Home | History | Annotate | Download | only in Target
      1 Target Independent Opportunities:
      2 
      3 //===---------------------------------------------------------------------===//
      4 
      5 We should recognized various "overflow detection" idioms and translate them into
      6 llvm.uadd.with.overflow and similar intrinsics.  Here is a multiply idiom:
      7 
      8 unsigned int mul(unsigned int a,unsigned int b) {
      9  if ((unsigned long long)a*b>0xffffffff)
     10    exit(0);
     11   return a*b;
     12 }
     13 
     14 The legalization code for mul-with-overflow needs to be made more robust before
     15 this can be implemented though.
     16 
     17 //===---------------------------------------------------------------------===//
     18 
     19 Get the C front-end to expand hypot(x,y) -> llvm.sqrt(x*x+y*y) when errno and
     20 precision don't matter (ffastmath).  Misc/mandel will like this. :)  This isn't
     21 safe in general, even on darwin.  See the libm implementation of hypot for
     22 examples (which special case when x/y are exactly zero to get signed zeros etc
     23 right).
     24 
     25 //===---------------------------------------------------------------------===//
     26 
     27 On targets with expensive 64-bit multiply, we could LSR this:
     28 
     29 for (i = ...; ++i) {
     30    x = 1ULL << i;
     31 
     32 into:
     33  long long tmp = 1;
     34  for (i = ...; ++i, tmp+=tmp)
     35    x = tmp;
     36 
     37 This would be a win on ppc32, but not x86 or ppc64.
     38 
     39 //===---------------------------------------------------------------------===//
     40 
     41 Shrink: (setlt (loadi32 P), 0) -> (setlt (loadi8 Phi), 0)
     42 
     43 //===---------------------------------------------------------------------===//
     44 
     45 Reassociate should turn things like:
     46 
     47 int factorial(int X) {
     48  return X*X*X*X*X*X*X*X;
     49 }
     50 
     51 into llvm.powi calls, allowing the code generator to produce balanced
     52 multiplication trees.
     53 
     54 First, the intrinsic needs to be extended to support integers, and second the
     55 code generator needs to be enhanced to lower these to multiplication trees.
     56 
     57 //===---------------------------------------------------------------------===//
     58 
     59 Interesting? testcase for add/shift/mul reassoc:
     60 
     61 int bar(int x, int y) {
     62   return x*x*x+y+x*x*x*x*x*y*y*y*y;
     63 }
     64 int foo(int z, int n) {
     65   return bar(z, n) + bar(2*z, 2*n);
     66 }
     67 
     68 This is blocked on not handling X*X*X -> powi(X, 3) (see note above).  The issue
     69 is that we end up getting t = 2*X  s = t*t   and don't turn this into 4*X*X,
     70 which is the same number of multiplies and is canonical, because the 2*X has
     71 multiple uses.  Here's a simple example:
     72 
     73 define i32 @test15(i32 %X1) {
     74   %B = mul i32 %X1, 47   ; X1*47
     75   %C = mul i32 %B, %B
     76   ret i32 %C
     77 }
     78 
     79 
     80 //===---------------------------------------------------------------------===//
     81 
     82 Reassociate should handle the example in GCC PR16157:
     83 
     84 extern int a0, a1, a2, a3, a4; extern int b0, b1, b2, b3, b4; 
     85 void f () {  /* this can be optimized to four additions... */ 
     86         b4 = a4 + a3 + a2 + a1 + a0; 
     87         b3 = a3 + a2 + a1 + a0; 
     88         b2 = a2 + a1 + a0; 
     89         b1 = a1 + a0; 
     90 } 
     91 
     92 This requires reassociating to forms of expressions that are already available,
     93 something that reassoc doesn't think about yet.
     94 
     95 
     96 //===---------------------------------------------------------------------===//
     97 
     98 These two functions should generate the same code on big-endian systems:
     99 
    100 int g(int *j,int *l)  {  return memcmp(j,l,4);  }
    101 int h(int *j, int *l) {  return *j - *l; }
    102 
    103 this could be done in SelectionDAGISel.cpp, along with other special cases,
    104 for 1,2,4,8 bytes.
    105 
    106 //===---------------------------------------------------------------------===//
    107 
    108 It would be nice to revert this patch:
    109 http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20060213/031986.html
    110 
    111 And teach the dag combiner enough to simplify the code expanded before 
    112 legalize.  It seems plausible that this knowledge would let it simplify other
    113 stuff too.
    114 
    115 //===---------------------------------------------------------------------===//
    116 
    117 For vector types, DataLayout.cpp::getTypeInfo() returns alignment that is equal
    118 to the type size. It works but can be overly conservative as the alignment of
    119 specific vector types are target dependent.
    120 
    121 //===---------------------------------------------------------------------===//
    122 
    123 We should produce an unaligned load from code like this:
    124 
    125 v4sf example(float *P) {
    126   return (v4sf){P[0], P[1], P[2], P[3] };
    127 }
    128 
    129 //===---------------------------------------------------------------------===//
    130 
    131 Add support for conditional increments, and other related patterns.  Instead
    132 of:
    133 
    134 	movl 136(%esp), %eax
    135 	cmpl $0, %eax
    136 	je LBB16_2	#cond_next
    137 LBB16_1:	#cond_true
    138 	incl _foo
    139 LBB16_2:	#cond_next
    140 
    141 emit:
    142 	movl	_foo, %eax
    143 	cmpl	$1, %edi
    144 	sbbl	$-1, %eax
    145 	movl	%eax, _foo
    146 
    147 //===---------------------------------------------------------------------===//
    148 
    149 Combine: a = sin(x), b = cos(x) into a,b = sincos(x).
    150 
    151 Expand these to calls of sin/cos and stores:
    152       double sincos(double x, double *sin, double *cos);
    153       float sincosf(float x, float *sin, float *cos);
    154       long double sincosl(long double x, long double *sin, long double *cos);
    155 
    156 Doing so could allow SROA of the destination pointers.  See also:
    157 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687
    158 
    159 This is now easily doable with MRVs.  We could even make an intrinsic for this
    160 if anyone cared enough about sincos.
    161 
    162 //===---------------------------------------------------------------------===//
    163 
    164 quantum_sigma_x in 462.libquantum contains the following loop:
    165 
    166       for(i=0; i<reg->size; i++)
    167 	{
    168 	  /* Flip the target bit of each basis state */
    169 	  reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
    170 	} 
    171 
    172 Where MAX_UNSIGNED/state is a 64-bit int.  On a 32-bit platform it would be just
    173 so cool to turn it into something like:
    174 
    175    long long Res = ((MAX_UNSIGNED) 1 << target);
    176    if (target < 32) {
    177      for(i=0; i<reg->size; i++)
    178        reg->node[i].state ^= Res & 0xFFFFFFFFULL;
    179    } else {
    180      for(i=0; i<reg->size; i++)
    181        reg->node[i].state ^= Res & 0xFFFFFFFF00000000ULL
    182    }
    183    
    184 ... which would only do one 32-bit XOR per loop iteration instead of two.
    185 
    186 It would also be nice to recognize the reg->size doesn't alias reg->node[i], but
    187 this requires TBAA.
    188 
    189 //===---------------------------------------------------------------------===//
    190 
    191 This isn't recognized as bswap by instcombine (yes, it really is bswap):
    192 
    193 unsigned long reverse(unsigned v) {
    194     unsigned t;
    195     t = v ^ ((v << 16) | (v >> 16));
    196     t &= ~0xff0000;
    197     v = (v << 24) | (v >> 8);
    198     return v ^ (t >> 8);
    199 }
    200 
    201 //===---------------------------------------------------------------------===//
    202 
    203 [LOOP DELETION]
    204 
    205 We don't delete this output free loop, because trip count analysis doesn't
    206 realize that it is finite (if it were infinite, it would be undefined).  Not
    207 having this blocks Loop Idiom from matching strlen and friends.  
    208 
    209 void foo(char *C) {
    210   int x = 0;
    211   while (*C)
    212     ++x,++C;
    213 }
    214 
    215 //===---------------------------------------------------------------------===//
    216 
    217 [LOOP RECOGNITION]
    218 
    219 These idioms should be recognized as popcount (see PR1488):
    220 
    221 unsigned countbits_slow(unsigned v) {
    222   unsigned c;
    223   for (c = 0; v; v >>= 1)
    224     c += v & 1;
    225   return c;
    226 }
    227 
    228 unsigned int popcount(unsigned int input) {
    229   unsigned int count = 0;
    230   for (unsigned int i =  0; i < 4 * 8; i++)
    231     count += (input >> i) & i;
    232   return count;
    233 }
    234 
    235 This should be recognized as CLZ:  rdar://8459039
    236 
    237 unsigned clz_a(unsigned a) {
    238   int i;
    239   for (i=0;i<32;i++)
    240     if (a & (1<<(31-i)))
    241       return i;
    242   return 32;
    243 }
    244 
    245 This sort of thing should be added to the loop idiom pass.
    246 
    247 //===---------------------------------------------------------------------===//
    248 
    249 These should turn into single 16-bit (unaligned?) loads on little/big endian
    250 processors.
    251 
    252 unsigned short read_16_le(const unsigned char *adr) {
    253   return adr[0] | (adr[1] << 8);
    254 }
    255 unsigned short read_16_be(const unsigned char *adr) {
    256   return (adr[0] << 8) | adr[1];
    257 }
    258 
    259 //===---------------------------------------------------------------------===//
    260 
    261 -instcombine should handle this transform:
    262    icmp pred (sdiv X / C1 ), C2
    263 when X, C1, and C2 are unsigned.  Similarly for udiv and signed operands. 
    264 
    265 Currently InstCombine avoids this transform but will do it when the signs of
    266 the operands and the sign of the divide match. See the FIXME in 
    267 InstructionCombining.cpp in the visitSetCondInst method after the switch case 
    268 for Instruction::UDiv (around line 4447) for more details.
    269 
    270 The SingleSource/Benchmarks/Shootout-C++/hash and hash2 tests have examples of
    271 this construct. 
    272 
    273 //===---------------------------------------------------------------------===//
    274 
    275 [LOOP OPTIMIZATION]
    276 
    277 SingleSource/Benchmarks/Misc/dt.c shows several interesting optimization
    278 opportunities in its double_array_divs_variable function: it needs loop
    279 interchange, memory promotion (which LICM already does), vectorization and
    280 variable trip count loop unrolling (since it has a constant trip count). ICC
    281 apparently produces this very nice code with -ffast-math:
    282 
    283 ..B1.70:                        # Preds ..B1.70 ..B1.69
    284        mulpd     %xmm0, %xmm1                                  #108.2
    285        mulpd     %xmm0, %xmm1                                  #108.2
    286        mulpd     %xmm0, %xmm1                                  #108.2
    287        mulpd     %xmm0, %xmm1                                  #108.2
    288        addl      $8, %edx                                      #
    289        cmpl      $131072, %edx                                 #108.2
    290        jb        ..B1.70       # Prob 99%                      #108.2
    291 
    292 It would be better to count down to zero, but this is a lot better than what we
    293 do.
