Home | History | Annotate | Download | only in Sparc
      1 //===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the Sparc instructions in TableGen format.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 //===----------------------------------------------------------------------===//
     15 // Instruction format superclass
     16 //===----------------------------------------------------------------------===//
     17 
     18 include "SparcInstrFormats.td"
     19 
     20 //===----------------------------------------------------------------------===//
     21 // Feature predicates.
     22 //===----------------------------------------------------------------------===//
     23 
     24 // True when generating 32-bit code.
     25 def Is32Bit : Predicate<"!Subtarget->is64Bit()">;
     26 
     27 // True when generating 64-bit code. This also implies HasV9.
     28 def Is64Bit : Predicate<"Subtarget->is64Bit()">;
     29 
     30 // HasV9 - This predicate is true when the target processor supports V9
     31 // instructions.  Note that the machine may be running in 32-bit mode.
     32 def HasV9   : Predicate<"Subtarget->isV9()">,
     33               AssemblerPredicate<"FeatureV9">;
     34 
     35 // HasNoV9 - This predicate is true when the target doesn't have V9
     36 // instructions.  Use of this is just a hack for the isel not having proper
     37 // costs for V8 instructions that are more expensive than their V9 ones.
     38 def HasNoV9 : Predicate<"!Subtarget->isV9()">;
     39 
     40 // HasVIS - This is true when the target processor has VIS extensions.
     41 def HasVIS : Predicate<"Subtarget->isVIS()">,
     42              AssemblerPredicate<"FeatureVIS">;
     43 def HasVIS2 : Predicate<"Subtarget->isVIS2()">,
     44              AssemblerPredicate<"FeatureVIS2">;
     45 def HasVIS3 : Predicate<"Subtarget->isVIS3()">,
     46              AssemblerPredicate<"FeatureVIS3">;
     47 
     48 // HasHardQuad - This is true when the target processor supports quad floating
     49 // point instructions.
     50 def HasHardQuad : Predicate<"Subtarget->hasHardQuad()">;
     51 
     52 // UseDeprecatedInsts - This predicate is true when the target processor is a
     53 // V8, or when it is V9 but the V8 deprecated instructions are efficient enough
     54 // to use when appropriate.  In either of these cases, the instruction selector
     55 // will pick deprecated instructions.
     56 def UseDeprecatedInsts : Predicate<"Subtarget->useDeprecatedV8Instructions()">;
     57 
     58 //===----------------------------------------------------------------------===//
     59 // Instruction Pattern Stuff
     60 //===----------------------------------------------------------------------===//
     61 
     62 def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
     63 
     64 def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
     65 
     66 def LO10 : SDNodeXForm<imm, [{
     67   return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023, SDLoc(N),
     68                                    MVT::i32);
     69 }]>;
     70 
     71 def HI22 : SDNodeXForm<imm, [{
     72   // Transformation function: shift the immediate value down into the low bits.
     73   return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, SDLoc(N),
     74                                    MVT::i32);
     75 }]>;
     76 
     77 def SETHIimm : PatLeaf<(imm), [{
     78   return isShiftedUInt<22, 10>(N->getZExtValue());
     79 }], HI22>;
     80 
     81 // Addressing modes.
     82 def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
     83 def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;
     84 
     85 // Address operands
     86 def SparcMEMrrAsmOperand : AsmOperandClass {
     87   let Name = "MEMrr";
     88   let ParserMethod = "parseMEMOperand";
     89 }
     90 
     91 def SparcMEMriAsmOperand : AsmOperandClass {
     92   let Name = "MEMri";
     93   let ParserMethod = "parseMEMOperand";
     94 }
     95 
     96 def MEMrr : Operand<iPTR> {
     97   let PrintMethod = "printMemOperand";
     98   let MIOperandInfo = (ops ptr_rc, ptr_rc);
     99   let ParserMatchClass = SparcMEMrrAsmOperand;
    100 }
    101 def MEMri : Operand<iPTR> {
    102   let PrintMethod = "printMemOperand";
    103   let MIOperandInfo = (ops ptr_rc, i32imm);
    104   let ParserMatchClass = SparcMEMriAsmOperand;
    105 }
    106 
    107 def TLSSym : Operand<iPTR>;
    108 
    109 // Branch targets have OtherVT type.
