Home | History | Annotate | Download | only in PowerPC
      1 //===- PPCCallingConv.td - Calling Conventions for PowerPC -*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This describes the calling conventions for the PowerPC 32- and 64-bit
     11 // architectures.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 /// CCIfSubtarget - Match if the current subtarget has a feature F.
     16 class CCIfSubtarget<string F, CCAction A>
     17     : CCIf<!strconcat("static_cast<const PPCSubtarget&>"
     18                        "(State.getMachineFunction().getSubtarget()).",
     19                      F),
     20           A>;
     21 class CCIfNotSubtarget<string F, CCAction A>
     22     : CCIf<!strconcat("!static_cast<const PPCSubtarget&>"
     23                        "(State.getMachineFunction().getSubtarget()).",
     24                      F),
     25           A>;
     26 
     27 //===----------------------------------------------------------------------===//
     28 // Return Value Calling Convention
     29 //===----------------------------------------------------------------------===//
     30 
     31 // PPC64 AnyReg return-value convention. No explicit register is specified for
     32 // the return-value. The register allocator is allowed and expected to choose
     33 // any free register.
     34 //
     35 // This calling convention is currently only supported by the stackmap and
     36 // patchpoint intrinsics. All other uses will result in an assert on Debug
     37 // builds. On Release builds we fallback to the PPC C calling convention.
     38 def RetCC_PPC64_AnyReg : CallingConv<[
     39   CCCustom<"CC_PPC_AnyReg_Error">
     40 ]>;
     41 
     42 // Return-value convention for PowerPC
     43 def RetCC_PPC : CallingConv<[
     44   CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_PPC64_AnyReg>>,
     45 
     46   // On PPC64, integer return values are always promoted to i64
     47   CCIfType<[i32, i1], CCIfSubtarget<"isPPC64()", CCPromoteToType<i64>>>,
     48   CCIfType<[i1], CCIfNotSubtarget<"isPPC64()", CCPromoteToType<i32>>>,
     49 
     50   CCIfType<[i32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>,
     51   CCIfType<[i64], CCAssignToReg<[X3, X4, X5, X6]>>,
     52   CCIfType<[i128], CCAssignToReg<[X3, X4, X5, X6]>>,
     53 
     54   // Floating point types returned as "direct" go into F1 .. F8; note that
     55   // only the ELFv2 ABI fully utilizes all these registers.
     56   CCIfType<[f32], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>,
     57   CCIfType<[f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>,
     58 
     59   // QPX vectors are returned in QF1 and QF2. 
     60   CCIfType<[v4f64, v4f32, v4i1],
     61            CCIfSubtarget<"hasQPX()", CCAssignToReg<[QF1, QF2]>>>,
     62  
     63   // Vector types returned as "direct" go into V2 .. V9; note that only the
     64   // ELFv2 ABI fully utilizes all these registers.
     65   CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32], 
     66            CCIfSubtarget<"hasAltivec()",
     67            CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>>,
     68   CCIfType<[v2f64, v2i64], CCIfSubtarget<"hasVSX()",
     69            CCAssignToReg<[VSH2, VSH3, VSH4, VSH5, VSH6, VSH7, VSH8, VSH9]>>>
     70 ]>;
     71 
     72 // No explicit register is specified for the AnyReg calling convention. The
     73 // register allocator may assign the arguments to any free register.
     74 //
     75 // This calling convention is currently only supported by the stackmap and
     76 // patchpoint intrinsics. All other uses will result in an assert on Debug
     77 // builds. On Release builds we fallback to the PPC C calling convention.
     78 def CC_PPC64_AnyReg : CallingConv<[
     79   CCCustom<"CC_PPC_AnyReg_Error">
     80 ]>;
     81 
     82 // Note that we don't currently have calling conventions for 64-bit
     83 // PowerPC, but handle all the complexities of the ABI in the lowering
     84 // logic.  FIXME: See if the logic can be simplified with use of CCs.
     85 // This may require some extensions to current table generation.
     86 
     87 // Simple calling convention for 64-bit ELF PowerPC fast isel.
     88 // Only handle ints and floats.  All ints are promoted to i64.
     89 // Vector types and quadword ints are not handled.
     90 def CC_PPC64_ELF_FIS : CallingConv<[
     91   CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_PPC64_AnyReg>>,
     92 
     93   CCIfType<[i1],  CCPromoteToType<i64>>,
     94   CCIfType<[i8],  CCPromoteToType<i64>>,
     95   CCIfType<[i16], CCPromoteToType<i64>>,
     96   CCIfType<[i32], CCPromoteToType<i64>>,
     97   CCIfType<[i64], CCAssignToReg<[X3, X4, X5, X6, X7, X8, X9, X10]>>,
     98   CCIfType<[f32, f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>
     99 ]>;
    100 
    101 // Simple return-value convention for 64-bit ELF PowerPC fast isel.
