Home | History | Annotate | Download | only in Analysis
      1 //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Loops should be simplified before this analysis.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
     15 #include "llvm/ADT/SCCIterator.h"
     16 #include "llvm/Support/raw_ostream.h"
     17 #include <numeric>
     18 
     19 using namespace llvm;
     20 using namespace llvm::bfi_detail;
     21 
     22 #define DEBUG_TYPE "block-freq"
     23 
     24 ScaledNumber<uint64_t> BlockMass::toScaled() const {
     25   if (isFull())
     26     return ScaledNumber<uint64_t>(1, 0);
     27   return ScaledNumber<uint64_t>(getMass() + 1, -64);
     28 }
     29 
     30 void BlockMass::dump() const { print(dbgs()); }
     31 
     32 static char getHexDigit(int N) {
     33   assert(N < 16);
     34   if (N < 10)
     35     return '0' + N;
     36   return 'a' + N - 10;
     37 }
     38 raw_ostream &BlockMass::print(raw_ostream &OS) const {
     39   for (int Digits = 0; Digits < 16; ++Digits)
     40     OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
     41   return OS;
     42 }
     43 
     44 namespace {
     45 
     46 typedef BlockFrequencyInfoImplBase::BlockNode BlockNode;
     47 typedef BlockFrequencyInfoImplBase::Distribution Distribution;
     48 typedef BlockFrequencyInfoImplBase::Distribution::WeightList WeightList;
     49 typedef BlockFrequencyInfoImplBase::Scaled64 Scaled64;
     50 typedef BlockFrequencyInfoImplBase::LoopData LoopData;
     51 typedef BlockFrequencyInfoImplBase::Weight Weight;
     52 typedef BlockFrequencyInfoImplBase::FrequencyData FrequencyData;
     53 
     54 /// \brief Dithering mass distributer.
     55 ///
     56 /// This class splits up a single mass into portions by weight, dithering to
     57 /// spread out error.  No mass is lost.  The dithering precision depends on the
     58 /// precision of the product of \a BlockMass and \a BranchProbability.
     59 ///
     60 /// The distribution algorithm follows.
     61 ///
     62 ///  1. Initialize by saving the sum of the weights in \a RemWeight and the
     63 ///     mass to distribute in \a RemMass.
     64 ///
     65 ///  2. For each portion:
     66 ///
     67 ///      1. Construct a branch probability, P, as the portion's weight divided
     68 ///         by the current value of \a RemWeight.
     69 ///      2. Calculate the portion's mass as \a RemMass times P.
     70 ///      3. Update \a RemWeight and \a RemMass at each portion by subtracting
     71 ///         the current portion's weight and mass.
     72 struct DitheringDistributer {
     73   uint32_t RemWeight;
     74   BlockMass RemMass;
     75 
     76   DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
     77 
     78   BlockMass takeMass(uint32_t Weight);
     79 };
     80 
     81 } // end namespace
     82 
     83 DitheringDistributer::DitheringDistributer(Distribution &Dist,
     84                                            const BlockMass &Mass) {
     85   Dist.normalize();
     86   RemWeight = Dist.Total;
     87   RemMass = Mass;
     88 }
     89 
     90 BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
     91   assert(Weight && "invalid weight");
     92   assert(Weight <= RemWeight);
     93   BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
     94 
     95   // Decrement totals (dither).
     96   RemWeight -= Weight;
     97   RemMass -= Mass;
     98   return Mass;
     99 }
    100 
    101 void Distribution::add(const BlockNode &Node, uint64_t Amount,
    102                        Weight::DistType Type) {
    103   assert(Amount && "invalid weight of 0");
    104   uint64_t NewTotal = Total + Amount;
    105 
    106   // Check for overflow.  It should be impossible to overflow twice.
    107   bool IsOverflow = NewTotal < Total;
    108   assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
    109   DidOverflow |= IsOverflow;
    110 
    111   // Update the total.
    112   Total = NewTotal;
    113 
    114   // Save the weight.
