Home | History | Annotate | Download | only in AMDGPU
      1 //===-- R600Instructions.td - R600 Instruction defs  -------*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // TableGen definitions for instructions which are available on R600 family
     11 // GPUs.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 include "R600Intrinsics.td"
     16 include "R600InstrFormats.td"
     17 
     18 class InstR600ISA <dag outs, dag ins, string asm, list<dag> pattern> :
     19     InstR600 <outs, ins, asm, pattern, NullALU> {
     20 
     21   let Namespace = "AMDGPU";
     22 }
     23 
     24 def MEMxi : Operand<iPTR> {
     25   let MIOperandInfo = (ops R600_TReg32_X:$ptr, i32imm:$index);
     26   let PrintMethod = "printMemOperand";
     27 }
     28 
     29 def MEMrr : Operand<iPTR> {
     30   let MIOperandInfo = (ops R600_Reg32:$ptr, R600_Reg32:$index);
     31 }
     32 
     33 // Operands for non-registers
     34 
     35 class InstFlag<string PM = "printOperand", int Default = 0>
     36     : OperandWithDefaultOps <i32, (ops (i32 Default))> {
     37   let PrintMethod = PM;
     38 }
     39 
     40 // src_sel for ALU src operands, see also ALU_CONST, ALU_PARAM registers
     41 def SEL : OperandWithDefaultOps <i32, (ops (i32 -1))> {
     42   let PrintMethod = "printSel";
     43 }
     44 def BANK_SWIZZLE : OperandWithDefaultOps <i32, (ops (i32 0))> {
     45   let PrintMethod = "printBankSwizzle";
     46 }
     47 
     48 def LITERAL : InstFlag<"printLiteral">;
     49 
     50 def WRITE : InstFlag <"printWrite", 1>;
     51 def OMOD : InstFlag <"printOMOD">;
     52 def REL : InstFlag <"printRel">;
     53 def CLAMP : InstFlag <"printClamp">;
     54 def NEG : InstFlag <"printNeg">;
     55 def ABS : InstFlag <"printAbs">;
     56 def UEM : InstFlag <"printUpdateExecMask">;
     57 def UP : InstFlag <"printUpdatePred">;
     58 
     59 // XXX: The r600g finalizer in Mesa expects last to be one in most cases.
     60 // Once we start using the packetizer in this backend we should have this
     61 // default to 0.
     62 def LAST : InstFlag<"printLast", 1>;
     63 def RSel : Operand<i32> {
     64   let PrintMethod = "printRSel";
     65 }
     66 def CT: Operand<i32> {
     67   let PrintMethod = "printCT";
     68 }
     69 
     70 def FRAMEri : Operand<iPTR> {
     71   let MIOperandInfo = (ops R600_Reg32:$ptr, i32imm:$index);
     72 }
     73 
     74 def ADDRParam : ComplexPattern<i32, 2, "SelectADDRParam", [], []>;
     75 def ADDRDWord : ComplexPattern<i32, 1, "SelectADDRDWord", [], []>;
     76 def ADDRVTX_READ : ComplexPattern<i32, 2, "SelectADDRVTX_READ", [], []>;
     77 def ADDRGA_CONST_OFFSET : ComplexPattern<i32, 1, "SelectGlobalValueConstantOffset", [], []>;
     78 def ADDRGA_VAR_OFFSET : ComplexPattern<i32, 2, "SelectGlobalValueVariableOffset", [], []>;
     79 
     80 
     81 def R600_Pred : PredicateOperand<i32, (ops R600_Predicate),
     82                                      (ops PRED_SEL_OFF)>;
     83 
     84 
     85 let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
     86 
     87 // Class for instructions with only one source register.
     88 // If you add new ins to this instruction, make sure they are listed before
     89 // $literal, because the backend currently assumes that the last operand is
     90 // a literal.  Also be sure to update the enum R600Op1OperandIndex::ROI in
     91 // R600Defines.h, R600InstrInfo::buildDefaultInstruction(),
     92 // and R600InstrInfo::getOperandIdx().
     93 class R600_1OP <bits<11> inst, string opName, list<dag> pattern,
     94                 InstrItinClass itin = AnyALU> :
     95     InstR600 <(outs R600_Reg32:$dst),
     96               (ins WRITE:$write, OMOD:$omod, REL:$dst_rel, CLAMP:$clamp,
     97                    R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel,
     98                    LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal,
     99                    BANK_SWIZZLE:$bank_swizzle),
    100               !strconcat("  ", opName,
    101                    "$clamp $last $dst$write$dst_rel$omod, "
    102                    "$src0_neg$src0_abs$src0$src0_abs$src0_rel, "
    103                    "$pred_sel $bank_swizzle"),
    104               pattern,
    105               itin>,
    106     R600ALU_Word0,
    107     R600ALU_Word1_OP2 <inst> {
    108 
    109   let src1 = 0;
    110   let src1_rel = 0;
    111   let src1_neg = 0;
    112   let src1_abs = 0;
    113   let update_exec_mask = 0;
    114   let update_pred = 0;
    115   let HasNativeOperands = 1;
    116   let Op1 = 1;
    117   let ALUInst = 1;
    118   let DisableEncoding = "$literal";
    119   let UseNamedOperandTable = 1;
    120 
    121   let Inst{31-0}  = Word0;
    122   let Inst{63-32} = Word1;
    123 }
    124 
    125 class R600_1OP_Helper <bits<11> inst, string opName, SDPatternOperator node,
    126                     InstrItinClass itin = AnyALU> :
    127     R600_1OP <inst, opName,
    128               [(set R600_Reg32:$dst, (node R600_Reg32:$src0))], itin
    129 >;
    130 
    131 // If you add or change the operands for R600_2OP instructions, you must
    132 // also update the R600Op2OperandIndex::ROI enum in R600Defines.h,
    133 // R600InstrInfo::buildDefaultInstruction(), and R600InstrInfo::getOperandIdx().
    134 class R600_2OP <bits<11> inst, string opName, list<dag> pattern,
    135                 InstrItinClass itin = AnyALU> :
    136   InstR600 <(outs R600_Reg32:$dst),
    137           (ins UEM:$update_exec_mask, UP:$update_pred, WRITE:$write,
    138                OMOD:$omod, REL:$dst_rel, CLAMP:$clamp,
    139                R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel,
    140                R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, ABS:$src1_abs, SEL:$src1_sel,
    141                LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal,
    142                BANK_SWIZZLE:$bank_swizzle),
    143           !strconcat("  ", opName,
    144                 "$clamp $last $update_exec_mask$update_pred$dst$write$dst_rel$omod, "
    145                 "$src0_neg$src0_abs$src0$src0_abs$src0_rel, "
    146                 "$src1_neg$src1_abs$src1$src1_abs$src1_rel, "
    147                 "$pred_sel $bank_swizzle"),
    148           pattern,
    149           itin>,
    150     R600ALU_Word0,
    151     R600ALU_Word1_OP2 <inst> {
    152 
    153   let HasNativeOperands = 1;
    154   let Op2 = 1;
    155   let ALUInst = 1;
    156   let DisableEncoding = "$literal";
    157   let UseNamedOperandTable = 1;
    158 
    159   let Inst{31-0}  = Word0;
    160   let Inst{63-32} = Word1;
    161 }
    162 
    163 class R600_2OP_Helper <bits<11> inst, string opName, SDPatternOperator node,
    164                        InstrItinClass itin = AnyALU> :
    165     R600_2OP <inst, opName,
    166               [(set R600_Reg32:$dst, (node R600_Reg32:$src0,
    167                                            R600_Reg32:$src1))], itin
    168 >;
    169 
    170 // If you add our change the operands for R600_3OP instructions, you must
    171 // also update the R600Op3OperandIndex::ROI enum in R600Defines.h,
    172 // R600InstrInfo::buildDefaultInstruction(), and
    173 // R600InstrInfo::getOperandIdx().
    174 class R600_3OP <bits<5> inst, string opName, list<dag> pattern,
    175                 InstrItinClass itin = AnyALU> :
    176   InstR600 <(outs R600_Reg32:$dst),
    177           (ins REL:$dst_rel, CLAMP:$clamp,
    178                R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, SEL:$src0_sel,
    179                R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, SEL:$src1_sel,
    180                R600_Reg32:$src2, NEG:$src2_neg, REL:$src2_rel, SEL:$src2_sel,
    181                LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal,
    182                BANK_SWIZZLE:$bank_swizzle),
    183           !strconcat("  ", opName, "$clamp $last $dst$dst_rel, "
    184                              "$src0_neg$src0$src0_rel, "
    185                              "$src1_neg$src1$src1_rel, "
    186                              "$src2_neg$src2$src2_rel, "
    187                              "$pred_sel"
    188                              "$bank_swizzle"),
    189           pattern,
    190           itin>,
    191     R600ALU_Word0,
    192     R600ALU_Word1_OP3<inst>{
    193 
    194   let HasNativeOperands = 1;
    195   let DisableEncoding = "$literal";
    196   let Op3 = 1;
    197   let UseNamedOperandTable = 1;
    198   let ALUInst = 1;
    199 
    200   let Inst{31-0}  = Word0;
    201   let Inst{63-32} = Word1;
    202 }
    203 
    204 class R600_REDUCTION <bits<11> inst, dag ins, string asm, list<dag> pattern,
    205                       InstrItinClass itin = VecALU> :
    206   InstR600 <(outs R600_Reg32:$dst),
    207           ins,
    208           asm,
    209           pattern,
    210           itin>;
    211 
    212 
    213 
    214 } // End mayLoad = 1, mayStore = 0, hasSideEffects = 0
    215 
    216 def TEX_SHADOW : PatLeaf<
    217   (imm),
    218   [{uint32_t TType = (uint32_t)N->getZExtValue();
    219     return (TType >= 6 && TType <= 8) || TType == 13;
    220   }]
    221 >;
    222 
    223 def TEX_RECT : PatLeaf<
    224   (imm),
    225   [{uint32_t TType = (uint32_t)N->getZExtValue();
    226     return TType == 5;
    227   }]
    228 >;
    229 
    230 def TEX_ARRAY : PatLeaf<
    231   (imm),
    232   [{uint32_t TType = (uint32_t)N->getZExtValue();
    233     return TType == 9 || TType == 10 || TType == 16;
    234   }]
    235 >;
    236 
    237 def TEX_SHADOW_ARRAY : PatLeaf<
    238   (imm),
    239   [{uint32_t TType = (uint32_t)N->getZExtValue();
    240     return TType == 11 || TType == 12 || TType == 17;
    241   }]
    242 >;
    243 
    244 def TEX_MSAA : PatLeaf<
    245   (imm),
    246   [{uint32_t TType = (uint32_t)N->getZExtValue();
    247     return TType == 14;
    248   }]
    249 >;
    250 
    251 def TEX_ARRAY_MSAA : PatLeaf<
    252   (imm),
    253   [{uint32_t TType = (uint32_t)N->getZExtValue();
    254     return TType == 15;
    255   }]
    256 >;
    257 
    258 class EG_CF_RAT <bits <8> cfinst, bits <6> ratinst, bits<4> ratid, bits<4> mask,
    259                  dag outs, dag ins, string asm, list<dag> pattern> :
    260     InstR600ISA <outs, ins, asm, pattern>,
    261     CF_ALLOC_EXPORT_WORD0_RAT, CF_ALLOC_EXPORT_WORD1_BUF  {
    262 
    263   let rat_id = ratid;
    264   let rat_inst = ratinst;
    265   let rim         = 0;
    266   // XXX: Have a separate instruction for non-indexed writes.