    110 def brtarget : Operand<OtherVT> {
    111   let EncoderMethod = "getBranchTargetOpValue";
    112 }
    113 
    114 def bprtarget : Operand<OtherVT> {
    115   let EncoderMethod = "getBranchPredTargetOpValue";
    116 }
    117 
    118 def bprtarget16 : Operand<OtherVT> {
    119   let EncoderMethod = "getBranchOnRegTargetOpValue";
    120 }
    121 
    122 def calltarget : Operand<i32> {
    123   let EncoderMethod = "getCallTargetOpValue";
    124   let DecoderMethod = "DecodeCall";
    125 }
    126 
    127 def simm13Op : Operand<i32> {
    128   let DecoderMethod = "DecodeSIMM13";
    129 }
    130 
    131 // Operand for printing out a condition code.
    132 let PrintMethod = "printCCOperand" in
    133   def CCOp : Operand<i32>;
    134 
    135 def SDTSPcmpicc :
    136 SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
    137 def SDTSPcmpfcc :
    138 SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
    139 def SDTSPbrcc :
    140 SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
    141 def SDTSPselectcc :
    142 SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
    143 def SDTSPFTOI :
    144 SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
    145 def SDTSPITOF :
    146 SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
    147 def SDTSPFTOX :
    148 SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>;
    149 def SDTSPXTOF :
    150 SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>;
    151 
    152 def SDTSPtlsadd :
    153 SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
    154 def SDTSPtlsld :
    155 SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
    156 
    157 def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>;
    158 def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
    159 def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
    160 def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
    161 def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
    162 
    163 def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
    164 def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
    165 
    166 def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
    167 def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
    168 def SPftox  : SDNode<"SPISD::FTOX", SDTSPFTOX>;
    169 def SPxtof  : SDNode<"SPISD::XTOF", SDTSPXTOF>;
    170 
    171 def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
    172 def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>;
    173 def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
    174 
    175 //  These are target-independent nodes, but have target-specific formats.
    176 def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
    177 def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
    178                                         SDTCisVT<1, i32> ]>;
    179 
    180 def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
    181                            [SDNPHasChain, SDNPOutGlue]>;
    182 def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
    183                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
    184 
    185 def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
    186 def call          : SDNode<"SPISD::CALL", SDT_SPCall,
    187                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
    188                             SDNPVariadic]>;
    189 
    190 def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
    191 def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
    192                            [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
    193 
    194 def flushw        : SDNode<"SPISD::FLUSHW", SDTNone,
    195                            [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
    196 
    197 def tlsadd        : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>;
    198 def tlsld         : SDNode<"SPISD::TLS_LD",  SDTSPtlsld>;
    199 def tlscall       : SDNode<"SPISD::TLS_CALL", SDT_SPCall,
    200                             [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
    201                              SDNPVariadic]>;
    202 
    203 def getPCX        : Operand<iPTR> {
    204   let PrintMethod = "printGetPCX";
    205 }
    206 
    207 //===----------------------------------------------------------------------===//
    208 // SPARC Flag Conditions
    209 //===----------------------------------------------------------------------===//
    210 
    211 // Note that these values must be kept in sync with the CCOp::CondCode enum
    212 // values.
