1 //===-- R600Instructions.td - R600 Instruction defs -------*- tablegen -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // TableGen definitions for instructions which are available on R600 family 11 // GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 include "R600Intrinsics.td" 16 include "R600InstrFormats.td" 17 18 class InstR600ISA <dag outs, dag ins, string asm, list<dag> pattern> : 19 InstR600 <outs, ins, asm, pattern, NullALU> { 20 21 let Namespace = "AMDGPU"; 22 } 23 24 def MEMxi : Operand<iPTR> { 25 let MIOperandInfo = (ops R600_TReg32_X:$ptr, i32imm:$index); 26 let PrintMethod = "printMemOperand"; 27 } 28 29 def MEMrr : Operand<iPTR> { 30 let MIOperandInfo = (ops R600_Reg32:$ptr, R600_Reg32:$index); 31 } 32 33 // Operands for non-registers 34 35 class InstFlag<string PM = "printOperand", int Default = 0> 36 : OperandWithDefaultOps <i32, (ops (i32 Default))> { 37 let PrintMethod = PM; 38 } 39 40 // src_sel for ALU src operands, see also ALU_CONST, ALU_PARAM registers 41 def SEL : OperandWithDefaultOps <i32, (ops (i32 -1))> { 42 let PrintMethod = "printSel"; 43 } 44 def BANK_SWIZZLE : OperandWithDefaultOps <i32, (ops (i32 0))> { 45 let PrintMethod = "printBankSwizzle"; 46 } 47 48 def LITERAL : InstFlag<"printLiteral">; 49 50 def WRITE : InstFlag <"printWrite", 1>; 51 def OMOD : InstFlag <"printOMOD">; 52 def REL : InstFlag <"printRel">; 53 def CLAMP : InstFlag <"printClamp">; 54 def NEG : InstFlag <"printNeg">; 55 def ABS : InstFlag <"printAbs">; 56 def UEM : InstFlag <"printUpdateExecMask">; 57 def UP : InstFlag <"printUpdatePred">; 58 59 // XXX: The r600g finalizer in Mesa expects last to be one in most cases. 60 // Once we start using the packetizer in this backend we should have this 61 // default to 0. 62 def LAST : InstFlag<"printLast", 1>; 63 def RSel : Operand<i32> { 64 let PrintMethod = "printRSel"; 65 } 66 def CT: Operand<i32> { 67 let PrintMethod = "printCT"; 68 } 69 70 def FRAMEri : Operand<iPTR> { 71 let MIOperandInfo = (ops R600_Reg32:$ptr, i32imm:$index); 72 } 73 74 def ADDRParam : ComplexPattern<i32, 2, "SelectADDRParam", [], []>; 75 def ADDRDWord : ComplexPattern<i32, 1, "SelectADDRDWord", [], []>; 76 def ADDRVTX_READ : ComplexPattern<i32, 2, "SelectADDRVTX_READ", [], []>; 77 def ADDRGA_CONST_OFFSET : ComplexPattern<i32, 1, "SelectGlobalValueConstantOffset", [], []>; 78 def ADDRGA_VAR_OFFSET : ComplexPattern<i32, 2, "SelectGlobalValueVariableOffset", [], []>; 79 80 81 def R600_Pred : PredicateOperand<i32, (ops R600_Predicate), 82 (ops PRED_SEL_OFF)>; 83 84 85 let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { 86 87 // Class for instructions with only one source register. 88 // If you add new ins to this instruction, make sure they are listed before 89 // $literal, because the backend currently assumes that the last operand is 90 // a literal. Also be sure to update the enum R600Op1OperandIndex::ROI in 91 // R600Defines.h, R600InstrInfo::buildDefaultInstruction(), 92 // and R600InstrInfo::getOperandIdx(). 93 class R600_1OP <bits<11> inst, string opName, list<dag> pattern, 94 InstrItinClass itin = AnyALU> : 95 InstR600 <(outs R600_Reg32:$dst), 96 (ins WRITE:$write, OMOD:$omod, REL:$dst_rel, CLAMP:$clamp, 97 R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel, 98 LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal, 99 BANK_SWIZZLE:$bank_swizzle), 100 !strconcat(" ", opName, 101 "$clamp $last $dst$write$dst_rel$omod, " 102 "$src0_neg$src0_abs$src0$src0_abs$src0_rel, " 103 "$pred_sel $bank_swizzle"), 104 pattern, 105 itin>, 106 R600ALU_Word0, 107 R600ALU_Word1_OP2 <inst> { 108 109 let src1 = 0; 110 let src1_rel = 0; 111 let src1_neg = 0; 112 let src1_abs = 0; 113 let update_exec_mask = 0; 114 let update_pred = 0; 115 let HasNativeOperands = 1; 116 let Op1 = 1; 117 let ALUInst = 1; 118 let DisableEncoding = "$literal"; 119 let UseNamedOperandTable = 1; 120 121 let Inst{31-0} = Word0; 122 let Inst{63-32} = Word1; 123 } 124 125 class R600_1OP_Helper <bits<11> inst, string opName, SDPatternOperator node, 126 InstrItinClass itin = AnyALU> : 127 R600_1OP <inst, opName, 128 [(set R600_Reg32:$dst, (node R600_Reg32:$src0))], itin 129 >; 130 131 // If you add or change the operands for R600_2OP instructions, you must 132 // also update the R600Op2OperandIndex::ROI enum in R600Defines.h, 133 // R600InstrInfo::buildDefaultInstruction(), and R600InstrInfo::getOperandIdx(). 134 class R600_2OP <bits<11> inst, string opName, list<dag> pattern, 135 InstrItinClass itin = AnyALU> : 136 InstR600 <(outs R600_Reg32:$dst), 137 (ins UEM:$update_exec_mask, UP:$update_pred, WRITE:$write, 138 OMOD:$omod, REL:$dst_rel, CLAMP:$clamp, 139 R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel, 140 R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, ABS:$src1_abs, SEL:$src1_sel, 141 LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal, 142 BANK_SWIZZLE:$bank_swizzle), 143 !strconcat(" ", opName, 144 "$clamp $last $update_exec_mask$update_pred$dst$write$dst_rel$omod, " 145 "$src0_neg$src0_abs$src0$src0_abs$src0_rel, " 146 "$src1_neg$src1_abs$src1$src1_abs$src1_rel, " 147 "$pred_sel $bank_swizzle"), 148 pattern, 149 itin>, 150 R600ALU_Word0, 151 R600ALU_Word1_OP2 <inst> { 152 153 let HasNativeOperands = 1; 154 let Op2 = 1; 155 let ALUInst = 1; 156 let DisableEncoding = "$literal"; 157 let UseNamedOperandTable = 1; 158 159 let Inst{31-0} = Word0; 160 let Inst{63-32} = Word1; 161 } 162 163 class R600_2OP_Helper <bits<11> inst, string opName, SDPatternOperator node, 164 InstrItinClass itin = AnyALU> : 165 R600_2OP <inst, opName, 166 [(set R600_Reg32:$dst, (node R600_Reg32:$src0, 167 R600_Reg32:$src1))], itin 168 >; 169 170 // If you add our change the operands for R600_3OP instructions, you must 171 // also update the R600Op3OperandIndex::ROI enum in R600Defines.h, 172 // R600InstrInfo::buildDefaultInstruction(), and 173 // R600InstrInfo::getOperandIdx(). 174 class R600_3OP <bits<5> inst, string opName, list<dag> pattern, 175 InstrItinClass itin = AnyALU> : 176 InstR600 <(outs R600_Reg32:$dst), 177 (ins REL:$dst_rel, CLAMP:$clamp, 178 R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, SEL:$src0_sel, 179 R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, SEL:$src1_sel, 180 R600_Reg32:$src2, NEG:$src2_neg, REL:$src2_rel, SEL:$src2_sel, 181 LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal, 182 BANK_SWIZZLE:$bank_swizzle), 183 !strconcat(" ", opName, "$clamp $last $dst$dst_rel, " 184 "$src0_neg$src0$src0_rel, " 185 "$src1_neg$src1$src1_rel, " 186 "$src2_neg$src2$src2_rel, " 187 "$pred_sel" 188 "$bank_swizzle"), 189 pattern, 190 itin>, 191 R600ALU_Word0, 192 R600ALU_Word1_OP3<inst>{ 193 194 let HasNativeOperands = 1; 195 let DisableEncoding = "$literal"; 196 let Op3 = 1; 197 let UseNamedOperandTable = 1; 198 let ALUInst = 1; 199 200 let Inst{31-0} = Word0; 201 let Inst{63-32} = Word1; 202 } 203 204 class R600_REDUCTION <bits<11> inst, dag ins, string asm, list<dag> pattern, 205 InstrItinClass itin = VecALU> : 206 InstR600 <(outs R600_Reg32:$dst), 207 ins, 208 asm, 209 pattern, 210 itin>; 211 212 213 214 } // End mayLoad = 1, mayStore = 0, hasSideEffects = 0 215 216 def TEX_SHADOW : PatLeaf< 217 (imm), 218 [{uint32_t