    267   let type        = 1;
    268   let rw_rel      = 0;
    269   let elem_size   = 0;
    270 
    271   let array_size  = 0;
    272   let comp_mask   = mask;
    273   let burst_count = 0;
    274   let vpm         = 0;
    275   let cf_inst = cfinst;
    276   let mark        = 0;
    277   let barrier     = 1;
    278 
    279   let Inst{31-0} = Word0;
    280   let Inst{63-32} = Word1;
    281   let IsExport = 1;
    282 
    283 }
    284 
    285 class VTX_READ <string name, bits<8> buffer_id, dag outs, list<dag> pattern>
    286     : InstR600ISA <outs, (ins MEMxi:$src_gpr), name, pattern>,
    287       VTX_WORD1_GPR {
    288 
    289   // Static fields
    290   let DST_REL = 0;
    291   // The docs say that if this bit is set, then DATA_FORMAT, NUM_FORMAT_ALL,
    292   // FORMAT_COMP_ALL, SRF_MODE_ALL, and ENDIAN_SWAP fields will be ignored,
    293   // however, based on my testing if USE_CONST_FIELDS is set, then all
    294   // these fields need to be set to 0.
    295   let USE_CONST_FIELDS = 0;
    296   let NUM_FORMAT_ALL = 1;
    297   let FORMAT_COMP_ALL = 0;
    298   let SRF_MODE_ALL = 0;
    299 
    300   let Inst{63-32} = Word1;
    301   // LLVM can only encode 64-bit instructions, so these fields are manually
    302   // encoded in R600CodeEmitter
    303   //
    304   // bits<16> OFFSET;
    305   // bits<2>  ENDIAN_SWAP = 0;
    306   // bits<1>  CONST_BUF_NO_STRIDE = 0;
    307   // bits<1>  MEGA_FETCH = 0;
    308   // bits<1>  ALT_CONST = 0;
    309   // bits<2>  BUFFER_INDEX_MODE = 0;
    310 
    311   // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
    312   // is done in R600CodeEmitter
    313   //
    314   // Inst{79-64} = OFFSET;
    315   // Inst{81-80} = ENDIAN_SWAP;
    316   // Inst{82}    = CONST_BUF_NO_STRIDE;
    317   // Inst{83}    = MEGA_FETCH;
    318   // Inst{84}    = ALT_CONST;
    319   // Inst{86-85} = BUFFER_INDEX_MODE;
    320   // Inst{95-86} = 0; Reserved
    321 
    322   // VTX_WORD3 (Padding)
    323   //
    324   // Inst{127-96} = 0;
    325 
    326   let VTXInst = 1;
    327 }
    328 
    329 class LoadParamFrag <PatFrag load_type> : PatFrag <
    330   (ops node:$ptr), (load_type node:$ptr),
    331   [{ return isConstantLoad(dyn_cast<LoadSDNode>(N), 0); }]
    332 >;
    333 
    334 def load_param : LoadParamFrag<load>;
    335 def load_param_exti8 : LoadParamFrag<az_extloadi8>;
    336 def load_param_exti16 : LoadParamFrag<az_extloadi16>;
    337 
    338 def isR600 : Predicate<"Subtarget->getGeneration() <= AMDGPUSubtarget::R700">;
    339 
    340 def isR600toCayman
    341     : Predicate<
    342           "Subtarget->getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS">;
    343 
    344 //===----------------------------------------------------------------------===//
    345 // R600 SDNodes
    346 //===----------------------------------------------------------------------===//
    347 
    348 def INTERP_PAIR_XY :  AMDGPUShaderInst <
    349   (outs R600_TReg32_X:$dst0, R600_TReg32_Y:$dst1),
    350   (ins i32imm:$src0, R600_TReg32_Y:$src1, R600_TReg32_X:$src2),
    351   "INTERP_PAIR_XY $src0 $src1 $src2 : $dst0 dst1",
    352   []>;
    353 
    354 def INTERP_PAIR_ZW :  AMDGPUShaderInst <
    355   (outs R600_TReg32_Z:$dst0, R600_TReg32_W:$dst1),
    356   (ins i32imm:$src0, R600_TReg32_Y:$src1, R600_TReg32_X:$src2),
    357   "INTERP_PAIR_ZW $src0 $src1 $src2 : $dst0 dst1",
    358   []>;
    359 
    360 def CONST_ADDRESS: SDNode<"AMDGPUISD::CONST_ADDRESS",
    361   SDTypeProfile<1, -1, [SDTCisInt<0>, SDTCisPtrTy<1>]>,
    362   [SDNPVariadic]
    363 >;
    364 
    365 def DOT4 : SDNode<"AMDGPUISD::DOT4",
    366   SDTypeProfile<1, 8, [SDTCisFP<0>, SDTCisVT<1, f32>, SDTCisVT<2, f32>,
    367       SDTCisVT<3, f32>, SDTCisVT<4, f32>, SDTCisVT<5, f32>,
    368       SDTCisVT<6, f32>, SDTCisVT<7, f32>, SDTCisVT<8, f32>]>,
    369   []
    370 >;
    371 
    372 def COS_HW : SDNode<"AMDGPUISD::COS_HW",
    373   SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]>
    374 >;
    375 
    376 def SIN_HW : SDNode<"AMDGPUISD::SIN_HW",
    377   SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]>
    378 >;
    379 
    380 def TEXTURE_FETCH_Type : SDTypeProfile<1, 19, [SDTCisFP<0>]>;
    381 
    382 def TEXTURE_FETCH: SDNode<"AMDGPUISD::TEXTURE_FETCH", TEXTURE_FETCH_Type, []>;
    383 
    384 multiclass TexPattern<bits<32> TextureOp, Instruction inst, ValueType vt = v4f32> {
    385 def : Pat<(TEXTURE_FETCH (i32 TextureOp), vt:$SRC_GPR,
    386           (i32 imm:$srcx), (i32 imm:$srcy), (i32 imm:$srcz), (i32 imm:$srcw),
    387           (i32 imm:$offsetx), (i32 imm:$offsety), (i32 imm:$offsetz),
    388           (i32 imm:$DST_SEL_X), (i32 imm:$DST_SEL_Y), (i32 imm:$DST_SEL_Z),
    389           (i32 imm:$DST_SEL_W),
    390           (i32 imm:$RESOURCE_ID), (i32 imm:$SAMPLER_ID),
    391           (i32 imm:$COORD_TYPE_X), (i32 imm:$COORD_TYPE_Y), (i32 imm:$COORD_TYPE_Z),
    392           (i32 imm:$COORD_TYPE_W)),
    393           (inst R600_Reg128:$SRC_GPR,
    394           imm:$srcx, imm:$srcy, imm:$srcz, imm:$srcw,
    395           imm:$offsetx, imm:$offsety, imm:$offsetz,
    396           imm:$DST_SEL_X, imm:$DST_SEL_Y, imm:$DST_SEL_Z,
    397           imm:$DST_SEL_W,
    398           imm:$RESOURCE_ID, imm:$SAMPLER_ID,
    399           imm:$COORD_TYPE_X, imm:$COORD_TYPE_Y, imm:$COORD_TYPE_Z,
    400           imm:$COORD_TYPE_W)>;
    401 }
    402 
    403 //===----------------------------------------------------------------------===//
    404 // Interpolation Instructions
    405 //===----------------------------------------------------------------------===//
    406 
    407 def INTERP_VEC_LOAD :  AMDGPUShaderInst <
    408   (outs R600_Reg128:$dst),
    409   (ins i32imm:$src0),
    410   "INTERP_LOAD $src0 : $dst",
    411   [(set R600_Reg128:$dst, (int_R600_interp_const imm:$src0))]>;
    412 
    413 def INTERP_XY : R600_2OP <0xD6, "INTERP_XY", []> {
    414   let bank_swizzle = 5;
    415 }
    416 
    417 def INTERP_ZW : R600_2OP <0xD7, "INTERP_ZW", []> {
    418   let bank_swizzle = 5;
    419 }
    420 
    421 def INTERP_LOAD_P0 : R600_1OP <0xE0, "INTERP_LOAD_P0", []>;
    422 
    423 //===----------------------------------------------------------------------===//
    424 // Export Instructions
    425 //===----------------------------------------------------------------------===//
    426 
    427 def ExportType : SDTypeProfile<0, 7, [SDTCisFP<0>, SDTCisInt<1>]>;
    428 
    429 def EXPORT: SDNode<"AMDGPUISD::EXPORT", ExportType,
    430   [SDNPHasChain, SDNPSideEffect]>;
    431 
    432 class ExportWord0 {
    433   field bits<32> Word0;
    434 
    435   bits<13> arraybase;
    436   bits<2> type;
    437   bits<7> gpr;
    438   bits<2> elem_size;
    439 
    440   let Word0{12-0} = arraybase;
    441   let Word0{14-13} = type;
    442   let Word0{21-15} = gpr;
    443   let Word0{22} = 0; // RW_REL
    444   let Word0{29-23} = 0; // INDEX_GPR
    445   let Word0{31-30} = elem_size;
    446 }
    447 
    448 class ExportSwzWord1 {
    449   field bits<32> Word1;
    450 
    451   bits<3> sw_x;
    452   bits<3> sw_y;
    453   bits<3> sw_z;
    454   bits<3> sw_w;
    455   bits<1> eop;
    456   bits<8> inst;
    457 
    458   let Word1{2-0} = sw_x;
    459   let Word1{5-3} = sw_y;
    460   let Word1{8-6} = sw_z;
    461   let Word1{11-9} = sw_w;
    462 }
    463 
    464 class ExportBufWord1 {
    465   field bits<32> Word1;
    466 
    467   bits<12> arraySize;
    468   bits<4> compMask;
    469   bits<1> eop;
    470   bits<8> inst;
    471 
    472   let Word1{11-0} = arraySize;
    473   let Word1{15-12} = compMask;
    474 }
    475 
    476 multiclass ExportPattern<Instruction ExportInst, bits<8> cf_inst> {
    477   def : Pat<(int_R600_store_pixel_depth R600_Reg32:$reg),
    478     (ExportInst
    479         (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), $reg, sub0),
    480         0, 61, 0, 7, 7, 7, cf_inst, 0)
    481   >;
    482 
    483   def : Pat<(int_R600_store_pixel_stencil R600_Reg32:$reg),
    484     (ExportInst