    115   Weights.push_back(Weight(Type, Node, Amount));
    116 }
    117 
    118 static void combineWeight(Weight &W, const Weight &OtherW) {
    119   assert(OtherW.TargetNode.isValid());
    120   if (!W.Amount) {
    121     W = OtherW;
    122     return;
    123   }
    124   assert(W.Type == OtherW.Type);
    125   assert(W.TargetNode == OtherW.TargetNode);
    126   assert(OtherW.Amount && "Expected non-zero weight");
    127   if (W.Amount > W.Amount + OtherW.Amount)
    128     // Saturate on overflow.
    129     W.Amount = UINT64_MAX;
    130   else
    131     W.Amount += OtherW.Amount;
    132 }
    133 static void combineWeightsBySorting(WeightList &Weights) {
    134   // Sort so edges to the same node are adjacent.
    135   std::sort(Weights.begin(), Weights.end(),
    136             [](const Weight &L,
    137                const Weight &R) { return L.TargetNode < R.TargetNode; });
    138 
    139   // Combine adjacent edges.
    140   WeightList::iterator O = Weights.begin();
    141   for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
    142        ++O, (I = L)) {
    143     *O = *I;
    144 
    145     // Find the adjacent weights to the same node.
    146     for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
    147       combineWeight(*O, *L);
    148   }
    149 
    150   // Erase extra entries.
    151   Weights.erase(O, Weights.end());
    152   return;
    153 }
    154 static void combineWeightsByHashing(WeightList &Weights) {
    155   // Collect weights into a DenseMap.
    156   typedef DenseMap<BlockNode::IndexType, Weight> HashTable;
    157   HashTable Combined(NextPowerOf2(2 * Weights.size()));
    158   for (const Weight &W : Weights)
    159     combineWeight(Combined[W.TargetNode.Index], W);
    160 
    161   // Check whether anything changed.
    162   if (Weights.size() == Combined.size())
    163     return;
    164 
    165   // Fill in the new weights.
    166   Weights.clear();
    167   Weights.reserve(Combined.size());
    168   for (const auto &I : Combined)
    169     Weights.push_back(I.second);
    170 }
    171 static void combineWeights(WeightList &Weights) {
    172   // Use a hash table for many successors to keep this linear.
    173   if (Weights.size() > 128) {
    174     combineWeightsByHashing(Weights);
    175     return;
    176   }
    177 
    178   combineWeightsBySorting(Weights);
    179 }
    180 static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
    181   assert(Shift >= 0);
    182   assert(Shift < 64);
    183   if (!Shift)
    184     return N;
    185   return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
    186 }
    187 void Distribution::normalize() {
    188   // Early exit for termination nodes.
    189   if (Weights.empty())
    190     return;
    191 
    192   // Only bother if there are multiple successors.
    193   if (Weights.size() > 1)
    194     combineWeights(Weights);
    195 
    196   // Early exit when combined into a single successor.
    197   if (Weights.size() == 1) {
    198     Total = 1;
    199     Weights.front().Amount = 1;
    200     return;
    201   }
    202 
    203   // Determine how much to shift right so that the total fits into 32-bits.
    204   //
    205   // If we shift at all, shift by 1 extra.  Otherwise, the lower limit of 1
    206   // for each weight can cause a 32-bit overflow.
    207   int Shift = 0;
    208   if (DidOverflow)
    209     Shift = 33;
    210   else if (Total > UINT32_MAX)
    211     Shift = 33 - countLeadingZeros(Total);
    212 
    213   // Early exit if nothing needs to be scaled.
    214   if (!Shift) {
    215     // If we didn't overflow then combineWeights() shouldn't have changed the
    216     // sum of the weights, but let's double-check.
    217     assert(Total == std::accumulate(Weights.begin(), Weights.end(), UINT64_C(0),
    218                                     [](uint64_t Sum, const Weight &W) {
    219                       return Sum + W.Amount;
    220                     }) &&
    221            "Expected total to be correct");
    222     return;
    223   }
    224 
    225   // Recompute the total through accumulation (rather than shifting it) so that
    226   // it's accurate after shifting and any changes combineWeights() made above.
    227   Total = 0;
    228 
    229   // Sum the weights to each node and shift right if necessary.
    230   for (Weight &W : Weights) {
    231     // Scale down below UINT32_MAX.  Since Shift is larger than necessary, we
    232     // can round here without concern about overflow.