TType = (uint32_t)N->getZExtValue(); 219 return (TType >= 6 && TType <= 8) || TType == 13; 220 }] 221 >; 222 223 def TEX_RECT : PatLeaf< 224 (imm), 225 [{uint32_t TType = (uint32_t)N->getZExtValue(); 226 return TType == 5; 227 }] 228 >; 229 230 def TEX_ARRAY : PatLeaf< 231 (imm), 232 [{uint32_t TType = (uint32_t)N->getZExtValue(); 233 return TType == 9 || TType == 10 || TType == 16; 234 }] 235 >; 236 237 def TEX_SHADOW_ARRAY : PatLeaf< 238 (imm), 239 [{uint32_t TType = (uint32_t)N->getZExtValue(); 240 return TType == 11 || TType == 12 || TType == 17; 241 }] 242 >; 243 244 def TEX_MSAA : PatLeaf< 245 (imm), 246 [{uint32_t TType = (uint32_t)N->getZExtValue(); 247 return TType == 14; 248 }] 249 >; 250 251 def TEX_ARRAY_MSAA : PatLeaf< 252 (imm), 253 [{uint32_t TType = (uint32_t)N->getZExtValue(); 254 return TType == 15; 255 }] 256 >; 257 258 class EG_CF_RAT <bits <8> cfinst, bits <6> ratinst, bits<4> ratid, bits<4> mask, 259 dag outs, dag ins, string asm, list<dag> pattern> : 260 InstR600ISA <outs, ins, asm, pattern>, 261 CF_ALLOC_EXPORT_WORD0_RAT, CF_ALLOC_EXPORT_WORD1_BUF { 262 263 let rat_id = ratid; 264 let rat_inst = ratinst; 265 let rim = 0; 266 // XXX: Have a separate instruction for non-indexed writes. 267 let type = 1; 268 let rw_rel = 0; 269 let elem_size = 0; 270 271 let array_size = 0; 272 let comp_mask = mask; 273 let burst_count = 0; 274 let vpm = 0; 275 let cf_inst = cfinst; 276 let mark = 0; 277 let barrier = 1; 278 279 let Inst{31-0} = Word0; 280 let Inst{63-32} = Word1; 281 let IsExport = 1; 282 283 } 284 285 class VTX_READ <string name, bits<8> buffer_id, dag outs, list<dag> pattern> 286 : InstR600ISA <outs, (ins MEMxi:$src_gpr), name, pattern>, 287 VTX_WORD1_GPR { 288 289 // Static fields 290 let DST_REL = 0; 291 // The docs say that if this bit is set, then DATA_FORMAT, NUM_FORMAT_ALL, 292 // FORMAT_COMP_ALL, SRF_MODE_ALL, and ENDIAN_SWAP fields will be ignored, 293 // however, based on my testing if USE_CONST_FIELDS is set, then all 294 // these fields need to be set to 0. 295 let USE_CONST_FIELDS = 0; 296 let NUM_FORMAT_ALL = 1; 297 let FORMAT_COMP_ALL = 0; 298 let SRF_MODE_ALL = 0; 299 300 let Inst{63-32} = Word1; 301 // LLVM can only encode 64-bit instructions, so these fields are manually 302 // encoded in R600CodeEmitter 303 // 304 // bits<16> OFFSET; 305 // bits<2> ENDIAN_SWAP = 0; 306 // bits<1> CONST_BUF_NO_STRIDE = 0; 307 // bits<1> MEGA_FETCH = 0; 308 // bits<1> ALT_CONST = 0; 309 // bits<2> BUFFER_INDEX_MODE = 0; 310 311 // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding 312 // is done in R600CodeEmitter 313 // 314 // Inst{79-64} = OFFSET; 315 // Inst{81-80} = ENDIAN_SWAP; 316 // Inst{82} = CONST_BUF_NO_STRIDE; 317 // Inst{83} = MEGA_FETCH; 318 // Inst{84} = ALT_CONST; 319 // Inst{86-85} = BUFFER_INDEX_MODE; 320 // Inst{95-86} = 0; Reserved 321 322 // VTX_WORD3 (Padding) 323 // 324 // Inst{127-96} = 0; 325 326 let VTXInst = 1; 327 } 328 329 class LoadParamFrag <PatFrag load_type> : PatFrag < 330 (ops node:$ptr), (load_type node:$ptr), 331 [{ return isConstantLoad(dyn_cast<LoadSDNode>(N), 0); }] 332 >; 333 334 def load_param : LoadParamFrag<load>; 335 def load_param_exti8 : LoadParamFrag<az_extloadi8>; 336 def load_param_exti16 : LoadParamFrag<az_extloadi16>; 337 338 def isR600 : Predicate<"Subtarget->getGeneration() <= AMDGPUSubtarget::R700">; 339 340 def isR600toCayman 341 : Predicate< 342 "Subtarget->getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS">; 343 344 //===----------------------------------------------------------------------===// 345 // R600 SDNodes 346 //===----------------------------------------------------------------------===// 347 348 def INTERP_PAIR_XY : AMDGPUShaderInst < 349 (outs R600_TReg32_X:$dst0, R600_TReg32_Y:$dst1), 350 (ins i32imm:$src0, R600_TReg32_Y:$src1, R600_TReg32_X:$src2), 351 "INTERP_PAIR_XY $src0 $src1 $src2 : $dst0 dst1", 352 []>; 353 354 def INTERP_PAIR_ZW : AMDGPUShaderInst < 355 (outs R600_TReg32_Z:$dst0, R600_TReg32_W:$dst1), 356 (ins i32imm:$src0, R600_TReg32_Y:$src1, R600_TReg32_X:$src2), 357 "INTERP_PAIR_ZW $src0 $src1 $src2 : $dst0 dst1", 358 []>; 359 360 def CONST_ADDRESS: SDNode<"AMDGPUISD::CONST_ADDRESS", 361 SDTypeProfile<1, -1, [SDTCisInt<0>, SDTCisPtrTy<1>]>, 362 [SDNPVariadic] 363 >; 364 365 def DOT4 : SDNode<"AMDGPUISD::DOT4", 366 SDTypeProfile<1, 8, [SDTCisFP<0>, SDTCisVT<1, f32>, SDTCisVT<2, f32>, 367 SDTCisVT<3, f32>, SDTCisVT<4, f32>, SDTCisVT<5, f32>, 368 SDTCisVT<6, f32>, SDTCisVT<7, f32>, SDTCisVT<8, f32>]>, 369 [] 370 >; 371 372 def COS_HW : SDNode<"AMDGPUISD::COS_HW", 373 SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]> 374 >; 375 376 def SIN_HW : SDNode<"AMDGPUISD::SIN_HW", 377 SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]> 378 >; 379 380 def TEXTURE_FETCH_Type : SDTypeProfile<1, 19, [SDTCisFP<0>]>; 381 382 def TEXTURE_FETCH: SDNode<"AMDGPUISD::TEXTURE_FETCH", TEXTURE_FETCH_Type, []>; 383 384 multiclass TexPattern<bits<32> TextureOp, Instruction inst, ValueType vt = v4f32> { 385 def : Pat<(TEXTURE_FETCH (i32 TextureOp), vt:$SRC_GPR, 386 (i32 imm:$srcx), (i32 imm:$srcy), (i32 imm:$srcz), (i32 imm:$srcw), 387 (i32 imm:$offsetx), (i32 imm:$offsety), (i32 imm:$offsetz), 388 (i32 imm:$DST_SEL_X), (i32 imm:$DST_SEL_Y), (i32 imm:$DST_SEL_Z), 389 (i32 imm:$DST_SEL_W), 390 (i32 imm:$RESOURCE_ID), (i32 imm:$SAMPLER_ID), 391 (i32 imm:$COORD_TYPE_X), (i32 imm:$COORD_TYPE_Y), (i32 imm:$COORD_TYPE_Z), 392 (i32 imm:$COORD_TYPE_W)), 393 (inst R600_Reg128:$SRC_GPR, 394 imm:$srcx, imm:$srcy, imm:$srcz, imm:$srcw, 395 imm:$offsetx, imm:$offsety, imm:$offsetz, 396 imm:$DST_SEL_X, imm:$DST_SEL_Y, imm:$DST_SEL_Z, 397 imm:$DST_SEL_W, 398 imm:$RESOURCE_ID, imm:$SAMPLER_ID, 399 imm:$COORD_TYPE_X, imm:$COORD_TYPE_Y, imm:$COORD_TYPE_Z, 400 imm:$COORD_TYPE_W)>; 401 } 402 403 //===----------------------------------------------------------------------===// 404 // Interpolation Instructions 405 //===----------------------------------------------------------------------===// 406 407 def INTERP_VEC_LOAD : AMDGPUShaderInst < 408 (outs R600_Reg128:$dst), 409 (ins i32imm:$src0), 410 "INTERP_LOAD $src0 : $dst", 411 [(set R600_Reg128:$dst, (int_R600_interp_const imm:$src0))]>; 412 413 def INTERP_XY : R600_2OP <0xD6, "INTERP_XY", []> { 414 let bank_swizzle = 5; 415 } 416 417 def INTERP_ZW : R600_2OP <0xD7, "INTERP_ZW", []> { 418 let bank_swizzle = 5; 419 } 420 421 def INTERP_LOAD_P0 : R600_1OP <0xE0, "INTERP_LOAD_P0", []>; 422 423 //===----------------------------------------------------------------------===// 424 // Export Instructions 425 //===----------------------------------------------------------------------===// 426 427 def ExportType : SDTypeProfile<0, 7, [SDTCisFP<0>, SDTCisInt<1>]>; 428 429 def EXPORT: SDNode<"AMDGPUISD::EXPORT", ExportType, 430 [SDNPHasChain, SDNPSideEffect]>; 431 432 class ExportWord0 { 433 field bits<32> Word0; 434 435 bits<13> arraybase; 436 bits<2> type; 437 bits<7> gpr; 438 bits<2> elem_size; 439 440 let Word0{12-0} = arraybase; 441 let Word0{14-13} = type; 442 let Word0{21-15} = gpr; 443 let Word0{22} = 0; // RW_REL 444 let Word0{29-23} = 0; // INDEX_GPR 445 let Word0{31-30} = elem_size; 446 } 447 448 class ExportSwzWord1 { 449 field