    485         (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), $reg, sub0),
    486         0, 61, 7, 0, 7, 7, cf_inst, 0)
    487   >;
    488 
    489   def : Pat<(int_R600_store_dummy (i32 imm:$type)),
    490     (ExportInst
    491         (v4f32 (IMPLICIT_DEF)), imm:$type, 0, 7, 7, 7, 7, cf_inst, 0)
    492   >;
    493 
    494   def : Pat<(int_R600_store_dummy 1),
    495     (ExportInst
    496         (v4f32 (IMPLICIT_DEF)), 1, 60, 7, 7, 7, 7, cf_inst, 0)
    497   >;
    498 
    499   def : Pat<(EXPORT (v4f32 R600_Reg128:$src), (i32 imm:$base), (i32 imm:$type),
    500     (i32 imm:$swz_x), (i32 imm:$swz_y), (i32 imm:$swz_z), (i32 imm:$swz_w)),
    501         (ExportInst R600_Reg128:$src, imm:$type, imm:$base,
    502         imm:$swz_x, imm:$swz_y, imm:$swz_z, imm:$swz_w, cf_inst, 0)
    503   >;
    504 
    505 }
    506 
    507 multiclass SteamOutputExportPattern<Instruction ExportInst,
    508     bits<8> buf0inst, bits<8> buf1inst, bits<8> buf2inst, bits<8> buf3inst> {
    509 // Stream0
    510   def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
    511       (i32 imm:$arraybase), (i32 0), (i32 imm:$mask)),
    512       (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
    513       4095, imm:$mask, buf0inst, 0)>;
    514 // Stream1
    515   def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
    516       (i32 imm:$arraybase), (i32 1), (i32 imm:$mask)),
    517       (ExportInst $src, 0, imm:$arraybase,
    518       4095, imm:$mask, buf1inst, 0)>;
    519 // Stream2
    520   def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
    521       (i32 imm:$arraybase), (i32 2), (i32 imm:$mask)),
    522       (ExportInst $src, 0, imm:$arraybase,
    523       4095, imm:$mask, buf2inst, 0)>;
    524 // Stream3
    525   def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
    526       (i32 imm:$arraybase), (i32 3), (i32 imm:$mask)),
    527       (ExportInst $src, 0, imm:$arraybase,
    528       4095, imm:$mask, buf3inst, 0)>;
    529 }
    530 
    531 // Export Instructions should not be duplicated by TailDuplication pass
    532 // (which assumes that duplicable instruction are affected by exec mask)
    533 let usesCustomInserter = 1, isNotDuplicable = 1 in {
    534 
    535 class ExportSwzInst : InstR600ISA<(
    536     outs),
    537     (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase,
    538     RSel:$sw_x, RSel:$sw_y, RSel:$sw_z, RSel:$sw_w, i32imm:$inst,
    539     i32imm:$eop),
    540     !strconcat("EXPORT", " $gpr.$sw_x$sw_y$sw_z$sw_w"),
    541     []>, ExportWord0, ExportSwzWord1 {
    542   let elem_size = 3;
    543   let Inst{31-0} = Word0;
    544   let Inst{63-32} = Word1;
    545   let IsExport = 1;
    546 }
    547 
    548 } // End usesCustomInserter = 1
    549 
    550 class ExportBufInst : InstR600ISA<(
    551     outs),
    552     (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase,
    553     i32imm:$arraySize, i32imm:$compMask, i32imm:$inst, i32imm:$eop),
    554     !strconcat("EXPORT", " $gpr"),
    555     []>, ExportWord0, ExportBufWord1 {
    556   let elem_size = 0;
    557   let Inst{31-0} = Word0;
    558   let Inst{63-32} = Word1;
    559   let IsExport = 1;
    560 }
    561 
    562 //===----------------------------------------------------------------------===//
    563 // Control Flow Instructions
    564 //===----------------------------------------------------------------------===//
    565 
    566 
    567 def KCACHE : InstFlag<"printKCache">;
    568 
    569 class ALU_CLAUSE<bits<4> inst, string OpName> : AMDGPUInst <(outs),
    570 (ins i32imm:$ADDR, i32imm:$KCACHE_BANK0, i32imm:$KCACHE_BANK1,
    571 KCACHE:$KCACHE_MODE0, KCACHE:$KCACHE_MODE1,
    572 i32imm:$KCACHE_ADDR0, i32imm:$KCACHE_ADDR1,
    573 i32imm:$COUNT, i32imm:$Enabled),
    574 !strconcat(OpName, " $COUNT, @$ADDR, "
    575 "KC0[$KCACHE_MODE0], KC1[$KCACHE_MODE1]"),
    576 [] >, CF_ALU_WORD0, CF_ALU_WORD1 {
    577   field bits<64> Inst;
    578 
    579   let CF_INST = inst;
    580   let ALT_CONST = 0;
    581   let WHOLE_QUAD_MODE = 0;
    582   let BARRIER = 1;
    583   let isCodeGenOnly = 1;
    584   let UseNamedOperandTable = 1;
    585 
    586   let Inst{31-0} = Word0;
    587   let Inst{63-32} = Word1;
    588 }
    589 
    590 class CF_WORD0_R600 {
    591   field bits<32> Word0;
    592 
    593   bits<32> ADDR;
    594 
    595   let Word0 = ADDR;
    596 }
    597 
    598 class CF_CLAUSE_R600 <bits<7> inst, dag ins, string AsmPrint> : AMDGPUInst <(outs),
    599 ins, AsmPrint, [] >, CF_WORD0_R600, CF_WORD1_R600 {
    600   field bits<64> Inst;
    601   bits<4> CNT;
    602 
    603   let CF_INST = inst;
    604   let BARRIER = 1;
    605   let CF_CONST = 0;
    606   let VALID_PIXEL_MODE = 0;
    607   let COND = 0;
    608   let COUNT = CNT{2-0};
    609   let CALL_COUNT = 0;
    610   let COUNT_3 = CNT{3};
    611   let END_OF_PROGRAM = 0;
    612   let WHOLE_QUAD_MODE = 0;
    613 
    614   let Inst{31-0} = Word0;
    615   let Inst{63-32} = Word1;
    616 }
    617 
    618 class CF_CLAUSE_EG <bits<8> inst, dag ins, string AsmPrint> : AMDGPUInst <(outs),
    619 ins, AsmPrint, [] >, CF_WORD0_EG, CF_WORD1_EG {
    620   field bits<64> Inst;
    621 
    622   let CF_INST = inst;
    623   let BARRIER = 1;
    624   let JUMPTABLE_SEL = 0;
    625   let CF_CONST = 0;
    626   let VALID_PIXEL_MODE = 0;
    627   let COND = 0;
    628   let END_OF_PROGRAM = 0;
    629 
    630   let Inst{31-0} = Word0;
    631   let Inst{63-32} = Word1;
    632 }
    633 
    634 def CF_ALU : ALU_CLAUSE<8, "ALU">;
    635 def CF_ALU_PUSH_BEFORE : ALU_CLAUSE<9, "ALU_PUSH_BEFORE">;
    636 def CF_ALU_POP_AFTER : ALU_CLAUSE<10, "ALU_POP_AFTER">;
    637 def CF_ALU_CONTINUE : ALU_CLAUSE<13, "ALU_CONTINUE">;
    638 def CF_ALU_BREAK : ALU_CLAUSE<14, "ALU_BREAK">;
    639 def CF_ALU_ELSE_AFTER : ALU_CLAUSE<15, "ALU_ELSE_AFTER">;
    640 
    641 def FETCH_CLAUSE : AMDGPUInst <(outs),
    642 (ins i32imm:$addr), "Fetch clause starting at $addr:", [] > {
    643   field bits<8> Inst;
    644   bits<8> num;
    645   let Inst = num;
    646   let isCodeGenOnly = 1;
    647 }
    648 
    649 def ALU_CLAUSE : AMDGPUInst <(outs),
    650 (ins i32imm:$addr), "ALU clause starting at $addr:", [] > {
    651   field bits<8> Inst;
    652   bits<8> num;
    653   let Inst = num;
    654   let isCodeGenOnly = 1;
    655 }
    656 
    657 def LITERALS : AMDGPUInst <(outs),
    658 (ins LITERAL:$literal1, LITERAL:$literal2), "$literal1, $literal2", [] > {
    659   let isCodeGenOnly = 1;
    660 
    661   field bits<64> Inst;
    662   bits<32> literal1;
    663   bits<32> literal2;
    664 
    665   let Inst{31-0} = literal1;
    666   let Inst{63-32} = literal2;
    667 }
    668 
    669 def PAD : AMDGPUInst <(outs), (ins), "PAD", [] > {
    670   field bits<64> Inst;
    671 }
    672 
    673 let Predicates = [isR600toCayman] in {
    674 
    675 //===----------------------------------------------------------------------===//
    676 // Common Instructions R600, R700, Evergreen, Cayman
    677 //===----------------------------------------------------------------------===//
    678 
    679 def ADD : R600_2OP_Helper <0x0, "ADD", fadd>;
    680 // Non-IEEE MUL: 0 * anything = 0
    681 def MUL : R600_2OP_Helper <0x1, "MUL NON-IEEE", int_AMDGPU_mul>;
    682 def MUL_IEEE : R600_2OP_Helper <0x2, "MUL_IEEE", fmul>;
    683 // TODO: Do these actually match the regular fmin/fmax behavior?
    684 def MAX : R600_2OP_Helper <0x3, "MAX", AMDGPUfmax_legacy>;
    685 def MIN : R600_2OP_Helper <0x4, "MIN", AMDGPUfmin_legacy>;
    686 // According to https://msdn.microsoft.com/en-us/library/windows/desktop/cc308050%28v=vs.85%29.aspx
    687 // DX10 min/max returns the other operand if one is NaN,
    688 // this matches http://llvm.org/docs/LangRef.html#llvm-minnum-intrinsic
    689 def MAX_DX10 : R600_2OP_Helper <0x5, "MAX_DX10", fmaxnum>;
    690 def MIN_DX10 : R600_2OP_Helper <0x6, "MIN_DX10", fminnum>;
    691 
    692 // For the SET* instructions there is a naming conflict in TargetSelectionDAG.td,
    693 // so some of the instruction names don't match the asm string.
