Home | History | Annotate | Download | only in ARM
      1 //=== ARMCallingConv.h - ARM Custom Calling Convention Routines -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the custom routines for the ARM Calling Convention that
     11 // aren't done by tablegen.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_LIB_TARGET_ARM_ARMCALLINGCONV_H
     16 #define LLVM_LIB_TARGET_ARM_ARMCALLINGCONV_H
     17 
     18 #include "ARM.h"
     19 #include "ARMBaseInstrInfo.h"
     20 #include "ARMSubtarget.h"
     21 #include "llvm/CodeGen/CallingConvLower.h"
     22 #include "llvm/IR/CallingConv.h"
     23 #include "llvm/Target/TargetInstrInfo.h"
     24 
     25 namespace llvm {
     26 
     27 // APCS f64 is in register pairs, possibly split to stack
     28 static bool f64AssignAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
     29                           CCValAssign::LocInfo &LocInfo,
     30                           CCState &State, bool CanFail) {
     31   static const MCPhysReg RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
     32 
     33   // Try to get the first register.
     34   if (unsigned Reg = State.AllocateReg(RegList))
     35     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
     36   else {
     37     // For the 2nd half of a v2f64, do not fail.
     38     if (CanFail)
     39       return false;
     40 
     41     // Put the whole thing on the stack.
     42     State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
     43                                            State.AllocateStack(8, 4),
     44                                            LocVT, LocInfo));
     45     return true;
     46   }
     47 
     48   // Try to get the second register.
     49   if (unsigned Reg = State.AllocateReg(RegList))
     50     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
     51   else
     52     State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
     53                                            State.AllocateStack(4, 4),
     54                                            LocVT, LocInfo));
     55   return true;
     56 }
     57 
     58 static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
     59                                    CCValAssign::LocInfo &LocInfo,
     60                                    ISD::ArgFlagsTy &ArgFlags,
     61                                    CCState &State) {
     62   if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
     63     return false;
     64   if (LocVT == MVT::v2f64 &&
     65       !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
     66     return false;
     67   return true;  // we handled it
     68 }
     69 
     70 // AAPCS f64 is in aligned register pairs
     71 static bool f64AssignAAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
     72                            CCValAssign::LocInfo &LocInfo,
     73                            CCState &State, bool CanFail) {
     74   static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 };
     75   static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 };
     76   static const MCPhysReg ShadowRegList[] = { ARM::R0, ARM::R1 };
     77   static const MCPhysReg GPRArgRegs[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
     78 
     79   unsigned Reg = State.AllocateReg(HiRegList, ShadowRegList);
     80   if (Reg == 0) {
     81 
     82     // If we had R3 unallocated only, now we still must to waste it.
     83     Reg = State.AllocateReg(GPRArgRegs);
     84     assert((!Reg || Reg == ARM::R3) && "Wrong GPRs usage for f64");
     85 
     86     // For the 2nd half of a v2f64, do not just fail.
     87     if (CanFail)
     88       return false;
     89 
     90     // Put the whole thing on the stack.
     91     State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
     92                                            State.AllocateStack(8, 8),
     93                                            LocVT, LocInfo));
     94     return true;
     95   }
     96 
     97   unsigned i;
     98   for (i = 0; i < 2; ++i)
     99     if (HiRegList[i] == Reg)
    100       break;
    101 
    102   unsigned T = State.AllocateReg(LoRegList[i]);
    103   (void)T;
    104   assert(T == LoRegList[i] && "Could not allocate register");
    105 
    106   State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
    107   State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
    108                                          LocVT, LocInfo));
    109   return true;
    110 }
    111 
    112 static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
    113                                     CCValAssign::LocInfo &LocInfo,
    114                                     ISD::ArgFlagsTy &ArgFlags,
    115                                     CCState &State) {
    116   if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
    117     return false;
    118   if (LocVT == MVT::v2f64 &&
    119       !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
    120     return false;
    121   return true;  // we handled it
    122 }
    123 
    124 static bool f64RetAssign(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
    125                          CCValAssign::LocInfo &LocInfo, CCState &State) {
    126   static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 };
    127   static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 };
    128 
    129   unsigned Reg = State.AllocateReg(HiRegList, LoRegList);
    130   if (Reg == 0)
    131     return false; // we didn't handle it
    132 
    133   unsigned i;
    134   for (i = 0; i < 2; ++i)
    135     if (HiRegList[i] == Reg)
    136       break;
    137 
    138   State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
    139   State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
    140                                          LocVT, LocInfo));
    141   return true;
    142 }
    143 
    144 static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
    145                                       CCValAssign::LocInfo &LocInfo,
    146                                       ISD::ArgFlagsTy &ArgFlags,
    147                                       CCState &State) {
    148   if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
    149     return false;
    150   if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
    151     return false;
    152   return true;  // we handled it
    153 }
    154 
    155 static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
    156                                        CCValAssign::LocInfo &LocInfo,
    157                                        ISD::ArgFlagsTy &ArgFlags,
    158                                        CCState &State) {
    159   return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
    160                                    State);
    161 }
    162 
    163 static const MCPhysReg RRegList[] = { ARM::R0,  ARM::R1,  ARM::R2,  ARM::R3 };
    164 
    165 static const MCPhysReg SRegList[] = { ARM::S0,  ARM::S1,  ARM::S2,  ARM::S3,
    166                                       ARM::S4,  ARM::S5,  ARM::S6,  ARM::S7,
    167                                       ARM::S8,  ARM::S9,  ARM::S10, ARM::S11,
    168                                       ARM::S12, ARM::S13, ARM::S14,  ARM::S15 };
    169 static const MCPhysReg DRegList[] = { ARM::D0, ARM::D1, ARM::D2, ARM::D3,
    170                                       ARM::D4, ARM::D5, ARM::D6, ARM::D7 };
    171 static const MCPhysReg QRegList[] = { ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3 };
    172 
    173 
    174 // Allocate part of an AAPCS HFA or HVA. We assume that each member of the HA
    175 // has InConsecutiveRegs set, and that the last member also has
    176 // InConsecutiveRegsLast set. We must process all members of the HA before
    177 // we can allocate it, as we need to know the total number of registers that
    178 // will be needed in order to (attempt to) allocate a contiguous block.
