Home | History | Annotate | Download | only in ARM
      1 //===-- ARMRegisterInfo.td - ARM Register defs -------------*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 //===----------------------------------------------------------------------===//
     11 //  Declarations that describe the ARM register file
     12 //===----------------------------------------------------------------------===//
     13 
     14 // Registers are identified with 4-bit ID numbers.
     15 class ARMReg<bits<16> Enc, string n, list<Register> subregs = []> : Register<n> {
     16   let HWEncoding = Enc;
     17   let Namespace = "ARM";
     18   let SubRegs = subregs;
     19   // All bits of ARM registers with sub-registers are covered by sub-registers.
     20   let CoveredBySubRegs = 1;
     21 }
     22 
     23 class ARMFReg<bits<16> Enc, string n> : Register<n> {
     24   let HWEncoding = Enc;
     25   let Namespace = "ARM";
     26 }
     27 
     28 // Subregister indices.
     29 let Namespace = "ARM" in {
     30 def qqsub_0 : SubRegIndex<256>;
     31 def qqsub_1 : SubRegIndex<256, 256>;
     32 
     33 // Note: Code depends on these having consecutive numbers.
     34 def qsub_0 : SubRegIndex<128>;
     35 def qsub_1 : SubRegIndex<128, 128>;
     36 def qsub_2 : ComposedSubRegIndex<qqsub_1, qsub_0>;
     37 def qsub_3 : ComposedSubRegIndex<qqsub_1, qsub_1>;
     38 
     39 def dsub_0 : SubRegIndex<64>;
     40 def dsub_1 : SubRegIndex<64, 64>;
     41 def dsub_2 : ComposedSubRegIndex<qsub_1, dsub_0>;
     42 def dsub_3 : ComposedSubRegIndex<qsub_1, dsub_1>;
     43 def dsub_4 : ComposedSubRegIndex<qsub_2, dsub_0>;
     44 def dsub_5 : ComposedSubRegIndex<qsub_2, dsub_1>;
     45 def dsub_6 : ComposedSubRegIndex<qsub_3, dsub_0>;
     46 def dsub_7 : ComposedSubRegIndex<qsub_3, dsub_1>;
     47 
     48 def ssub_0  : SubRegIndex<32>;
     49 def ssub_1  : SubRegIndex<32, 32>;
     50 def ssub_2  : ComposedSubRegIndex<dsub_1, ssub_0>;
     51 def ssub_3  : ComposedSubRegIndex<dsub_1, ssub_1>;
     52 
     53 def gsub_0  : SubRegIndex<32>;
     54 def gsub_1  : SubRegIndex<32, 32>;
     55 // Let TableGen synthesize the remaining 12 ssub_* indices.
     56 // We don't need to name them.
     57 }
     58 
     59 // Integer registers
     60 def R0  : ARMReg< 0, "r0">,  DwarfRegNum<[0]>;
     61 def R1  : ARMReg< 1, "r1">,  DwarfRegNum<[1]>;
     62 def R2  : ARMReg< 2, "r2">,  DwarfRegNum<[2]>;
     63 def R3  : ARMReg< 3, "r3">,  DwarfRegNum<[3]>;
     64 def R4  : ARMReg< 4, "r4">,  DwarfRegNum<[4]>;
     65 def R5  : ARMReg< 5, "r5">,  DwarfRegNum<[5]>;
     66 def R6  : ARMReg< 6, "r6">,  DwarfRegNum<[6]>;
     67 def R7  : ARMReg< 7, "r7">,  DwarfRegNum<[7]>;
     68 // These require 32-bit instructions.