    694 // XXX: Use the defs in TargetSelectionDAG.td instead of intrinsics.
    695 def SETE : R600_2OP <
    696   0x08, "SETE",
    697   [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OEQ))]
    698 >;
    699 
    700 def SGT : R600_2OP <
    701   0x09, "SETGT",
    702   [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OGT))]
    703 >;
    704 
    705 def SGE : R600_2OP <
    706   0xA, "SETGE",
    707   [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OGE))]
    708 >;
    709 
    710 def SNE : R600_2OP <
    711   0xB, "SETNE",
    712   [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_UNE_NE))]
    713 >;
    714 
    715 def SETE_DX10 : R600_2OP <
    716   0xC, "SETE_DX10",
    717   [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OEQ))]
    718 >;
    719 
    720 def SETGT_DX10 : R600_2OP <
    721   0xD, "SETGT_DX10",
    722   [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OGT))]
    723 >;
    724 
    725 def SETGE_DX10 : R600_2OP <
    726   0xE, "SETGE_DX10",
    727   [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OGE))]
    728 >;
    729 
    730 // FIXME: This should probably be COND_ONE
    731 def SETNE_DX10 : R600_2OP <
    732   0xF, "SETNE_DX10",
    733   [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_UNE_NE))]
    734 >;
    735 
    736 def FRACT : R600_1OP_Helper <0x10, "FRACT", AMDGPUfract>;
    737 def TRUNC : R600_1OP_Helper <0x11, "TRUNC", ftrunc>;
    738 def CEIL : R600_1OP_Helper <0x12, "CEIL", fceil>;
    739 def RNDNE : R600_1OP_Helper <0x13, "RNDNE", frint>;
    740 def FLOOR : R600_1OP_Helper <0x14, "FLOOR", ffloor>;
    741 
    742 def MOV : R600_1OP <0x19, "MOV", []>;
    743 
    744 let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1 in {
    745 
    746 class MOV_IMM <ValueType vt, Operand immType> : AMDGPUInst <
    747   (outs R600_Reg32:$dst),
    748   (ins immType:$imm),
    749   "",
    750   []
    751 >;
    752 
    753 } // end let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1
    754 
    755 def MOV_IMM_I32 : MOV_IMM<i32, i32imm>;
    756 def : Pat <
    757   (imm:$val),
    758   (MOV_IMM_I32 imm:$val)
    759 >;
    760 
    761 def MOV_IMM_F32 : MOV_IMM<f32, f32imm>;
    762 def : Pat <
    763   (fpimm:$val),
    764   (MOV_IMM_F32  fpimm:$val)
    765 >;
    766 
    767 def PRED_SETE : R600_2OP <0x20, "PRED_SETE", []>;
    768 def PRED_SETGT : R600_2OP <0x21, "PRED_SETGT", []>;
    769 def PRED_SETGE : R600_2OP <0x22, "PRED_SETGE", []>;
    770 def PRED_SETNE : R600_2OP <0x23, "PRED_SETNE", []>;
    771 
    772 let hasSideEffects = 1 in {
    773 
    774 def KILLGT : R600_2OP <0x2D, "KILLGT", []>;
    775 
    776 } // end hasSideEffects
    777 
    778 def AND_INT : R600_2OP_Helper <0x30, "AND_INT", and>;
    779 def OR_INT : R600_2OP_Helper <0x31, "OR_INT", or>;
    780 def XOR_INT : R600_2OP_Helper <0x32, "XOR_INT", xor>;
    781 def NOT_INT : R600_1OP_Helper <0x33, "NOT_INT", not>;
    782 def ADD_INT : R600_2OP_Helper <0x34, "ADD_INT", add>;
    783 def SUB_INT : R600_2OP_Helper <0x35, "SUB_INT", sub>;
    784 def MAX_INT : R600_2OP_Helper <0x36, "MAX_INT", smax>;
    785 def MIN_INT : R600_2OP_Helper <0x37, "MIN_INT", smin>;
    786 def MAX_UINT : R600_2OP_Helper <0x38, "MAX_UINT", umax>;
    787 def MIN_UINT : R600_2OP_Helper <0x39, "MIN_UINT", umin>;
    788 
    789 def SETE_INT : R600_2OP <
    790   0x3A, "SETE_INT",
    791   [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETEQ))]
    792 >;
    793 
    794 def SETGT_INT : R600_2OP <
    795   0x3B, "SETGT_INT",
    796   [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETGT))]
    797 >;
    798 
    799 def SETGE_INT : R600_2OP <
    800   0x3C, "SETGE_INT",
    801   [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETGE))]
    802 >;
    803 
    804 def SETNE_INT : R600_2OP <
    805   0x3D, "SETNE_INT",
    806   [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETNE))]
    807 >;
    808 
    809 def SETGT_UINT : R600_2OP <
    810   0x3E, "SETGT_UINT",
    811   [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETUGT))]
    812 >;
    813 
    814 def SETGE_UINT : R600_2OP <
    815   0x3F, "SETGE_UINT",
    816   [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETUGE))]
    817 >;
    818 
    819 def PRED_SETE_INT : R600_2OP <0x42, "PRED_SETE_INT", []>;
    820 def PRED_SETGT_INT : R600_2OP <0x43, "PRED_SETGE_INT", []>;
    821 def PRED_SETGE_INT : R600_2OP <0x44, "PRED_SETGE_INT", []>;
    822 def PRED_SETNE_INT : R600_2OP <0x45, "PRED_SETNE_INT", []>;
    823 
    824 def CNDE_INT : R600_3OP <
    825   0x1C, "CNDE_INT",
    826   [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_EQ))]
    827 >;
    828 
    829 def CNDGE_INT : R600_3OP <
    830   0x1E, "CNDGE_INT",
    831   [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_SGE))]
    832 >;
    833 
    834 def CNDGT_INT : R600_3OP <
    835   0x1D, "CNDGT_INT",
    836   [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_SGT))]
    837 >;
    838 
    839 //===----------------------------------------------------------------------===//
    840 // Texture instructions
    841 //===----------------------------------------------------------------------===//
    842 
    843 let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
    844 
    845 class R600_TEX <bits<11> inst, string opName> :
    846   InstR600 <(outs R600_Reg128:$DST_GPR),
    847           (ins R600_Reg128:$SRC_GPR,
    848           RSel:$srcx, RSel:$srcy, RSel:$srcz, RSel:$srcw,
    849           i32imm:$offsetx, i32imm:$offsety, i32imm:$offsetz,
    850           RSel:$DST_SEL_X, RSel:$DST_SEL_Y, RSel:$DST_SEL_Z, RSel:$DST_SEL_W,
    851           i32imm:$RESOURCE_ID, i32imm:$SAMPLER_ID,
    852           CT:$COORD_TYPE_X, CT:$COORD_TYPE_Y, CT:$COORD_TYPE_Z,
    853           CT:$COORD_TYPE_W),
    854           !strconcat(opName,
    855           " $DST_GPR.$DST_SEL_X$DST_SEL_Y$DST_SEL_Z$DST_SEL_W, "
    856           "$SRC_GPR.$srcx$srcy$srcz$srcw "
    857           "RID:$RESOURCE_ID SID:$SAMPLER_ID "
    858           "CT:$COORD_TYPE_X$COORD_TYPE_Y$COORD_TYPE_Z$COORD_TYPE_W"),
    859           [],
    860           NullALU>, TEX_WORD0, TEX_WORD1, TEX_WORD2 {
    861   let Inst{31-0} = Word0;
    862   let Inst{63-32} = Word1;
    863 
    864   let TEX_INST = inst{4-0};
    865   let SRC_REL = 0;
    866   let DST_REL = 0;
    867   let LOD_BIAS = 0;
    868 
    869   let INST_MOD = 0;
    870   let FETCH_WHOLE_QUAD = 0;
    871   let ALT_CONST = 0;
    872   let SAMPLER_INDEX_MODE = 0;
    873   let RESOURCE_INDEX_MODE = 0;
    874 
    875   let TEXInst = 1;
    876 }
    877 
    878 } // End mayLoad = 0, mayStore = 0, hasSideEffects = 0
    879 
    880 
    881 
    882 def TEX_SAMPLE : R600_TEX <0x10, "TEX_SAMPLE">;
    883 def TEX_SAMPLE_C : R600_TEX <0x18, "TEX_SAMPLE_C">;
    884 def TEX_SAMPLE_L : R600_TEX <0x11, "TEX_SAMPLE_L">;
    885 def TEX_SAMPLE_C_L : R600_TEX <0x19, "TEX_SAMPLE_C_L">;
    886 def TEX_SAMPLE_LB : R600_TEX <0x12, "TEX_SAMPLE_LB">;
    887 def TEX_SAMPLE_C_LB : R600_TEX <0x1A, "TEX_SAMPLE_C_LB">;
    888 def TEX_LD : R600_TEX <0x03, "TEX_LD">;
    889 def TEX_LDPTR : R600_TEX <0x03, "TEX_LDPTR"> {
    890   let INST_MOD = 1;
    891 }
    892 def TEX_GET_TEXTURE_RESINFO : R600_TEX <0x04, "TEX_GET_TEXTURE_RESINFO">;
    893 def TEX_GET_GRADIENTS_H : R600_TEX <0x07, "TEX_GET_GRADIENTS_H">;
    894 def TEX_GET_GRADIENTS_V : R600_TEX <0x08, "TEX_GET_GRADIENTS_V">;
    895 def TEX_SET_GRADIENTS_H : R600_TEX <0x0B, "TEX_SET_GRADIENTS_H">;
    896 def TEX_SET_GRADIENTS_V : R600_TEX <0x0C, "TEX_SET_GRADIENTS_V">;
    897 def TEX_SAMPLE_G : R600_TEX <0x14, "TEX_SAMPLE_G">;
    898 def TEX_SAMPLE_C_G : R600_TEX <0x1C, "TEX_SAMPLE_C_G">;
    899 
    900 defm : TexPattern<0, TEX_SAMPLE>;