    294 
    295 //===---------------------------------------------------------------------===//
    296 
    297 Consider:
    298 
    299 typedef unsigned U32;
    300 typedef unsigned long long U64;
    301 int test (U32 *inst, U64 *regs) {
    302     U64 effective_addr2;
    303     U32 temp = *inst;
    304     int r1 = (temp >> 20) & 0xf;
    305     int b2 = (temp >> 16) & 0xf;
    306     effective_addr2 = temp & 0xfff;
    307     if (b2) effective_addr2 += regs[b2];
    308     b2 = (temp >> 12) & 0xf;
    309     if (b2) effective_addr2 += regs[b2];
    310     effective_addr2 &= regs[4];
    311      if ((effective_addr2 & 3) == 0)
    312         return 1;
    313     return 0;
    314 }
    315 
    316 Note that only the low 2 bits of effective_addr2 are used.  On 32-bit systems,
    317 we don't eliminate the computation of the top half of effective_addr2 because
    318 we don't have whole-function selection dags.  On x86, this means we use one
    319 extra register for the function when effective_addr2 is declared as U64 than
    320 when it is declared U32.
    321 
    322 PHI Slicing could be extended to do this.
    323 
    324 //===---------------------------------------------------------------------===//
    325 
    326 Tail call elim should be more aggressive, checking to see if the call is
    327 followed by an uncond branch to an exit block.
    328 
    329 ; This testcase is due to tail-duplication not wanting to copy the return
    330 ; instruction into the terminating blocks because there was other code
    331 ; optimized out of the function after the taildup happened.
    332 ; RUN: llvm-as < %s | opt -tailcallelim | llvm-dis | not grep call
    333 
    334 define i32 @t4(i32 %a) {
    335 entry:
    336 	%tmp.1 = and i32 %a, 1		; <i32> [#uses=1]
    337 	%tmp.2 = icmp ne i32 %tmp.1, 0		; <i1> [#uses=1]
    338 	br i1 %tmp.2, label %then.0, label %else.0
    339 
    340 then.0:		; preds = %entry
    341 	%tmp.5 = add i32 %a, -1		; <i32> [#uses=1]
    342 	%tmp.3 = call i32 @t4( i32 %tmp.5 )		; <i32> [#uses=1]
    343 	br label %return
    344 
    345 else.0:		; preds = %entry
    346 	%tmp.7 = icmp ne i32 %a, 0		; <i1> [#uses=1]
    347 	br i1 %tmp.7, label %then.1, label %return
    348 
    349 then.1:		; preds = %else.0
    350 	%tmp.11 = add i32 %a, -2		; <i32> [#uses=1]
    351 	%tmp.9 = call i32 @t4( i32 %tmp.11 )		; <i32> [#uses=1]
    352 	br label %return
    353 
    354 return:		; preds = %then.1, %else.0, %then.0
    355 	%result.0 = phi i32 [ 0, %else.0 ], [ %tmp.3, %then.0 ],
    356                             [ %tmp.9, %then.1 ]
    357 	ret i32 %result.0
    358 }
    359 
    360 //===---------------------------------------------------------------------===//
    361 
    362 Tail recursion elimination should handle:
    363 
    364 int pow2m1(int n) {
    365  if (n == 0)
    366    return 0;
    367  return 2 * pow2m1 (n - 1) + 1;
    368 }
    369 
    370 Also, multiplies can be turned into SHL's, so they should be handled as if
    371 they were associative.  "return foo() << 1" can be tail recursion eliminated.
    372 
    373 //===---------------------------------------------------------------------===//
    374 
    375 Argument promotion should promote arguments for recursive functions, like 
    376 this:
    377 
    378 ; RUN: llvm-as < %s | opt -argpromotion | llvm-dis | grep x.val
    379 
    380 define internal i32 @foo(i32* %x) {
    381 entry:
    382 	%tmp = load i32* %x		; <i32> [#uses=0]
    383 	%tmp.foo = call i32 @foo( i32* %x )		; <i32> [#uses=1]
    384 	ret i32 %tmp.foo
    385 }
    386 
    387 define i32 @bar(i32* %x) {
    388 entry:
    389 	%tmp3 = call i32 @foo( i32* %x )		; <i32> [#uses=1]
    390 	ret i32 %tmp3
    391 }
    392 
    393 //===---------------------------------------------------------------------===//
    394 
    395 We should investigate an instruction sinking pass.  Consider this silly
    396 example in pic mode:
    397 
    398 #include <assert.h>
    399 void foo(int x) {
    400   assert(x);
    401   //...
    402 }
    403 
    404 we compile this to:
    405 _foo:
    406 	subl	$28, %esp
    407 	call	"L1$pb"
    408 "L1$pb":
    409 	popl	%eax
    410 	cmpl	$0, 32(%esp)
    411 	je	LBB1_2	# cond_true
    412 LBB1_1:	# return
    413 	# ...
    414 	addl	$28, %esp
    415 	ret
    416 LBB1_2:	# cond_true
    417 ...
    418 
    419 The PIC base computation (call+popl) is only used on one path through the 
    420 code, but is currently always computed in the entry block.  It would be 
    421 better to sink the picbase computation down into the block for the 
    422 assertion, as it is the only one that uses it.  This happens for a lot of 
    423 code with early outs.
    424 
    425 Another example is loads of arguments, which are usually emitted into the 
    426 entry block on targets like x86.  If not used in all paths through a 
    427 function, they should be sunk into the ones that do.
    428 
    429 In this case, whole-function-isel would also handle this.
    430 
    431 //===---------------------------------------------------------------------===//
    432 
    433 Investigate lowering of sparse switch statements into perfect hash tables:
    434 http://burtleburtle.net/bob/hash/perfect.html
    435 
    436 //===---------------------------------------------------------------------===//
    437 
    438 We should turn things like "load+fabs+store" and "load+fneg+store" into the
    439 corresponding integer operations.  On a yonah, this loop:
    440 
    441 double a[256];
    442 void foo() {
    443   int i, b;
    444   for (b = 0; b < 10000000; b++)
    445   for (i = 0; i < 256; i++)
    446     a[i] = -a[i];
    447 }
    448 
    449 is twice as slow as this loop:
    450 
    451 long long a[256];
    452 void foo() {
    453   int i, b;
    454   for (b = 0; b < 10000000; b++)
    455   for (i = 0; i < 256; i++)
    456     a[i] ^= (1ULL << 63);
    457 }
    458 
    459 and I suspect other processors are similar.  On X86 in particular this is a
    460 big win because doing this with integers allows the use of read/modify/write
    461 instructions.
    462 
    463 //===---------------------------------------------------------------------===//
    464 
    465 DAG Combiner should try to combine small loads into larger loads when 
    466 profitable.  For example, we compile this C++ example:
    467 
    468 struct THotKey { short Key; bool Control; bool Shift; bool Alt; };
    469 extern THotKey m_HotKey;
    470 THotKey GetHotKey () { return m_HotKey; }
    471 
    472 into (-m64 -O3 -fno-exceptions -static -fomit-frame-pointer):
    473 
    474 __Z9GetHotKeyv:                         ## @_Z9GetHotKeyv
    475 	movq	_m_HotKey@GOTPCREL(%rip), %rax
    476 	movzwl	(%rax), %ecx
    477 	movzbl	2(%rax), %edx
    478 	shlq	$16, %rdx
    479 	orq	%rcx, %rdx
    480 	movzbl	3(%rax), %ecx
    481 	shlq	$24, %rcx
    482 	orq	%rdx, %rcx
    483 	movzbl	4(%rax), %eax
    484 	shlq	$32, %rax
    485 	orq	%rcx, %rax
    486 	ret
    487 
    488 //===---------------------------------------------------------------------===//
    489 
    490 We should add an FRINT node to the DAG to model targets that have legal
    491 implementations of ceil/floor/rint.
    492 
    493 //===---------------------------------------------------------------------===//
    494 
    495 Consider:
    496 
    497 int test() {
    498   long long input[8] = {1,0,1,0,1,0,1,0};
    499   foo(input);
    500 }
    501 
    502 Clang compiles this into:
    503 
    504   call void @llvm.memset.p0i8.i64(i8* %tmp, i8 0, i64 64, i32 16, i1 false)
    505   %0 = getelementptr [8 x i64]* %input, i64 0, i64 0
    506   store i64 1, i64* %0, align 16
    507   %1 = getelementptr [8 x i64]* %input, i64 0, i64 2
    508   store i64 1, i64* %1, align 16
    509   %2 = getelementptr [8 x i64]* %input, i64 0, i64 4
    510   store i64 1, i64* %2, align 16
    511   %3 = getelementptr [8 x i64]* %input, i64 0, i64 6
    512   store i64 1, i64* %3, align 16
    513 
    514 Which gets codegen'd into:
    515 
    516 	pxor	%xmm0, %xmm0
    517 	movaps	%xmm0, -16(%rbp)
    518 	movaps	%xmm0, -32(%rbp)
    519 	movaps	%xmm0, -48(%rbp)
    520 	movaps	%xmm0, -64(%rbp)
    521 	movq	$1, -64(%rbp)
    522 	movq	$1, -48(%rbp)
    523 	movq	$1, -32(%rbp)
    524 	movq	$1, -16(%rbp)
    525 
    526 It would be better to have 4 movq's of 0 instead of the movaps's.
    527 
    528 //===---------------------------------------------------------------------===//
    529 
    530 http://llvm.org/PR717:
    531 
    532 The following code should compile into "ret int undef". Instead, LLVM
    533 produces "ret int 0":
    534 
    535 int f() {
    536   int x = 4;
    537   int y;
    538   if (x == 3) y = 0;
    539   return y;
    540 }
    541 
    542 //===---------------------------------------------------------------------===//
    543 
    544 The loop unroller should partially unroll loops (instead of peeling them)
    545 when code growth isn't too bad and when an unroll count allows simplification
    546 of some code within the loop.  One trivial example is:
    547 
    548 #include <stdio.h>
    549 int main() {
    550     int nRet = 17;
    551     int nLoop;
    552     for ( nLoop = 0; nLoop < 1000; nLoop++ ) {
    553         if ( nLoop & 1 )
    554             nRet += 2;
    555         else
    556             nRet -= 1;
    557     }
    558     return nRet;
    559 }
    560 
    561 Unrolling by 2 would eliminate the '&1' in both copies, leading to a net
    562 reduction in code size.  The resultant code would then also be suitable for
    563 exit value computation.
    564 
    565 //===---------------------------------------------------------------------===//
    566 
    567 We miss a bunch of rotate opportunities on various targets, including ppc, x86,
    568 etc.  On X86, we miss a bunch of 'rotate by variable' cases because the rotate
    569 matching code in dag combine doesn't look through truncates aggressively 
    570 enough.  Here are some testcases reduces from GCC PR17886:
    571 
    572 unsigned long long f5(unsigned long long x, unsigned long long y) {
    573   return (x << 8) | ((y >> 48) & 0xffull);
    574 }
    575 unsigned long long f6(unsigned long long x, unsigned long long y, int z) {
    576   switch(z) {
    577   case 1:
    578     return (x << 8) | ((y >> 48) & 0xffull);
    579   case 2:
    580     return (x << 16) | ((y >> 40) & 0xffffull);
    581   case 3:
    582     return (x << 24) | ((y >> 32) & 0xffffffull);
    583   case 4:
    584     return (x << 32) | ((y >> 24) & 0xffffffffull);
    585   default:
    586     return (x << 40) | ((y >> 16) & 0xffffffffffull);
    587   }
    588 }
    589 
    590 //===---------------------------------------------------------------------===//
    591 
    592 This (and similar related idioms):
    593 
    594 unsigned int foo(unsigned char i) {
    595   return i | (i<<8) | (i<<16) | (i<<24);
    596 } 
    597 
    598 compiles into:
    599 
    600 define i32 @foo(i8 zeroext %i) nounwind readnone ssp noredzone {
    601 entry:
    602   %conv = zext i8 %i to i32
    603   %shl = shl i32 %conv, 8
    604   %shl5 = shl i32 %conv, 16
    605   %shl9 = shl i32 %conv, 24
    606   %or = or i32 %shl9, %conv
    607   %or6 = or i32 %or, %shl5
    608   %or10 = or i32 %or6, %shl
    609   ret i32 %or10
    610 }
    611 
    612 it would be better as:
    613 
    614 unsigned int bar(unsigned char i) {
    615   unsigned int j=i | (i << 8); 
    616   return j | (j<<16);
    617 }
    618 
    619 aka:
    620 
    621 define i32 @bar(i8 zeroext %i) nounwind readnone ssp noredzone {
    622 entry:
    623   %conv = zext i8 %i to i32
    624   %shl = shl i32 %conv, 8
    625   %or = or i32 %shl, %conv
    626   %shl5 = shl i32 %or, 16
    627   %or6 = or i32 %shl5, %or
    628   ret i32 %or6
    629 }
    630 
    631 or even i*0x01010101, depending on the speed of the multiplier.  The best way to
    632 handle this is to canonicalize it to a multiply in IR and have codegen handle
    633 lowering multiplies to shifts on cpus where shifts are faster.