    233     assert(W.TargetNode.isValid());
    234     W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
    235     assert(W.Amount <= UINT32_MAX);
    236 
    237     // Update the total.
    238     Total += W.Amount;
    239   }
    240   assert(Total <= UINT32_MAX);
    241 }
    242 
    243 void BlockFrequencyInfoImplBase::clear() {
    244   // Swap with a default-constructed std::vector, since std::vector<>::clear()
    245   // does not actually clear heap storage.
    246   std::vector<FrequencyData>().swap(Freqs);
    247   std::vector<WorkingData>().swap(Working);
    248   Loops.clear();
    249 }
    250 
    251 /// \brief Clear all memory not needed downstream.
    252 ///
    253 /// Releases all memory not used downstream.  In particular, saves Freqs.
    254 static void cleanup(BlockFrequencyInfoImplBase &BFI) {
    255   std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
    256   BFI.clear();
    257   BFI.Freqs = std::move(SavedFreqs);
    258 }
    259 
    260 bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
    261                                            const LoopData *OuterLoop,
    262                                            const BlockNode &Pred,
    263                                            const BlockNode &Succ,
    264                                            uint64_t Weight) {
    265   if (!Weight)
    266     Weight = 1;
    267 
    268   auto isLoopHeader = [&OuterLoop](const BlockNode &Node) {
    269     return OuterLoop && OuterLoop->isHeader(Node);
    270   };
    271 
    272   BlockNode Resolved = Working[Succ.Index].getResolvedNode();
    273 
    274 #ifndef NDEBUG
    275   auto debugSuccessor = [&](const char *Type) {
    276     dbgs() << "  =>"
    277            << " [" << Type << "] weight = " << Weight;
    278     if (!isLoopHeader(Resolved))
    279       dbgs() << ", succ = " << getBlockName(Succ);
    280     if (Resolved != Succ)
    281       dbgs() << ", resolved = " << getBlockName(Resolved);
    282     dbgs() << "\n";
    283   };
    284   (void)debugSuccessor;
    285 #endif
    286 
    287   if (isLoopHeader(Resolved)) {
    288     DEBUG(debugSuccessor("backedge"));
    289     Dist.addBackedge(Resolved, Weight);
    290     return true;
    291   }
    292 
    293   if (Working[Resolved.Index].getContainingLoop() != OuterLoop) {
    294     DEBUG(debugSuccessor("  exit  "));
    295     Dist.addExit(Resolved, Weight);
    296     return true;
    297   }
    298 
    299   if (Resolved < Pred) {
    300     if (!isLoopHeader(Pred)) {
    301       // If OuterLoop is an irreducible loop, we can't actually handle this.
    302       assert((!OuterLoop || !OuterLoop->isIrreducible()) &&
    303              "unhandled irreducible control flow");
    304 
    305       // Irreducible backedge.  Abort.
    306       DEBUG(debugSuccessor("abort!!!"));
    307       return false;
    308     }
    309 
    310     // If "Pred" is a loop header, then this isn't really a backedge; rather,
    311     // OuterLoop must be irreducible.  These false backedges can come only from
    312     // secondary loop headers.
    313     assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) &&
    314            "unhandled irreducible control flow");
    315   }
    316 
    317   DEBUG(debugSuccessor(" local  "));
    318   Dist.addLocal(Resolved, Weight);
    319   return true;
    320 }
    321 
    322 bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
    323     const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) {
    324   // Copy the exit map into Dist.
    325   for (const auto &I : Loop.Exits)
    326     if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first,
    327                    I.second.getMass()))
    328       // Irreducible backedge.
    329       return false;
    330 
    331   return true;
    332 }
    333 
    334 /// \brief Compute the loop scale for a loop.
    335 void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) {
    336   // Compute loop scale.
    337   DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n");
    338 
    339   // Infinite loops need special handling. If we give the back edge an infinite
    340   // mass, they may saturate all the other scales in the function down to 1,
    341   // making all the other region temperatures look exactly the same. Choose an
    342   // arbitrary scale to avoid these issues.
    343   //
    344   // FIXME: An alternate way would be to select a symbolic scale which is later
    345   // replaced to be the maximum of all computed scales plus 1. This would
    346   // appropriately describe the loop as having a large scale, without skewing
    347   // the final frequency computation.