    213 class ICC_VAL<int N> : PatLeaf<(i32 N)>;
    214 def ICC_NE  : ICC_VAL< 9>;  // Not Equal
    215 def ICC_E   : ICC_VAL< 1>;  // Equal
    216 def ICC_G   : ICC_VAL<10>;  // Greater
    217 def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
    218 def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
    219 def ICC_L   : ICC_VAL< 3>;  // Less
    220 def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
    221 def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
    222 def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
    223 def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
    224 def ICC_POS : ICC_VAL<14>;  // Positive
    225 def ICC_NEG : ICC_VAL< 6>;  // Negative
    226 def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
    227 def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
    228 
    229 class FCC_VAL<int N> : PatLeaf<(i32 N)>;
    230 def FCC_U   : FCC_VAL<23>;  // Unordered
    231 def FCC_G   : FCC_VAL<22>;  // Greater
    232 def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
    233 def FCC_L   : FCC_VAL<20>;  // Less
    234 def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
    235 def FCC_LG  : FCC_VAL<18>;  // Less or Greater
    236 def FCC_NE  : FCC_VAL<17>;  // Not Equal
    237 def FCC_E   : FCC_VAL<25>;  // Equal
    238 def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
    239 def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
    240 def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
    241 def FCC_LE  : FCC_VAL<27>;  // Less or Equal
    242 def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
    243 def FCC_O   : FCC_VAL<29>;  // Ordered
    244 
    245 //===----------------------------------------------------------------------===//
    246 // Instruction Class Templates
    247 //===----------------------------------------------------------------------===//
    248 
    249 /// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
    250 multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode,
    251                  RegisterClass RC, ValueType Ty, Operand immOp> {
    252   def rr  : F3_1<2, Op3Val,
    253                  (outs RC:$rd), (ins RC:$rs1, RC:$rs2),
    254                  !strconcat(OpcStr, " $rs1, $rs2, $rd"),
    255                  [(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))]>;
    256   def ri  : F3_2<2, Op3Val,
    257                  (outs RC:$rd), (ins RC:$rs1, immOp:$simm13),
    258                  !strconcat(OpcStr, " $rs1, $simm13, $rd"),
    259                  [(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))]>;
    260 }
    261 
    262 /// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
    263 /// pattern.
    264 multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
    265   def rr  : F3_1<2, Op3Val,
    266                  (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
    267                  !strconcat(OpcStr, " $rs1, $rs2, $rd"), []>;
    268   def ri  : F3_2<2, Op3Val,
    269                  (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
    270                  !strconcat(OpcStr, " $rs1, $simm13, $rd"), []>;
    271 }
    272 
    273 // Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
    274 multiclass Load<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
    275            RegisterClass RC, ValueType Ty> {
    276   def rr  : F3_1<3, Op3Val,
    277                  (outs RC:$dst), (ins MEMrr:$addr),
    278                  !strconcat(OpcStr, " [$addr], $dst"),
    279                  [(set Ty:$dst, (OpNode ADDRrr:$addr))]>;
    280   def ri  : F3_2<3, Op3Val,
    281                  (outs RC:$dst), (ins MEMri:$addr),
    282                  !strconcat(OpcStr, " [$addr], $dst"),
    283                  [(set Ty:$dst, (OpNode ADDRri:$addr))]>;
    284 }
    285 
    286 // TODO: Instructions of the LoadASI class are currently asm only; hooking up
    287 // CodeGen's address spaces to use these is a future task.
    288 class LoadASI<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
    289               RegisterClass RC, ValueType Ty> :
    290   F3_1_asi<3, Op3Val, (outs RC:$dst), (ins MEMrr:$addr, i8imm:$asi),
    291                 !strconcat(OpcStr, "a [$addr] $asi, $dst"),
    292                 []>;
    293 
    294 // LoadA multiclass - As above, but also define alternate address space variant
    295 multiclass LoadA<string OpcStr, bits<6> Op3Val, bits<6> LoadAOp3Val,
    296                  SDPatternOperator OpNode, RegisterClass RC, ValueType Ty> :
    297              Load<OpcStr, Op3Val, OpNode, RC, Ty> {
    298   def Arr  : LoadASI<OpcStr, LoadAOp3Val, OpNode, RC, Ty>;
    299 }
    300 
    301 // The LDSTUB instruction is supported for asm only.
    302 // It is unlikely that general-purpose code could make use of it.
    303 // CAS is preferred for sparc v9.
    304 def LDSTUBrr : F3_1<3, 0b001101, (outs IntRegs:$dst), (ins MEMrr:$addr),
    305                   "ldstub [$addr], $dst", []>;
    306 def LDSTUBri : F3_2<3, 0b001101, (outs IntRegs:$dst), (ins MEMri:$addr),
    307                   "ldstub [$addr], $dst", []>;
    308 def LDSTUBArr : F3_1_asi<3, 0b011101, (outs IntRegs:$dst),
    309                          (ins MEMrr:$addr, i8imm:$asi),
    310                          "ldstuba [$addr] $asi, $dst", []>;
    311 
    312 // Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
    313 multiclass Store<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
    314            RegisterClass RC, ValueType Ty> {
    315   def rr  : F3_1<3, Op3Val,
    316                  (outs), (ins MEMrr:$addr, RC:$rd),
    317                  !strconcat(OpcStr, " $rd, [$addr]"),
    318                  [(OpNode Ty:$rd, ADDRrr:$addr)]>;
    319   def ri  : F3_2<3, Op3Val,
    320                  (outs), (ins MEMri:$addr, RC:$rd),
    321                  !strconcat(OpcStr, " $rd, [$addr]"),
    322                  [(OpNode Ty:$rd, ADDRri:$addr)]>;
    323 }
    324 
    325 // TODO: Instructions of the StoreASI class are currently asm only; hooking up
    326 // CodeGen's address spaces to use these is a future task.