    634 
    635 //===---------------------------------------------------------------------===//
    636 
    637 We do a number of simplifications in simplify libcalls to strength reduce
    638 standard library functions, but we don't currently merge them together.  For
    639 example, it is useful to merge memcpy(a,b,strlen(b)) -> strcpy.  This can only
    640 be done safely if "b" isn't modified between the strlen and memcpy of course.
    641 
    642 //===---------------------------------------------------------------------===//
    643 
    644 We compile this program: (from GCC PR11680)
    645 http://gcc.gnu.org/bugzilla/attachment.cgi?id=4487
    646 
    647 Into code that runs the same speed in fast/slow modes, but both modes run 2x
    648 slower than when compile with GCC (either 4.0 or 4.2):
    649 
    650 $ llvm-g++ perf.cpp -O3 -fno-exceptions
    651 $ time ./a.out fast
    652 1.821u 0.003s 0:01.82 100.0%	0+0k 0+0io 0pf+0w
    653 
    654 $ g++ perf.cpp -O3 -fno-exceptions
    655 $ time ./a.out fast
    656 0.821u 0.001s 0:00.82 100.0%	0+0k 0+0io 0pf+0w
    657 
    658 It looks like we are making the same inlining decisions, so this may be raw
    659 codegen badness or something else (haven't investigated).
    660 
    661 //===---------------------------------------------------------------------===//
    662 
    663 Divisibility by constant can be simplified (according to GCC PR12849) from
    664 being a mulhi to being a mul lo (cheaper).  Testcase:
    665 
    666 void bar(unsigned n) {
    667   if (n % 3 == 0)
    668     true();
    669 }
    670 
    671 This is equivalent to the following, where 2863311531 is the multiplicative
    672 inverse of 3, and 1431655766 is ((2^32)-1)/3+1:
    673 void bar(unsigned n) {
    674   if (n * 2863311531U < 1431655766U)
    675     true();
    676 }
    677 
    678 The same transformation can work with an even modulo with the addition of a
    679 rotate: rotate the result of the multiply to the right by the number of bits
    680 which need to be zero for the condition to be true, and shrink the compare RHS
    681 by the same amount.  Unless the target supports rotates, though, that
    682 transformation probably isn't worthwhile.
    683 
    684 The transformation can also easily be made to work with non-zero equality
    685 comparisons: just transform, for example, "n % 3 == 1" to "(n-1) % 3 == 0".
    686 
    687 //===---------------------------------------------------------------------===//
    688 
    689 Better mod/ref analysis for scanf would allow us to eliminate the vtable and a
    690 bunch of other stuff from this example (see PR1604): 
    691 
    692 #include <cstdio>
    693 struct test {
    694     int val;
    695     virtual ~test() {}
    696 };
    697 
    698 int main() {
    699     test t;
    700     std::scanf("%d", &t.val);
    701     std::printf("%d\n", t.val);
    702 }
    703 
    704 //===---------------------------------------------------------------------===//
    705 
    706 These functions perform the same computation, but produce different assembly.
    707 
    708 define i8 @select(i8 %x) readnone nounwind {
    709   %A = icmp ult i8 %x, 250
    710   %B = select i1 %A, i8 0, i8 1
    711   ret i8 %B 
    712 }
    713 
    714 define i8 @addshr(i8 %x) readnone nounwind {
    715   %A = zext i8 %x to i9
    716   %B = add i9 %A, 6       ;; 256 - 250 == 6
    717   %C = lshr i9 %B, 8
    718   %D = trunc i9 %C to i8
    719   ret i8 %D
    720 }
    721 
    722 //===---------------------------------------------------------------------===//
    723 
    724 From gcc bug 24696:
    725 int
    726 f (unsigned long a, unsigned long b, unsigned long c)
    727 {
    728   return ((a & (c - 1)) != 0) || ((b & (c - 1)) != 0);
    729 }
    730 int
    731 f (unsigned long a, unsigned long b, unsigned long c)
    732 {
    733   return ((a & (c - 1)) != 0) | ((b & (c - 1)) != 0);
    734 }
    735 Both should combine to ((a|b) & (c-1)) != 0.  Currently not optimized with
    736 "clang -emit-llvm-bc | opt -O3".
    737 
    738 //===---------------------------------------------------------------------===//
    739 
    740 From GCC Bug 20192:
    741 #define PMD_MASK    (~((1UL << 23) - 1))
    742 void clear_pmd_range(unsigned long start, unsigned long end)
    743 {
    744    if (!(start & ~PMD_MASK) && !(end & ~PMD_MASK))
    745        f();
    746 }
    747 The expression should optimize to something like
    748 "!((start|end)&~PMD_MASK). Currently not optimized with "clang
    749 -emit-llvm-bc | opt -O3".
    750 
    751 //===---------------------------------------------------------------------===//
    752 
    753 unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return
    754 i;}
    755 unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;}
    756 These should combine to the same thing.  Currently, the first function
    757 produces better code on X86.
    758 
    759 //===---------------------------------------------------------------------===//
    760 
    761 From GCC Bug 15784:
    762 #define abs(x) x>0?x:-x
    763 int f(int x, int y)
    764 {
    765  return (abs(x)) >= 0;
    766 }
    767 This should optimize to x == INT_MIN. (With -fwrapv.)  Currently not
    768 optimized with "clang -emit-llvm-bc | opt -O3".
    769 
    770 //===---------------------------------------------------------------------===//
    771 
    772 From GCC Bug 14753:
    773 void
    774 rotate_cst (unsigned int a)
    775 {
    776  a = (a << 10) | (a >> 22);
    777  if (a == 123)
    778    bar ();
    779 }
    780 void
    781 minus_cst (unsigned int a)
    782 {
    783  unsigned int tem;
    784 
    785  tem = 20 - a;
    786  if (tem == 5)
    787    bar ();
    788 }
    789 void
    790 mask_gt (unsigned int a)
    791 {
    792  /* This is equivalent to a > 15.  */
    793  if ((a & ~7) > 8)
    794    bar ();
    795 }
    796 void
    797 rshift_gt (unsigned int a)
    798 {
    799  /* This is equivalent to a > 23.  */
    800  if ((a >> 2) > 5)
    801    bar ();
    802 }
    803 
    804 All should simplify to a single comparison.  All of these are
    805 currently not optimized with "clang -emit-llvm-bc | opt
    806 -O3".
    807 
    808 //===---------------------------------------------------------------------===//
    809 
    810 From GCC Bug 32605:
    811 int c(int* x) {return (char*)x+2 == (char*)x;}
    812 Should combine to 0.  Currently not optimized with "clang
    813 -emit-llvm-bc | opt -O3" (although llc can optimize it).
    814 
    815 //===---------------------------------------------------------------------===//
    816 
    817 int a(unsigned b) {return ((b << 31) | (b << 30)) >> 31;}
    818 Should be combined to  "((b >> 1) | b) & 1".  Currently not optimized
    819 with "clang -emit-llvm-bc | opt -O3".
    820 
    821 //===---------------------------------------------------------------------===//
    822 
    823 unsigned a(unsigned x, unsigned y) { return x | (y & 1) | (y & 2);}
    824 Should combine to "x | (y & 3)".  Currently not optimized with "clang
    825 -emit-llvm-bc | opt -O3".
    826 
    827 //===---------------------------------------------------------------------===//
    828 
    829 int a(int a, int b, int c) {return (~a & c) | ((c|a) & b);}
    830 Should fold to "(~a & c) | (a & b)".  Currently not optimized with
    831 "clang -emit-llvm-bc | opt -O3".
    832 
    833 //===---------------------------------------------------------------------===//
    834 
    835 int a(int a,int b) {return (~(a|b))|a;}
    836 Should fold to "a|~b".  Currently not optimized with "clang
    837 -emit-llvm-bc | opt -O3".
    838 
    839 //===---------------------------------------------------------------------===//
    840 
    841 int a(int a, int b) {return (a&&b) || (a&&!b);}
    842 Should fold to "a".  Currently not optimized with "clang -emit-llvm-bc
    843 | opt -O3".
    844 
    845 //===---------------------------------------------------------------------===//
    846 
    847 int a(int a, int b, int c) {return (a&&b) || (!a&&c);}
    848 Should fold to "a ? b : c", or at least something sane.  Currently not
    849 optimized with "clang -emit-llvm-bc | opt -O3".
    850 
    851 //===---------------------------------------------------------------------===//
    852 
    853 int a(int a, int b, int c) {return (a&&b) || (a&&c) || (a&&b&&c);}
    854 Should fold to a && (b || c).  Currently not optimized with "clang
    855 -emit-llvm-bc | opt -O3".
    856 
    857 //===---------------------------------------------------------------------===//
    858 
    859 int a(int x) {return x | ((x & 8) ^ 8);}
    860 Should combine to x | 8.  Currently not optimized with "clang
    861 -emit-llvm-bc | opt -O3".
    862 
    863 //===---------------------------------------------------------------------===//
    864 
    865 int a(int x) {return x ^ ((x & 8) ^ 8);}
    866 Should also combine to x | 8.  Currently not optimized with "clang
    867 -emit-llvm-bc | opt -O3".
    868 
    869 //===---------------------------------------------------------------------===//
    870 
    871 int a(int x) {return ((x | -9) ^ 8) & x;}
    872 Should combine to x & -9.  Currently not optimized with "clang
    873 -emit-llvm-bc | opt -O3".
    874 
    875 //===---------------------------------------------------------------------===//
    876 
    877 unsigned a(unsigned a) {return a * 0x11111111 >> 28 & 1;}
    878 Should combine to "a * 0x88888888 >> 31".  Currently not optimized
    879 with "clang -emit-llvm-bc | opt -O3".
    880 
    881 //===---------------------------------------------------------------------===//
    882 
    883 unsigned a(char* x) {if ((*x & 32) == 0) return b();}
    884 There's an unnecessary zext in the generated code with "clang
    885 -emit-llvm-bc | opt -O3".
    886 
    887 //===---------------------------------------------------------------------===//
    888 
    889 unsigned a(unsigned long long x) {return 40 * (x >> 1);}
    890 Should combine to "20 * (((unsigned)x) & -2)".  Currently not
    891 optimized with "clang -emit-llvm-bc | opt -O3".
    892 
    893 //===---------------------------------------------------------------------===//
    894 
    895 int g(int x) { return (x - 10) < 0; }
    896 Should combine to "x <= 9" (the sub has nsw).  Currently not
    897 optimized with "clang -emit-llvm-bc | opt -O3".