     69 let CostPerUse = 1 in {
     70 def R8  : ARMReg< 8, "r8">,  DwarfRegNum<[8]>;
     71 def R9  : ARMReg< 9, "r9">,  DwarfRegNum<[9]>;
     72 def R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>;
     73 def R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>;
     74 def R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>;
     75 def SP  : ARMReg<13, "sp">,  DwarfRegNum<[13]>;
     76 def LR  : ARMReg<14, "lr">,  DwarfRegNum<[14]>;
     77 def PC  : ARMReg<15, "pc">,  DwarfRegNum<[15]>;
     78 }
     79 
     80 // Float registers
     81 def S0  : ARMFReg< 0, "s0">;  def S1  : ARMFReg< 1, "s1">;
     82 def S2  : ARMFReg< 2, "s2">;  def S3  : ARMFReg< 3, "s3">;
     83 def S4  : ARMFReg< 4, "s4">;  def S5  : ARMFReg< 5, "s5">;
     84 def S6  : ARMFReg< 6, "s6">;  def S7  : ARMFReg< 7, "s7">;
     85 def S8  : ARMFReg< 8, "s8">;  def S9  : ARMFReg< 9, "s9">;
     86 def S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">;
     87 def S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">;
     88 def S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">;
     89 def S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">;
     90 def S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">;
     91 def S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">;
     92 def S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">;
     93 def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">;
     94 def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">;
     95 def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">;
     96 def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">;
     97 
     98 // Aliases of the F* registers used to hold 64-bit fp values (doubles)
     99 let SubRegIndices = [ssub_0, ssub_1] in {
    100 def D0  : ARMReg< 0,  "d0", [S0,   S1]>, DwarfRegNum<[256]>;
    101 def D1  : ARMReg< 1,  "d1", [S2,   S3]>, DwarfRegNum<[257]>;
    102 def D2  : ARMReg< 2,  "d2", [S4,   S5]>, DwarfRegNum<[258]>;
    103 def D3  : ARMReg< 3,  "d3", [S6,   S7]>, DwarfRegNum<[259]>;
    104 def D4  : ARMReg< 4,  "d4", [S8,   S9]>, DwarfRegNum<[260]>;
    105 def D5  : ARMReg< 5,  "d5", [S10, S11]>, DwarfRegNum<[261]>;
    106 def D6  : ARMReg< 6,  "d6", [S12, S13]>, DwarfRegNum<[262]>;
    107 def D7  : ARMReg< 7,  "d7", [S14, S15]>, DwarfRegNum<[263]>;
    108 def D8  : ARMReg< 8,  "d8", [S16, S17]>, DwarfRegNum<[264]>;
    109 def D9  : ARMReg< 9,  "d9", [S18, S19]>, DwarfRegNum<[265]>;
    110 def D10 : ARMReg<10, "d10", [S20, S21]>, DwarfRegNum<[266]>;
    111 def D11 : ARMReg<11, "d11", [S22, S23]>, DwarfRegNum<[267]>;
    112 def D12 : ARMReg<12, "d12", [S24, S25]>, DwarfRegNum<[268]>;
    113 def D13 : ARMReg<13, "d13", [S26, S27]>, DwarfRegNum<[269]>;
    114 def D14 : ARMReg<14, "d14", [S28, S29]>, DwarfRegNum<[270]>;
    115 def D15 : ARMReg<15, "d15", [S30, S31]>, DwarfRegNum<[271]>;
    116 }
    117 
    118 // VFP3 defines 16 additional double registers
    119 def D16 : ARMFReg<16, "d16">, DwarfRegNum<[272]>;