bits<32> Word1; 450 451 bits<3> sw_x; 452 bits<3> sw_y; 453 bits<3> sw_z; 454 bits<3> sw_w; 455 bits<1> eop; 456 bits<8> inst; 457 458 let Word1{2-0} = sw_x; 459 let Word1{5-3} = sw_y; 460 let Word1{8-6} = sw_z; 461 let Word1{11-9} = sw_w; 462 } 463 464 class ExportBufWord1 { 465 field bits<32> Word1; 466 467 bits<12> arraySize; 468 bits<4> compMask; 469 bits<1> eop; 470 bits<8> inst; 471 472 let Word1{11-0} = arraySize; 473 let Word1{15-12} = compMask; 474 } 475 476 multiclass ExportPattern<Instruction ExportInst, bits<8> cf_inst> { 477 def : Pat<(int_R600_store_pixel_depth R600_Reg32:$reg), 478 (ExportInst 479 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), $reg, sub0), 480 0, 61, 0, 7, 7, 7, cf_inst, 0) 481 >; 482 483 def : Pat<(int_R600_store_pixel_stencil R600_Reg32:$reg), 484 (ExportInst 485 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), $reg, sub0), 486 0, 61, 7, 0, 7, 7, cf_inst, 0) 487 >; 488 489 def : Pat<(int_R600_store_dummy (i32 imm:$type)), 490 (ExportInst 491 (v4f32 (IMPLICIT_DEF)), imm:$type, 0, 7, 7, 7, 7, cf_inst, 0) 492 >; 493 494 def : Pat<(int_R600_store_dummy 1), 495 (ExportInst 496 (v4f32 (IMPLICIT_DEF)), 1, 60, 7, 7, 7, 7, cf_inst, 0) 497 >; 498 499 def : Pat<(EXPORT (v4f32 R600_Reg128:$src), (i32 imm:$base), (i32 imm:$type), 500 (i32 imm:$swz_x), (i32 imm:$swz_y), (i32 imm:$swz_z), (i32 imm:$swz_w)), 501 (ExportInst R600_Reg128:$src, imm:$type, imm:$base, 502 imm:$swz_x, imm:$swz_y, imm:$swz_z, imm:$swz_w, cf_inst, 0) 503 >; 504 505 } 506 507 multiclass SteamOutputExportPattern<Instruction ExportInst, 508 bits<8> buf0inst, bits<8> buf1inst, bits<8> buf2inst, bits<8> buf3inst> { 509 // Stream0 510 def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src), 511 (i32 imm:$arraybase), (i32 0), (i32 imm:$mask)), 512 (ExportInst R600_Reg128:$src, 0, imm:$arraybase, 513 4095, imm:$mask, buf0inst, 0)>; 514 // Stream1 515 def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src), 516 (i32 imm:$arraybase), (i32 1), (i32 imm:$mask)), 517 (ExportInst $src, 0, imm:$arraybase, 518 4095, imm:$mask, buf1inst, 0)>; 519 // Stream2 520 def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src), 521 (i32 imm:$arraybase), (i32 2), (i32 imm:$mask)), 522 (ExportInst $src, 0, imm:$arraybase, 523 4095, imm:$mask, buf2inst, 0)>; 524 // Stream3 525 def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src), 526 (i32 imm:$arraybase), (i32 3), (i32 imm:$mask)), 527 (ExportInst $src, 0, imm:$arraybase, 528 4095, imm:$mask, buf3inst, 0)>; 529 } 530 531 // Export Instructions should not be duplicated by TailDuplication pass 532 // (which assumes that duplicable instruction are affected by exec mask) 533 let usesCustomInserter = 1, isNotDuplicable = 1 in { 534 535 class ExportSwzInst : InstR600ISA<( 536 outs), 537 (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase, 538 RSel:$sw_x, RSel:$sw_y, RSel:$sw_z, RSel:$sw_w, i32imm:$inst, 539 i32imm:$eop), 540 !strconcat("EXPORT", " $gpr.$sw_x$sw_y$sw_z$sw_w"), 541 []>, ExportWord0, ExportSwzWord1 { 542 let elem_size = 3; 543 let Inst{31-0} = Word0; 544 let Inst{63-32} = Word1; 545 let IsExport = 1; 546 } 547 548 } // End usesCustomInserter = 1 549 550 class ExportBufInst : InstR600ISA<( 551 outs), 552 (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase, 553 i32imm:$arraySize, i32imm:$compMask, i32imm:$inst, i32imm:$eop), 554 !strconcat("EXPORT", " $gpr"), 555 []>, ExportWord0, ExportBufWord1 { 556 let elem_size = 0; 557 let Inst{31-0} = Word0; 558 let Inst{63-32} = Word1; 559 let IsExport = 1; 560 } 561 562 //===----------------------------------------------------------------------===// 563 // Control Flow Instructions 564 //===----------------------------------------------------------------------===// 565 566 567 def KCACHE : InstFlag<"printKCache">; 568 569 class ALU_CLAUSE<bits<4> inst, string OpName> : AMDGPUInst <(outs), 570 (ins i32imm:$ADDR, i32imm:$KCACHE_BANK0, i32imm:$KCACHE_BANK1, 571 KCACHE:$KCACHE_MODE0, KCACHE:$KCACHE_MODE1, 572 i32imm:$KCACHE_ADDR0, i32imm:$KCACHE_ADDR1, 573 i32imm:$COUNT, i32imm:$Enabled), 574 !strconcat(OpName, " $COUNT, @$ADDR, " 575 "KC0[$KCACHE_MODE0], KC1[$KCACHE_MODE1]"), 576 [] >, CF_ALU_WORD0, CF_ALU_WORD1 { 577 field bits<64> Inst; 578 579 let CF_INST = inst; 580 let ALT_CONST = 0; 581 let WHOLE_QUAD_MODE = 0; 582 let BARRIER = 1; 583 let isCodeGenOnly = 1; 584 let UseNamedOperandTable = 1; 585 586 let Inst{31-0} = Word0; 587 let Inst{63-32} = Word1; 588 } 589 590 class CF_WORD0_R600 { 591 field bits<32> Word0; 592 593 bits<32> ADDR; 594 595 let Word0 = ADDR; 596 } 597 598 class CF_CLAUSE_R600 <bits<7> inst, dag ins, string AsmPrint> : AMDGPUInst <(outs), 599 ins, AsmPrint, [] >, CF_WORD0_R600, CF_WORD1_R600 { 600 field bits<64> Inst; 601 bits<4> CNT; 602 603 let CF_INST = inst; 604 let BARRIER = 1; 605 let CF_CONST = 0; 606 let VALID_PIXEL_MODE = 0; 607 let COND = 0; 608 let COUNT = CNT{2-0}; 609 let CALL_COUNT = 0; 610 let COUNT_3 = CNT{3}; 611 let END_OF_PROGRAM = 0; 612 let WHOLE_QUAD_MODE = 0; 613 614 let Inst{31-0} = Word0; 615 let Inst{63-32} = Word1; 616 } 617 618 class CF_CLAUSE_EG <bits<8> inst, dag ins, string AsmPrint> : AMDGPUInst <(outs), 619 ins, AsmPrint, [] >, CF_WORD0_EG, CF_WORD1_EG { 620 field bits<64> Inst; 621 622 let CF_INST = inst; 623 let BARRIER = 1; 624 let JUMPTABLE_SEL = 0; 625 let CF_CONST = 0; 626 let VALID_PIXEL_MODE = 0; 627 let COND = 0; 628 let END_OF_PROGRAM = 0; 629 630 let Inst{31-0} = Word0; 631 let Inst{63-32} = Word1; 632 } 633 634 def CF_ALU : ALU_CLAUSE<8, "ALU">; 635 def CF_ALU_PUSH_BEFORE : ALU_CLAUSE<9, "ALU_PUSH_BEFORE">; 636 def CF_ALU_POP_AFTER : ALU_CLAUSE<10, "ALU_POP_AFTER">; 637 def CF_ALU_CONTINUE : ALU_CLAUSE<13, "ALU_CONTINUE">; 638 def CF_ALU_BREAK : ALU_CLAUSE<14, "ALU_BREAK">; 639 def CF_ALU_ELSE_AFTER : ALU_CLAUSE<15, "ALU_ELSE_AFTER">; 640 641 def FETCH_CLAUSE : AMDGPUInst <(outs), 642 (ins i32imm:$addr), "Fetch clause starting at $addr:", [] > { 643 field bits<8> Inst; 644 bits<8> num; 645 let Inst = num; 646 let isCodeGenOnly = 1; 647 } 648 649 def ALU_CLAUSE : AMDGPUInst <(outs), 650 (ins i32imm:$addr), "ALU clause starting at $addr:", [] > { 651 field bits<8> Inst; 652 bits<8> num; 653 let Inst = num; 654 let isCodeGenOnly = 1; 655 } 656 657 def LITERALS : AMDGPUInst <(outs), 658 (ins LITERAL:$literal1, LITERAL:$literal2), "$literal1, $literal2", [] > { 659 let isCodeGenOnly = 1; 660 661 field bits<64> Inst; 662 bits<32> literal1; 663 bits<32> literal2; 664 665 let Inst{31-0} = literal1; 666 let Inst{63-32} = literal2; 667 } 668 669 def PAD : AMDGPUInst <(outs), (ins), "PAD", [] > { 670 field bits<64> Inst; 671 } 672 673 let Predicates = [isR600toCayman] in { 674 675 //===----------------------------------------------------------------------===// 676 // Common Instructions R600, R700, Evergreen, Cayman 677 //===----------------------------------------------------------------------===// 678 679 def ADD : R600_2OP_Helper <0x0, "ADD", fadd>; 680 // Non-IEEE MUL: 0 * anything = 0 681 def MUL : R600_2OP_Helper <0x1, "MUL NON-IEEE", int_AMDGPU_mul>; 682 def MUL_IEEE : R600_2OP_Helper <0x2, "MUL_IEEE", fmul>; 683 // TODO: Do these actually match the regular fmin/fmax behavior? 