    898 
    899 //===---------------------------------------------------------------------===//
    900 
    901 int g(int x) { return (x + 10) < 0; }
    902 Should combine to "x < -10" (the add has nsw).  Currently not
    903 optimized with "clang -emit-llvm-bc | opt -O3".
    904 
    905 //===---------------------------------------------------------------------===//
    906 
    907 int f(int i, int j) { return i < j + 1; }
    908 int g(int i, int j) { return j > i - 1; }
    909 Should combine to "i <= j" (the add/sub has nsw).  Currently not
    910 optimized with "clang -emit-llvm-bc | opt -O3".
    911 
    912 //===---------------------------------------------------------------------===//
    913 
    914 unsigned f(unsigned x) { return ((x & 7) + 1) & 15; }
    915 The & 15 part should be optimized away, it doesn't change the result. Currently
    916 not optimized with "clang -emit-llvm-bc | opt -O3".
    917 
    918 //===---------------------------------------------------------------------===//
    919 
    920 This was noticed in the entryblock for grokdeclarator in 403.gcc:
    921 
    922         %tmp = icmp eq i32 %decl_context, 4          
    923         %decl_context_addr.0 = select i1 %tmp, i32 3, i32 %decl_context 
    924         %tmp1 = icmp eq i32 %decl_context_addr.0, 1 
    925         %decl_context_addr.1 = select i1 %tmp1, i32 0, i32 %decl_context_addr.0
    926 
    927 tmp1 should be simplified to something like:
    928   (!tmp || decl_context == 1)
    929 
    930 This allows recursive simplifications, tmp1 is used all over the place in
    931 the function, e.g. by:
    932 
    933         %tmp23 = icmp eq i32 %decl_context_addr.1, 0            ; <i1> [#uses=1]
    934         %tmp24 = xor i1 %tmp1, true             ; <i1> [#uses=1]
    935         %or.cond8 = and i1 %tmp23, %tmp24               ; <i1> [#uses=1]
    936 
    937 later.
    938 
    939 //===---------------------------------------------------------------------===//
    940 
    941 [STORE SINKING]
    942 
    943 Store sinking: This code:
    944 
    945 void f (int n, int *cond, int *res) {
    946     int i;
    947     *res = 0;
    948     for (i = 0; i < n; i++)
    949         if (*cond)
    950             *res ^= 234; /* (*) */
    951 }
    952 
    953 On this function GVN hoists the fully redundant value of *res, but nothing
    954 moves the store out.  This gives us this code:
    955 
    956 bb:		; preds = %bb2, %entry
    957 	%.rle = phi i32 [ 0, %entry ], [ %.rle6, %bb2 ]	
    958 	%i.05 = phi i32 [ 0, %entry ], [ %indvar.next, %bb2 ]
    959 	%1 = load i32* %cond, align 4
    960 	%2 = icmp eq i32 %1, 0
    961 	br i1 %2, label %bb2, label %bb1
    962 
    963 bb1:		; preds = %bb
    964 	%3 = xor i32 %.rle, 234	
    965 	store i32 %3, i32* %res, align 4
    966 	br label %bb2
    967 
    968 bb2:		; preds = %bb, %bb1
    969 	%.rle6 = phi i32 [ %3, %bb1 ], [ %.rle, %bb ]	
    970 	%indvar.next = add i32 %i.05, 1	
    971 	%exitcond = icmp eq i32 %indvar.next, %n
    972 	br i1 %exitcond, label %return, label %bb
    973 
    974 DSE should sink partially dead stores to get the store out of the loop.
    975 
    976 Here's another partial dead case:
    977 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=12395
    978 
    979 //===---------------------------------------------------------------------===//
    980 
    981 Scalar PRE hoists the mul in the common block up to the else:
    982 
    983 int test (int a, int b, int c, int g) {
    984   int d, e;
    985   if (a)
    986     d = b * c;
    987   else
    988     d = b - c;
    989   e = b * c + g;
    990   return d + e;
    991 }
    992 
    993 It would be better to do the mul once to reduce codesize above the if.
    994 This is GCC PR38204.
    995 
    996 
    997 //===---------------------------------------------------------------------===//
    998 This simple function from 179.art:
    999 
   1000 int winner, numf2s;
   1001 struct { double y; int   reset; } *Y;
   1002 
   1003 void find_match() {
   1004    int i;
   1005    winner = 0;
   1006    for (i=0;i<numf2s;i++)
   1007        if (Y[i].y > Y[winner].y)
   1008               winner =i;
   1009 }
   1010 
   1011 Compiles into (with clang TBAA):
   1012 
   1013 for.body:                                         ; preds = %for.inc, %bb.nph
   1014   %indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.inc ]
   1015   %i.01718 = phi i32 [ 0, %bb.nph ], [ %i.01719, %for.inc ]
   1016   %tmp4 = getelementptr inbounds %struct.anon* %tmp3, i64 %indvar, i32 0
   1017   %tmp5 = load double* %tmp4, align 8, !tbaa !4
   1018   %idxprom7 = sext i32 %i.01718 to i64
   1019   %tmp10 = getelementptr inbounds %struct.anon* %tmp3, i64 %idxprom7, i32 0
   1020   %tmp11 = load double* %tmp10, align 8, !tbaa !4
   1021   %cmp12 = fcmp ogt double %tmp5, %tmp11
   1022   br i1 %cmp12, label %if.then, label %for.inc
   1023 
   1024 if.then:                                          ; preds = %for.body
   1025   %i.017 = trunc i64 %indvar to i32
   1026   br label %for.inc
   1027 
   1028 for.inc:                                          ; preds = %for.body, %if.then
   1029   %i.01719 = phi i32 [ %i.01718, %for.body ], [ %i.017, %if.then ]
   1030   %indvar.next = add i64 %indvar, 1
   1031   %exitcond = icmp eq i64 %indvar.next, %tmp22
   1032   br i1 %exitcond, label %for.cond.for.end_crit_edge, label %for.body
   1033 
   1034 
   1035 It is good that we hoisted the reloads of numf2's, and Y out of the loop and
   1036 sunk the store to winner out.
   1037 
   1038 However, this is awful on several levels: the conditional truncate in the loop
   1039 (-indvars at fault? why can't we completely promote the IV to i64?).
   1040 
   1041 Beyond that, we have a partially redundant load in the loop: if "winner" (aka 
   1042 %i.01718) isn't updated, we reload Y[winner].y the next time through the loop.
   1043 Similarly, the addressing that feeds it (including the sext) is redundant. In
   1044 the end we get this generated assembly:
   1045 
   1046 LBB0_2:                                 ## %for.body
   1047                                         ## =>This Inner Loop Header: Depth=1
   1048 	movsd	(%rdi), %xmm0
   1049 	movslq	%edx, %r8
   1050 	shlq	$4, %r8
   1051 	ucomisd	(%rcx,%r8), %xmm0
   1052 	jbe	LBB0_4
   1053 	movl	%esi, %edx
   1054 LBB0_4:                                 ## %for.inc
   1055 	addq	$16, %rdi
   1056 	incq	%rsi
   1057 	cmpq	%rsi, %rax
   1058 	jne	LBB0_2
   1059 
   1060 All things considered this isn't too bad, but we shouldn't need the movslq or
   1061 the shlq instruction, or the load folded into ucomisd every time through the
   1062 loop.
   1063 
   1064 On an x86-specific topic, if the loop can't be restructure, the movl should be a
   1065 cmov.
   1066 
   1067 //===---------------------------------------------------------------------===//
   1068 
   1069 [STORE SINKING]
   1070 
   1071 GCC PR37810 is an interesting case where we should sink load/store reload
   1072 into the if block and outside the loop, so we don't reload/store it on the
   1073 non-call path.
   1074 
   1075 for () {
   1076   *P += 1;
   1077   if ()
   1078     call();
   1079   else
   1080     ...
   1081 ->
   1082 tmp = *P
   1083 for () {
   1084   tmp += 1;
   1085   if () {
   1086     *P = tmp;
   1087     call();
   1088     tmp = *P;
   1089   } else ...
   1090 }
   1091 *P = tmp;
   1092 
   1093 We now hoist the reload after the call (Transforms/GVN/lpre-call-wrap.ll), but
   1094 we don't sink the store.  We need partially dead store sinking.
   1095 
   1096 //===---------------------------------------------------------------------===//
   1097 
   1098 [LOAD PRE CRIT EDGE SPLITTING]
   1099 
   1100 GCC PR37166: Sinking of loads prevents SROA'ing the "g" struct on the stack
   1101 leading to excess stack traffic. This could be handled by GVN with some crazy
   1102 symbolic phi translation.  The code we get looks like (g is on the stack):
   1103 
   1104 bb2:		; preds = %bb1
   1105 ..
   1106 	%9 = getelementptr %struct.f* %g, i32 0, i32 0		
   1107 	store i32 %8, i32* %9, align  bel %bb3
   1108 
   1109 bb3:		; preds = %bb1, %bb2, %bb
   1110 	%c_addr.0 = phi %struct.f* [ %g, %bb2 ], [ %c, %bb ], [ %c, %bb1 ]
   1111 	%b_addr.0 = phi %struct.f* [ %b, %bb2 ], [ %g, %bb ], [ %b, %bb1 ]
   1112 	%10 = getelementptr %struct.f* %c_addr.0, i32 0, i32 0
   1113 	%11 = load i32* %10, align 4
   1114 
   1115 %11 is partially redundant, an in BB2 it should have the value %8.
   1116 
   1117 GCC PR33344 and PR35287 are similar cases.
   1118 
   1119 
   1120 //===---------------------------------------------------------------------===//
   1121 
   1122 [LOAD PRE]
   1123 
   1124 There are many load PRE testcases in testsuite/gcc.dg/tree-ssa/loadpre* in the
   1125 GCC testsuite, ones we don't get yet are (checked through loadpre25):
   1126 
   1127 [CRIT EDGE BREAKING]
   1128 predcom-4.c
   1129 
   1130 [PRE OF READONLY CALL]
   1131 loadpre5.c
   1132 
   1133 [TURN SELECT INTO BRANCH]
   1134 loadpre14.c loadpre15.c 
   1135 
   1136 actually a conditional increment: loadpre18.c loadpre19.c
   1137 
   1138 //===---------------------------------------------------------------------===//
   1139 
   1140 [LOAD PRE / STORE SINKING / SPEC HACK]
   1141 
   1142 This is a chunk of code from 456.hmmer:
   1143 
   1144 int f(int M, int *mc, int *mpp, int *tpmm, int *ip, int *tpim, int *dpp,
   1145      int *tpdm, int xmb, int *bp, int *ms) {
   1146  int k, sc;
   1147  for (k = 1; k <= M; k++) {
   1148      mc[k] = mpp[k-1]   + tpmm[k-1];
   1149      if ((sc = ip[k-1]  + tpim[k-1]) > mc[k])  mc[k] = sc;
   1150      if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k])  mc[k] = sc;
   1151      if ((sc = xmb  + bp[k])         > mc[k])  mc[k] = sc;
   1152      mc[k] += ms[k];
   1153    }
   1154 }
   1155 
   1156 It is very profitable for this benchmark to turn the conditional stores to mc[k]
   1157 into a conditional move (select instr in IR) and allow the final store to do the
   1158 store.  See GCC PR27313 for more details.  Note that this is valid to xform even
   1159 with the new C++ memory model, since mc[k] is previously loaded and later
   1160 stored.