    901 defm : TexPattern<1, TEX_SAMPLE_C>;
    902 defm : TexPattern<2, TEX_SAMPLE_L>;
    903 defm : TexPattern<3, TEX_SAMPLE_C_L>;
    904 defm : TexPattern<4, TEX_SAMPLE_LB>;
    905 defm : TexPattern<5, TEX_SAMPLE_C_LB>;
    906 defm : TexPattern<6, TEX_LD, v4i32>;
    907 defm : TexPattern<7, TEX_GET_TEXTURE_RESINFO, v4i32>;
    908 defm : TexPattern<8, TEX_GET_GRADIENTS_H>;
    909 defm : TexPattern<9, TEX_GET_GRADIENTS_V>;
    910 defm : TexPattern<10, TEX_LDPTR, v4i32>;
    911 
    912 //===----------------------------------------------------------------------===//
    913 // Helper classes for common instructions
    914 //===----------------------------------------------------------------------===//
    915 
    916 class MUL_LIT_Common <bits<5> inst> : R600_3OP <
    917   inst, "MUL_LIT",
    918   []
    919 >;
    920 
    921 class MULADD_Common <bits<5> inst> : R600_3OP <
    922   inst, "MULADD",
    923   []
    924 >;
    925 
    926 class MULADD_IEEE_Common <bits<5> inst> : R600_3OP <
    927   inst, "MULADD_IEEE",
    928   [(set f32:$dst, (fmad f32:$src0, f32:$src1, f32:$src2))]
    929 >;
    930 
    931 class FMA_Common <bits<5> inst> : R600_3OP <
    932   inst, "FMA",
    933   [(set f32:$dst, (fma f32:$src0, f32:$src1, f32:$src2))], VecALU
    934 >;
    935 
    936 class CNDE_Common <bits<5> inst> : R600_3OP <
    937   inst, "CNDE",
    938   [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OEQ))]
    939 >;
    940 
    941 class CNDGT_Common <bits<5> inst> : R600_3OP <
    942   inst, "CNDGT",
    943   [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OGT))]
    944 > {
    945   let Itinerary = VecALU;
    946 }
    947 
    948 class CNDGE_Common <bits<5> inst> : R600_3OP <
    949   inst, "CNDGE",
    950   [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OGE))]
    951 > {
    952   let Itinerary = VecALU;
    953 }
    954 
    955 
    956 let isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU"  in {
    957 class R600_VEC2OP<list<dag> pattern> : InstR600 <(outs R600_Reg32:$dst), (ins
    958 // Slot X
    959    UEM:$update_exec_mask_X, UP:$update_pred_X, WRITE:$write_X,
    960    OMOD:$omod_X, REL:$dst_rel_X, CLAMP:$clamp_X,
    961    R600_TReg32_X:$src0_X, NEG:$src0_neg_X, REL:$src0_rel_X, ABS:$src0_abs_X, SEL:$src0_sel_X,
    962    R600_TReg32_X:$src1_X, NEG:$src1_neg_X, REL:$src1_rel_X, ABS:$src1_abs_X, SEL:$src1_sel_X,
    963    R600_Pred:$pred_sel_X,
    964 // Slot Y
    965    UEM:$update_exec_mask_Y, UP:$update_pred_Y, WRITE:$write_Y,
    966    OMOD:$omod_Y, REL:$dst_rel_Y, CLAMP:$clamp_Y,
    967    R600_TReg32_Y:$src0_Y, NEG:$src0_neg_Y, REL:$src0_rel_Y, ABS:$src0_abs_Y, SEL:$src0_sel_Y,
    968    R600_TReg32_Y:$src1_Y, NEG:$src1_neg_Y, REL:$src1_rel_Y, ABS:$src1_abs_Y, SEL:$src1_sel_Y,
    969    R600_Pred:$pred_sel_Y,
    970 // Slot Z
    971    UEM:$update_exec_mask_Z, UP:$update_pred_Z, WRITE:$write_Z,
    972    OMOD:$omod_Z, REL:$dst_rel_Z, CLAMP:$clamp_Z,
    973    R600_TReg32_Z:$src0_Z, NEG:$src0_neg_Z, REL:$src0_rel_Z, ABS:$src0_abs_Z, SEL:$src0_sel_Z,
    974    R600_TReg32_Z:$src1_Z, NEG:$src1_neg_Z, REL:$src1_rel_Z, ABS:$src1_abs_Z, SEL:$src1_sel_Z,
    975    R600_Pred:$pred_sel_Z,
    976 // Slot W
    977    UEM:$update_exec_mask_W, UP:$update_pred_W, WRITE:$write_W,
    978    OMOD:$omod_W, REL:$dst_rel_W, CLAMP:$clamp_W,
    979    R600_TReg32_W:$src0_W, NEG:$src0_neg_W, REL:$src0_rel_W, ABS:$src0_abs_W, SEL:$src0_sel_W,
    980    R600_TReg32_W:$src1_W, NEG:$src1_neg_W, REL:$src1_rel_W, ABS:$src1_abs_W, SEL:$src1_sel_W,
    981    R600_Pred:$pred_sel_W,
    982    LITERAL:$literal0, LITERAL:$literal1),
    983   "",
    984   pattern,
    985   AnyALU> {
    986 
    987   let UseNamedOperandTable = 1;
    988 
    989 }
    990 }
    991 
    992 def DOT_4 : R600_VEC2OP<[(set R600_Reg32:$dst, (DOT4
    993   R600_TReg32_X:$src0_X, R600_TReg32_X:$src1_X,
    994   R600_TReg32_Y:$src0_Y, R600_TReg32_Y:$src1_Y,
    995   R600_TReg32_Z:$src0_Z, R600_TReg32_Z:$src1_Z,
    996   R600_TReg32_W:$src0_W, R600_TReg32_W:$src1_W))]>;
    997 
    998 
    999 class DOT4_Common <bits<11> inst> : R600_2OP <inst, "DOT4", []>;
   1000 
   1001 
   1002 let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
   1003 multiclass CUBE_Common <bits<11> inst> {
   1004 
   1005   def _pseudo : InstR600 <
   1006     (outs R600_Reg128:$dst),
   1007     (ins R600_Reg128:$src0),
   1008     "CUBE $dst $src0",
   1009     [(set v4f32:$dst, (int_AMDGPU_cube v4f32:$src0))],
   1010     VecALU
   1011   > {
   1012     let isPseudo = 1;
   1013     let UseNamedOperandTable = 1;
   1014   }
   1015 
   1016   def _real : R600_2OP <inst, "CUBE", []>;
   1017 }
   1018 } // End mayLoad = 0, mayStore = 0, hasSideEffects = 0
   1019 
   1020 class EXP_IEEE_Common <bits<11> inst> : R600_1OP_Helper <
   1021   inst, "EXP_IEEE", fexp2
   1022 > {
   1023   let Itinerary = TransALU;
   1024 }
   1025 
   1026 class FLT_TO_INT_Common <bits<11> inst> : R600_1OP_Helper <
   1027   inst, "FLT_TO_INT", fp_to_sint
   1028 > {
   1029   let Itinerary = TransALU;
   1030 }
   1031 
   1032 class INT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper <
   1033   inst, "INT_TO_FLT", sint_to_fp
   1034 > {
   1035   let Itinerary = TransALU;
   1036 }
   1037 
   1038 class FLT_TO_UINT_Common <bits<11> inst> : R600_1OP_Helper <
   1039   inst, "FLT_TO_UINT", fp_to_uint
   1040 > {
   1041   let Itinerary = TransALU;
   1042 }
   1043 
   1044 class UINT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper <
   1045   inst, "UINT_TO_FLT", uint_to_fp
   1046 > {
   1047   let Itinerary = TransALU;
   1048 }
   1049 
   1050 class LOG_CLAMPED_Common <bits<11> inst> : R600_1OP <
   1051   inst, "LOG_CLAMPED", []
   1052 >;
   1053 
   1054 class LOG_IEEE_Common <bits<11> inst> : R600_1OP_Helper <
   1055   inst, "LOG_IEEE", flog2
   1056 > {
   1057   let Itinerary = TransALU;
   1058 }
   1059 
   1060 class LSHL_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHL", shl>;
   1061 class LSHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHR", srl>;
   1062 class ASHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "ASHR", sra>;
   1063 class MULHI_INT_Common <bits<11> inst> : R600_2OP_Helper <
   1064   inst, "MULHI_INT", mulhs
   1065 > {
   1066   let Itinerary = TransALU;
   1067 }
   1068 class MULHI_UINT_Common <bits<11> inst> : R600_2OP_Helper <
   1069   inst, "MULHI", mulhu
   1070 > {
   1071   let Itinerary = TransALU;
   1072 }
   1073 class MULLO_INT_Common <bits<11> inst> : R600_2OP_Helper <
   1074   inst, "MULLO_INT", mul
   1075 > {
   1076   let Itinerary = TransALU;
   1077 }
   1078 class MULLO_UINT_Common <bits<11> inst> : R600_2OP <inst, "MULLO_UINT", []> {
   1079   let Itinerary = TransALU;
   1080 }
   1081 
   1082 class RECIP_CLAMPED_Common <bits<11> inst> : R600_1OP <
   1083   inst, "RECIP_CLAMPED", []
   1084 > {
   1085   let Itinerary = TransALU;
   1086 }
   1087 
   1088 class RECIP_IEEE_Common <bits<11> inst> : R600_1OP <
   1089   inst, "RECIP_IEEE", [(set f32:$dst, (AMDGPUrcp f32:$src0))]
   1090 > {
   1091   let Itinerary = TransALU;
   1092 }
   1093 
   1094 class RECIP_UINT_Common <bits<11> inst> : R600_1OP_Helper <
   1095   inst, "RECIP_UINT", AMDGPUurecip
   1096 > {
   1097   let Itinerary = TransALU;
   1098 }
   1099 
   1100 // Clamped to maximum.
   1101 class RECIPSQRT_CLAMPED_Common <bits<11> inst> : R600_1OP_Helper <
   1102   inst, "RECIPSQRT_CLAMPED", AMDGPUrsq_clamped
   1103 > {
   1104   let Itinerary = TransALU;
   1105 }
   1106 
   1107 class RECIPSQRT_IEEE_Common <bits<11> inst> : R600_1OP_Helper <
   1108   inst, "RECIPSQRT_IEEE", AMDGPUrsq_legacy
   1109 > {
   1110   let Itinerary = TransALU;
   1111 }
   1112 
   1113 // TODO: There is also RECIPSQRT_FF which clamps to zero.