    348   const Scaled64 InifiniteLoopScale(1, 12);
    349 
    350   // LoopScale == 1 / ExitMass
    351   // ExitMass == HeadMass - BackedgeMass
    352   BlockMass TotalBackedgeMass;
    353   for (auto &Mass : Loop.BackedgeMass)
    354     TotalBackedgeMass += Mass;
    355   BlockMass ExitMass = BlockMass::getFull() - TotalBackedgeMass;
    356 
    357   // Block scale stores the inverse of the scale. If this is an infinite loop,
    358   // its exit mass will be zero. In this case, use an arbitrary scale for the
    359   // loop scale.
    360   Loop.Scale =
    361       ExitMass.isEmpty() ? InifiniteLoopScale : ExitMass.toScaled().inverse();
    362 
    363   DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" << BlockMass::getFull()
    364                << " - " << TotalBackedgeMass << ")\n"
    365                << " - scale = " << Loop.Scale << "\n");
    366 }
    367 
    368 /// \brief Package up a loop.
    369 void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) {
    370   DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n");
    371 
    372   // Clear the subloop exits to prevent quadratic memory usage.
    373   for (const BlockNode &M : Loop.Nodes) {
    374     if (auto *Loop = Working[M.Index].getPackagedLoop())
    375       Loop->Exits.clear();
    376     DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
    377   }
    378   Loop.IsPackaged = true;
    379 }
    380 
    381 #ifndef NDEBUG
    382 static void debugAssign(const BlockFrequencyInfoImplBase &BFI,
    383                         const DitheringDistributer &D, const BlockNode &T,
    384                         const BlockMass &M, const char *Desc) {
    385   dbgs() << "  => assign " << M << " (" << D.RemMass << ")";
    386   if (Desc)
    387     dbgs() << " [" << Desc << "]";
    388   if (T.isValid())
    389     dbgs() << " to " << BFI.getBlockName(T);
    390   dbgs() << "\n";
    391 }
    392 #endif
    393 
    394 void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
    395                                                 LoopData *OuterLoop,
    396                                                 Distribution &Dist) {
    397   BlockMass Mass = Working[Source.Index].getMass();
    398   DEBUG(dbgs() << "  => mass:  " << Mass << "\n");
    399 
    400   // Distribute mass to successors as laid out in Dist.
    401   DitheringDistributer D(Dist, Mass);
    402 
    403   for (const Weight &W : Dist.Weights) {
    404     // Check for a local edge (non-backedge and non-exit).
    405     BlockMass Taken = D.takeMass(W.Amount);
    406     if (W.Type == Weight::Local) {
    407       Working[W.TargetNode.Index].getMass() += Taken;
    408       DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
    409       continue;
    410     }
    411 
    412     // Backedges and exits only make sense if we're processing a loop.
    413     assert(OuterLoop && "backedge or exit outside of loop");
    414 
    415     // Check for a backedge.
    416     if (W.Type == Weight::Backedge) {
    417       OuterLoop->BackedgeMass[OuterLoop->getHeaderIndex(W.TargetNode)] += Taken;
    418       DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "back"));
    419       continue;
    420     }
    421 
    422     // This must be an exit.
    423     assert(W.Type == Weight::Exit);
    424     OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken));
    425     DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "exit"));
    426   }
    427 }
    428 
    429 static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
    430                                      const Scaled64 &Min, const Scaled64 &Max) {
    431   // Scale the Factor to a size that creates integers.  Ideally, integers would
    432   // be scaled so that Max == UINT64_MAX so that they can be best
    433   // differentiated.  However, in the presence of large frequency values, small
    434   // frequencies are scaled down to 1, making it impossible to differentiate
    435   // small, unequal numbers. When the spread between Min and Max frequencies
    436   // fits well within MaxBits, we make the scale be at least 8.
    437   const unsigned MaxBits = 64;
    438   const unsigned SpreadBits = (Max / Min).lg();
    439   Scaled64 ScalingFactor;
    440   if (SpreadBits <= MaxBits - 3) {
    441     // If the values are small enough, make the scaling factor at least 8 to
    442     // allow distinguishing small values.