684 def MAX : R600_2OP_Helper <0x3, "MAX", AMDGPUfmax_legacy>; 685 def MIN : R600_2OP_Helper <0x4, "MIN", AMDGPUfmin_legacy>; 686 // According to https://msdn.microsoft.com/en-us/library/windows/desktop/cc308050%28v=vs.85%29.aspx 687 // DX10 min/max returns the other operand if one is NaN, 688 // this matches http://llvm.org/docs/LangRef.html#llvm-minnum-intrinsic 689 def MAX_DX10 : R600_2OP_Helper <0x5, "MAX_DX10", fmaxnum>; 690 def MIN_DX10 : R600_2OP_Helper <0x6, "MIN_DX10", fminnum>; 691 692 // For the SET* instructions there is a naming conflict in TargetSelectionDAG.td, 693 // so some of the instruction names don't match the asm string. 694 // XXX: Use the defs in TargetSelectionDAG.td instead of intrinsics. 695 def SETE : R600_2OP < 696 0x08, "SETE", 697 [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OEQ))] 698 >; 699 700 def SGT : R600_2OP < 701 0x09, "SETGT", 702 [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OGT))] 703 >; 704 705 def SGE : R600_2OP < 706 0xA, "SETGE", 707 [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OGE))] 708 >; 709 710 def SNE : R600_2OP < 711 0xB, "SETNE", 712 [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_UNE_NE))] 713 >; 714 715 def SETE_DX10 : R600_2OP < 716 0xC, "SETE_DX10", 717 [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OEQ))] 718 >; 719 720 def SETGT_DX10 : R600_2OP < 721 0xD, "SETGT_DX10", 722 [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OGT))] 723 >; 724 725 def SETGE_DX10 : R600_2OP < 726 0xE, "SETGE_DX10", 727 [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OGE))] 728 >; 729 730 // FIXME: This should probably be COND_ONE 731 def SETNE_DX10 : R600_2OP < 732 0xF, "SETNE_DX10", 733 [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_UNE_NE))] 734 >; 735 736 def FRACT : R600_1OP_Helper <0x10, "FRACT", AMDGPUfract>; 737 def TRUNC : R600_1OP_Helper <0x11, "TRUNC", ftrunc>; 738 def CEIL : R600_1OP_Helper <0x12, "CEIL", fceil>; 739 def RNDNE : R600_1OP_Helper <0x13, "RNDNE", frint>; 740 def FLOOR : R600_1OP_Helper <0x14, "FLOOR", ffloor>; 741 742 def MOV : R600_1OP <0x19, "MOV", []>; 743 744 let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1 in { 745 746 class MOV_IMM <ValueType vt, Operand immType> : AMDGPUInst < 747 (outs R600_Reg32:$dst), 748 (ins immType:$imm), 749 "", 750 [] 751 >; 752 753 } // end let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1 754 755 def MOV_IMM_I32 : MOV_IMM<i32, i32imm>; 756 def : Pat < 757 (imm:$val), 758 (MOV_IMM_I32 imm:$val) 759 >; 760 761 def MOV_IMM_F32 : MOV_IMM<f32, f32imm>; 762 def : Pat < 763 (fpimm:$val), 764 (MOV_IMM_F32 fpimm:$val) 765 >; 766 767 def PRED_SETE : R600_2OP <0x20, "PRED_SETE", []>; 768 def PRED_SETGT : R600_2OP <0x21, "PRED_SETGT", []>; 769 def PRED_SETGE : R600_2OP <0x22, "PRED_SETGE", []>; 770 def PRED_SETNE : R600_2OP <0x23, "PRED_SETNE", []>; 771 772 let hasSideEffects = 1 in { 773 774 def KILLGT : R600_2OP <0x2D, "KILLGT", []>; 775 776 } // end hasSideEffects 777 778 def AND_INT : R600_2OP_Helper <0x30, "AND_INT", and>; 779 def OR_INT : R600_2OP_Helper <0x31, "OR_INT", or>; 780 def XOR_INT : R600_2OP_Helper <0x32, "XOR_INT", xor>; 781 def NOT_INT : R600_1OP_Helper <0x33, "NOT_INT", not>; 782 def ADD_INT : R600_2OP_Helper <0x34, "ADD_INT", add>; 783 def SUB_INT : R600_2OP_Helper <0x35, "SUB_INT", sub>; 784 def MAX_INT : R600_2OP_Helper <0x36, "MAX_INT", smax>; 785 def MIN_INT : R600_2OP_Helper <0x37, "MIN_INT", smin>; 786 def MAX_UINT : R600_2OP_Helper <0x38, "MAX_UINT", umax>; 787 def MIN_UINT : R600_2OP_Helper <0x39, "MIN_UINT", umin>; 788 789 def SETE_INT : R600_2OP < 790 0x3A, "SETE_INT", 791 [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETEQ))] 792 >; 793 794 def SETGT_INT : R600_2OP < 795 0x3B, "SETGT_INT", 796 [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETGT))] 797 >; 798 799 def SETGE_INT : R600_2OP < 800 0x3C, "SETGE_INT", 801 [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETGE))] 802 >; 803 804 def SETNE_INT : R600_2OP < 805 0x3D, "SETNE_INT", 806 [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETNE))] 807 >; 808 809 def SETGT_UINT : R600_2OP < 810 0x3E, "SETGT_UINT", 811 [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETUGT))] 812 >; 813 814 def SETGE_UINT : R600_2OP < 815 0x3F, "SETGE_UINT", 816 [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETUGE))] 817 >; 818 819 def PRED_SETE_INT : R600_2OP <0x42, "PRED_SETE_INT", []>; 820 def PRED_SETGT_INT : R600_2OP <0x43, "PRED_SETGE_INT", []>; 821 def PRED_SETGE_INT : R600_2OP <0x44, "PRED_SETGE_INT", []>; 822 def PRED_SETNE_INT : R600_2OP <0x45, "PRED_SETNE_INT", []>; 823 824 def CNDE_INT : R600_3OP < 825 0x1C, "CNDE_INT", 826 [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_EQ))] 827 >; 828 829 def CNDGE_INT : R600_3OP < 830 0x1E, "CNDGE_INT", 831 [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_SGE))] 832 >; 833 834 def CNDGT_INT : R600_3OP < 835 0x1D, "CNDGT_INT", 836 [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_SGT))] 837 >; 838 839 //===----------------------------------------------------------------------===// 840 // Texture instructions 841 //===----------------------------------------------------------------------===// 842 843 let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { 844 845 class R600_TEX <bits<11> inst, string opName> : 846 InstR600 <(outs R600_Reg128:$DST_GPR), 847 (ins R600_Reg128:$SRC_GPR, 848 RSel:$srcx, RSel:$srcy, RSel:$srcz, RSel:$srcw, 849 i32imm:$offsetx, i32imm:$offsety, i32imm:$offsetz, 850 RSel:$DST_SEL_X, RSel:$DST_SEL_Y, RSel:$DST_SEL_Z, RSel:$DST_SEL_W, 851 i32imm:$RESOURCE_ID, i32imm:$SAMPLER_ID, 852 CT:$COORD_TYPE_X, CT:$COORD_TYPE_Y, CT:$COORD_TYPE_Z, 853 CT:$COORD_TYPE_W), 854 !strconcat(opName, 855 " $DST_GPR.$DST_SEL_X$DST_SEL_Y$DST_SEL_Z$DST_SEL_W, " 856 "$SRC_GPR.$srcx$srcy$srcz$srcw " 857 "RID:$RESOURCE_ID SID:$SAMPLER_ID " 858 "CT:$COORD_TYPE_X$COORD_TYPE_Y$COORD_TYPE_Z$COORD_TYPE_W"), 859 [], 860 NullALU>, TEX_WORD0, TEX_WORD1, TEX_WORD2 { 861 let Inst{31-0} = Word0; 862 let Inst{63-32} = Word1; 863 864 let TEX_INST = inst{4-0}; 865 let SRC_REL = 0; 866 let DST_REL = 0; 867 let LOD_BIAS = 0; 868 869 let INST_MOD = 0; 870 let FETCH_WHOLE_QUAD = 0; 871 let ALT_CONST = 0; 872 let SAMPLER_INDEX_MODE = 0; 873 let RESOURCE_INDEX_MODE = 0; 874 875 let TEXInst = 1; 876 } 877 878 } // End mayLoad = 0, mayStore = 0, hasSideEffects = 0 879 880 881 882 def TEX_SAMPLE : R600_TEX <0x10, "TEX_SAMPLE">; 883 def TEX_SAMPLE_C : R600_TEX <0x18, "TEX_SAMPLE_C">; 884 def TEX_SAMPLE_L : R600_TEX <0x11, "TEX_SAMPLE_L">; 885 def TEX_SAMPLE_C_L : R600_TEX <0x19, "TEX_SAMPLE_C_L">; 886 def TEX_SAMPLE_LB : R600_TEX <0x12, "TEX_SAMPLE_LB">; 887 def TEX_SAMPLE_C_LB : R600_TEX <0x1A, "TEX_SAMPLE_C_LB">; 888 def TEX_LD : R600_TEX <0x03, "TEX_LD">; 889 def TEX_LDPTR : R600_TEX <0x03, "TEX_LDPTR"> { 890 let INST_MOD = 1; 891 } 892 def TEX_GET_TEXTURE_RESINFO : R600_TEX <0x04, "TEX_GET_TEXTURE_RESINFO">; 893 def TEX_GET_GRADIENTS_H : R600_TEX <0x07, "TEX_GET_GRADIENTS_H">; 894 def TEX_GET_GRADIENTS_V : R600_TEX <0x08, "TEX_GET_GRADIENTS_V">; 895 def TEX_SET_GRADIENTS_H : R600_TEX <0x0B, "TEX_SET_GRADIENTS_H">; 896 def TEX_SET_GRADIENTS_V : R600_TEX <0x0C, "TEX_SET_GRADIENTS_V">; 897 def TEX_SAMPLE_G : R600_TEX <0x14, "TEX_SAMPLE_G">; 898 def TEX_SAMPLE_C_G : R600_TEX <0x1C, "TEX_SAMPLE_C_G">; 899 900 defm : TexPattern<0, TEX_SAMPLE>; 901 defm : TexPattern<1, TEX_SAMPLE_C>; 902 defm : TexPattern<2, TEX_SAMPLE_L>; 903 defm : TexPattern<3, TEX_SAMPLE_C_L>; 904 defm : TexPattern<4, TEX_SAMPLE_LB>; 905 defm : TexPattern<5, TEX_SAMPLE_C_LB>; 906 defm : TexPattern<6, TEX_LD, v4i32>; 907 defm : TexPattern<7, TEX_GET_TEXTURE_RESINFO, v4i32>; 908 defm : TexPattern<8, TEX_GET_GRADIENTS_H>; 909 defm : TexPattern<9, TEX_GET_GRADIENTS_V>; 910 defm : TexPattern<10, TEX_LDPTR, v4i32>; 911 912 //===----------------------------------------------------------------------===// 913 // Helper classes for common instructions 914 //===----------------------------------------------------------------------===// 915 916 class MUL_LIT_Common <bits<5> inst> : R600_3OP < 917 inst, "MUL_LIT", 918 [] 919 >; 920 921 class MULADD_Common <bits<5> inst> : R600_3OP < 922 inst, "MULADD", 923 [] 924 >; 925 926 class MULADD_IEEE_Common <bits<5> inst> : R600_3OP < 927 inst, "MULADD_IEEE", 928 [(set f32:$dst, (fmad f32:$src0, f32:$src1, f32:$src2))] 929 >; 930 931 class FMA_Common <bits<5> inst> : R600_3OP < 932 inst, "FMA", 933 [(set f32:$dst, (fma f32:$src0, f32:$src1, f32:$src2))], VecALU 934 >; 935 936 class CNDE_Common <bits<5> inst> : R600_3OP < 937 inst, "CNDE", 938 [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OEQ))] 939 >; 940 941 class CNDGT_Common <bits<5> inst> : R600_3OP < 942 inst, "CNDGT", 943 [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OGT))] 944 > { 945 let Itinerary = VecALU; 946 } 947 948 class CNDGE_Common <bits<5> inst> : R600_3OP < 949 inst, "CNDGE", 950 [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OGE))] 951 > { 952 let Itinerary = VecALU; 953 } 954 955 956 let isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU" in { 957 class R600_VEC2OP<list<dag> pattern> : InstR600 <(outs R600_Reg32:$dst), (ins 958 // Slot X 959 UEM:$update_exec_mask_X, UP:$update_pred_X, WRITE:$write_X, 960 OMOD:$omod_X, REL:$dst_rel_X, CLAMP:$clamp_X, 961 R600_TReg32_X:$src0_X, NEG:$src0_neg_X, REL:$src0_rel_X, ABS:$src0_abs_X, SEL:$src0_sel_X, 962 R600_TReg32_X:$src1_X, NEG:$src1_neg_X, REL:$src1_rel_X, ABS:$src1_abs_X, SEL:$src1_sel_X, 963 R600_Pred:$pred_sel_X, 964 // Slot Y 965 UEM:$update_exec_mask_Y, UP:$update_pred_Y, WRITE:$write_Y, 966 OMOD:$omod_Y, REL:$dst_rel_Y, CLAMP:$clamp_Y, 967 R600_TReg32_Y:$src0_Y, NEG:$src0_neg_Y, REL:$src0_rel_Y, ABS:$src0_abs_Y, SEL:$src0_sel_Y, 968 R600_TReg32_Y:$src1_Y, NEG:$src1_neg_Y, REL:$src1_rel_Y, ABS:$src1_abs_Y, SEL:$src1_sel_Y, 969 R600_Pred:$pred_sel_Y, 970 // Slot Z 971 UEM:$update_exec_mask_Z, UP:$update_pred_Z, WRITE:$write_Z, 972 OMOD:$omod_Z, REL:$dst_rel_Z, CLAMP:$clamp_Z, 973 R600_TReg32_Z:$src0_Z, NEG:$src0_neg_Z, REL:$src0_rel_Z, ABS:$src0_abs_Z, SEL:$src0_sel_Z, 974 R600_TReg32_Z:$src1_Z, NEG:$src1_neg_Z, REL:$src1_rel_Z, ABS:$src1_abs_Z, SEL:$src1_sel_Z, 975 R600_Pred:$pred_sel_Z, 976 // Slot W 977 UEM:$update_exec_mask_W, UP:$update_pred_W, WRITE:$write_W, 978 OMOD:$omod_W, REL:$dst_rel_W, CLAMP:$clamp_W, 979 R600_TReg32_W:$src0_W, NEG:$src0_neg_W, REL:$src0_rel_W, ABS:$src0_abs_W, SEL:$src0_sel_W, 980 R600_TReg32_W:$src1_W, NEG:$src1_neg_W, REL:$src1_rel_W, ABS:$src1_abs_W, SEL:$src1_sel_W, 981 R600_Pred:$pred_sel_W, 982 LITERAL:$literal0, LITERAL:$literal1), 983 "", 984 pattern, 985 AnyALU> { 986 987 let UseNamedOperandTable = 1; 988 989 } 990 } 991 992 def DOT_4 : R600_VEC2OP<[(set R600_Reg32:$dst, (DOT4 993 R600_TReg32_X:$src0_X, R600_TReg32_X:$src1_X, 994 R600_TReg32_Y:$src0_Y, R600_TReg32_Y:$src1_Y, 995 R600_TReg32_Z:$src0_Z, R600_TReg32_Z:$src1_Z, 996 R600_TReg32_W:$src0_W, R600_TReg32_W:$src1_W))]>; 997 998 999 class DOT4_Common <bits<11> inst> : R600_2OP <inst, "DOT4", []>; 1000 1001 1002 let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { 1003 multiclass CUBE_Common <bits<11> inst> { 1004 1005 def _pseudo : InstR600 < 1006 (outs R600_Reg128:$dst), 1007 (ins R600_Reg128:$src0), 1008 "CUBE $dst $src0", 1009 [(set v4f32:$dst, (int_AMDGPU_cube v4f32:$src0))], 1010 VecALU 1011 > { 1012 let isPseudo = 1; 1013 let UseNamedOperandTable = 1; 1014 } 1015 1016 def _real : R600_2OP <inst, "CUBE", []>; 1017 } 1018 } // End mayLoad = 0, mayStore = 0, hasSideEffects = 0 1019 1020 class EXP_IEEE_Common <bits<11> inst> : R600_1OP_Helper < 1021 inst, "EXP_IEEE", fexp2 1022 > { 1023 let Itinerary = TransALU; 1024 } 1025 1026 class FLT_TO_INT_Common <bits<11> inst> : R600_1OP_Helper < 1027 inst, "FLT_TO_INT", fp_to_sint 1028 > { 1029 let Itinerary = TransALU; 1030 } 1031 1032 class INT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper < 1033 inst, "INT_TO_FLT", sint_to_fp 1034 > { 1035 let Itinerary = TransALU; 1036 } 1037 1038 class FLT_TO_UINT_Common <bits<11> inst> : R600_1OP_Helper < 1039 inst, "FLT_TO_UINT", fp_to_uint 1040 > { 1041 let Itinerary = TransALU; 1042 } 1043 1044 class UINT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper < 1045 inst, "UINT_TO_FLT", uint_to_fp 1046 > { 1047 let Itinerary = TransALU; 1048 } 1049 1050 class LOG_CLAMPED_Common <bits<11> inst> : R600_1OP < 1051 inst, "LOG_CLAMPED", [] 1052 >; 1053 1054 class LOG_IEEE_Common <bits<11> inst> : R600_1OP_Helper < 1055 inst, "LOG_IEEE", flog2 1056 > { 1057 let Itinerary = TransALU; 1058 } 1059 1060 class LSHL_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHL", shl>; 1061 class LSHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHR", srl>; 1062 class ASHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "ASHR", sra>; 1063 class MULHI_INT_Common <bits<11> inst> : R600_2OP_Helper < 1064 inst, "MULHI_INT", mulhs 1065 > { 1066 let Itinerary = TransALU; 1067 } 1068 class MULHI_UINT_Common <bits<11> inst> : R600_2OP_Helper < 1069 inst, "MULHI", mulhu 1070 > { 1071 let Itinerary = TransALU; 1072 } 1073 class MULLO_INT_Common <bits<11> inst> : R600_2OP_Helper < 1074 inst, "MULLO_INT", mul 1075 > { 1076 let Itinerary = TransALU; 1077 } 1078 class MULLO_UINT_Common <bits<11> inst> : R600_2OP <inst, "MULLO_UINT", []> { 1079 let Itinerary = TransALU; 1080 } 1081 1082 class RECIP_CLAMPED_Common <bits<11> inst> : R600_1OP < 1083 inst, "RECIP_CLAMPED", [] 1084 > { 1085 let Itinerary = TransALU; 1086 } 1087 1088 class RECIP_IEEE_Common <bits<11> inst> : R600_1OP < 1089 inst, "RECIP_IEEE", [(set f32:$dst, (AMDGPUrcp f32:$src0))] 1090 > { 1091 let Itinerary = TransALU; 1092 } 1093 1094 class RECIP_UINT_Common <bits<11> inst> : R600_1OP_Helper < 1095 inst, "RECIP_UINT", AMDGPUurecip 1096 > { 1097 let Itinerary = TransALU; 1098 } 1099 1100 // Clamped to maximum. 