   1161 
   1162 //===---------------------------------------------------------------------===//
   1163 
   1164 [SCALAR PRE]
   1165 There are many PRE testcases in testsuite/gcc.dg/tree-ssa/ssa-pre-*.c in the
   1166 GCC testsuite.
   1167 
   1168 //===---------------------------------------------------------------------===//
   1169 
   1170 There are some interesting cases in testsuite/gcc.dg/tree-ssa/pred-comm* in the
   1171 GCC testsuite.  For example, we get the first example in predcom-1.c, but 
   1172 miss the second one:
   1173 
   1174 unsigned fib[1000];
   1175 unsigned avg[1000];
   1176 
   1177 __attribute__ ((noinline))
   1178 void count_averages(int n) {
   1179   int i;
   1180   for (i = 1; i < n; i++)
   1181     avg[i] = (((unsigned long) fib[i - 1] + fib[i] + fib[i + 1]) / 3) & 0xffff;
   1182 }
   1183 
   1184 which compiles into two loads instead of one in the loop.
   1185 
   1186 predcom-2.c is the same as predcom-1.c
   1187 
   1188 predcom-3.c is very similar but needs loads feeding each other instead of
   1189 store->load.
   1190 
   1191 
   1192 //===---------------------------------------------------------------------===//
   1193 
   1194 [ALIAS ANALYSIS]
   1195 
   1196 Type based alias analysis:
   1197 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14705
   1198 
   1199 We should do better analysis of posix_memalign.  At the least it should
   1200 no-capture its pointer argument, at best, we should know that the out-value
   1201 result doesn't point to anything (like malloc).  One example of this is in
   1202 SingleSource/Benchmarks/Misc/dt.c
   1203 
   1204 //===---------------------------------------------------------------------===//
   1205 
   1206 Interesting missed case because of control flow flattening (should be 2 loads):
   1207 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26629
   1208 With: llvm-gcc t2.c -S -o - -O0 -emit-llvm | llvm-as | 
   1209              opt -mem2reg -gvn -instcombine | llvm-dis
   1210 we miss it because we need 1) CRIT EDGE 2) MULTIPLE DIFFERENT
   1211 VALS PRODUCED BY ONE BLOCK OVER DIFFERENT PATHS
   1212 
   1213 //===---------------------------------------------------------------------===//
   1214 
   1215 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19633
   1216 We could eliminate the branch condition here, loading from null is undefined:
   1217 
   1218 struct S { int w, x, y, z; };
   1219 struct T { int r; struct S s; };
   1220 void bar (struct S, int);
   1221 void foo (int a, struct T b)
   1222 {
   1223   struct S *c = 0;
   1224   if (a)
   1225     c = &b.s;
   1226   bar (*c, a);
   1227 }
   1228 
   1229 //===---------------------------------------------------------------------===//
   1230 
   1231 simplifylibcalls should do several optimizations for strspn/strcspn:
   1232 
   1233 strcspn(x, "a") -> inlined loop for up to 3 letters (similarly for strspn):
   1234 
   1235 size_t __strcspn_c3 (__const char *__s, int __reject1, int __reject2,
   1236                      int __reject3) {
   1237   register size_t __result = 0;
   1238   while (__s[__result] != '\0' && __s[__result] != __reject1 &&
   1239          __s[__result] != __reject2 && __s[__result] != __reject3)
   1240     ++__result;
   1241   return __result;
   1242 }
   1243 
   1244 This should turn into a switch on the character.  See PR3253 for some notes on
   1245 codegen.
   1246 
   1247 456.hmmer apparently uses strcspn and strspn a lot.  471.omnetpp uses strspn.
   1248 
   1249 //===---------------------------------------------------------------------===//
   1250 
   1251 simplifylibcalls should turn these snprintf idioms into memcpy (GCC PR47917)
   1252 
   1253 char buf1[6], buf2[6], buf3[4], buf4[4];
   1254 int i;
   1255 
   1256 int foo (void) {
   1257   int ret = snprintf (buf1, sizeof buf1, "abcde");
   1258   ret += snprintf (buf2, sizeof buf2, "abcdef") * 16;
   1259   ret += snprintf (buf3, sizeof buf3, "%s", i++ < 6 ? "abc" : "def") * 256;
   1260   ret += snprintf (buf4, sizeof buf4, "%s", i++ > 10 ? "abcde" : "defgh")*4096;
   1261   return ret;
   1262 }
   1263 
   1264 //===---------------------------------------------------------------------===//
   1265 
   1266 "gas" uses this idiom:
   1267   else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
   1268 ..
   1269   else if (strchr ("<>", *intel_parser.op_string)
   1270 
   1271 Those should be turned into a switch.  SimplifyLibCalls only gets the second
   1272 case.
   1273 
   1274 //===---------------------------------------------------------------------===//
   1275 
   1276 252.eon contains this interesting code:
   1277 
   1278         %3072 = getelementptr [100 x i8]* %tempString, i32 0, i32 0
   1279         %3073 = call i8* @strcpy(i8* %3072, i8* %3071) nounwind
   1280         %strlen = call i32 @strlen(i8* %3072)    ; uses = 1
   1281         %endptr = getelementptr [100 x i8]* %tempString, i32 0, i32 %strlen
   1282         call void @llvm.memcpy.i32(i8* %endptr, 
   1283           i8* getelementptr ([5 x i8]* @"\01LC42", i32 0, i32 0), i32 5, i32 1)
   1284         %3074 = call i32 @strlen(i8* %endptr) nounwind readonly 
   1285         
   1286 This is interesting for a couple reasons.  First, in this:
   1287 
   1288 The memcpy+strlen strlen can be replaced with:
   1289 
   1290         %3074 = call i32 @strlen([5 x i8]* @"\01LC42") nounwind readonly 
   1291 
   1292 Because the destination was just copied into the specified memory buffer.  This,
   1293 in turn, can be constant folded to "4".
   1294 
   1295 In other code, it contains:
   1296 
   1297         %endptr6978 = bitcast i8* %endptr69 to i32*            
   1298         store i32 7107374, i32* %endptr6978, align 1
   1299         %3167 = call i32 @strlen(i8* %endptr69) nounwind readonly    
   1300 
   1301 Which could also be constant folded.  Whatever is producing this should probably
   1302 be fixed to leave this as a memcpy from a string.
   1303 
   1304 Further, eon also has an interesting partially redundant strlen call:
   1305 
   1306 bb8:            ; preds = %_ZN18eonImageCalculatorC1Ev.exit
   1307         %682 = getelementptr i8** %argv, i32 6          ; <i8**> [#uses=2]
   1308         %683 = load i8** %682, align 4          ; <i8*> [#uses=4]
   1309         %684 = load i8* %683, align 1           ; <i8> [#uses=1]
   1310         %685 = icmp eq i8 %684, 0               ; <i1> [#uses=1]
   1311         br i1 %685, label %bb10, label %bb9
   1312 
   1313 bb9:            ; preds = %bb8
   1314         %686 = call i32 @strlen(i8* %683) nounwind readonly          
   1315         %687 = icmp ugt i32 %686, 254           ; <i1> [#uses=1]
   1316         br i1 %687, label %bb10, label %bb11
   1317 
   1318 bb10:           ; preds = %bb9, %bb8
   1319         %688 = call i32 @strlen(i8* %683) nounwind readonly          
   1320 
   1321 This could be eliminated by doing the strlen once in bb8, saving code size and
   1322 improving perf on the bb8->9->10 path.
   1323 
   1324 //===---------------------------------------------------------------------===//
   1325 
   1326 I see an interesting fully redundant call to strlen left in 186.crafty:InputMove
   1327 which looks like:
   1328        %movetext11 = getelementptr [128 x i8]* %movetext, i32 0, i32 0 
   1329  
   1330 
   1331 bb62:           ; preds = %bb55, %bb53
   1332         %promote.0 = phi i32 [ %169, %bb55 ], [ 0, %bb53 ]             
   1333         %171 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
   1334         %172 = add i32 %171, -1         ; <i32> [#uses=1]
   1335         %173 = getelementptr [128 x i8]* %movetext, i32 0, i32 %172       
   1336 
   1337 ...  no stores ...
   1338        br i1 %or.cond, label %bb65, label %bb72
   1339 
   1340 bb65:           ; preds = %bb62
   1341         store i8 0, i8* %173, align 1
   1342         br label %bb72
   1343 
   1344 bb72:           ; preds = %bb65, %bb62
   1345         %trank.1 = phi i32 [ %176, %bb65 ], [ -1, %bb62 ]            
   1346         %177 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
   1347 
   1348 Note that on the bb62->bb72 path, that the %177 strlen call is partially
   1349 redundant with the %171 call.  At worst, we could shove the %177 strlen call
   1350 up into the bb65 block moving it out of the bb62->bb72 path.   However, note
   1351 that bb65 stores to the string, zeroing out the last byte.  This means that on
   1352 that path the value of %177 is actually just %171-1.  A sub is cheaper than a
   1353 strlen!
   1354 
   1355 This pattern repeats several times, basically doing:
   1356 
   1357   A = strlen(P);
   1358   P[A-1] = 0;
   1359   B = strlen(P);
   1360   where it is "obvious" that B = A-1.
   1361 
   1362 //===---------------------------------------------------------------------===//
   1363 
   1364 186.crafty has this interesting pattern with the "out.4543" variable:
   1365 
   1366 call void @llvm.memcpy.i32(
   1367         i8* getelementptr ([10 x i8]* @out.4543, i32 0, i32 0),
   1368        i8* getelementptr ([7 x i8]* @"\01LC28700", i32 0, i32 0), i32 7, i32 1) 
   1369 %101 = call@printf(i8* ...   @out.4543, i32 0, i32 0)) nounwind 
   1370 
   1371 It is basically doing:
   1372 
   1373   memcpy(globalarray, "string");
   1374   printf(...,  globalarray);
   1375   
   1376 Anyway, by knowing that printf just reads the memory and forward substituting
   1377 the string directly into the printf, this eliminates reads from globalarray.
   1378 Since this pattern occurs frequently in crafty (due to the "DisplayTime" and
   1379 other similar functions) there are many stores to "out".  Once all the printfs
   1380 stop using "out", all that is left is the memcpy's into it.  This should allow
   1381 globalopt to remove the "stored only" global.
   1382 
   1383 //===---------------------------------------------------------------------===//
   1384 
   1385 This code:
   1386 
   1387 define inreg i32 @foo(i8* inreg %p) nounwind {
   1388   %tmp0 = load i8* %p
   1389   %tmp1 = ashr i8 %tmp0, 5
   1390   %tmp2 = sext i8 %tmp1 to i32
   1391   ret i32 %tmp2
   1392 }
   1393 
   1394 could be dagcombine'd to a sign-extending load with a shift.
   1395 For example, on x86 this currently gets this:
   1396 
   1397 	movb	(%eax), %al
   1398 	sarb	$5, %al
   1399 	movsbl	%al, %eax
   1400 
   1401 while it could get this:
   1402 
   1403 	movsbl	(%eax), %eax
   1404 	sarl	$5, %eax
   1405 
   1406 //===---------------------------------------------------------------------===//
   1407 
   1408 GCC PR31029:
   1409 
   1410 int test(int x) { return 1-x == x; }     // --> return false
   1411 int test2(int x) { return 2-x == x; }    // --> return x == 1 ?
   1412 
   1413 Always foldable for odd constants, what is the rule for even?
   1414 
   1415 //===---------------------------------------------------------------------===//
   1416 
   1417 PR 3381: GEP to field of size 0 inside a struct could be turned into GEP
   1418 for next field in struct (which is at same address).
   1419 
   1420 For example: store of float into { {{}}, float } could be turned into a store to
   1421 the float directly.