    102 // All small ints are promoted to i64.  Vector types, quadword ints,
    103 // and multiple register returns are "supported" to avoid compile
    104 // errors, but none are handled by the fast selector.
    105 def RetCC_PPC64_ELF_FIS : CallingConv<[
    106   CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_PPC64_AnyReg>>,
    107 
    108   CCIfType<[i1],   CCPromoteToType<i64>>,
    109   CCIfType<[i8],   CCPromoteToType<i64>>,
    110   CCIfType<[i16],  CCPromoteToType<i64>>,
    111   CCIfType<[i32],  CCPromoteToType<i64>>,
    112   CCIfType<[i64],  CCAssignToReg<[X3, X4]>>,
    113   CCIfType<[i128], CCAssignToReg<[X3, X4, X5, X6]>>,
    114   CCIfType<[f32],  CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>,
    115   CCIfType<[f64],  CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>,
    116   CCIfType<[v4f64, v4f32, v4i1],
    117            CCIfSubtarget<"hasQPX()", CCAssignToReg<[QF1, QF2]>>>,
    118   CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32], 
    119            CCIfSubtarget<"hasAltivec()",
    120            CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>>,
    121   CCIfType<[v2f64, v2i64], CCIfSubtarget<"hasVSX()",
    122            CCAssignToReg<[VSH2, VSH3, VSH4, VSH5, VSH6, VSH7, VSH8, VSH9]>>>
    123 ]>;
    124 
    125 //===----------------------------------------------------------------------===//
    126 // PowerPC System V Release 4 32-bit ABI
    127 //===----------------------------------------------------------------------===//
    128 
    129 def CC_PPC32_SVR4_Common : CallingConv<[
    130   CCIfType<[i1], CCPromoteToType<i32>>,
    131 
    132   // The ABI requires i64 to be passed in two adjacent registers with the first
    133   // register having an odd register number.
    134   CCIfType<[i32], CCIfSplit<CCCustom<"CC_PPC32_SVR4_Custom_AlignArgRegs">>>,
    135 
    136   // The 'nest' parameter, if any, is passed in R11.
    137   CCIfNest<CCAssignToReg<[R11]>>,
    138 
    139   // The first 8 integer arguments are passed in integer registers.
    140   CCIfType<[i32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>,
    141 
    142   // Make sure the i64 words from a long double are either both passed in
    143   // registers or both passed on the stack.
    144   CCIfType<[f64], CCIfSplit<CCCustom<"CC_PPC32_SVR4_Custom_AlignFPArgRegs">>>,
    145   
    146   // FP values are passed in F1 - F8.
    147   CCIfType<[f32, f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>,
    148 
    149   // Split arguments have an alignment of 8 bytes on the stack.
    150   CCIfType<[i32], CCIfSplit<CCAssignToStack<4, 8>>>,
    151   
    152   CCIfType<[i32], CCAssignToStack<4, 4>>,
    153   
    154   // Floats are stored in double precision format, thus they have the same
    155   // alignment and size as doubles.
    156   CCIfType<[f32,f64], CCAssignToStack<8, 8>>,  
    157 
    158   // QPX vectors that are stored in double precision need 32-byte alignment.
    159   CCIfType<[v4f64, v4i1], CCAssignToStack<32, 32>>,
    160 
    161   // Vectors get 16-byte stack slots that are 16-byte aligned.
    162   CCIfType<[v16i8, v8i16, v4i32, v4f32, v2f64, v2i64], CCAssignToStack<16, 16>>
    163 ]>;
    164 
    165 // This calling convention puts vector arguments always on the stack. It is used
    166 // to assign vector arguments which belong to the variable portion of the
    167 // parameter list of a variable argument function.
    168 def CC_PPC32_SVR4_VarArg : CallingConv<[
    169   CCDelegateTo<CC_PPC32_SVR4_Common>
    170 ]>;
    171 
    172 // In contrast to CC_PPC32_SVR4_VarArg, this calling convention first tries to
    173 // put vector arguments in vector registers before putting them on the stack.
    174 def CC_PPC32_SVR4 : CallingConv<[
    175   // QPX vectors mirror the scalar FP convention.
    176   CCIfType<[v4f64, v4f32, v4i1], CCIfSubtarget<"hasQPX()",
    177     CCAssignToReg<[QF1, QF2, QF3, QF4, QF5, QF6, QF7, QF8]>>>,
    178 
    179   // The first 12 Vector arguments are passed in AltiVec registers.
    180   CCIfType<[v16i8, v8i16, v4i32, v2i64, v1i128, v4f32], 
    181            CCIfSubtarget<"hasAltivec()", CCAssignToReg<[V2, V3, V4, V5, V6, V7,
    182                           V8, V9, V10, V11, V12, V13]>>>,
    183   CCIfType<[v2f64, v2i64], CCIfSubtarget<"hasVSX()",
    184            CCAssignToReg<[VSH2, VSH3, VSH4, VSH5, VSH6, VSH7, VSH8, VSH9,
    185                           VSH10, VSH11, VSH12, VSH13]>>>,
    186            
    187   CCDelegateTo<CC_PPC32_SVR4_Common>
    188 ]>;  
    189 
    190 // Helper "calling convention" to handle aggregate by value arguments.