    443     ScalingFactor = Min.inverse();
    444     ScalingFactor <<= 3;
    445   } else {
    446     // If the values need more than MaxBits to be represented, saturate small
    447     // frequency values down to 1 by using a scaling factor that benefits large
    448     // frequency values.
    449     ScalingFactor = Scaled64(1, MaxBits) / Max;
    450   }
    451 
    452   // Translate the floats to integers.
    453   DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
    454                << ", factor = " << ScalingFactor << "\n");
    455   for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
    456     Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor;
    457     BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
    458     DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
    459                  << BFI.Freqs[Index].Scaled << ", scaled = " << Scaled
    460                  << ", int = " << BFI.Freqs[Index].Integer << "\n");
    461   }
    462 }
    463 
    464 /// \brief Unwrap a loop package.
    465 ///
    466 /// Visits all the members of a loop, adjusting their BlockData according to
    467 /// the loop's pseudo-node.
    468 static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) {
    469   DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop)
    470                << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale
    471                << "\n");
    472   Loop.Scale *= Loop.Mass.toScaled();
    473   Loop.IsPackaged = false;
    474   DEBUG(dbgs() << "  => combined-scale = " << Loop.Scale << "\n");
    475 
    476   // Propagate the head scale through the loop.  Since members are visited in
    477   // RPO, the head scale will be updated by the loop scale first, and then the
    478   // final head scale will be used for updated the rest of the members.
    479   for (const BlockNode &N : Loop.Nodes) {
    480     const auto &Working = BFI.Working[N.Index];
    481     Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale
    482                                        : BFI.Freqs[N.Index].Scaled;
    483     Scaled64 New = Loop.Scale * F;
    484     DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => " << New
    485                  << "\n");
    486     F = New;
    487   }
    488 }
    489 
    490 void BlockFrequencyInfoImplBase::unwrapLoops() {
    491   // Set initial frequencies from loop-local masses.
    492   for (size_t Index = 0; Index < Working.size(); ++Index)
    493     Freqs[Index].Scaled = Working[Index].Mass.toScaled();
    494 
    495   for (LoopData &Loop : Loops)
    496     unwrapLoop(*this, Loop);
    497 }
    498 
    499 void BlockFrequencyInfoImplBase::finalizeMetrics() {
    500   // Unwrap loop packages in reverse post-order, tracking min and max
    501   // frequencies.
    502   auto Min = Scaled64::getLargest();
    503   auto Max = Scaled64::getZero();
    504   for (size_t Index = 0; Index < Working.size(); ++Index) {
    505     // Update min/max scale.
    506     Min = std::min(Min, Freqs[Index].Scaled);
    507     Max = std::max(Max, Freqs[Index].Scaled);
    508   }
    509 
    510   // Convert to integers.
    511   convertFloatingToInteger(*this, Min, Max);
    512 
    513   // Clean up data structures.
    514   cleanup(*this);
    515 
    516   // Print out the final stats.
    517   DEBUG(dump());
    518 }
    519 
    520 BlockFrequency
    521 BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
    522   if (!Node.isValid())
    523     return 0;
    524   return Freqs[Node.Index].Integer;
    525 }
    526 Scaled64
    527 BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
    528   if (!Node.isValid())
    529     return Scaled64::getZero();
    530   return Freqs[Node.Index].Scaled;
    531 }
    532 
    533 void BlockFrequencyInfoImplBase::setBlockFreq(const BlockNode &Node,
    534                                               uint64_t Freq) {
    535   assert(Node.isValid() && "Expected valid node");
    536   assert(Node.Index < Freqs.size() && "Expected legal index");
    537   Freqs[Node.Index].Integer = Freq;
    538 }
    539 
    540 std::string
    541 BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
    542   return std::string();
    543 }
    544 std::string
    545 BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const {
    546   return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*");
    547 }
    548 
    549 raw_ostream &
    550 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
    551                                            const BlockNode &Node) const {