   1422 
   1423 //===---------------------------------------------------------------------===//
   1424 
   1425 The arg promotion pass should make use of nocapture to make its alias analysis
   1426 stuff much more precise.
   1427 
   1428 //===---------------------------------------------------------------------===//
   1429 
   1430 The following functions should be optimized to use a select instead of a
   1431 branch (from gcc PR40072):
   1432 
   1433 char char_int(int m) {if(m>7) return 0; return m;}
   1434 int int_char(char m) {if(m>7) return 0; return m;}
   1435 
   1436 //===---------------------------------------------------------------------===//
   1437 
   1438 int func(int a, int b) { if (a & 0x80) b |= 0x80; else b &= ~0x80; return b; }
   1439 
   1440 Generates this:
   1441 
   1442 define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
   1443 entry:
   1444   %0 = and i32 %a, 128                            ; <i32> [#uses=1]
   1445   %1 = icmp eq i32 %0, 0                          ; <i1> [#uses=1]
   1446   %2 = or i32 %b, 128                             ; <i32> [#uses=1]
   1447   %3 = and i32 %b, -129                           ; <i32> [#uses=1]
   1448   %b_addr.0 = select i1 %1, i32 %3, i32 %2        ; <i32> [#uses=1]
   1449   ret i32 %b_addr.0
   1450 }
   1451 
   1452 However, it's functionally equivalent to:
   1453 
   1454          b = (b & ~0x80) | (a & 0x80);
   1455 
   1456 Which generates this:
   1457 
   1458 define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
   1459 entry:
   1460   %0 = and i32 %b, -129                           ; <i32> [#uses=1]
   1461   %1 = and i32 %a, 128                            ; <i32> [#uses=1]
   1462   %2 = or i32 %0, %1                              ; <i32> [#uses=1]
   1463   ret i32 %2
   1464 }
   1465 
   1466 This can be generalized for other forms:
   1467 
   1468      b = (b & ~0x80) | (a & 0x40) << 1;
   1469 
   1470 //===---------------------------------------------------------------------===//
   1471 
   1472 These two functions produce different code. They shouldn't:
   1473 
   1474 #include <stdint.h>
   1475  
   1476 uint8_t p1(uint8_t b, uint8_t a) {
   1477   b = (b & ~0xc0) | (a & 0xc0);
   1478   return (b);
   1479 }
   1480  
   1481 uint8_t p2(uint8_t b, uint8_t a) {
   1482   b = (b & ~0x40) | (a & 0x40);
   1483   b = (b & ~0x80) | (a & 0x80);
   1484   return (b);
   1485 }
   1486 
   1487 define zeroext i8 @p1(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
   1488 entry:
   1489   %0 = and i8 %b, 63                              ; <i8> [#uses=1]
   1490   %1 = and i8 %a, -64                             ; <i8> [#uses=1]
   1491   %2 = or i8 %1, %0                               ; <i8> [#uses=1]
   1492   ret i8 %2
   1493 }
   1494 
   1495 define zeroext i8 @p2(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
   1496 entry:
   1497   %0 = and i8 %b, 63                              ; <i8> [#uses=1]
   1498   %.masked = and i8 %a, 64                        ; <i8> [#uses=1]
   1499   %1 = and i8 %a, -128                            ; <i8> [#uses=1]
   1500   %2 = or i8 %1, %0                               ; <i8> [#uses=1]
   1501   %3 = or i8 %2, %.masked                         ; <i8> [#uses=1]
   1502   ret i8 %3
   1503 }
   1504 
   1505 //===---------------------------------------------------------------------===//
   1506 
   1507 IPSCCP does not currently propagate argument dependent constants through
   1508 functions where it does not not all of the callers.  This includes functions
   1509 with normal external linkage as well as templates, C99 inline functions etc.
   1510 Specifically, it does nothing to:
   1511 
   1512 define i32 @test(i32 %x, i32 %y, i32 %z) nounwind {
   1513 entry:
   1514   %0 = add nsw i32 %y, %z                         
   1515   %1 = mul i32 %0, %x                             
   1516   %2 = mul i32 %y, %z                             
   1517   %3 = add nsw i32 %1, %2                         
   1518   ret i32 %3
   1519 }
   1520 
   1521 define i32 @test2() nounwind {
   1522 entry:
   1523   %0 = call i32 @test(i32 1, i32 2, i32 4) nounwind
   1524   ret i32 %0
   1525 }
   1526 
   1527 It would be interesting extend IPSCCP to be able to handle simple cases like
   1528 this, where all of the arguments to a call are constant.  Because IPSCCP runs
   1529 before inlining, trivial templates and inline functions are not yet inlined.
   1530 The results for a function + set of constant arguments should be memoized in a
   1531 map.
   1532 
   1533 //===---------------------------------------------------------------------===//
   1534 
   1535 The libcall constant folding stuff should be moved out of SimplifyLibcalls into
   1536 libanalysis' constantfolding logic.  This would allow IPSCCP to be able to
   1537 handle simple things like this:
   1538 
   1539 static int foo(const char *X) { return strlen(X); }
   1540 int bar() { return foo("abcd"); }
   1541 
   1542 //===---------------------------------------------------------------------===//
   1543 
   1544 functionattrs doesn't know much about memcpy/memset.  This function should be
   1545 marked readnone rather than readonly, since it only twiddles local memory, but
   1546 functionattrs doesn't handle memset/memcpy/memmove aggressively:
   1547 
   1548 struct X { int *p; int *q; };
   1549 int foo() {
   1550  int i = 0, j = 1;
   1551  struct X x, y;
   1552  int **p;
   1553  y.p = &i;
   1554  x.q = &j;
   1555  p = __builtin_memcpy (&x, &y, sizeof (int *));
   1556  return **p;
   1557 }
   1558 
   1559 This can be seen at:
   1560 $ clang t.c -S -o - -mkernel -O0 -emit-llvm | opt -functionattrs -S
   1561 
   1562 
   1563 //===---------------------------------------------------------------------===//
   1564 
   1565 Missed instcombine transformation:
   1566 define i1 @a(i32 %x) nounwind readnone {
   1567 entry:
   1568   %cmp = icmp eq i32 %x, 30
   1569   %sub = add i32 %x, -30
   1570   %cmp2 = icmp ugt i32 %sub, 9
   1571   %or = or i1 %cmp, %cmp2
   1572   ret i1 %or
   1573 }
   1574 This should be optimized to a single compare.  Testcase derived from gcc.
   1575 
   1576 //===---------------------------------------------------------------------===//
   1577 
   1578 Missed instcombine or reassociate transformation:
   1579 int a(int a, int b) { return (a==12)&(b>47)&(b<58); }
   1580 
   1581 The sgt and slt should be combined into a single comparison. Testcase derived
   1582 from gcc.
   1583 
   1584 //===---------------------------------------------------------------------===//
   1585 
   1586 Missed instcombine transformation:
   1587 
   1588   %382 = srem i32 %tmp14.i, 64                    ; [#uses=1]
   1589   %383 = zext i32 %382 to i64                     ; [#uses=1]
   1590   %384 = shl i64 %381, %383                       ; [#uses=1]
   1591   %385 = icmp slt i32 %tmp14.i, 64                ; [#uses=1]
   1592 
   1593 The srem can be transformed to an and because if %tmp14.i is negative, the
   1594 shift is undefined.  Testcase derived from 403.gcc.
   1595 
   1596 //===---------------------------------------------------------------------===//
   1597 
   1598 This is a range comparison on a divided result (from 403.gcc):
   1599 
   1600   %1337 = sdiv i32 %1336, 8                       ; [#uses=1]
   1601   %.off.i208 = add i32 %1336, 7                   ; [#uses=1]
   1602   %1338 = icmp ult i32 %.off.i208, 15             ; [#uses=1]
   1603   
   1604 We already catch this (removing the sdiv) if there isn't an add, we should
   1605 handle the 'add' as well.  This is a common idiom with it's builtin_alloca code.
   1606 C testcase:
   1607 
   1608 int a(int x) { return (unsigned)(x/16+7) < 15; }
   1609 
   1610 Another similar case involves truncations on 64-bit targets:
   1611 
   1612   %361 = sdiv i64 %.046, 8                        ; [#uses=1]
   1613   %362 = trunc i64 %361 to i32                    ; [#uses=2]
   1614 ...
   1615   %367 = icmp eq i32 %362, 0                      ; [#uses=1]
   1616 
   1617 //===---------------------------------------------------------------------===//
   1618 
   1619 Missed instcombine/dagcombine transformation:
   1620 define void @lshift_lt(i8 zeroext %a) nounwind {
   1621 entry:
   1622   %conv = zext i8 %a to i32
   1623   %shl = shl i32 %conv, 3
   1624   %cmp = icmp ult i32 %shl, 33
   1625   br i1 %cmp, label %if.then, label %if.end
   1626 
   1627 if.then:
   1628   tail call void @bar() nounwind
   1629   ret void
   1630 
   1631 if.end:
   1632   ret void
   1633 }
   1634 declare void @bar() nounwind
   1635 
   1636 The shift should be eliminated.  Testcase derived from gcc.
   1637 
   1638 //===---------------------------------------------------------------------===//
   1639 
   1640 These compile into different code, one gets recognized as a switch and the
   1641 other doesn't due to phase ordering issues (PR6212):
   1642 
   1643 int test1(int mainType, int subType) {
   1644   if (mainType == 7)
   1645     subType = 4;
   1646   else if (mainType == 9)
   1647     subType = 6;
   1648   else if (mainType == 11)
   1649     subType = 9;
   1650   return subType;
   1651 }
   1652 
   1653 int test2(int mainType, int subType) {
   1654   if (mainType == 7)
   1655     subType = 4;
   1656   if (mainType == 9)
   1657     subType = 6;
   1658   if (mainType == 11)
   1659     subType = 9;
   1660   return subType;
   1661 }
   1662 
   1663 //===---------------------------------------------------------------------===//
   1664 
   1665 The following test case (from PR6576):
   1666 
   1667 define i32 @mul(i32 %a, i32 %b) nounwind readnone {
   1668 entry:
   1669  %cond1 = icmp eq i32 %b, 0                      ; <i1> [#uses=1]
   1670  br i1 %cond1, label %exit, label %bb.nph
   1671 bb.nph:                                           ; preds = %entry
   1672  %tmp = mul i32 %b, %a                           ; <i32> [#uses=1]
   1673  ret i32 %tmp
   1674 exit:                                             ; preds = %entry
   1675  ret i32 0
   1676 }
   1677 
   1678 could be reduced to:
   1679 
   1680 define i32 @mul(i32 %a, i32 %b) nounwind readnone {
   1681 entry:
   1682  %tmp = mul i32 %b, %a
   1683  ret i32 %tmp
   1684 }
   1685 
   1686 //===---------------------------------------------------------------------===//
   1687 
   1688 We should use DSE + llvm.lifetime.end to delete dead vtable pointer updates.
   1689 See GCC PR34949
   1690 
   1691 Another interesting case is that something related could be used for variables
   1692 that go const after their ctor has finished.  In these cases, globalopt (which
   1693 can statically run the constructor) could mark the global const (so it gets put
   1694 in the readonly section).  A testcase would be:
   1695 
   1696 #include <complex>
   1697 using namespace std;
   1698 const complex<char> should_be_in_rodata (42,-42);
   1699 complex<char> should_be_in_data (42,-42);
   1700 complex<char> should_be_in_bss;
   1701 
   1702 Where we currently evaluate the ctors but the globals don't become const because
   1703 the optimizer doesn't know they "become const" after the ctor is done.  See
   1704 GCC PR4131 for more examples.
   1705 
   1706 //===---------------------------------------------------------------------===//
   1707 
   1708 In this code:
   1709 
   1710 long foo(long x) {
   1711   return x > 1 ? x : 1;
   1712 }
   1713 
   1714 LLVM emits a comparison with 1 instead of 0. 0 would be equivalent
   1715 and cheaper on most targets.