    120 def D17 : ARMFReg<17, "d17">, DwarfRegNum<[273]>;
    121 def D18 : ARMFReg<18, "d18">, DwarfRegNum<[274]>;
    122 def D19 : ARMFReg<19, "d19">, DwarfRegNum<[275]>;
    123 def D20 : ARMFReg<20, "d20">, DwarfRegNum<[276]>;
    124 def D21 : ARMFReg<21, "d21">, DwarfRegNum<[277]>;
    125 def D22 : ARMFReg<22, "d22">, DwarfRegNum<[278]>;
    126 def D23 : ARMFReg<23, "d23">, DwarfRegNum<[279]>;
    127 def D24 : ARMFReg<24, "d24">, DwarfRegNum<[280]>;
    128 def D25 : ARMFReg<25, "d25">, DwarfRegNum<[281]>;
    129 def D26 : ARMFReg<26, "d26">, DwarfRegNum<[282]>;
    130 def D27 : ARMFReg<27, "d27">, DwarfRegNum<[283]>;
    131 def D28 : ARMFReg<28, "d28">, DwarfRegNum<[284]>;
    132 def D29 : ARMFReg<29, "d29">, DwarfRegNum<[285]>;
    133 def D30 : ARMFReg<30, "d30">, DwarfRegNum<[286]>;
    134 def D31 : ARMFReg<31, "d31">, DwarfRegNum<[287]>;
    135 
    136 // Advanced SIMD (NEON) defines 16 quad-word aliases
    137 let SubRegIndices = [dsub_0, dsub_1] in {
    138 def Q0  : ARMReg< 0,  "q0", [D0,   D1]>;
    139 def Q1  : ARMReg< 1,  "q1", [D2,   D3]>;
    140 def Q2  : ARMReg< 2,  "q2", [D4,   D5]>;
    141 def Q3  : ARMReg< 3,  "q3", [D6,   D7]>;
    142 def Q4  : ARMReg< 4,  "q4", [D8,   D9]>;
    143 def Q5  : ARMReg< 5,  "q5", [D10, D11]>;
    144 def Q6  : ARMReg< 6,  "q6", [D12, D13]>;
    145 def Q7  : ARMReg< 7,  "q7", [D14, D15]>;
    146 }
    147 let SubRegIndices = [dsub_0, dsub_1] in {
    148 def Q8  : ARMReg< 8,  "q8", [D16, D17]>;
    149 def Q9  : ARMReg< 9,  "q9", [D18, D19]>;
    150 def Q10 : ARMReg<10, "q10", [D20, D21]>;
    151 def Q11 : ARMReg<11, "q11", [D22, D23]>;
    152 def Q12 : ARMReg<12, "q12", [D24, D25]>;
    153 def Q13 : ARMReg<13, "q13", [D26, D27]>;
    154 def Q14 : ARMReg<14, "q14", [D28, D29]>;
    155 def Q15 : ARMReg<15, "q15", [D30, D31]>;
    156 }
    157 
    158 // Current Program Status Register.
    159 // We model fpscr with two registers: FPSCR models the control bits and will be
    160 // reserved. FPSCR_NZCV models the flag bits and will be unreserved. APSR_NZCV
    161 // models the APSR when it's accessed by some special instructions. In such cases
    162 // it has the same encoding as PC.
    163 def CPSR       : ARMReg<0,  "cpsr">;
    164 def APSR       : ARMReg<1,  "apsr">;
    165 def APSR_NZCV  : ARMReg<15, "apsr_nzcv">;
    166 def SPSR       : ARMReg<2,  "spsr">;
    167 def FPSCR      : ARMReg<3,  "fpscr">;
    168 def FPSCR_NZCV : ARMReg<3,  "fpscr_nzcv"> {
    169   let Aliases = [FPSCR];
    170 }
    171 def ITSTATE    : ARMReg<4, "itstate">;
    172 
    173 // Special Registers - only available in privileged mode.
    174 def FPSID   : ARMReg<0,  "fpsid">;
    175 def MVFR2   : ARMReg<5,  "mvfr2">;
    176 def MVFR1   : ARMReg<6,  "mvfr1">;
    177 def MVFR0   : ARMReg<7,  "mvfr0">;
    178 def FPEXC   : ARMReg<8,  "fpexc">;
    179 def FPINST  : ARMReg<9,  "fpinst">;
    180 def FPINST2 : ARMReg<10, "fpinst2">;
    181 
    182 // Register classes.