    552   return OS << getFloatingBlockFreq(Node);
    553 }
    554 
    555 raw_ostream &
    556 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
    557                                            const BlockFrequency &Freq) const {
    558   Scaled64 Block(Freq.getFrequency(), 0);
    559   Scaled64 Entry(getEntryFreq(), 0);
    560 
    561   return OS << Block / Entry;
    562 }
    563 
    564 void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) {
    565   Start = OuterLoop.getHeader();
    566   Nodes.reserve(OuterLoop.Nodes.size());
    567   for (auto N : OuterLoop.Nodes)
    568     addNode(N);
    569   indexNodes();
    570 }
    571 void IrreducibleGraph::addNodesInFunction() {
    572   Start = 0;
    573   for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
    574     if (!BFI.Working[Index].isPackaged())
    575       addNode(Index);
    576   indexNodes();
    577 }
    578 void IrreducibleGraph::indexNodes() {
    579   for (auto &I : Nodes)
    580     Lookup[I.Node.Index] = &I;
    581 }
    582 void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ,
    583                                const BFIBase::LoopData *OuterLoop) {
    584   if (OuterLoop && OuterLoop->isHeader(Succ))
    585     return;
    586   auto L = Lookup.find(Succ.Index);
    587   if (L == Lookup.end())
    588     return;
    589   IrrNode &SuccIrr = *L->second;
    590   Irr.Edges.push_back(&SuccIrr);
    591   SuccIrr.Edges.push_front(&Irr);
    592   ++SuccIrr.NumIn;
    593 }
    594 
    595 namespace llvm {
    596 template <> struct GraphTraits<IrreducibleGraph> {
    597   typedef bfi_detail::IrreducibleGraph GraphT;
    598 
    599   typedef const GraphT::IrrNode NodeType;
    600   typedef GraphT::IrrNode::iterator ChildIteratorType;
    601 
    602   static const NodeType *getEntryNode(const GraphT &G) {
    603     return G.StartIrr;
    604   }
    605   static ChildIteratorType child_begin(NodeType *N) { return N->succ_begin(); }
    606   static ChildIteratorType child_end(NodeType *N) { return N->succ_end(); }
    607 };
    608 }
    609 
    610 /// \brief Find extra irreducible headers.
    611 ///
    612 /// Find entry blocks and other blocks with backedges, which exist when \c G
    613 /// contains irreducible sub-SCCs.
    614 static void findIrreducibleHeaders(
    615     const BlockFrequencyInfoImplBase &BFI,
    616     const IrreducibleGraph &G,
    617     const std::vector<const IrreducibleGraph::IrrNode *> &SCC,
    618     LoopData::NodeList &Headers, LoopData::NodeList &Others) {
    619   // Map from nodes in the SCC to whether it's an entry block.
    620   SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC;
    621 
    622   // InSCC also acts the set of nodes in the graph.  Seed it.
    623   for (const auto *I : SCC)
    624     InSCC[I] = false;
    625 
    626   for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) {
    627     auto &Irr = *I->first;
    628     for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
    629       if (InSCC.count(P))
    630         continue;
    631 
    632       // This is an entry block.
    633       I->second = true;
    634       Headers.push_back(Irr.Node);
    635       DEBUG(dbgs() << "  => entry = " << BFI.getBlockName(Irr.Node) << "\n");
    636       break;
    637     }
    638   }
    639   assert(Headers.size() >= 2 &&
    640          "Expected irreducible CFG; -loop-info is likely invalid");
    641   if (Headers.size() == InSCC.size()) {
    642     // Every block is a header.
    643     std::sort(Headers.begin(), Headers.end());
    644     return;
    645   }
    646 
    647   // Look for extra headers from irreducible sub-SCCs.
    648   for (const auto &I : InSCC) {
    649     // Entry blocks are already headers.
    650     if (I.second)
    651       continue;
    652 
    653     auto &Irr = *I.first;
    654     for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
    655       // Skip forward edges.
    656       if (P->Node < Irr.Node)
    657         continue;
    658 
    659       // Skip predecessors from entry blocks.  These can have inverted
    660       // ordering.
    661       if (InSCC.lookup(P))
    662         continue;
    663 
    664       // Store the extra header.
    665       Headers.push_back(Irr.Node);
    666       DEBUG(dbgs() << "  => extra = " << BFI.getBlockName(Irr.Node) << "\n");
    667       break;
    668     }
    669     if (Headers.back() == Irr.Node)
    670       // Added this as a header.
    671       continue;
    672 
    673     // This is not a header.