   1716 
   1717 LLVM prefers comparisons with zero over non-zero in general, but in this
   1718 case it choses instead to keep the max operation obvious.
   1719 
   1720 //===---------------------------------------------------------------------===//
   1721 
   1722 define void @a(i32 %x) nounwind {
   1723 entry:
   1724   switch i32 %x, label %if.end [
   1725     i32 0, label %if.then
   1726     i32 1, label %if.then
   1727     i32 2, label %if.then
   1728     i32 3, label %if.then
   1729     i32 5, label %if.then
   1730   ]
   1731 if.then:
   1732   tail call void @foo() nounwind
   1733   ret void
   1734 if.end:
   1735   ret void
   1736 }
   1737 declare void @foo()
   1738 
   1739 Generated code on x86-64 (other platforms give similar results):
   1740 a:
   1741 	cmpl	$5, %edi
   1742 	ja	LBB2_2
   1743 	cmpl	$4, %edi
   1744 	jne	LBB2_3
   1745 .LBB0_2:
   1746 	ret
   1747 .LBB0_3:
   1748 	jmp	foo  # TAILCALL
   1749 
   1750 If we wanted to be really clever, we could simplify the whole thing to
   1751 something like the following, which eliminates a branch:
   1752 	xorl    $1, %edi
   1753 	cmpl	$4, %edi
   1754 	ja	.LBB0_2
   1755 	ret
   1756 .LBB0_2:
   1757 	jmp	foo  # TAILCALL
   1758 
   1759 //===---------------------------------------------------------------------===//
   1760 
   1761 We compile this:
   1762 
   1763 int foo(int a) { return (a & (~15)) / 16; }
   1764 
   1765 Into:
   1766 
   1767 define i32 @foo(i32 %a) nounwind readnone ssp {
   1768 entry:
   1769   %and = and i32 %a, -16
   1770   %div = sdiv i32 %and, 16
   1771   ret i32 %div
   1772 }
   1773 
   1774 but this code (X & -A)/A is X >> log2(A) when A is a power of 2, so this case
   1775 should be instcombined into just "a >> 4".
   1776 
   1777 We do get this at the codegen level, so something knows about it, but 
   1778 instcombine should catch it earlier:
   1779 
   1780 _foo:                                   ## @foo
   1781 ## BB#0:                                ## %entry
   1782 	movl	%edi, %eax
   1783 	sarl	$4, %eax
   1784 	ret
   1785 
   1786 //===---------------------------------------------------------------------===//
   1787 
   1788 This code (from GCC PR28685):
   1789 
   1790 int test(int a, int b) {
   1791   int lt = a < b;
   1792   int eq = a == b;
   1793   if (lt)
   1794     return 1;
   1795   return eq;
   1796 }
   1797 
   1798 Is compiled to:
   1799 
   1800 define i32 @test(i32 %a, i32 %b) nounwind readnone ssp {
   1801 entry:
   1802   %cmp = icmp slt i32 %a, %b
   1803   br i1 %cmp, label %return, label %if.end
   1804 
   1805 if.end:                                           ; preds = %entry
   1806   %cmp5 = icmp eq i32 %a, %b
   1807   %conv6 = zext i1 %cmp5 to i32
   1808   ret i32 %conv6
   1809 
   1810 return:                                           ; preds = %entry
   1811   ret i32 1
   1812 }
   1813 
   1814 it could be:
   1815 
   1816 define i32 @test__(i32 %a, i32 %b) nounwind readnone ssp {
   1817 entry:
   1818   %0 = icmp sle i32 %a, %b
   1819   %retval = zext i1 %0 to i32
   1820   ret i32 %retval
   1821 }
   1822 
   1823 //===---------------------------------------------------------------------===//
   1824 
   1825 This code can be seen in viterbi:
   1826 
   1827   %64 = call noalias i8* @malloc(i64 %62) nounwind
   1828 ...
   1829   %67 = call i64 @llvm.objectsize.i64(i8* %64, i1 false) nounwind
   1830   %68 = call i8* @__memset_chk(i8* %64, i32 0, i64 %62, i64 %67) nounwind
   1831 
   1832 llvm.objectsize.i64 should be taught about malloc/calloc, allowing it to
   1833 fold to %62.  This is a security win (overflows of malloc will get caught)
   1834 and also a performance win by exposing more memsets to the optimizer.
   1835 
   1836 This occurs several times in viterbi.
   1837 
   1838 Note that this would change the semantics of @llvm.objectsize which by its
   1839 current definition always folds to a constant. We also should make sure that
   1840 we remove checking in code like
   1841 
   1842   char *p = malloc(strlen(s)+1);
   1843   __strcpy_chk(p, s, __builtin_objectsize(p, 0));
   1844 
   1845 //===---------------------------------------------------------------------===//
   1846 
   1847 clang -O3 currently compiles this code
   1848 
   1849 int g(unsigned int a) {
   1850   unsigned int c[100];
   1851   c[10] = a;
   1852   c[11] = a;
   1853   unsigned int b = c[10] + c[11];
   1854   if(b > a*2) a = 4;
   1855   else a = 8;
   1856   return a + 7;
   1857 }
   1858 
   1859 into
   1860 
   1861 define i32 @g(i32 a) nounwind readnone {
   1862   %add = shl i32 %a, 1
   1863   %mul = shl i32 %a, 1
   1864   %cmp = icmp ugt i32 %add, %mul
   1865   %a.addr.0 = select i1 %cmp, i32 11, i32 15
   1866   ret i32 %a.addr.0
   1867 }
   1868 
   1869 The icmp should fold to false. This CSE opportunity is only available
   1870 after GVN and InstCombine have run.
   1871 
   1872 //===---------------------------------------------------------------------===//
   1873 
   1874 memcpyopt should turn this:
   1875 
   1876 define i8* @test10(i32 %x) {
   1877   %alloc = call noalias i8* @malloc(i32 %x) nounwind
   1878   call void @llvm.memset.p0i8.i32(i8* %alloc, i8 0, i32 %x, i32 1, i1 false)
   1879   ret i8* %alloc
   1880 }
   1881 
   1882 into a call to calloc.  We should make sure that we analyze calloc as
   1883 aggressively as malloc though.
   1884 
   1885 //===---------------------------------------------------------------------===//
   1886 
   1887 clang -O3 doesn't optimize this:
   1888 
   1889 void f1(int* begin, int* end) {
   1890   std::fill(begin, end, 0);
   1891 }
   1892 
   1893 into a memset.  This is PR8942.
   1894 
   1895 //===---------------------------------------------------------------------===//
   1896 
   1897 clang -O3 -fno-exceptions currently compiles this code:
   1898 
   1899 void f(int N) {
   1900   std::vector<int> v(N);
   1901 
   1902   extern void sink(void*); sink(&v);
   1903 }
   1904 
   1905 into
   1906 
   1907 define void @_Z1fi(i32 %N) nounwind {
   1908 entry:
   1909   %v2 = alloca [3 x i32*], align 8
   1910   %v2.sub = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 0
   1911   %tmpcast = bitcast [3 x i32*]* %v2 to %"class.std::vector"*
   1912   %conv = sext i32 %N to i64
   1913   store i32* null, i32** %v2.sub, align 8, !tbaa !0
   1914   %tmp3.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 1
   1915   store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
   1916   %tmp4.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 2
   1917   store i32* null, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
   1918   %cmp.i.i.i.i = icmp eq i32 %N, 0
   1919   br i1 %cmp.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i, label %cond.true.i.i.i.i
   1920 
   1921 _ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i: ; preds = %entry
   1922   store i32* null, i32** %v2.sub, align 8, !tbaa !0
   1923   store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
   1924   %add.ptr.i5.i.i = getelementptr inbounds i32* null, i64 %conv
   1925   store i32* %add.ptr.i5.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
   1926   br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit
   1927 
   1928 cond.true.i.i.i.i:                                ; preds = %entry
   1929   %cmp.i.i.i.i.i = icmp slt i32 %N, 0
   1930   br i1 %cmp.i.i.i.i.i, label %if.then.i.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i
   1931 
   1932 if.then.i.i.i.i.i:                                ; preds = %cond.true.i.i.i.i
   1933   call void @_ZSt17__throw_bad_allocv() noreturn nounwind
   1934   unreachable
   1935 
   1936 _ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i:    ; preds = %cond.true.i.i.i.i
   1937   %mul.i.i.i.i.i = shl i64 %conv, 2
   1938   %call3.i.i.i.i.i = call noalias i8* @_Znwm(i64 %mul.i.i.i.i.i) nounwind
   1939   %0 = bitcast i8* %call3.i.i.i.i.i to i32*
   1940   store i32* %0, i32** %v2.sub, align 8, !tbaa !0
   1941   store i32* %0, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
   1942   %add.ptr.i.i.i = getelementptr inbounds i32* %0, i64 %conv
   1943   store i32* %add.ptr.i.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
   1944   call void @llvm.memset.p0i8.i64(i8* %call3.i.i.i.i.i, i8 0, i64 %mul.i.i.i.i.i, i32 4, i1 false)
   1945   br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit
   1946 
   1947 This is just the handling the construction of the vector. Most surprising here
   1948 is the fact that all three null stores in %entry are dead (because we do no
   1949 cross-block DSE).
   1950 
   1951 Also surprising is that %conv isn't simplified to 0 in %....exit.thread.i.i.
   1952 This is a because the client of LazyValueInfo doesn't simplify all instruction
   1953 operands, just selected ones.
   1954 
   1955 //===---------------------------------------------------------------------===//
   1956 
   1957 clang -O3 -fno-exceptions currently compiles this code:
   1958 
   1959 void f(char* a, int n) {
   1960   __builtin_memset(a, 0, n);
   1961   for (int i = 0; i < n; ++i)
   1962     a[i] = 0;
   1963 }
   1964 
   1965 into:
   1966 
   1967 define void @_Z1fPci(i8* nocapture %a, i32 %n) nounwind {
   1968 entry:
   1969   %conv = sext i32 %n to i64
   1970   tail call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %conv, i32 1, i1 false)
   1971   %cmp8 = icmp sgt i32 %n, 0
   1972   br i1 %cmp8, label %for.body.lr.ph, label %for.end
   1973 
   1974 for.body.lr.ph:                                   ; preds = %entry
   1975   %tmp10 = add i32 %n, -1
   1976   %tmp11 = zext i32 %tmp10 to i64
   1977   %tmp12 = add i64 %tmp11, 1
   1978   call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %tmp12, i32 1, i1 false)
   1979   ret void
   1980 
   1981 for.end:                                          ; preds = %entry
   1982   ret void
   1983 }
   1984 
   1985 This shouldn't need the ((zext (%n - 1)) + 1) game, and it should ideally fold
   1986 the two memset's together.
   1987 
   1988 The issue with the addition only occurs in 64-bit mode, and appears to be at
   1989 least partially caused by Scalar Evolution not keeping its cache updated: it
   1990 returns the "wrong" result immediately after indvars runs, but figures out the
   1991 expected result if it is run from scratch on IR resulting from running indvars.