1101 class RECIPSQRT_CLAMPED_Common <bits<11> inst> : R600_1OP_Helper < 1102 inst, "RECIPSQRT_CLAMPED", AMDGPUrsq_clamped 1103 > { 1104 let Itinerary = TransALU; 1105 } 1106 1107 class RECIPSQRT_IEEE_Common <bits<11> inst> : R600_1OP_Helper < 1108 inst, "RECIPSQRT_IEEE", AMDGPUrsq_legacy 1109 > { 1110 let Itinerary = TransALU; 1111 } 1112 1113 // TODO: There is also RECIPSQRT_FF which clamps to zero. 1114 1115 class SIN_Common <bits<11> inst> : R600_1OP < 1116 inst, "SIN", [(set f32:$dst, (SIN_HW f32:$src0))]>{ 1117 let Trig = 1; 1118 let Itinerary = TransALU; 1119 } 1120 1121 class COS_Common <bits<11> inst> : R600_1OP < 1122 inst, "COS", [(set f32:$dst, (COS_HW f32:$src0))]> { 1123 let Trig = 1; 1124 let Itinerary = TransALU; 1125 } 1126 1127 def CLAMP_R600 : CLAMP <R600_Reg32>; 1128 def FABS_R600 : FABS<R600_Reg32>; 1129 def FNEG_R600 : FNEG<R600_Reg32>; 1130 1131 //===----------------------------------------------------------------------===// 1132 // Helper patterns for complex intrinsics 1133 //===----------------------------------------------------------------------===// 1134 1135 // FIXME: Should be predicated on unsafe fp math. 1136 multiclass DIV_Common <InstR600 recip_ieee> { 1137 def : Pat< 1138 (int_AMDGPU_div f32:$src0, f32:$src1), 1139 (MUL_IEEE $src0, (recip_ieee $src1)) 1140 >; 1141 1142 def : Pat< 1143 (fdiv f32:$src0, f32:$src1), 1144 (MUL_IEEE $src0, (recip_ieee $src1)) 1145 >; 1146 1147 def : RcpPat<recip_ieee, f32>; 1148 } 1149 1150 class TGSI_LIT_Z_Common <InstR600 mul_lit, InstR600 log_clamped, InstR600 exp_ieee> 1151 : Pat < 1152 (int_TGSI_lit_z f32:$src_x, f32:$src_y, f32:$src_w), 1153 (exp_ieee (mul_lit (log_clamped (MAX $src_y, (f32 ZERO))), $src_w, $src_x)) 1154 >; 1155 1156 //===----------------------------------------------------------------------===// 1157 // R600 / R700 Instructions 1158 //===----------------------------------------------------------------------===// 1159 1160 let Predicates = [isR600] in { 1161 1162 def MUL_LIT_r600 : MUL_LIT_Common<0x0C>; 1163 def MULADD_r600 : MULADD_Common<0x10>; 1164 def MULADD_IEEE_r600 : MULADD_IEEE_Common<0x14>; 1165 def CNDE_r600 : CNDE_Common<0x18>; 1166 def CNDGT_r600 : CNDGT_Common<0x19>; 1167 def CNDGE_r600 : CNDGE_Common<0x1A>; 1168 def DOT4_r600 : DOT4_Common<0x50>; 1169 defm CUBE_r600 : CUBE_Common<0x52>; 1170 def EXP_IEEE_r600 : EXP_IEEE_Common<0x61>; 1171 def LOG_CLAMPED_r600 : LOG_CLAMPED_Common<0x62>; 1172 def LOG_IEEE_r600 : LOG_IEEE_Common<0x63>; 1173 def RECIP_CLAMPED_r600 : RECIP_CLAMPED_Common<0x64>; 1174 def RECIP_IEEE_r600 : RECIP_IEEE_Common<0x66>; 1175 def RECIPSQRT_CLAMPED_r600 : RECIPSQRT_CLAMPED_Common<0x67>; 1176 def RECIPSQRT_IEEE_r600 : RECIPSQRT_IEEE_Common<0x69>; 1177 def FLT_TO_INT_r600 : FLT_TO_INT_Common<0x6b>; 1178 def INT_TO_FLT_r600 : INT_TO_FLT_Common<0x6c>; 1179 def FLT_TO_UINT_r600 : FLT_TO_UINT_Common<0x79>; 1180 def UINT_TO_FLT_r600 : UINT_TO_FLT_Common<0x6d>; 1181 def SIN_r600 : SIN_Common<0x6E>; 1182 def COS_r600 : COS_Common<0x6F>; 1183 def ASHR_r600 : ASHR_Common<0x70>; 1184 def LSHR_r600 : LSHR_Common<0x71>; 1185 def LSHL_r600 : LSHL_Common<0x72>; 1186 def MULLO_INT_r600 : MULLO_INT_Common<0x73>; 1187 def MULHI_INT_r600 : MULHI_INT_Common<0x74>; 1188 def MULLO_UINT_r600 : MULLO_UINT_Common<0x75>; 1189 def MULHI_UINT_r600 : MULHI_UINT_Common<0x76>; 1190 def RECIP_UINT_r600 : RECIP_UINT_Common <0x78>; 1191 1192 defm DIV_r600 : DIV_Common<RECIP_IEEE_r600>; 1193 def : POW_Common <LOG_IEEE_r600, EXP_IEEE_r600, MUL>; 1194 def TGSI_LIT_Z_r600 : TGSI_LIT_Z_Common<MUL_LIT_r600, LOG_CLAMPED_r600, EXP_IEEE_r600>; 1195 1196 def : Pat<(fsqrt f32:$src), (MUL $src, (RECIPSQRT_CLAMPED_r600 $src))>; 1197 def : RsqPat<RECIPSQRT_IEEE_r600, f32>; 1198 1199 def R600_ExportSwz : ExportSwzInst { 1200 let Word1{20-17} = 0; // BURST_COUNT 1201 let Word1{21} = eop; 1202 let Word1{22} = 0; // VALID_PIXEL_MODE 1203 let Word1{30-23} = inst; 1204 let Word1{31} = 1; // BARRIER 1205 } 1206 defm : ExportPattern<R600_ExportSwz, 39>; 1207 1208 def R600_ExportBuf : ExportBufInst { 1209 let Word1{20-17} = 0; // BURST_COUNT 1210 let Word1{21} = eop; 1211 let Word1{22} = 0; // VALID_PIXEL_MODE 1212 let Word1{30-23} = inst; 1213 let Word1{31} = 1; // BARRIER 1214 } 1215 defm : SteamOutputExportPattern<R600_ExportBuf, 0x20, 0x21, 0x22, 0x23>; 1216 1217 def CF_TC_R600 : CF_CLAUSE_R600<1, (ins i32imm:$ADDR, i32imm:$CNT), 1218 "TEX $CNT @$ADDR"> { 1219 let POP_COUNT = 0; 1220 } 1221 def CF_VC_R600 : CF_CLAUSE_R600<2, (ins i32imm:$ADDR, i32imm:$CNT), 1222 "VTX $CNT @$ADDR"> { 1223 let POP_COUNT = 0; 1224 } 1225 def WHILE_LOOP_R600 : CF_CLAUSE_R600<6, (ins i32imm:$ADDR), 1226 "LOOP_START_DX10 @$ADDR"> { 1227 let POP_COUNT = 0; 1228 let CNT = 0; 1229 } 1230 def END_LOOP_R600 : CF_CLAUSE_R600<5, (ins i32imm:$ADDR), "END_LOOP @$ADDR"> { 1231 let POP_COUNT = 0; 1232 let CNT = 0; 1233 } 1234 def LOOP_BREAK_R600 : CF_CLAUSE_R600<9, (ins i32imm:$ADDR), 1235 "LOOP_BREAK @$ADDR"> { 1236 let POP_COUNT = 0; 1237 let CNT = 0; 1238 } 1239 def CF_CONTINUE_R600 : CF_CLAUSE_R600<8, (ins i32imm:$ADDR), 1240 "CONTINUE @$ADDR"> { 1241 let POP_COUNT = 0; 1242 let CNT = 0; 1243 } 1244 def CF_JUMP_R600 : CF_CLAUSE_R600<10, (ins i32imm:$ADDR, i32imm:$POP_COUNT), 1245 "JUMP @$ADDR POP:$POP_COUNT"> { 1246 let CNT = 0; 1247 } 1248 def CF_PUSH_ELSE_R600 : CF_CLAUSE_R600<12, (ins i32imm:$ADDR), 1249 "PUSH_ELSE @$ADDR"> { 1250 let CNT = 0; 1251 let POP_COUNT = 0; // FIXME? 1252 } 1253 def CF_ELSE_R600 : CF_CLAUSE_R600<13, (ins i32imm:$ADDR, i32imm:$POP_COUNT), 1254 "ELSE @$ADDR POP:$POP_COUNT"> { 1255 let CNT = 0; 1256 } 1257 def CF_CALL_FS_R600 : CF_CLAUSE_R600<19, (ins), "CALL_FS"> { 1258 let ADDR = 0; 1259 let CNT = 0; 1260 let POP_COUNT = 0; 1261 } 1262 def POP_R600 : CF_CLAUSE_R600<14, (ins i32imm:$ADDR, i32imm:$POP_COUNT), 1263 "POP @$ADDR POP:$POP_COUNT"> { 1264 let CNT = 0; 1265 } 1266 def CF_END_R600 : CF_CLAUSE_R600<0, (ins), "CF_END"> { 1267 let CNT = 0; 1268 let POP_COUNT = 0; 1269 let ADDR = 0; 1270 let END_OF_PROGRAM = 1; 1271 } 1272 1273 } 1274 1275 1276 //===----------------------------------------------------------------------===// 1277 // Regist loads and stores - for indirect addressing 1278 //===----------------------------------------------------------------------===// 1279 1280 defm R600_ : RegisterLoadStore <R600_Reg32, FRAMEri, ADDRIndirect>; 1281 1282 1283 //===----------------------------------------------------------------------===// 1284 // Pseudo instructions 1285 //===----------------------------------------------------------------------===// 1286 1287 let isPseudo = 1 in { 1288 1289 def PRED_X : InstR600 < 1290 (outs R600_Predicate_Bit:$dst), 1291 (ins R600_Reg32:$src0, i32imm:$src1, i32imm:$flags), 1292 "", [], NullALU> { 1293 let FlagOperandIdx = 3; 1294 } 1295 1296 let isTerminator = 1, isBranch = 1 in { 1297 def JUMP_COND : InstR600 < 1298 (outs), 1299 (ins brtarget:$target, R600_Predicate_Bit:$p), 1300 "JUMP $target ($p)", 1301 [], AnyALU 1302 >; 1303 1304 def JUMP : InstR600 < 1305 (outs), 1306 (ins brtarget:$target), 1307 "JUMP $target", 1308 [], AnyALU 1309 > 1310 { 1311 let isPredicable = 1; 1312 let isBarrier = 1; 1313 } 1314 1315 } // End isTerminator = 1, isBranch = 1 1316 1317 let usesCustomInserter = 1 in { 1318 1319 let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in { 1320 1321 def MASK_WRITE : AMDGPUShaderInst < 1322 (outs), 1323 (ins R600_Reg32:$src), 1324 "MASK_WRITE $src", 1325 [] 1326 >; 1327 1328 } // End mayLoad = 0, mayStore = 0, hasSideEffects = 1 1329 1330 1331 def TXD: InstR600 < 1332 (outs R600_Reg128:$dst), 1333 (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, 1334 i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget), 1335 "TXD $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget", 1336 [(set v4f32:$dst, (int_AMDGPU_txd v4f32:$src0, v4f32:$src1, v4f32:$src2, 1337 imm:$resourceId, imm:$samplerId, imm:$textureTarget))], 1338 NullALU > { 1339 let TEXInst = 1; 1340 } 1341 1342 def TXD_SHADOW: InstR600 < 1343 (outs R600_Reg128:$dst), 1344 (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, 1345 i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget), 1346 "TXD_SHADOW $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget", 1347 [(set v4f32:$dst, (int_AMDGPU_txd v4f32:$src0, v4f32:$src1, v4f32:$src2, 1348 imm:$resourceId, imm:$samplerId, TEX_SHADOW:$textureTarget))], 1349 NullALU 1350 > { 1351 let TEXInst = 1; 1352 } 1353 } // End isPseudo = 1 1354 } // End usesCustomInserter = 1 1355 1356 1357 //===----------------------------------------------------------------------===// 1358 // Constant Buffer Addressing Support 1359 //===----------------------------------------------------------------------===// 1360 1361 let usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU" in { 1362 def CONST_COPY : Instruction { 1363 let OutOperandList = (outs R600_Reg32:$dst); 1364 let InOperandList = (ins i32imm:$src); 1365 let Pattern = 1366 [(set R600_Reg32:$dst, (CONST_ADDRESS ADDRGA_CONST_OFFSET:$src))]; 1367 let AsmString = "CONST_COPY"; 1368 let hasSideEffects = 0; 1369 let isAsCheapAsAMove = 1; 1370 let Itinerary = NullALU; 1371 } 1372 } // end usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU" 1373 1374 def TEX_VTX_CONSTBUF : 1375 InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$BUFFER_ID), "VTX_READ_eg $dst, $ptr", 1376 [(set v4i32:$dst, (CONST_ADDRESS ADDRGA_VAR_OFFSET:$ptr, (i32 imm:$BUFFER_ID)))]>, 1377 VTX_WORD1_GPR, VTX_WORD0_eg { 1378 1379 let VC_INST = 0; 1380 let FETCH_TYPE = 2; 1381 let FETCH_WHOLE_QUAD = 0; 1382 let SRC_REL = 0; 1383 let SRC_SEL_X = 0; 1384 let DST_REL = 0; 1385 let USE_CONST_FIELDS = 0; 1386 let NUM_FORMAT_ALL = 2; 1387 let FORMAT_COMP_ALL = 1; 1388 let SRF_MODE_ALL = 1; 1389 let MEGA_FETCH_COUNT = 16; 1390 let DST_SEL_X = 0; 1391 let DST_SEL_Y = 1; 1392 let DST_SEL_Z = 2; 1393 let DST_SEL_W = 3; 1394 let DATA_FORMAT = 35; 1395 1396 let Inst{31-0} = Word0; 1397 let Inst{63-32} = Word1; 1398 1399 // LLVM can only encode 64-bit instructions, so these fields are manually 1400 // encoded in R600CodeEmitter 1401 // 1402 // bits<16> OFFSET; 1403 // bits<2> ENDIAN_SWAP = 0; 1404 // bits<1> CONST_BUF_NO_STRIDE = 0; 1405 // bits<1> MEGA_FETCH = 0; 1406 // bits<1> ALT_CONST = 0; 1407 // bits<2> BUFFER_INDEX_MODE = 0; 1408 1409 1410 1411 // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding 1412 // is done in R600CodeEmitter 1413 // 1414 // Inst{79-64} = OFFSET; 1415 // Inst{81-80} = ENDIAN_SWAP; 1416 // Inst{82} = CONST_BUF_NO_STRIDE; 1417 // Inst{83} = MEGA_FETCH; 1418 // Inst{84} = ALT_CONST; 1419 // Inst{86-85} = BUFFER_INDEX_MODE; 1420 // Inst{95-86} = 0; Reserved 1421 1422 // VTX_WORD3 (Padding) 1423 // 1424 // Inst{127-96} = 0; 1425 let VTXInst = 1; 1426 } 1427 1428 def TEX_VTX_TEXBUF: 1429 InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$BUFFER_ID), "TEX_VTX_EXPLICIT_READ $dst, $ptr", 1430 [(set v4f32:$dst, (int_R600_load_texbuf ADDRGA_VAR_OFFSET:$ptr, imm:$BUFFER_ID))]>, 1431 VTX_WORD1_GPR, VTX_WORD0_eg { 1432 1433 let VC_INST = 0; 1434 let FETCH_TYPE = 2; 1435 let FETCH_WHOLE_QUAD = 0; 1436 let SRC_REL = 0; 1437 let SRC_SEL_X = 0; 1438 let DST_REL = 0; 1439 let USE_CONST_FIELDS = 1; 1440 let NUM_FORMAT_ALL = 0; 1441 let FORMAT_COMP_ALL = 0; 1442 let SRF_MODE_ALL = 1; 1443 let MEGA_FETCH_COUNT = 16; 1444 let DST_SEL_X = 0; 1445 let DST_SEL_Y = 1; 1446 let DST_SEL_Z = 2; 1447 let DST_SEL_W = 3; 1448 let DATA_FORMAT = 0; 1449 1450 let Inst{31-0} = Word0; 1451 let Inst{63-32} = Word1; 1452 1453 // LLVM can only encode 64-bit instructions, so these fields are manually 1454 // encoded in R600CodeEmitter 1455 // 1456 // bits<16> OFFSET; 1457 // bits<2> ENDIAN_SWAP = 0; 1458 // bits<1> CONST_BUF_NO_STRIDE = 0; 1459 // bits<1> MEGA_FETCH = 0; 1460 // bits<1> ALT_CONST = 0; 1461 // bits<2> BUFFER_INDEX_MODE = 0; 1462 1463 1464 1465 // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding 1466 // is done in R600CodeEmitter 1467 // 1468 // Inst{79-64} = OFFSET; 1469 // Inst{81-80} = ENDIAN_SWAP; 1470 // Inst{82} = CONST_BUF_NO_STRIDE; 1471 // Inst{83} = MEGA_FETCH; 1472 // Inst{84} = ALT_CONST; 1473 // Inst{86-85} = BUFFER_INDEX_MODE; 1474 // Inst{95-86} = 0; Reserved 1475 1476 // VTX_WORD3 (Padding) 1477 // 1478 // Inst{127-96} = 0; 1479 let VTXInst = 1; 1480 } 1481 1482 //===---------------------------------------------------------------------===// 1483 // Flow and Program control Instructions 1484 //===---------------------------------------------------------------------===// 1485 class ILFormat<dag outs, dag ins, string asmstr, list<dag> pattern> 1486 : Instruction { 1487 1488 let Namespace = "AMDGPU"; 1489 dag OutOperandList = outs; 1490 dag InOperandList = ins; 1491 let Pattern = pattern; 1492 let AsmString = !strconcat(asmstr, "\n"); 1493 let isPseudo = 1; 1494 let Itinerary = NullALU; 1495 bit hasIEEEFlag = 0; 1496 bit hasZeroOpFlag = 0; 1497 let mayLoad = 0; 1498 let mayStore = 0; 1499 let hasSideEffects = 0; 1500 let isCodeGenOnly = 1; 1501 } 1502 1503 multiclass BranchConditional<SDNode Op, RegisterClass rci, RegisterClass rcf> { 1504 def _i32 : ILFormat<(outs), 1505 (ins brtarget:$target, rci:$src0), 1506 "; i32 Pseudo branch instruction", 1507 [(Op bb:$target, (i32 rci:$src0))]>; 1508 def _f32 : ILFormat<(outs), 1509 (ins brtarget:$target, rcf:$src0), 1510 "; f32 Pseudo branch instruction", 1511 [(Op bb:$target, (f32 rcf:$src0))]>; 1512 } 1513 1514 // Only scalar types should generate flow control 1515 multiclass BranchInstr<string name> { 1516 def _i32 : ILFormat<(outs), (ins R600_Reg32:$src), 1517 !strconcat(name, " $src"), []>; 1518 def _f32 : ILFormat<(outs), (ins R600_Reg32:$src), 1519 !strconcat(name, " $src"), []>; 1520 } 1521 // Only scalar types should generate flow control 1522 multiclass BranchInstr2<string name> { 1523 def _i32 : ILFormat<(outs), (ins R600_Reg32:$src0, R600_Reg32:$src1), 1524 !strconcat(name, " $src0, $src1"), []>; 1525 def _f32 : ILFormat<(outs), (ins R600_Reg32:$src0, R600_Reg32:$src1), 1526 !strconcat(name, " $src0, $src1"), []>; 1527 } 1528 1529 //===---------------------------------------------------------------------===// 1530 // Custom Inserter for Branches and returns, this eventually will be a 1531 // separate pass 1532 //===---------------------------------------------------------------------===// 1533 let isTerminator = 1, usesCustomInserter = 1, isBranch = 1, isBarrier = 1 in { 1534 def BRANCH : ILFormat<(outs), (ins brtarget:$target), 1535 "; Pseudo unconditional branch instruction", 1536 [(br bb:$target)]>; 1537 defm BRANCH_COND : BranchConditional<IL_brcond, R600_Reg32, R600_Reg32>; 1538 } 1539 1540 //===---------------------------------------------------------------------===// 1541 // Return instruction 1542 //===---------------------------------------------------------------------===// 1543 let isTerminator = 1, isReturn = 1, hasCtrlDep = 1, 1544 usesCustomInserter = 1 in { 1545 def RETURN : ILFormat<(outs), (ins variable_ops), 1546 "RETURN", [(IL_retflag)]>; 1547 } 1548 1549 //===----------------------------------------------------------------------===// 1550 // Branch Instructions 1551 //===----------------------------------------------------------------------===// 1552 1553 def IF_PREDICATE_SET : ILFormat<(outs), (ins R600_Reg32:$src), 1554 "IF_PREDICATE_SET $src", []>; 1555 1556 let isTerminator=1 in { 1557 def BREAK : ILFormat< (outs), (ins), 1558 "BREAK", []>; 1559 def CONTINUE : ILFormat< (outs), (ins), 1560 "CONTINUE", []>; 1561 def DEFAULT : ILFormat< (outs), (ins), 1562 "DEFAULT", []>; 1563 def ELSE : ILFormat< (outs), (ins), 1564 "ELSE", []>; 1565 def ENDSWITCH : ILFormat< (outs), (ins), 1566 "ENDSWITCH", []>; 1567 def ENDMAIN : ILFormat< (outs), (ins), 1568 "ENDMAIN", []>; 1569 def END : ILFormat< (outs), (ins), 1570 "END", []>; 1571 def ENDFUNC : ILFormat< (outs), (ins), 1572 "ENDFUNC", []>; 1573 def ENDIF : ILFormat< (outs), (ins), 1574 "ENDIF", []>; 1575 def WHILELOOP : ILFormat< (outs), (ins), 1576 "WHILE", []>; 1577 def ENDLOOP : ILFormat< (outs), (ins), 1578 "ENDLOOP", []>; 1579 def FUNC : ILFormat< (outs), (ins), 1580 "FUNC", []>; 1581 def RETDYN : ILFormat< (outs), (ins), 1582 "RET_DYN", []>; 1583 // This opcode has custom swizzle pattern encoded in Swizzle Encoder 1584 defm IF_LOGICALNZ : BranchInstr<"IF_LOGICALNZ">; 1585 // This opcode has custom swizzle pattern encoded in Swizzle Encoder 1586 defm IF_LOGICALZ : BranchInstr<"IF_LOGICALZ">; 1587 // This opcode has custom swizzle pattern encoded in Swizzle Encoder 1588 defm BREAK_LOGICALNZ : BranchInstr<"BREAK_LOGICALNZ">; 1589 // This opcode has custom swizzle pattern encoded in Swizzle Encoder 1590 defm BREAK_LOGICALZ : BranchInstr<"BREAK_LOGICALZ">; 1591 // This opcode has custom swizzle pattern encoded in Swizzle Encoder 1592 defm CONTINUE_LOGICALNZ : BranchInstr<"CONTINUE_LOGICALNZ">; 1593 // This opcode has custom swizzle pattern encoded in Swizzle Encoder 1594 defm CONTINUE_LOGICALZ : BranchInstr<"CONTINUE_LOGICALZ">; 1595 defm IFC : BranchInstr2<"IFC">; 1596 defm BREAKC : BranchInstr2<"BREAKC">; 1597 defm CONTINUEC : BranchInstr2<"CONTINUEC">; 1598 } 1599 1600 //===----------------------------------------------------------------------===// 1601 // Indirect addressing pseudo instructions 1602 //===----------------------------------------------------------------------===// 1603 1604 let isPseudo = 1 in { 1605 1606 class ExtractVertical <RegisterClass vec_rc> : InstR600 < 1607 (outs R600_Reg32:$dst), 1608 (ins vec_rc:$vec, R600_Reg32:$index), "", 1609 [], 1610 AnyALU 1611 >; 1612 1613 let Constraints = "$dst = $vec" in { 1614 1615 class InsertVertical <RegisterClass vec_rc> : InstR600 < 1616 (outs vec_rc:$dst), 1617 (ins vec_rc:$vec, R600_Reg32:$value, R600_Reg32:$index), "", 1618 [], 1619 AnyALU 1620 >; 1621 1622 } // End Constraints = "$dst = $vec" 1623 1624 } // End isPseudo = 1 1625 1626 def R600_EXTRACT_ELT_V2 : ExtractVertical <R600_Reg64Vertical>; 1627 def R600_EXTRACT_ELT_V4 : ExtractVertical <R600_Reg128Vertical>; 1628 1629 def R600_INSERT_ELT_V2 : InsertVertical <R600_Reg64Vertical>; 1630 def R600_INSERT_ELT_V4 : InsertVertical <R600_Reg128Vertical>; 1631 1632 class ExtractVerticalPat <Instruction inst, ValueType vec_ty, 1633 ValueType scalar_ty> : Pat < 1634 (scalar_ty (extractelt vec_ty:$vec, i32:$index)), 1635 (inst $vec, $index) 1636 >; 1637 1638 def : ExtractVerticalPat <R600_EXTRACT_ELT_V2, v2i32, i32>; 1639 def : ExtractVerticalPat <R600_EXTRACT_ELT_V2, v2f32, f32>; 1640 def : ExtractVerticalPat <R600_EXTRACT_ELT_V4, v4i32, i32>; 1641 def : ExtractVerticalPat <R600_EXTRACT_ELT_V4, v4f32, f32>; 1642 1643 class InsertVerticalPat <Instruction inst, ValueType vec_ty, 1644 ValueType scalar_ty> : Pat < 1645 (vec_ty (insertelt vec_ty:$vec, scalar_ty:$value, i32:$index)), 1646 (inst $vec, $value, $index) 1647 >; 1648 1649 def : InsertVerticalPat <R600_INSERT_ELT_V2, v2i32, i32>; 1650 def : InsertVerticalPat <R600_INSERT_ELT_V2, v2f32, f32>; 1651 def : InsertVerticalPat <R600_INSERT_ELT_V4, v4i32, i32>; 1652 def : InsertVerticalPat <R600_INSERT_ELT_V4, v4f32, f32>; 1653 1654 //===----------------------------------------------------------------------===// 1655 // ISel Patterns 1656 //===----------------------------------------------------------------------===// 1657 1658 // CND*_INT Patterns for f32 True / False values 1659 1660 class CND_INT_f32 <InstR600 cnd, CondCode cc> : Pat < 1661 (selectcc i32:$src0, 0, f32:$src1, f32:$src2, cc), 1662 (cnd $src0, $src1, $src2) 1663 >; 1664 1665 def : CND_INT_f32 <CNDE_INT, SETEQ>; 1666 def : CND_INT_f32 <CNDGT_INT, SETGT>; 1667 def : CND_INT_f32 <CNDGE_INT, SETGE>; 1668 1669 //CNDGE_INT extra pattern 1670 def : Pat < 1671 (selectcc i32:$src0, -1, i32:$src1, i32:$src2, COND_SGT), 1672 (CNDGE_INT $src0, $src1, $src2) 1673 >; 1674 1675 // KIL Patterns 1676 def KILP : Pat < 1677 (int_AMDGPU_kilp), 1678 (MASK_WRITE (KILLGT (f32 ONE), (f32 ZERO))) 1679 >; 1680 1681 def KIL : Pat < 1682 (int_AMDGPU_kill f32:$src0), 1683 (MASK_WRITE (KILLGT (f32 ZERO), $src0)) 1684 >; 1685 1686 def : Extract_Element <f32, v4f32, 0, sub0>; 1687 def : Extract_Element <f32, v4f32, 1, sub1>; 1688 def : Extract_Element <f32, v4f32, 2, sub2>; 1689 def : Extract_Element <f32, v4f32, 3, sub3>; 1690 1691 def : Insert_Element <f32, v4f32, 0, sub0>; 1692 def : Insert_Element <f32, v4f32, 1, sub1>; 1693 def : Insert_Element <f32, v4f32, 2, sub2>; 1694 def : Insert_Element <f32, v4f32, 3, sub3>; 1695 1696 def : Extract_Element <i32, v4i32, 0, sub0>; 1697 def : Extract_Element <i32, v4i32, 1, sub1>; 1698 def : Extract_Element <i32, v4i32, 2, sub2>; 1699 def : Extract_Element <i32, v4i32, 3, sub3>; 1700 1701 def : Insert_Element <i32, v4i32, 0, sub0>; 1702 def : Insert_Element <i32, v4i32, 1, sub1>; 1703 def : Insert_Element <i32, v4i32, 2, sub2>; 1704 def : Insert_Element <i32, v4i32, 3, sub3>; 1705 1706 def : Extract_Element <f32, v2f32, 0, sub0>; 1707 def : Extract_Element <f32, v2f32, 1, sub1>; 1708 1709 def : Insert_Element <f32, v2f32, 0, sub0>; 1710 def : Insert_Element <f32, v2f32, 1, sub1>; 1711 1712 def : Extract_Element <i32, v2i32, 0, sub0>; 1713 def : Extract_Element <i32, v2i32, 1, sub1>; 1714 1715 def : Insert_Element <i32, v2i32, 0, sub0>; 1716 def : Insert_Element <i32, v2i32, 1, sub1>; 1717 1718 // bitconvert patterns 1719 1720 def : BitConvert <i32, f32, R600_Reg32>; 1721 def : BitConvert <f32, i32, R600_Reg32>; 1722 def : BitConvert <v2f32, v2i32, R600_Reg64>; 1723 def : BitConvert <v2i32, v2f32, R600_Reg64>; 1724 def : BitConvert <v4f32, v4i32, R600_Reg128>; 1725 def : BitConvert <v4i32, v4f32, R600_Reg128>; 1726 1727 // DWORDADDR pattern 1728 def : DwordAddrPat <i32, R600_Reg32>; 1729 1730 } // End isR600toCayman Predicate 1731 1732 let Predicates = [isR600] in { 1733 // Intrinsic patterns 1734 defm : Expand24IBitOps<MULLO_INT_r600, ADD_INT>; 1735 defm : Expand24UBitOps<MULLO_UINT_r600, ADD_INT>; 1736 } // End isR600 1737 1738 def getLDSNoRetOp : InstrMapping { 1739 let FilterClass = "R600_LDS_1A1D"; 1740 let RowFields = ["BaseOp"]; 1741 let ColFields = ["DisableEncoding"]; 1742 let KeyCol = ["$dst"]; 1743 let ValueCols = [[""""]]; 1744 } 1745