    674     Others.push_back(Irr.Node);
    675     DEBUG(dbgs() << "  => other = " << BFI.getBlockName(Irr.Node) << "\n");
    676   }
    677   std::sort(Headers.begin(), Headers.end());
    678   std::sort(Others.begin(), Others.end());
    679 }
    680 
    681 static void createIrreducibleLoop(
    682     BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G,
    683     LoopData *OuterLoop, std::list<LoopData>::iterator Insert,
    684     const std::vector<const IrreducibleGraph::IrrNode *> &SCC) {
    685   // Translate the SCC into RPO.
    686   DEBUG(dbgs() << " - found-scc\n");
    687 
    688   LoopData::NodeList Headers;
    689   LoopData::NodeList Others;
    690   findIrreducibleHeaders(BFI, G, SCC, Headers, Others);
    691 
    692   auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(),
    693                                 Headers.end(), Others.begin(), Others.end());
    694 
    695   // Update loop hierarchy.
    696   for (const auto &N : Loop->Nodes)
    697     if (BFI.Working[N.Index].isLoopHeader())
    698       BFI.Working[N.Index].Loop->Parent = &*Loop;
    699     else
    700       BFI.Working[N.Index].Loop = &*Loop;
    701 }
    702 
    703 iterator_range<std::list<LoopData>::iterator>
    704 BlockFrequencyInfoImplBase::analyzeIrreducible(
    705     const IrreducibleGraph &G, LoopData *OuterLoop,
    706     std::list<LoopData>::iterator Insert) {
    707   assert((OuterLoop == nullptr) == (Insert == Loops.begin()));
    708   auto Prev = OuterLoop ? std::prev(Insert) : Loops.end();
    709 
    710   for (auto I = scc_begin(G); !I.isAtEnd(); ++I) {
    711     if (I->size() < 2)
    712       continue;
    713 
    714     // Translate the SCC into RPO.
    715     createIrreducibleLoop(*this, G, OuterLoop, Insert, *I);
    716   }
    717 
    718   if (OuterLoop)
    719     return make_range(std::next(Prev), Insert);
    720   return make_range(Loops.begin(), Insert);
    721 }
    722 
    723 void
    724 BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) {
    725   OuterLoop.Exits.clear();
    726   for (auto &Mass : OuterLoop.BackedgeMass)
    727     Mass = BlockMass::getEmpty();
    728   auto O = OuterLoop.Nodes.begin() + 1;
    729   for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I)
    730     if (!Working[I->Index].isPackaged())
    731       *O++ = *I;
    732   OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end());
    733 }
    734 
    735 void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData &Loop) {
    736   assert(Loop.isIrreducible() && "this only makes sense on irreducible loops");
    737 
    738   // Since the loop has more than one header block, the mass flowing back into
    739   // each header will be different. Adjust the mass in each header loop to
    740   // reflect the masses flowing through back edges.
    741   //
    742   // To do this, we distribute the initial mass using the backedge masses
    743   // as weights for the distribution.
    744   BlockMass LoopMass = BlockMass::getFull();
    745   Distribution Dist;
    746 
    747   DEBUG(dbgs() << "adjust-loop-header-mass:\n");
    748   for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
    749     auto &HeaderNode = Loop.Nodes[H];
    750     auto &BackedgeMass = Loop.BackedgeMass[Loop.getHeaderIndex(HeaderNode)];
    751     DEBUG(dbgs() << " - Add back edge mass for node "
    752                  << getBlockName(HeaderNode) << ": " << BackedgeMass << "\n");
    753     if (BackedgeMass.getMass() > 0)
    754       Dist.addLocal(HeaderNode, BackedgeMass.getMass());
    755     else
    756       DEBUG(dbgs() << "   Nothing added. Back edge mass is zero\n");
    757   }
    758 
    759   DitheringDistributer D(Dist, LoopMass);
    760 
    761   DEBUG(dbgs() << " Distribute loop mass " << LoopMass
    762                << " to headers using above weights\n");
    763   for (const Weight &W : Dist.Weights) {
    764     BlockMass Taken = D.takeMass(W.Amount);
    765     assert(W.Type == Weight::Local && "all weights should be local");
    766     Working[W.TargetNode.Index].getMass() = Taken;
    767     DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
    768   }
    769 }
    770