    179 static bool CC_ARM_AAPCS_Custom_Aggregate(unsigned &ValNo, MVT &ValVT,
    180                                           MVT &LocVT,
    181                                           CCValAssign::LocInfo &LocInfo,
    182                                           ISD::ArgFlagsTy &ArgFlags,
    183                                           CCState &State) {
    184   SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs();
    185 
    186   // AAPCS HFAs must have 1-4 elements, all of the same type
    187   if (PendingMembers.size() > 0)
    188     assert(PendingMembers[0].getLocVT() == LocVT);
    189 
    190   // Add the argument to the list to be allocated once we know the size of the
    191   // aggregate. Store the type's required alignmnent as extra info for later: in
    192   // the [N x i64] case all trace has been removed by the time we actually get
    193   // to do allocation.
    194   PendingMembers.push_back(CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo,
    195                                                    ArgFlags.getOrigAlign()));
    196 
    197   if (!ArgFlags.isInConsecutiveRegsLast())
    198     return true;
    199 
    200   // Try to allocate a contiguous block of registers, each of the correct
    201   // size to hold one member.
    202   auto &DL = State.getMachineFunction().getDataLayout();
    203   unsigned StackAlign = DL.getStackAlignment();
    204   unsigned Align = std::min(PendingMembers[0].getExtraInfo(), StackAlign);
    205 
    206   ArrayRef<MCPhysReg> RegList;
    207   switch (LocVT.SimpleTy) {
    208   case MVT::i32: {
    209     RegList = RRegList;
    210     unsigned RegIdx = State.getFirstUnallocated(RegList);
    211 
    212     // First consume all registers that would give an unaligned object. Whether
    213     // we go on stack or in regs, no-one will be using them in future.
    214     unsigned RegAlign = RoundUpToAlignment(Align, 4) / 4;
    215     while (RegIdx % RegAlign != 0 && RegIdx < RegList.size())
    216       State.AllocateReg(RegList[RegIdx++]);
    217 
    218     break;
    219   }
    220   case MVT::f32:
    221     RegList = SRegList;
    222     break;
    223   case MVT::f64:
    224     RegList = DRegList;
    225     break;
    226   case MVT::v2f64:
    227     RegList = QRegList;
    228     break;
    229   default:
    230     llvm_unreachable("Unexpected member type for block aggregate");
    231     break;
    232   }
    233 
    234   unsigned RegResult = State.AllocateRegBlock(RegList, PendingMembers.size());
    235   if (RegResult) {
    236     for (SmallVectorImpl<CCValAssign>::iterator It = PendingMembers.begin();
    237          It != PendingMembers.end(); ++It) {
    238       It->convertToReg(RegResult);
    239       State.addLoc(*It);
    240       ++RegResult;
    241     }
    242     PendingMembers.clear();
    243     return true;
    244   }
    245 
    246   // Register allocation failed, we'll be needing the stack
    247   unsigned Size = LocVT.getSizeInBits() / 8;
    248   if (LocVT == MVT::i32 && State.getNextStackOffset() == 0) {
    249     // If nothing else has used the stack until this point, a non-HFA aggregate
    250     // can be split between regs and stack.
    251     unsigned RegIdx = State.getFirstUnallocated(RegList);
    252     for (auto &It : PendingMembers) {
    253       if (RegIdx >= RegList.size())
    254         It.convertToMem(State.AllocateStack(Size, Size));
    255       else
    256         It.convertToReg(State.AllocateReg(RegList[RegIdx++]));
    257 
    258       State.addLoc(It);
    259     }
    260     PendingMembers.clear();
    261     return true;
    262   } else if (LocVT != MVT::i32)
    263     RegList = SRegList;
    264 
    265   // Mark all regs as unavailable (AAPCS rule C.2.vfp for VFP, C.6 for core)
    266   for (auto Reg : RegList)
    267     State.AllocateReg(Reg);
    268 
    269   for (auto &It : PendingMembers) {
    270     It.convertToMem(State.AllocateStack(Size, Align));
    271     State.addLoc(It);
    272 
    273     // After the first item has been allocated, the rest are packed as tightly
    274     // as possible. (E.g. an incoming i64 would have starting Align of 8, but
    275     // we'll be allocating a bunch of i32 slots).
    276     Align = Size;
    277   }
    278 
    279   // All pending members have now been allocated
    280   PendingMembers.clear();
    281 
    282   // This will be allocated by the last member of the aggregate
    283   return true;
    284 }
    285 
    286 } // End llvm namespace
    287 
    288 #endif
    289