    183 //
    184 // pc  == Program Counter
    185 // lr  == Link Register
    186 // sp  == Stack Pointer
    187 // r12 == ip (scratch)
    188 // r7  == Frame Pointer (thumb-style backtraces)
    189 // r9  == May be reserved as Thread Register
    190 // r11 == Frame Pointer (arm-style backtraces)
    191 // r10 == Stack Limit
    192 //
    193 def GPR : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12),
    194                                                SP, LR, PC)> {
    195   // Allocate LR as the first CSR since it is always saved anyway.
    196   // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't
    197   // know how to spill them. If we make our prologue/epilogue code smarter at
    198   // some point, we can go back to using the above allocation orders for the
    199   // Thumb1 instructions that know how to use hi regs.
    200   let AltOrders = [(add LR, GPR), (trunc GPR, 8)];
    201   let AltOrderSelect = [{
    202       return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
    203   }];
    204 }
    205 
    206 // GPRs without the PC.  Some ARM instructions do not allow the PC in
    207 // certain operand slots, particularly as the destination.  Primarily
    208 // useful for disassembly.
    209 def GPRnopc : RegisterClass<"ARM", [i32], 32, (sub GPR, PC)> {
    210   let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)];
    211   let AltOrderSelect = [{
    212       return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
    213   }];
    214 }
    215 
    216 // GPRs without the PC but with APSR. Some instructions allow accessing the
    217 // APSR, while actually encoding PC in the register field. This is useful
    218 // for assembly and disassembly only.
    219 def GPRwithAPSR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), APSR_NZCV)> {
    220   let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)];
    221   let AltOrderSelect = [{
    222       return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
    223   }];
    224 }
    225 
    226 // GPRsp - Only the SP is legal. Used by Thumb1 instructions that want the
    227 // implied SP argument list.
    228 // FIXME: It would be better to not use this at all and refactor the
    229 // instructions to not have SP an an explicit argument. That makes
    230 // frame index resolution a bit trickier, though.
    231 def GPRsp : RegisterClass<"ARM", [i32], 32, (add SP)>;
    232 
    233 // restricted GPR register class. Many Thumb2 instructions allow the full
    234 // register range for operands, but have undefined behaviours when PC
    235 // or SP (R13 or R15) are used. The ARM ISA refers to these operands
    236 // via the BadReg() pseudo-code description.
    237 def rGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, SP, PC)> {
    238   let AltOrders = [(add LR, rGPR), (trunc rGPR, 8)];
    239   let AltOrderSelect = [{
    240       return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
    241   }];
    242 }
    243 
    244 // Thumb registers are R0-R7 normally. Some instructions can still use
    245 // the general GPR register class above (MOV, e.g.)
    246 def tGPR : RegisterClass<"ARM", [i32], 32, (trunc GPR, 8)>;
    247 
    248 // The high registers in thumb mode, R8-R15.
    249 def hGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, tGPR)>;
    250 
    251 // For tail calls, we can't use callee-saved registers, as they are restored
    252 // to the saved value before the tail call, which would clobber a call address.
    253 // Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of
    254 // this class and the preceding one(!)  This is what we want.
    255 def tcGPR : RegisterClass<"ARM", [i32], 32, (add R0, R1, R2, R3, R12)> {
    256   let AltOrders = [(and tcGPR, tGPR)];
    257   let AltOrderSelect = [{
    258       return MF.getSubtarget<ARMSubtarget>().isThumb1Only();
    259   }];
    260 }
    261 
    262 // Condition code registers.
    263 def CCR : RegisterClass<"ARM", [i32], 32, (add CPSR)> {
    264   let CopyCost = -1;  // Don't allow copying of status registers.
    265   let isAllocatable = 0;
    266 }
    267 
    268 // Scalar single precision floating point register class..
    269 // FIXME: Allocation order changed to s0, s2, ... or s0, s4, ... as a quick hack
    270 // to avoid partial-write dependencies on D or Q (depending on platform)
    271 // registers (S registers are renamed as portions of D/Q registers).