   1114 
   1115 class SIN_Common <bits<11> inst> : R600_1OP <
   1116   inst, "SIN", [(set f32:$dst, (SIN_HW f32:$src0))]>{
   1117   let Trig = 1;
   1118   let Itinerary = TransALU;
   1119 }
   1120 
   1121 class COS_Common <bits<11> inst> : R600_1OP <
   1122   inst, "COS", [(set f32:$dst, (COS_HW f32:$src0))]> {
   1123   let Trig = 1;
   1124   let Itinerary = TransALU;
   1125 }
   1126 
   1127 def CLAMP_R600 :  CLAMP <R600_Reg32>;
   1128 def FABS_R600 : FABS<R600_Reg32>;
   1129 def FNEG_R600 : FNEG<R600_Reg32>;
   1130 
   1131 //===----------------------------------------------------------------------===//
   1132 // Helper patterns for complex intrinsics
   1133 //===----------------------------------------------------------------------===//
   1134 
   1135 // FIXME: Should be predicated on unsafe fp math.
   1136 multiclass DIV_Common <InstR600 recip_ieee> {
   1137 def : Pat<
   1138   (int_AMDGPU_div f32:$src0, f32:$src1),
   1139   (MUL_IEEE $src0, (recip_ieee $src1))
   1140 >;
   1141 
   1142 def : Pat<
   1143   (fdiv f32:$src0, f32:$src1),
   1144   (MUL_IEEE $src0, (recip_ieee $src1))
   1145 >;
   1146 
   1147 def : RcpPat<recip_ieee, f32>;
   1148 }
   1149 
   1150 class TGSI_LIT_Z_Common <InstR600 mul_lit, InstR600 log_clamped, InstR600 exp_ieee>
   1151   : Pat <
   1152   (int_TGSI_lit_z f32:$src_x, f32:$src_y, f32:$src_w),
   1153   (exp_ieee (mul_lit (log_clamped (MAX $src_y, (f32 ZERO))), $src_w, $src_x))
   1154 >;
   1155 
   1156 //===----------------------------------------------------------------------===//
   1157 // R600 / R700 Instructions
   1158 //===----------------------------------------------------------------------===//
   1159 
   1160 let Predicates = [isR600] in {
   1161 
   1162   def MUL_LIT_r600 : MUL_LIT_Common<0x0C>;
   1163   def MULADD_r600 : MULADD_Common<0x10>;
   1164   def MULADD_IEEE_r600 : MULADD_IEEE_Common<0x14>;
   1165   def CNDE_r600 : CNDE_Common<0x18>;
   1166   def CNDGT_r600 : CNDGT_Common<0x19>;
   1167   def CNDGE_r600 : CNDGE_Common<0x1A>;
   1168   def DOT4_r600 : DOT4_Common<0x50>;
   1169   defm CUBE_r600 : CUBE_Common<0x52>;
   1170   def EXP_IEEE_r600 : EXP_IEEE_Common<0x61>;
   1171   def LOG_CLAMPED_r600 : LOG_CLAMPED_Common<0x62>;
   1172   def LOG_IEEE_r600 : LOG_IEEE_Common<0x63>;
   1173   def RECIP_CLAMPED_r600 : RECIP_CLAMPED_Common<0x64>;
   1174   def RECIP_IEEE_r600 : RECIP_IEEE_Common<0x66>;
   1175   def RECIPSQRT_CLAMPED_r600 : RECIPSQRT_CLAMPED_Common<0x67>;
   1176   def RECIPSQRT_IEEE_r600 : RECIPSQRT_IEEE_Common<0x69>;
   1177   def FLT_TO_INT_r600 : FLT_TO_INT_Common<0x6b>;
   1178   def INT_TO_FLT_r600 : INT_TO_FLT_Common<0x6c>;
   1179   def FLT_TO_UINT_r600 : FLT_TO_UINT_Common<0x79>;
   1180   def UINT_TO_FLT_r600 : UINT_TO_FLT_Common<0x6d>;
   1181   def SIN_r600 : SIN_Common<0x6E>;
   1182   def COS_r600 : COS_Common<0x6F>;
   1183   def ASHR_r600 : ASHR_Common<0x70>;
   1184   def LSHR_r600 : LSHR_Common<0x71>;
   1185   def LSHL_r600 : LSHL_Common<0x72>;
   1186   def MULLO_INT_r600 : MULLO_INT_Common<0x73>;
   1187   def MULHI_INT_r600 : MULHI_INT_Common<0x74>;
   1188   def MULLO_UINT_r600 : MULLO_UINT_Common<0x75>;
   1189   def MULHI_UINT_r600 : MULHI_UINT_Common<0x76>;
   1190   def RECIP_UINT_r600 : RECIP_UINT_Common <0x78>;
   1191 
   1192   defm DIV_r600 : DIV_Common<RECIP_IEEE_r600>;
   1193   def : POW_Common <LOG_IEEE_r600, EXP_IEEE_r600, MUL>;
   1194   def TGSI_LIT_Z_r600 : TGSI_LIT_Z_Common<MUL_LIT_r600, LOG_CLAMPED_r600, EXP_IEEE_r600>;
   1195 
   1196   def : Pat<(fsqrt f32:$src), (MUL $src, (RECIPSQRT_CLAMPED_r600 $src))>;
   1197   def : RsqPat<RECIPSQRT_IEEE_r600, f32>;
   1198 
   1199   def R600_ExportSwz : ExportSwzInst {
   1200     let Word1{20-17} = 0; // BURST_COUNT
   1201     let Word1{21} = eop;
   1202     let Word1{22} = 0; // VALID_PIXEL_MODE
   1203     let Word1{30-23} = inst;
   1204     let Word1{31} = 1; // BARRIER
   1205   }
   1206   defm : ExportPattern<R600_ExportSwz, 39>;
   1207 
   1208   def R600_ExportBuf : ExportBufInst {
   1209     let Word1{20-17} = 0; // BURST_COUNT
   1210     let Word1{21} = eop;
   1211     let Word1{22} = 0; // VALID_PIXEL_MODE
   1212     let Word1{30-23} = inst;
   1213     let Word1{31} = 1; // BARRIER
   1214   }
   1215   defm : SteamOutputExportPattern<R600_ExportBuf, 0x20, 0x21, 0x22, 0x23>;
   1216 
   1217   def CF_TC_R600 : CF_CLAUSE_R600<1, (ins i32imm:$ADDR, i32imm:$CNT),
   1218   "TEX $CNT @$ADDR"> {
   1219     let POP_COUNT = 0;
   1220   }
   1221   def CF_VC_R600 : CF_CLAUSE_R600<2, (ins i32imm:$ADDR, i32imm:$CNT),
   1222   "VTX $CNT @$ADDR"> {
   1223     let POP_COUNT = 0;
   1224   }
   1225   def WHILE_LOOP_R600 : CF_CLAUSE_R600<6, (ins i32imm:$ADDR),
   1226   "LOOP_START_DX10 @$ADDR"> {
   1227     let POP_COUNT = 0;
   1228     let CNT = 0;
   1229   }
   1230   def END_LOOP_R600 : CF_CLAUSE_R600<5, (ins i32imm:$ADDR), "END_LOOP @$ADDR"> {
   1231     let POP_COUNT = 0;
   1232     let CNT = 0;
   1233   }
   1234   def LOOP_BREAK_R600 : CF_CLAUSE_R600<9, (ins i32imm:$ADDR),
   1235   "LOOP_BREAK @$ADDR"> {
   1236     let POP_COUNT = 0;
   1237     let CNT = 0;
   1238   }
   1239   def CF_CONTINUE_R600 : CF_CLAUSE_R600<8, (ins i32imm:$ADDR),
   1240   "CONTINUE @$ADDR"> {
   1241     let POP_COUNT = 0;
   1242     let CNT = 0;
   1243   }
   1244   def CF_JUMP_R600 : CF_CLAUSE_R600<10, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
   1245   "JUMP @$ADDR POP:$POP_COUNT"> {
   1246     let CNT = 0;
   1247   }
   1248   def CF_PUSH_ELSE_R600 : CF_CLAUSE_R600<12, (ins i32imm:$ADDR),
   1249   "PUSH_ELSE @$ADDR"> {
   1250     let CNT = 0;
   1251     let POP_COUNT = 0; // FIXME?
