432 Value *OperandV = Operand->codegen(); 433 if (!OperandV) 434 return nullptr; 435 436 Function *F = TheModule->getFunction(std::string("unary")+Opcode); 437 if (!F) 438 return ErrorV("Unknown unary operator"); 439 440 return Builder.CreateCall(F, OperandV, "unop"); 441 } 442 443 This code is similar to, but simpler than, the code for binary 444 operators. It is simpler primarily because it doesn't need to handle any 445 predefined operators. 446 447 Kicking the Tires 448 ================= 449 450 It is somewhat hard to believe, but with a few simple extensions we've 451 covered in the last chapters, we have grown a real-ish language. With 452 this, we can do a lot of interesting things, including I/O, math, and a 453 bunch of other things. For example, we can now add a nice sequencing 454 operator (printd is defined to print out the specified value and a 455 newline): 456 457 :: 458 459 ready> extern printd(x); 460 Read extern: 461 declare double @printd(double) 462 463 ready> def binary : 1 (x y) 0; # Low-precedence operator that ignores operands. 464 .. 465 ready> printd(123) : printd(456) : printd(789); 466 123.000000 467 456.000000 468 789.000000 469 Evaluated to 0.000000 470 471 We can also define a bunch of other "primitive" operations, such as: 472 473 :: 474 475 # Logical unary not. 476 def unary!(v) 477 if v then 478 0 479 else 480 1; 481 482 # Unary negate. 483 def unary-(v) 484 0-v; 485 486 # Define > with the same precedence as <. 487 def binary> 10 (LHS RHS) 488 RHS < LHS; 489 490 # Binary logical or, which does not short circuit. 491 def binary| 5 (LHS RHS) 492 if LHS then 493 1 494 else if RHS then 495 1 496 else 497 0; 498 499 # Binary logical and, which does not short circuit. 500 def binary& 6 (LHS RHS) 501 if !LHS then 502 0 503 else 504 !!RHS; 505 506 # Define = with slightly lower precedence than relationals. 507 def binary = 9 (LHS RHS) 508 !(LHS < RHS | LHS > RHS); 509 510 # Define ':' for sequencing: as a low-precedence operator that ignores operands 511 # and just returns the RHS. 512 def binary : 1 (x y) y; 513 514 Given the previous if/then/else support, we can also define interesting 515 functions for I/O. For example, the following prints out a character 516 whose "density" reflects the value passed in: the lower the value, the 517 denser the character: 518 519 :: 520 521 ready> 522 523 extern putchard(char) 524 def printdensity(d) 525 if d > 8 then 526 putchard(32) # ' ' 527 else if d > 4 then 528 putchard(46) # '.' 529 else if d > 2 then 530 putchard(43) # '+' 531 else 532 putchard(42); # '*' 533 ... 534 ready> printdensity(1): printdensity(2): printdensity(3): 535 printdensity(4): printdensity(5): printdensity(9): 536 putchard(10); 537 **++. 538 Evaluated to 0.000000 539 540 Based on these simple primitive operations, we can start to define more 541 interesting things. For example, here's a little function that solves 542 for the number of iterations it takes a function in the complex plane to 543 converge: 544 545 :: 546 547 # Determine whether the specific location diverges. 548 # Solve for z = z^2 + c in the complex plane. 549 def mandleconverger(real imag iters creal cimag) 550 if iters > 255 | (real*real + imag*imag > 4) then 551 iters 552 else 553 mandleconverger(real*real - imag*imag + creal, 554 2*real*imag + cimag, 555 iters+1, creal, cimag); 556 557 # Return the number of iterations required for the iteration to escape 558 def mandleconverge(real imag) 559 mandleconverger(real, imag, 0, real, imag); 560 561 This "``z = z2 + c``" function is a beautiful little creature that is 562 the basis for computation of the `Mandelbrot 563 Set <http://en.wikipedia.org/wiki/Mandelbrot_set>`_. Our 564 ``mandelconverge`` function returns the number of iterations that it 565 takes for a complex orbit to escape, saturating to 255. This is not a 566 very useful function by itself, but if you plot its value over a 567 two-dimensional plane, you can see the Mandelbrot set. Given that we are 568 limited to using putchard here, our amazing graphical output is limited, 569 but we can whip together something using the density plotter above: 570 571 :: 572 573 # Compute and plot the mandlebrot set with the specified 2 dimensional range 574 # info. 575 def mandelhelp(xmin xmax xstep ymin ymax ystep) 576 for y = ymin, y < ymax, ystep in ( 577 (for x = xmin, x < xmax, xstep in 578 printdensity(mandleconverge(x,y))) 579 : putchard(10) 580 ) 581 582 # mandel - This is a convenient helper function for plotting the mandelbrot set 583 # from the specified position with the specified Magnification. 