   1992 
   1993 //===---------------------------------------------------------------------===//
   1994 
   1995 clang -O3 -fno-exceptions currently compiles this code:
   1996 
   1997 struct S {
   1998   unsigned short m1, m2;
   1999   unsigned char m3, m4;
   2000 };
   2001 
   2002 void f(int N) {
   2003   std::vector<S> v(N);
   2004   extern void sink(void*); sink(&v);
   2005 }
   2006 
   2007 into poor code for zero-initializing 'v' when N is >0. The problem is that
   2008 S is only 6 bytes, but each element is 8 byte-aligned. We generate a loop and
   2009 4 stores on each iteration. If the struct were 8 bytes, this gets turned into
   2010 a memset.
   2011 
   2012 In order to handle this we have to:
   2013   A) Teach clang to generate metadata for memsets of structs that have holes in
   2014      them.
   2015   B) Teach clang to use such a memset for zero init of this struct (since it has
   2016      a hole), instead of doing elementwise zeroing.
   2017 
   2018 //===---------------------------------------------------------------------===//
   2019 
   2020 clang -O3 currently compiles this code:
   2021 
   2022 extern const int magic;
   2023 double f() { return 0.0 * magic; }
   2024 
   2025 into
   2026 
   2027 @magic = external constant i32
   2028 
   2029 define double @_Z1fv() nounwind readnone {
   2030 entry:
   2031   %tmp = load i32* @magic, align 4, !tbaa !0
   2032   %conv = sitofp i32 %tmp to double
   2033   %mul = fmul double %conv, 0.000000e+00
   2034   ret double %mul
   2035 }
   2036 
   2037 We should be able to fold away this fmul to 0.0.  More generally, fmul(x,0.0)
   2038 can be folded to 0.0 if we can prove that the LHS is not -0.0, not a NaN, and
   2039 not an INF.  The CannotBeNegativeZero predicate in value tracking should be
   2040 extended to support general "fpclassify" operations that can return 
   2041 yes/no/unknown for each of these predicates.
   2042 
   2043 In this predicate, we know that uitofp is trivially never NaN or -0.0, and
   2044 we know that it isn't +/-Inf if the floating point type has enough exponent bits
   2045 to represent the largest integer value as < inf.
   2046 
   2047 //===---------------------------------------------------------------------===//
   2048 
   2049 When optimizing a transformation that can change the sign of 0.0 (such as the
   2050 0.0*val -> 0.0 transformation above), it might be provable that the sign of the
   2051 expression doesn't matter.  For example, by the above rules, we can't transform
   2052 fmul(sitofp(x), 0.0) into 0.0, because x might be -1 and the result of the
   2053 expression is defined to be -0.0.
   2054 
   2055 If we look at the uses of the fmul for example, we might be able to prove that
   2056 all uses don't care about the sign of zero.  For example, if we have:
   2057 
   2058   fadd(fmul(sitofp(x), 0.0), 2.0)
   2059 
   2060 Since we know that x+2.0 doesn't care about the sign of any zeros in X, we can
   2061 transform the fmul to 0.0, and then the fadd to 2.0.
   2062 
   2063 //===---------------------------------------------------------------------===//
   2064 
   2065 We should enhance memcpy/memcpy/memset to allow a metadata node on them
   2066 indicating that some bytes of the transfer are undefined.  This is useful for
   2067 frontends like clang when lowering struct copies, when some elements of the
   2068 struct are undefined.  Consider something like this:
   2069 
   2070 struct x {
   2071   char a;
   2072   int b[4];
   2073 };
   2074 void foo(struct x*P);
   2075 struct x testfunc() {
   2076   struct x V1, V2;
   2077   foo(&V1);
   2078   V2 = V1;
   2079 
   2080   return V2;
   2081 }
   2082 
   2083 We currently compile this to:
   2084 $ clang t.c -S -o - -O0 -emit-llvm | opt -scalarrepl -S
   2085 
   2086 
   2087 %struct.x = type { i8, [4 x i32] }
   2088 
   2089 define void @testfunc(%struct.x* sret %agg.result) nounwind ssp {
   2090 entry:
   2091   %V1 = alloca %struct.x, align 4
   2092   call void @foo(%struct.x* %V1)
   2093   %tmp1 = bitcast %struct.x* %V1 to i8*
   2094   %0 = bitcast %struct.x* %V1 to i160*
   2095   %srcval1 = load i160* %0, align 4
   2096   %tmp2 = bitcast %struct.x* %agg.result to i8*
   2097   %1 = bitcast %struct.x* %agg.result to i160*
   2098   store i160 %srcval1, i160* %1, align 4
   2099   ret void
   2100 }
   2101 
   2102 This happens because SRoA sees that the temp alloca has is being memcpy'd into
   2103 and out of and it has holes and it has to be conservative.  If we knew about the
   2104 holes, then this could be much much better.
   2105 
   2106 Having information about these holes would also improve memcpy (etc) lowering at
   2107 llc time when it gets inlined, because we can use smaller transfers.  This also
   2108 avoids partial register stalls in some important cases.
   2109 
   2110 //===---------------------------------------------------------------------===//
   2111 
   2112 We don't fold (icmp (add) (add)) unless the two adds only have a single use.
   2113 There are a lot of cases that we're refusing to fold in (e.g.) 256.bzip2, for
   2114 example:
   2115 
   2116  %indvar.next90 = add i64 %indvar89, 1     ;; Has 2 uses
   2117  %tmp96 = add i64 %tmp95, 1                ;; Has 1 use
   2118  %exitcond97 = icmp eq i64 %indvar.next90, %tmp96
   2119 
   2120 We don't fold this because we don't want to introduce an overlapped live range
   2121 of the ivar.  However if we can make this more aggressive without causing
   2122 performance issues in two ways:
   2123 
   2124 1. If *either* the LHS or RHS has a single use, we can definitely do the
   2125    transformation.  In the overlapping liverange case we're trading one register
   2126    use for one fewer operation, which is a reasonable trade.  Before doing this
   2127    we should verify that the llc output actually shrinks for some benchmarks.
   2128 2. If both ops have multiple uses, we can still fold it if the operations are
   2129    both sinkable to *after* the icmp (e.g. in a subsequent block) which doesn't
   2130    increase register pressure.
   2131 
   2132 There are a ton of icmp's we aren't simplifying because of the reg pressure
   2133 concern.  Care is warranted here though because many of these are induction
   2134 variables and other cases that matter a lot to performance, like the above.
   2135 Here's a blob of code that you can drop into the bottom of visitICmp to see some
   2136 missed cases:
   2137 
   2138   { Value *A, *B, *C, *D;
   2139     if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 
   2140         match(Op1, m_Add(m_Value(C), m_Value(D))) &&
   2141         (A == C || A == D || B == C || B == D)) {
   2142       errs() << "OP0 = " << *Op0 << "  U=" << Op0->getNumUses() << "\n";
   2143       errs() << "OP1 = " << *Op1 << "  U=" << Op1->getNumUses() << "\n";
   2144       errs() << "CMP = " << I << "\n\n";
   2145     }
   2146   }
   2147 
   2148 //===---------------------------------------------------------------------===//
   2149 
   2150 define i1 @test1(i32 %x) nounwind {
   2151   %and = and i32 %x, 3
   2152   %cmp = icmp ult i32 %and, 2
   2153   ret i1 %cmp
   2154 }
   2155 
   2156 Can be folded to (x & 2) == 0.
   2157 
   2158 define i1 @test2(i32 %x) nounwind {
   2159   %and = and i32 %x, 3
   2160   %cmp = icmp ugt i32 %and, 1
   2161   ret i1 %cmp
   2162 }
   2163 
   2164 Can be folded to (x & 2) != 0.
   2165 
   2166 SimplifyDemandedBits shrinks the "and" constant to 2 but instcombine misses the
   2167 icmp transform.
   2168 
   2169 //===---------------------------------------------------------------------===//
   2170 
   2171 This code:
   2172 
   2173 typedef struct {
   2174 int f1:1;
   2175 int f2:1;
   2176 int f3:1;
   2177 int f4:29;
   2178 } t1;
   2179 
   2180 typedef struct {
   2181 int f1:1;
   2182 int f2:1;
   2183 int f3:30;
   2184 } t2;
   2185 
   2186 t1 s1;
   2187 t2 s2;
   2188 
   2189 void func1(void)
   2190 {
   2191 s1.f1 = s2.f1;
   2192 s1.f2 = s2.f2;
   2193 }
   2194 
   2195 Compiles into this IR (on x86-64 at least):
   2196 
   2197 %struct.t1 = type { i8, [3 x i8] }
   2198 @s2 = global %struct.t1 zeroinitializer, align 4
   2199 @s1 = global %struct.t1 zeroinitializer, align 4
   2200 define void @func1() nounwind ssp noredzone {
   2201 entry:
   2202   %0 = load i32* bitcast (%struct.t1* @s2 to i32*), align 4
   2203   %bf.val.sext5 = and i32 %0, 1
   2204   %1 = load i32* bitcast (%struct.t1* @s1 to i32*), align 4
   2205   %2 = and i32 %1, -4
   2206   %3 = or i32 %2, %bf.val.sext5
   2207   %bf.val.sext26 = and i32 %0, 2
   2208   %4 = or i32 %3, %bf.val.sext26
   2209   store i32 %4, i32* bitcast (%struct.t1* @s1 to i32*), align 4
   2210   ret void
   2211 }
   2212 
   2213 The two or/and's should be merged into one each.
   2214 
   2215 //===---------------------------------------------------------------------===//
   2216 
   2217 Machine level code hoisting can be useful in some cases.  For example, PR9408
   2218 is about:
   2219 
   2220 typedef union {
   2221  void (*f1)(int);
   2222  void (*f2)(long);
   2223 } funcs;
   2224 
   2225 void foo(funcs f, int which) {
   2226  int a = 5;
   2227  if (which) {
   2228    f.f1(a);
   2229  } else {
   2230    f.f2(a);
   2231  }
   2232 }
   2233 
   2234 which we compile to:
   2235 
   2236 foo:                                    # @foo
   2237 # BB#0:                                 # %entry
   2238        pushq   %rbp
   2239        movq    %rsp, %rbp
   2240        testl   %esi, %esi
   2241        movq    %rdi, %rax
   2242        je      .LBB0_2
   2243 # BB#1:                                 # %if.then
   2244        movl    $5, %edi
   2245        callq   *%rax
   2246        popq    %rbp
   2247        ret
   2248 .LBB0_2:                                # %if.else
   2249        movl    $5, %edi
   2250        callq   *%rax
   2251        popq    %rbp
   2252        ret
   2253 
   2254 Note that bb1 and bb2 are the same.  This doesn't happen at the IR level
   2255 because one call is passing an i32 and the other is passing an i64.
   2256 
   2257 //===---------------------------------------------------------------------===//
   2258 
   2259 I see this sort of pattern in 176.gcc in a few places (e.g. the start of
   2260 store_bit_field).  The rem should be replaced with a multiply and subtract:
   2261 
   2262   %3 = sdiv i32 %A, %B
   2263   %4 = srem i32 %A, %B
   2264 
   2265 Similarly for udiv/urem.  Note that this shouldn't be done on X86 or ARM,
   2266 which can do this in a single operation (instruction or libcall).  It is
   2267 probably best to do this in the code generator.
   2268 
   2269 //===---------------------------------------------------------------------===//
   2270 
   2271 unsigned foo(unsigned x, unsigned y) { return (x & y) == 0 || x == 0; }
   2272 should fold to (x & y) == 0.
   2273 
   2274 //===---------------------------------------------------------------------===//
   2275 
   2276 unsigned foo(unsigned x, unsigned y) { return x > y && x != 0; }
   2277 should fold to x > y.
   2278 
   2279 //===---------------------------------------------------------------------===//
   2280