    327 class StoreASI<string OpcStr, bits<6> Op3Val,
    328                   SDPatternOperator OpNode, RegisterClass RC, ValueType Ty> :
    329   F3_1_asi<3, Op3Val, (outs), (ins MEMrr:$addr, RC:$rd, i8imm:$asi),
    330                   !strconcat(OpcStr, "a $rd, [$addr] $asi"),
    331                   []>;
    332 
    333 multiclass StoreA<string OpcStr, bits<6> Op3Val, bits<6> StoreAOp3Val,
    334                   SDPatternOperator OpNode, RegisterClass RC, ValueType Ty> :
    335              Store<OpcStr, Op3Val, OpNode, RC, Ty> {
    336   def Arr : StoreASI<OpcStr, StoreAOp3Val, OpNode, RC, Ty>;
    337 }
    338 
    339 //===----------------------------------------------------------------------===//
    340 // Instructions
    341 //===----------------------------------------------------------------------===//
    342 
    343 // Pseudo instructions.
    344 class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
    345    : InstSP<outs, ins, asmstr, pattern> {
    346   let isCodeGenOnly = 1;
    347   let isPseudo = 1;
    348 }
    349 
    350 // GETPCX for PIC
    351 let Defs = [O7] in {
    352   def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
    353 }
    354 
    355 let Defs = [O6], Uses = [O6] in {
    356 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
    357                                "!ADJCALLSTACKDOWN $amt",
    358                                [(callseq_start timm:$amt)]>;
    359 def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
    360                             "!ADJCALLSTACKUP $amt1",
    361                             [(callseq_end timm:$amt1, timm:$amt2)]>;
    362 }
    363 
    364 let hasSideEffects = 1, mayStore = 1 in {
    365   let rd = 0, rs1 = 0, rs2 = 0 in
    366     def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
    367                       "flushw",
    368                       [(flushw)]>, Requires<[HasV9]>;
    369   let rd = 0, rs1 = 1, simm13 = 3 in
    370     def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
    371                    "ta 3",
    372                    [(flushw)]>;
    373 }
    374 
    375 // SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
    376 // instruction selection into a branch sequence.  This has to handle all
    377 // permutations of selection between i32/f32/f64 on ICC and FCC.
    378 // Expanded after instruction selection.
    379 let Uses = [ICC], usesCustomInserter = 1 in {
    380   def SELECT_CC_Int_ICC
    381    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
    382             "; SELECT_CC_Int_ICC PSEUDO!",
    383             [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
    384   def SELECT_CC_FP_ICC
    385    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
    386             "; SELECT_CC_FP_ICC PSEUDO!",
    387             [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
    388 
    389   def SELECT_CC_DFP_ICC
    390    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
    391             "; SELECT_CC_DFP_ICC PSEUDO!",
    392             [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
    393 
    394   def SELECT_CC_QFP_ICC
    395    : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
    396             "; SELECT_CC_QFP_ICC PSEUDO!",
    397             [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>;
    398 }
    399 
    400 let usesCustomInserter = 1, Uses = [FCC0] in {
    401 
    402   def SELECT_CC_Int_FCC
    403    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
    404             "; SELECT_CC_Int_FCC PSEUDO!",
    405             [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
    406 
    407   def SELECT_CC_FP_FCC
    408    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
    409             "; SELECT_CC_FP_FCC PSEUDO!",
    410             [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