   1252   }
   1253   def CF_ELSE_R600 : CF_CLAUSE_R600<13, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
   1254   "ELSE @$ADDR POP:$POP_COUNT"> {
   1255     let CNT = 0;
   1256   }
   1257   def CF_CALL_FS_R600 : CF_CLAUSE_R600<19, (ins), "CALL_FS"> {
   1258     let ADDR = 0;
   1259     let CNT = 0;
   1260     let POP_COUNT = 0;
   1261   }
   1262   def POP_R600 : CF_CLAUSE_R600<14, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
   1263   "POP @$ADDR POP:$POP_COUNT"> {
   1264     let CNT = 0;
   1265   }
   1266   def CF_END_R600 : CF_CLAUSE_R600<0, (ins), "CF_END"> {
   1267     let CNT = 0;
   1268     let POP_COUNT = 0;
   1269     let ADDR = 0;
   1270     let END_OF_PROGRAM = 1;
   1271   }
   1272 
   1273 }
   1274 
   1275 
   1276 //===----------------------------------------------------------------------===//
   1277 // Regist loads and stores - for indirect addressing
   1278 //===----------------------------------------------------------------------===//
   1279 
   1280 defm R600_ : RegisterLoadStore <R600_Reg32, FRAMEri, ADDRIndirect>;
   1281 
   1282 
   1283 //===----------------------------------------------------------------------===//
   1284 // Pseudo instructions
   1285 //===----------------------------------------------------------------------===//
   1286 
   1287 let isPseudo = 1 in {
   1288 
   1289 def PRED_X : InstR600 <
   1290   (outs R600_Predicate_Bit:$dst),
   1291   (ins R600_Reg32:$src0, i32imm:$src1, i32imm:$flags),
   1292   "", [], NullALU> {
   1293   let FlagOperandIdx = 3;
   1294 }
   1295 
   1296 let isTerminator = 1, isBranch = 1 in {
   1297 def JUMP_COND : InstR600 <
   1298           (outs),
   1299           (ins brtarget:$target, R600_Predicate_Bit:$p),
   1300           "JUMP $target ($p)",
   1301           [], AnyALU
   1302   >;
   1303 
   1304 def JUMP : InstR600 <
   1305           (outs),
   1306           (ins brtarget:$target),
   1307           "JUMP $target",
   1308           [], AnyALU
   1309   >
   1310 {
   1311   let isPredicable = 1;
   1312   let isBarrier = 1;
   1313 }
   1314 
   1315 }  // End isTerminator = 1, isBranch = 1
   1316 
   1317 let usesCustomInserter = 1 in {
   1318 
   1319 let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in {
   1320 
   1321 def MASK_WRITE : AMDGPUShaderInst <
   1322     (outs),
   1323     (ins R600_Reg32:$src),
   1324     "MASK_WRITE $src",
   1325     []
   1326 >;
   1327 
   1328 } // End mayLoad = 0, mayStore = 0, hasSideEffects = 1
   1329 
   1330 
   1331 def TXD: InstR600 <
   1332   (outs R600_Reg128:$dst),
   1333   (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2,
   1334        i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget),
   1335   "TXD $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget",
   1336   [(set v4f32:$dst, (int_AMDGPU_txd v4f32:$src0, v4f32:$src1, v4f32:$src2,
   1337                      imm:$resourceId, imm:$samplerId, imm:$textureTarget))],
   1338   NullALU > {
   1339   let TEXInst = 1;
   1340 }
   1341 
   1342 def TXD_SHADOW: InstR600 <
   1343   (outs R600_Reg128:$dst),
   1344   (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2,
   1345        i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget),
   1346   "TXD_SHADOW $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget",
   1347   [(set v4f32:$dst, (int_AMDGPU_txd v4f32:$src0, v4f32:$src1, v4f32:$src2,
   1348         imm:$resourceId, imm:$samplerId, TEX_SHADOW:$textureTarget))],
   1349    NullALU
   1350 > {
   1351   let TEXInst = 1;
   1352 }
   1353 } // End isPseudo = 1
   1354 } // End usesCustomInserter = 1
   1355 
   1356 
   1357 //===----------------------------------------------------------------------===//
   1358 // Constant Buffer Addressing Support
   1359 //===----------------------------------------------------------------------===//
   1360 
   1361 let usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU"  in {
   1362 def CONST_COPY : Instruction {
   1363   let OutOperandList = (outs R600_Reg32:$dst);
   1364   let InOperandList = (ins i32imm:$src);
   1365   let Pattern =
   1366       [(set R600_Reg32:$dst, (CONST_ADDRESS ADDRGA_CONST_OFFSET:$src))];
   1367   let AsmString = "CONST_COPY";
   1368   let hasSideEffects = 0;
   1369   let isAsCheapAsAMove = 1;
   1370   let Itinerary = NullALU;
   1371 }
   1372 } // end usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU"
   1373 
   1374 def TEX_VTX_CONSTBUF :
   1375   InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$BUFFER_ID), "VTX_READ_eg $dst, $ptr",
   1376       [(set v4i32:$dst, (CONST_ADDRESS ADDRGA_VAR_OFFSET:$ptr, (i32 imm:$BUFFER_ID)))]>,
   1377   VTX_WORD1_GPR, VTX_WORD0_eg {
   1378 
   1379   let VC_INST = 0;
   1380   let FETCH_TYPE = 2;
   1381   let FETCH_WHOLE_QUAD = 0;
   1382   let SRC_REL = 0;
   1383   let SRC_SEL_X = 0;
   1384   let DST_REL = 0;
   1385   let USE_CONST_FIELDS = 0;
   1386   let NUM_FORMAT_ALL = 2;
   1387   let FORMAT_COMP_ALL = 1;
   1388   let SRF_MODE_ALL = 1;
   1389   let MEGA_FETCH_COUNT = 16;
   1390   let DST_SEL_X        = 0;
   1391   let DST_SEL_Y        = 1;
   1392   let DST_SEL_Z        = 2;
   1393   let DST_SEL_W        = 3;
   1394   let DATA_FORMAT      = 35;
   1395 
   1396   let Inst{31-0} = Word0;
   1397   let Inst{63-32} = Word1;
   1398 
   1399 // LLVM can only encode 64-bit instructions, so these fields are manually
   1400 // encoded in R600CodeEmitter
   1401 //
   1402 // bits<16> OFFSET;
   1403 // bits<2>  ENDIAN_SWAP = 0;
   1404 // bits<1>  CONST_BUF_NO_STRIDE = 0;
   1405 // bits<1>  MEGA_FETCH = 0;
   1406 // bits<1>  ALT_CONST = 0;
   1407 // bits<2>  BUFFER_INDEX_MODE = 0;
   1408 
   1409 
   1410 
   1411 // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
   1412 // is done in R600CodeEmitter
   1413 //
   1414 // Inst{79-64} = OFFSET;
   1415 // Inst{81-80} = ENDIAN_SWAP;
   1416 // Inst{82}    = CONST_BUF_NO_STRIDE;
   1417 // Inst{83}    = MEGA_FETCH;
   1418 // Inst{84}    = ALT_CONST;
   1419 // Inst{86-85} = BUFFER_INDEX_MODE;
   1420 // Inst{95-86} = 0; Reserved
   1421 
   1422 // VTX_WORD3 (Padding)
   1423 //
   1424 // Inst{127-96} = 0;
   1425   let VTXInst = 1;
   1426 }
   1427 
   1428 def TEX_VTX_TEXBUF:
   1429   InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$BUFFER_ID), "TEX_VTX_EXPLICIT_READ $dst, $ptr",
   1430       [(set v4f32:$dst, (int_R600_load_texbuf ADDRGA_VAR_OFFSET:$ptr, imm:$BUFFER_ID))]>,
   1431 VTX_WORD1_GPR, VTX_WORD0_eg {
   1432 
   1433 let VC_INST = 0;
   1434 let FETCH_TYPE = 2;
   1435 let FETCH_WHOLE_QUAD = 0;
   1436 let SRC_REL = 0;
   1437 let SRC_SEL_X = 0;
   1438 let DST_REL = 0;
   1439 let USE_CONST_FIELDS = 1;
   1440 let NUM_FORMAT_ALL = 0;
   1441 let FORMAT_COMP_ALL = 0;
   1442 let SRF_MODE_ALL = 1;
   1443 let MEGA_FETCH_COUNT = 16;
   1444 let DST_SEL_X        = 0;
   1445 let DST_SEL_Y        = 1;
   1446 let DST_SEL_Z        = 2;
   1447 let DST_SEL_W        = 3;
   1448 let DATA_FORMAT      = 0;
   1449 
   1450 let Inst{31-0} = Word0;
   1451 let Inst{63-32} = Word1;
   1452 
   1453 // LLVM can only encode 64-bit instructions, so these fields are manually
   1454 // encoded in R600CodeEmitter
   1455 //
   1456 // bits<16> OFFSET;
   1457 // bits<2>  ENDIAN_SWAP = 0;
   1458 // bits<1>  CONST_BUF_NO_STRIDE = 0;
   1459 // bits<1>  MEGA_FETCH = 0;
   1460 // bits<1>  ALT_CONST = 0;
   1461 // bits<2>  BUFFER_INDEX_MODE = 0;
   1462 
   1463 
   1464 
   1465 // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
   1466 // is done in R600CodeEmitter
   1467 //
   1468 // Inst{79-64} = OFFSET;
   1469 // Inst{81-80} = ENDIAN_SWAP;
   1470 // Inst{82}    = CONST_BUF_NO_STRIDE;
   1471 // Inst{83}    = MEGA_FETCH;
   1472 // Inst{84}    = ALT_CONST;
   1473 // Inst{86-85} = BUFFER_INDEX_MODE;
   1474 // Inst{95-86} = 0; Reserved
   1475 
   1476 // VTX_WORD3 (Padding)
   1477 //
   1478 // Inst{127-96} = 0;
   1479   let VTXInst = 1;
   1480 }
   1481 
   1482 //===---------------------------------------------------------------------===//
   1483 // Flow and Program control Instructions
   1484 //===---------------------------------------------------------------------===//
   1485 class ILFormat<dag outs, dag ins, string asmstr, list<dag> pattern>
   1486 : Instruction {
   1487 
   1488      let Namespace = "AMDGPU";
   1489      dag OutOperandList = outs;
   1490      dag InOperandList = ins;
   1491      let Pattern = pattern;
   1492      let AsmString = !strconcat(asmstr, "\n");
   1493      let isPseudo = 1;
   1494      let Itinerary = NullALU;
   1495      bit hasIEEEFlag = 0;
   1496      bit hasZeroOpFlag = 0;
   1497      let mayLoad = 0;
   1498      let mayStore = 0;
   1499      let hasSideEffects = 0;
   1500      let isCodeGenOnly = 1;
   1501 }
   1502 
   1503 multiclass BranchConditional<SDNode Op, RegisterClass rci, RegisterClass rcf> {
   1504     def _i32 : ILFormat<(outs),
   1505   (ins brtarget:$target, rci:$src0),
   1506         "; i32 Pseudo branch instruction",
   1507   [(Op bb:$target, (i32 rci:$src0))]>;
   1508     def _f32 : ILFormat<(outs),
   1509   (ins brtarget:$target, rcf:$src0),
   1510         "; f32 Pseudo branch instruction",
   1511   [(Op bb:$target, (f32 rcf:$src0))]>;
   1512 }
   1513 
   1514 // Only scalar types should generate flow control
   1515 multiclass BranchInstr<string name> {
   1516   def _i32 : ILFormat<(outs), (ins R600_Reg32:$src),
   1517       !strconcat(name, " $src"), []>;
   1518   def _f32 : ILFormat<(outs), (ins R600_Reg32:$src),