    272 def SPR : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 31)> {
    273   let AltOrders = [(add (decimate SPR, 2), SPR),
    274                    (add (decimate SPR, 4),
    275                         (decimate SPR, 2),
    276                         (decimate (rotl SPR, 1), 4),
    277                         (decimate (rotl SPR, 1), 2))];
    278   let AltOrderSelect = [{
    279     return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs(MF);
    280   }];
    281 }
    282 
    283 // Subset of SPR which can be used as a source of NEON scalars for 16-bit
    284 // operations
    285 def SPR_8 : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 15)>;
    286 
    287 // Scalar double precision floating point / generic 64-bit vector register
    288 // class.
    289 // ARM requires only word alignment for double. It's more performant if it
    290 // is double-word alignment though.
    291 def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16], 64,
    292                         (sequence "D%u", 0, 31)> {
    293   // Allocate non-VFP2 registers D16-D31 first, and prefer even registers on
    294   // Darwin platforms.
    295   let AltOrders = [(rotl DPR, 16),
    296                    (add (decimate (rotl DPR, 16), 2), (rotl DPR, 16))];
    297   let AltOrderSelect = [{
    298     return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs(MF);
    299   }];
    300 }
    301 
    302 // Subset of DPR that are accessible with VFP2 (and so that also have
    303 // 32-bit SPR subregs).
    304 def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16], 64,
    305                              (trunc DPR, 16)>;
    306 
    307 // Subset of DPR which can be used as a source of NEON scalars for 16-bit
    308 // operations
    309 def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16], 64,
    310                           (trunc DPR, 8)>;
    311 
    312 // Generic 128-bit vector register class.
    313 def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, v8f16], 128,
    314                         (sequence "Q%u", 0, 15)> {
    315   // Allocate non-VFP2 aliases Q8-Q15 first.
    316   let AltOrders = [(rotl QPR, 8)];
    317   let AltOrderSelect = [{ return 1; }];
    318 }
    319 
    320 // Subset of QPR that have 32-bit SPR subregs.
    321 def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
    322                              128, (trunc QPR, 8)>;
    323 
    324 // Subset of QPR that have DPR_8 and SPR_8 subregs.
    325 def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
    326                            128, (trunc QPR, 4)>;
    327 
    328 // Pseudo-registers representing odd-even pairs of D registers. The even-odd
    329 // pairs are already represented by the Q registers.
    330 // These are needed by NEON instructions requiring two consecutive D registers.
    331 // There is no D31_D0 register as that is always an UNPREDICTABLE encoding.
    332 def TuplesOE2D : RegisterTuples<[dsub_0, dsub_1],
    333                                 [(decimate (shl DPR, 1), 2),
    334                                  (decimate (shl DPR, 2), 2)]>;
    335 
    336 // Register class representing a pair of consecutive D registers.
    337 // Use the Q registers for the even-odd pairs.
    338 def DPair : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
    339                           128, (interleave QPR, TuplesOE2D)> {
    340   // Allocate starting at non-VFP2 registers D16-D31 first.
    341   // Prefer even-odd pairs as they are easier to copy.
    342   let AltOrders = [(add (rotl QPR, 8), (rotl DPair, 16))];
    343   let AltOrderSelect = [{ return 1; }];
    344 }
    345 
    346 // Pseudo-registers representing even-odd pairs of GPRs from R1 to R13/SP.
    347 // These are needed by instructions (e.g. ldrexd/strexd) requiring even-odd GPRs.
    348 def Tuples2R : RegisterTuples<[gsub_0, gsub_1],
    349                               [(add R0, R2, R4, R6, R8, R10, R12),
    350                                (add R1, R3, R5, R7, R9, R11, SP)]>;
    351 
    352 // Register class representing a pair of even-odd GPRs.
    353 def GPRPair : RegisterClass<"ARM", [untyped], 64, (add Tuples2R)> {
    354   let Size = 64; // 2 x 32 bits, we have no predefined type of that size.