    191 // Aggregate by value arguments are always placed in the local variable space
    192 // of the caller. This calling convention is only used to assign those stack
    193 // offsets in the callers stack frame.
    194 //
    195 // Still, the address of the aggregate copy in the callers stack frame is passed
    196 // in a GPR (or in the parameter list area if all GPRs are allocated) from the
    197 // caller to the callee. The location for the address argument is assigned by
    198 // the CC_PPC32_SVR4 calling convention.
    199 //
    200 // The only purpose of CC_PPC32_SVR4_Custom_Dummy is to skip arguments which are
    201 // not passed by value.
    202  
    203 def CC_PPC32_SVR4_ByVal : CallingConv<[
    204   CCIfByVal<CCPassByVal<4, 4>>,
    205   
    206   CCCustom<"CC_PPC32_SVR4_Custom_Dummy">
    207 ]>;
    208 
    209 def CSR_Altivec : CalleeSavedRegs<(add V20, V21, V22, V23, V24, V25, V26, V27,
    210                                        V28, V29, V30, V31)>;
    211 
    212 def CSR_Darwin32 : CalleeSavedRegs<(add R13, R14, R15, R16, R17, R18, R19, R20,
    213                                         R21, R22, R23, R24, R25, R26, R27, R28,
    214                                         R29, R30, R31, F14, F15, F16, F17, F18,
    215                                         F19, F20, F21, F22, F23, F24, F25, F26,
    216                                         F27, F28, F29, F30, F31, CR2, CR3, CR4
    217                                    )>;
    218 
    219 def CSR_Darwin32_Altivec : CalleeSavedRegs<(add CSR_Darwin32, CSR_Altivec)>;
    220 
    221 def CSR_SVR432   : CalleeSavedRegs<(add R14, R15, R16, R17, R18, R19, R20,
    222                                         R21, R22, R23, R24, R25, R26, R27, R28,
    223                                         R29, R30, R31, F14, F15, F16, F17, F18,
    224                                         F19, F20, F21, F22, F23, F24, F25, F26,
    225                                         F27, F28, F29, F30, F31, CR2, CR3, CR4
    226                                    )>;
    227 
    228 def CSR_SVR432_Altivec : CalleeSavedRegs<(add CSR_SVR432, CSR_Altivec)>;
    229 
    230 def CSR_Darwin64 : CalleeSavedRegs<(add X13, X14, X15, X16, X17, X18, X19, X20,
    231                                         X21, X22, X23, X24, X25, X26, X27, X28,
    232                                         X29, X30, X31, F14, F15, F16, F17, F18,
    233                                         F19, F20, F21, F22, F23, F24, F25, F26,
    234                                         F27, F28, F29, F30, F31, CR2, CR3, CR4
    235                                    )>;
    236 
    237 def CSR_Darwin64_Altivec : CalleeSavedRegs<(add CSR_Darwin64, CSR_Altivec)>;
    238 
    239 def CSR_SVR464   : CalleeSavedRegs<(add X14, X15, X16, X17, X18, X19, X20,
    240                                         X21, X22, X23, X24, X25, X26, X27, X28,
    241                                         X29, X30, X31, F14, F15, F16, F17, F18,
    242                                         F19, F20, F21, F22, F23, F24, F25, F26,
    243                                         F27, F28, F29, F30, F31, CR2, CR3, CR4
    244                                    )>;
    245 
    246 def CSR_SVR464_Altivec : CalleeSavedRegs<(add CSR_SVR464, CSR_Altivec)>;
    247 
    248 def CSR_SVR464_R2 : CalleeSavedRegs<(add CSR_SVR464, X2)>;
    249 
    250 def CSR_SVR464_R2_Altivec : CalleeSavedRegs<(add CSR_SVR464_Altivec, X2)>;
    251 
    252 def CSR_NoRegs : CalleeSavedRegs<(add)>;
    253 
    254 def CSR_64_AllRegs: CalleeSavedRegs<(add X0, (sequence "X%u", 3, 10),
    255                                              (sequence "X%u", 14, 31),
    256                                              (sequence "F%u", 0, 31),
    257                                              (sequence "CR%u", 0, 7))>;
    258 
    259 def CSR_64_AllRegs_Altivec : CalleeSavedRegs<(add CSR_64_AllRegs,
    260                                              (sequence "V%u", 0, 31))>;
    261 
    262 def CSR_64_AllRegs_VSX : CalleeSavedRegs<(add CSR_64_AllRegs_Altivec,
    263                                          (sequence "VSL%u", 0, 31),
    264                                          (sequence "VSH%u", 0, 31))>;
    265 
    266