   1519       !strconcat(name, " $src"), []>;
   1520 }
   1521 // Only scalar types should generate flow control
   1522 multiclass BranchInstr2<string name> {
   1523   def _i32 : ILFormat<(outs), (ins R600_Reg32:$src0, R600_Reg32:$src1),
   1524       !strconcat(name, " $src0, $src1"), []>;
   1525   def _f32 : ILFormat<(outs), (ins R600_Reg32:$src0, R600_Reg32:$src1),
   1526       !strconcat(name, " $src0, $src1"), []>;
   1527 }
   1528 
   1529 //===---------------------------------------------------------------------===//
   1530 // Custom Inserter for Branches and returns, this eventually will be a
   1531 // separate pass
   1532 //===---------------------------------------------------------------------===//
   1533 let isTerminator = 1, usesCustomInserter = 1, isBranch = 1, isBarrier = 1 in {
   1534   def BRANCH : ILFormat<(outs), (ins brtarget:$target),
   1535       "; Pseudo unconditional branch instruction",
   1536       [(br bb:$target)]>;
   1537   defm BRANCH_COND : BranchConditional<IL_brcond, R600_Reg32, R600_Reg32>;
   1538 }
   1539 
   1540 //===---------------------------------------------------------------------===//
   1541 // Return instruction
   1542 //===---------------------------------------------------------------------===//
   1543 let isTerminator = 1, isReturn = 1, hasCtrlDep = 1,
   1544     usesCustomInserter = 1 in {
   1545   def RETURN          : ILFormat<(outs), (ins variable_ops),
   1546       "RETURN", [(IL_retflag)]>;
   1547 }
   1548 
   1549 //===----------------------------------------------------------------------===//
   1550 // Branch Instructions
   1551 //===----------------------------------------------------------------------===//
   1552 
   1553 def IF_PREDICATE_SET  : ILFormat<(outs), (ins R600_Reg32:$src),
   1554   "IF_PREDICATE_SET $src", []>;
   1555 
   1556 let isTerminator=1 in {
   1557   def BREAK       : ILFormat< (outs), (ins),
   1558       "BREAK", []>;
   1559   def CONTINUE    : ILFormat< (outs), (ins),
   1560       "CONTINUE", []>;
   1561   def DEFAULT     : ILFormat< (outs), (ins),
   1562       "DEFAULT", []>;
   1563   def ELSE        : ILFormat< (outs), (ins),
   1564       "ELSE", []>;
   1565   def ENDSWITCH   : ILFormat< (outs), (ins),
   1566       "ENDSWITCH", []>;
   1567   def ENDMAIN     : ILFormat< (outs), (ins),
   1568       "ENDMAIN", []>;
   1569   def END         : ILFormat< (outs), (ins),
   1570       "END", []>;
   1571   def ENDFUNC     : ILFormat< (outs), (ins),
   1572       "ENDFUNC", []>;
   1573   def ENDIF       : ILFormat< (outs), (ins),
   1574       "ENDIF", []>;
   1575   def WHILELOOP   : ILFormat< (outs), (ins),
   1576       "WHILE", []>;
   1577   def ENDLOOP     : ILFormat< (outs), (ins),
   1578       "ENDLOOP", []>;
   1579   def FUNC        : ILFormat< (outs), (ins),
   1580       "FUNC", []>;
   1581   def RETDYN      : ILFormat< (outs), (ins),
   1582       "RET_DYN", []>;
   1583   // This opcode has custom swizzle pattern encoded in Swizzle Encoder
   1584   defm IF_LOGICALNZ  : BranchInstr<"IF_LOGICALNZ">;
   1585   // This opcode has custom swizzle pattern encoded in Swizzle Encoder
   1586   defm IF_LOGICALZ   : BranchInstr<"IF_LOGICALZ">;
   1587   // This opcode has custom swizzle pattern encoded in Swizzle Encoder
   1588   defm BREAK_LOGICALNZ : BranchInstr<"BREAK_LOGICALNZ">;
   1589   // This opcode has custom swizzle pattern encoded in Swizzle Encoder
   1590   defm BREAK_LOGICALZ : BranchInstr<"BREAK_LOGICALZ">;
   1591   // This opcode has custom swizzle pattern encoded in Swizzle Encoder
   1592   defm CONTINUE_LOGICALNZ : BranchInstr<"CONTINUE_LOGICALNZ">;
   1593   // This opcode has custom swizzle pattern encoded in Swizzle Encoder
   1594   defm CONTINUE_LOGICALZ : BranchInstr<"CONTINUE_LOGICALZ">;
   1595   defm IFC         : BranchInstr2<"IFC">;
   1596   defm BREAKC      : BranchInstr2<"BREAKC">;
   1597   defm CONTINUEC   : BranchInstr2<"CONTINUEC">;
   1598 }
   1599 
   1600 //===----------------------------------------------------------------------===//
   1601 // Indirect addressing pseudo instructions
   1602 //===----------------------------------------------------------------------===//
   1603 
   1604 let isPseudo = 1 in {
   1605 
   1606 class ExtractVertical <RegisterClass vec_rc> : InstR600 <
   1607   (outs R600_Reg32:$dst),
   1608   (ins vec_rc:$vec, R600_Reg32:$index), "",
   1609   [],
   1610   AnyALU
   1611 >;
   1612 
   1613 let Constraints = "$dst = $vec" in {
   1614 
   1615 class InsertVertical <RegisterClass vec_rc> : InstR600 <
   1616   (outs vec_rc:$dst),
   1617   (ins vec_rc:$vec, R600_Reg32:$value, R600_Reg32:$index), "",
   1618   [],
   1619   AnyALU
   1620 >;
   1621 
   1622 } // End Constraints = "$dst = $vec"
   1623 
   1624 } // End isPseudo = 1
   1625 
   1626 def R600_EXTRACT_ELT_V2 : ExtractVertical <R600_Reg64Vertical>;
   1627 def R600_EXTRACT_ELT_V4 : ExtractVertical <R600_Reg128Vertical>;
   1628 
   1629 def R600_INSERT_ELT_V2 : InsertVertical <R600_Reg64Vertical>;
   1630 def R600_INSERT_ELT_V4 : InsertVertical <R600_Reg128Vertical>;
   1631 
   1632 class ExtractVerticalPat <Instruction inst, ValueType vec_ty,
   1633                           ValueType scalar_ty> : Pat <
   1634   (scalar_ty (extractelt vec_ty:$vec, i32:$index)),
   1635   (inst $vec, $index)
   1636 >;
   1637 
   1638 def : ExtractVerticalPat <R600_EXTRACT_ELT_V2, v2i32, i32>;
   1639 def : ExtractVerticalPat <R600_EXTRACT_ELT_V2, v2f32, f32>;
   1640 def : ExtractVerticalPat <R600_EXTRACT_ELT_V4, v4i32, i32>;
   1641 def : ExtractVerticalPat <R600_EXTRACT_ELT_V4, v4f32, f32>;
   1642 
   1643 class InsertVerticalPat <Instruction inst, ValueType vec_ty,
   1644                          ValueType scalar_ty> : Pat <
   1645   (vec_ty (insertelt vec_ty:$vec, scalar_ty:$value, i32:$index)),
   1646   (inst $vec, $value, $index)
   1647 >;
   1648 
   1649 def : InsertVerticalPat <R600_INSERT_ELT_V2, v2i32, i32>;
   1650 def : InsertVerticalPat <R600_INSERT_ELT_V2, v2f32, f32>;
   1651 def : InsertVerticalPat <R600_INSERT_ELT_V4, v4i32, i32>;
   1652 def : InsertVerticalPat <R600_INSERT_ELT_V4, v4f32, f32>;
   1653 
   1654 //===----------------------------------------------------------------------===//
   1655 // ISel Patterns
   1656 //===----------------------------------------------------------------------===//
   1657 
   1658 // CND*_INT Patterns for f32 True / False values
   1659 
   1660 class CND_INT_f32 <InstR600 cnd, CondCode cc> : Pat <
   1661   (selectcc i32:$src0, 0, f32:$src1, f32:$src2, cc),
   1662   (cnd $src0, $src1, $src2)
   1663 >;
   1664 
   1665 def : CND_INT_f32 <CNDE_INT,  SETEQ>;
   1666 def : CND_INT_f32 <CNDGT_INT, SETGT>;
   1667 def : CND_INT_f32 <CNDGE_INT, SETGE>;
   1668 
   1669 //CNDGE_INT extra pattern
   1670 def : Pat <
   1671   (selectcc i32:$src0, -1, i32:$src1, i32:$src2, COND_SGT),
   1672   (CNDGE_INT $src0, $src1, $src2)
   1673 >;
   1674 
   1675 // KIL Patterns
   1676 def KILP : Pat <
   1677   (int_AMDGPU_kilp),
   1678   (MASK_WRITE (KILLGT (f32 ONE), (f32 ZERO)))
   1679 >;
   1680 
   1681 def KIL : Pat <
   1682   (int_AMDGPU_kill f32:$src0),
   1683   (MASK_WRITE (KILLGT (f32 ZERO), $src0))
   1684 >;
   1685 
   1686 def : Extract_Element <f32, v4f32, 0, sub0>;
   1687 def : Extract_Element <f32, v4f32, 1, sub1>;
   1688 def : Extract_Element <f32, v4f32, 2, sub2>;
   1689 def : Extract_Element <f32, v4f32, 3, sub3>;
   1690 
   1691 def : Insert_Element <f32, v4f32, 0, sub0>;
   1692 def : Insert_Element <f32, v4f32, 1, sub1>;
   1693 def : Insert_Element <f32, v4f32, 2, sub2>;
   1694 def : Insert_Element <f32, v4f32, 3, sub3>;
   1695 
   1696 def : Extract_Element <i32, v4i32, 0, sub0>;
   1697 def : Extract_Element <i32, v4i32, 1, sub1>;
   1698 def : Extract_Element <i32, v4i32, 2, sub2>;
   1699 def : Extract_Element <i32, v4i32, 3, sub3>;
   1700 
   1701 def : Insert_Element <i32, v4i32, 0, sub0>;
   1702 def : Insert_Element <i32, v4i32, 1, sub1>;
   1703 def : Insert_Element <i32, v4i32, 2, sub2>;
   1704 def : Insert_Element <i32, v4i32, 3, sub3>;
   1705 
   1706 def : Extract_Element <f32, v2f32, 0, sub0>;
   1707 def : Extract_Element <f32, v2f32, 1, sub1>;
   1708 
   1709 def : Insert_Element <f32, v2f32, 0, sub0>;
   1710 def : Insert_Element <f32, v2f32, 1, sub1>;
   1711 
   1712 def : Extract_Element <i32, v2i32, 0, sub0>;
   1713 def : Extract_Element <i32, v2i32, 1, sub1>;
   1714 
   1715 def : Insert_Element <i32, v2i32, 0, sub0>;
   1716 def : Insert_Element <i32, v2i32, 1, sub1>;
   1717 
   1718 // bitconvert patterns
   1719 
   1720 def : BitConvert <i32, f32, R600_Reg32>;
   1721 def : BitConvert <f32, i32, R600_Reg32>;
   1722 def : BitConvert <v2f32, v2i32, R600_Reg64>;
   1723 def : BitConvert <v2i32, v2f32, R600_Reg64>;
   1724 def : BitConvert <v4f32, v4i32, R600_Reg128>;
   1725 def : BitConvert <v4i32, v4f32, R600_Reg128>;
   1726 
   1727 // DWORDADDR pattern
   1728 def : DwordAddrPat  <i32, R600_Reg32>;
   1729 
   1730 } // End isR600toCayman Predicate
   1731 
   1732 let Predicates = [isR600] in {
   1733 // Intrinsic patterns
   1734 defm : Expand24IBitOps<MULLO_INT_r600, ADD_INT>;
   1735 defm : Expand24UBitOps<MULLO_UINT_r600, ADD_INT>;
   1736 } // End isR600
   1737 
   1738 def getLDSNoRetOp : InstrMapping {
   1739   let FilterClass = "R600_LDS_1A1D";
   1740   let RowFields = ["BaseOp"];
   1741   let ColFields = ["DisableEncoding"];
   1742   let KeyCol = ["$dst"];
   1743   let ValueCols = [[""""]];
   1744 }
   1745