    355 }
    356 
    357 // Pseudo-registers representing 3 consecutive D registers.
    358 def Tuples3D : RegisterTuples<[dsub_0, dsub_1, dsub_2],
    359                               [(shl DPR, 0),
    360                                (shl DPR, 1),
    361                                (shl DPR, 2)]>;
    362 
    363 // 3 consecutive D registers.
    364 def DTriple : RegisterClass<"ARM", [untyped], 64, (add Tuples3D)> {
    365   let Size = 192; // 3 x 64 bits, we have no predefined type of that size.
    366 }
    367 
    368 // Pseudo 256-bit registers to represent pairs of Q registers. These should
    369 // never be present in the emitted code.
    370 // These are used for NEON load / store instructions, e.g., vld4, vst3.
    371 def Tuples2Q : RegisterTuples<[qsub_0, qsub_1], [(shl QPR, 0), (shl QPR, 1)]>;
    372 
    373 // Pseudo 256-bit vector register class to model pairs of Q registers
    374 // (4 consecutive D registers).
    375 def QQPR : RegisterClass<"ARM", [v4i64], 256, (add Tuples2Q)> {
    376   // Allocate non-VFP2 aliases first.
    377   let AltOrders = [(rotl QQPR, 8)];
    378   let AltOrderSelect = [{ return 1; }];
    379 }
    380 
    381 // Tuples of 4 D regs that isn't also a pair of Q regs.
    382 def TuplesOE4D : RegisterTuples<[dsub_0, dsub_1, dsub_2, dsub_3],
    383                                 [(decimate (shl DPR, 1), 2),
    384                                  (decimate (shl DPR, 2), 2),
    385                                  (decimate (shl DPR, 3), 2),
    386                                  (decimate (shl DPR, 4), 2)]>;
    387 
    388 // 4 consecutive D registers.
    389 def DQuad : RegisterClass<"ARM", [v4i64], 256,
    390                           (interleave Tuples2Q, TuplesOE4D)>;
    391 
    392 // Pseudo 512-bit registers to represent four consecutive Q registers.
    393 def Tuples2QQ : RegisterTuples<[qqsub_0, qqsub_1],
    394                                [(shl QQPR, 0), (shl QQPR, 2)]>;
    395 
    396 // Pseudo 512-bit vector register class to model 4 consecutive Q registers
    397 // (8 consecutive D registers).
    398 def QQQQPR : RegisterClass<"ARM", [v8i64], 256, (add Tuples2QQ)> {
    399   // Allocate non-VFP2 aliases first.
    400   let AltOrders = [(rotl QQQQPR, 8)];
    401   let AltOrderSelect = [{ return 1; }];
    402 }
    403 
    404 
    405 // Pseudo-registers representing 2-spaced consecutive D registers.
    406 def Tuples2DSpc : RegisterTuples<[dsub_0, dsub_2],
    407                                  [(shl DPR, 0),
    408                                   (shl DPR, 2)]>;
    409 
    410 // Spaced pairs of D registers.
    411 def DPairSpc : RegisterClass<"ARM", [v2i64], 64, (add Tuples2DSpc)>;
    412 
    413 def Tuples3DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4],
    414                                  [(shl DPR, 0),
    415                                   (shl DPR, 2),
    416                                   (shl DPR, 4)]>;
    417 
    418 // Spaced triples of D registers.
    419 def DTripleSpc : RegisterClass<"ARM", [untyped], 64, (add Tuples3DSpc)> {
    420   let Size = 192; // 3 x 64 bits, we have no predefined type of that size.
    421 }
    422 
    423 def Tuples4DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4, dsub_6],
    424                                  [(shl DPR, 0),
    425                                   (shl DPR, 2),
    426                                   (shl DPR, 4),
    427                                   (shl DPR, 6)]>;
    428 
    429 // Spaced quads of D registers.
    430 def DQuadSpc : RegisterClass<"ARM", [v4i64], 64, (add Tuples3DSpc)>;
    431