584 def mandel(realstart imagstart realmag imagmag) 585 mandelhelp(realstart, realstart+realmag*78, realmag, 586 imagstart, imagstart+imagmag*40, imagmag); 587 588 Given this, we can try plotting out the mandlebrot set! Lets try it out: 589 590 :: 591 592 ready> mandel(-2.3, -1.3, 0.05, 0.07); 593 *******************************+++++++++++************************************* 594 *************************+++++++++++++++++++++++******************************* 595 **********************+++++++++++++++++++++++++++++**************************** 596 *******************+++++++++++++++++++++.. ...++++++++************************* 597 *****************++++++++++++++++++++++.... ...+++++++++*********************** 598 ***************+++++++++++++++++++++++..... ...+++++++++********************* 599 **************+++++++++++++++++++++++.... ....+++++++++******************** 600 *************++++++++++++++++++++++...... .....++++++++******************* 601 ************+++++++++++++++++++++....... .......+++++++****************** 602 ***********+++++++++++++++++++.... ... .+++++++***************** 603 **********+++++++++++++++++....... .+++++++**************** 604 *********++++++++++++++........... ...+++++++*************** 605 ********++++++++++++............ ...++++++++************** 606 ********++++++++++... .......... .++++++++************** 607 *******+++++++++..... .+++++++++************* 608 *******++++++++...... ..+++++++++************* 609 *******++++++....... ..+++++++++************* 610 *******+++++...... ..+++++++++************* 611 *******.... .... ...+++++++++************* 612 *******.... . ...+++++++++************* 613 *******+++++...... ...+++++++++************* 614 *******++++++....... ..+++++++++************* 615 *******++++++++...... .+++++++++************* 616 *******+++++++++..... ..+++++++++************* 617 ********++++++++++... .......... .++++++++************** 618 ********++++++++++++............ ...++++++++************** 619 *********++++++++++++++.......... ...+++++++*************** 620 **********++++++++++++++++........ .+++++++**************** 621 **********++++++++++++++++++++.... ... ..+++++++**************** 622 ***********++++++++++++++++++++++....... .......++++++++***************** 623 ************+++++++++++++++++++++++...... ......++++++++****************** 624 **************+++++++++++++++++++++++.... ....++++++++******************** 625 ***************+++++++++++++++++++++++..... ...+++++++++********************* 626 *****************++++++++++++++++++++++.... ...++++++++*********************** 627 *******************+++++++++++++++++++++......++++++++************************* 628 *********************++++++++++++++++++++++.++++++++*************************** 629 *************************+++++++++++++++++++++++******************************* 630 ******************************+++++++++++++************************************ 631 ******************************************************************************* 632 ******************************************************************************* 633 ******************************************************************************* 634 Evaluated to 0.000000 635 ready> mandel(-2, -1, 0.02, 0.04); 636 **************************+++++++++++++++++++++++++++++++++++++++++++++++++++++ 637 ***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 638 *********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++. 639 *******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++... 640 *****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++..... 641 ***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........ 642 **************++++++++++++++++++++++++++++++++++++++++++++++++++++++........... 643 ************+++++++++++++++++++++++++++++++++++++++++++++++++++++.............. 644 ***********++++++++++++++++++++++++++++++++++++++++++++++++++........ . 645 **********++++++++++++++++++++++++++++++++++++++++++++++............. 646 ********+++++++++++++++++++++++++++++++++++++++++++.................. 647 *******+++++++++++++++++++++++++++++++++++++++....................... 648 ******+++++++++++++++++++++++++++++++++++........................... 649 *****++++++++++++++++++++++++++++++++............................ 650 *****++++++++++++++++++++++++++++............................... 651 ****++++++++++++++++++++++++++...... ......................... 652 ***++++++++++++++++++++++++......... ...... ........... 653 ***++++++++++++++++++++++............ 654 **+++++++++++++++++++++.............. 655 **+++++++++++++++++++................ 656 *++++++++++++++++++................. 657 *++++++++++++++++............ ... 658 *++++++++++++++.............. 659 *+++....++++................ 660 *.......... ........... 661 * 662 *.......... ........... 663 *+++....++++................ 664 *++++++++++++++.............. 665 *++++++++++++++++............ ... 666 *++++++++++++++++++................. 667 **+++++++++++++++++++................ 668 **+++++++++++++++++++++.............. 669 ***++++++++++++++++++++++............ 670 ***++++++++++++++++++++++++......... ...... ........... 671 ****++++++++++++++++++++++++++...... ......................... 672 *****++++++++++++++++++++++++++++............................... 673 *****++++++++++++++++++++++++++++++++............................ 674 ******+++++++++++++++++++++++++++++++++++........................... 675 *******+++++++++++++++++++++++++++++++++++++++....................... 676 ********+++++++++++++++++++++++++++++++++++++++++++.................. 677 Evaluated to 0.000000 678 ready> mandel(-0.9, -1.4, 0.02, 0.03); 679 ******************************************************************************* 680 ******************************************************************************* 681 ******************************************************************************* 682 **********+++++++++++++++++++++************************************************ 683 *+++++++++++++++++++++++++++++++++++++++*************************************** 684 +++++++++++++++++++++++++++++++++++++++++++++********************************** 685 ++++++++++++++++++++++++++++++++++++++++++++++++++***************************** 686 ++++++++++++++++++++++++++++++++++++++++++++++++++++++************************* 687 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++********************** 688 +++++++++++++++++++++++++++++++++.........++++++++++++++++++******************* 689 +++++++++++++++++++++++++++++++.... ......+++++++++++++++++++**************** 690 +++++++++++++++++++++++++++++....... ........+++++++++++++++++++************** 691 ++++++++++++++++++++++++++++........ ........++++++++++++++++++++************ 692 +++++++++++++++++++++++++++......... .. ...+++++++++++++++++++++********** 693 ++++++++++++++++++++++++++........... ....++++++++++++++++++++++******** 694 ++++++++++++++++++++++++............. .......++++++++++++++++++++++****** 695 +++++++++++++++++++++++............. ........+++++++++++++++++++++++**** 696 ++++++++++++++++++++++........... ..........++++++++++++++++++++++*** 697 ++++++++++++++++++++........... .........++++++++++++++++++++++* 698 ++++++++++++++++++............ ...........++++++++++++++++++++ 699 ++++++++++++++++............... .............++++++++++++++++++ 700 ++++++++++++++................. ...............++++++++++++++++ 701 ++++++++++++.................. .................++++++++++++++ 702 +++++++++.................. .................+++++++++++++ 703 ++++++........ . ......... ..++++++++++++ 704 ++............ ...... ....++++++++++ 705 .............. ...++++++++++ 706 .............. ....+++++++++ 707 .............. .....++++++++ 708 ............. ......++++++++ 709 ........... .......++++++++ 710 ......... ........+++++++ 711 ......... ........+++++++ 712 ......... ....+++++++ 713 ........ ...+++++++ 714 ....... ...+++++++ 715 ....+++++++ 716 .....+++++++ 717 ....+++++++ 718 ....+++++++ 719 ....+++++++ 720 Evaluated to 0.000000 721 ready> ^D 722 723 At this point, you may be starting to realize that Kaleidoscope is a 724 real and powerful language. It may not be self-similar :), but it can be 725 used to plot things that are! 726 727 With this, we conclude the "adding user-defined operators" chapter of 728 the tutorial. We have successfully augmented our language, adding the 729 ability to extend the language in the library, and we have shown how 730 this can be used to build a simple but interesting end-user application 731 in Kaleidoscope. At this point, Kaleidoscope can build a variety of 732 applications that are functional and can call functions with 733 side-effects, but it can't actually define and mutate a variable itself. 734 735 Strikingly, variable mutation is an important feature of some languages, 736 and it is not at all obvious how to `add support for mutable 737 variables <LangImpl7.html>`_ without having to add an "SSA construction" 738 phase to your front-end. In the next chapter, we will describe how you 739 can add variable mutation without building SSA in your front-end. 740 741 Full Code Listing 742 ================= 743 744 Here is the complete code listing for our running example, enhanced with 745 the if/then/else and for expressions.. To build this example, use: 746 747 .. code-block:: bash 748 749 # Compile 750 clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core mcjit native` -O3 -o toy 751 # Run 752 ./toy 753 754 On some platforms, you will need to specify -rdynamic or 755 -Wl,--export-dynamic when linking. This ensures that symbols defined in 756 the main executable are exported to the dynamic linker and so are 757 available for symbol resolution at run time. This is not needed if you 758 compile your support code into a shared library, although doing that 759 will cause problems on Windows. 760 761 Here is the code: 762 763 .. literalinclude:: ../../examples/Kaleidoscope/Chapter6/toy.cpp 764 :language: c++ 765 766 `Next: Extending the language: mutable variables / SSA 767 construction <LangImpl7.html>`_ 768 769