    411   def SELECT_CC_DFP_FCC
    412    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
    413             "; SELECT_CC_DFP_FCC PSEUDO!",
    414             [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
    415   def SELECT_CC_QFP_FCC
    416    : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
    417             "; SELECT_CC_QFP_FCC PSEUDO!",
    418             [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>;
    419 }
    420 
    421 // Section B.1 - Load Integer Instructions, p. 90
    422 let DecoderMethod = "DecodeLoadInt" in {
    423   defm LDSB : LoadA<"ldsb", 0b001001, 0b011001, sextloadi8,  IntRegs, i32>;
    424   defm LDSH : LoadA<"ldsh", 0b001010, 0b011010, sextloadi16, IntRegs, i32>;
    425   defm LDUB : LoadA<"ldub", 0b000001, 0b010001, zextloadi8,  IntRegs, i32>;
    426   defm LDUH : LoadA<"lduh", 0b000010, 0b010010, zextloadi16, IntRegs, i32>;
    427   defm LD   : LoadA<"ld",   0b000000, 0b010000, load,        IntRegs, i32>;
    428 }
    429 
    430 let DecoderMethod = "DecodeLoadIntPair" in
    431   defm LDD : LoadA<"ldd", 0b000011, 0b010011, load, IntPair, v2i32>;
    432 
    433 // Section B.2 - Load Floating-point Instructions, p. 92
    434 let DecoderMethod = "DecodeLoadFP" in {
    435   defm LDF   : Load<"ld",  0b100000, load,    FPRegs,  f32>;
    436   def LDFArr : LoadASI<"ld",  0b110000, load, FPRegs,  f32>,
    437                 Requires<[HasV9]>;
    438 }
    439 let DecoderMethod = "DecodeLoadDFP" in {
    440   defm LDDF   : Load<"ldd", 0b100011, load,    DFPRegs, f64>;
    441   def LDDFArr : LoadASI<"ldd", 0b110011, load, DFPRegs, f64>,
    442                  Requires<[HasV9]>;
    443 }
    444 let DecoderMethod = "DecodeLoadQFP" in
    445   defm LDQF  : LoadA<"ldq", 0b100010, 0b110010, load, QFPRegs, f128>,
    446                Requires<[HasV9, HasHardQuad]>;
    447 
    448 let DecoderMethod = "DecodeLoadFP" in
    449   let Defs = [FSR] in {
    450     let rd = 0 in {
    451       def LDFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr),
    452                      "ld [$addr], %fsr", []>;
    453       def LDFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr),
    454                      "ld [$addr], %fsr", []>;
    455     }
    456     let rd = 1 in {
    457       def LDXFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr),
    458                      "ldx [$addr], %fsr", []>, Requires<[HasV9]>;
    459       def LDXFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr),
    460                      "ldx [$addr], %fsr", []>, Requires<[HasV9]>;
    461     }
    462   }
    463 
    464 // Section B.4 - Store Integer Instructions, p. 95
    465 let DecoderMethod = "DecodeStoreInt" in {
    466   defm STB   : StoreA<"stb", 0b000101, 0b010101, truncstorei8,  IntRegs, i32>;
    467   defm STH   : StoreA<"sth", 0b000110, 0b010110, truncstorei16, IntRegs, i32>;
    468   defm ST    : StoreA<"st",  0b000100, 0b010100, store,         IntRegs, i32>;
    469 }
    470 
    471 let DecoderMethod = "DecodeStoreIntPair" in
    472   defm STD   : StoreA<"std", 0b000111, 0b010111, store, IntPair, v2i32>;
    473 
    474 // Section B.5 - Store Floating-point Instructions, p. 97
    475 let DecoderMethod = "DecodeStoreFP" in {
    476   defm STF   : Store<"st",  0b100100, store,         FPRegs,  f32>;
    477   def STFArr : StoreASI<"st",  0b110100, store,      FPRegs,  f32>,
    478                Requires<[HasV9]>;
    479 }
    480 let DecoderMethod = "DecodeStoreDFP" in {
    481   defm STDF   : Store<"std", 0b100111, store,         DFPRegs, f64>;
    482   def STDFArr : StoreASI<"std", 0b110111, store,      DFPRegs, f64>,
    483                 Requires<[HasV9]>;
    484 }
    485 let DecoderMethod = "DecodeStoreQFP" in
    486   defm STQF  : StoreA<"stq", 0b100110, 0b110110, store, QFPRegs, f128>,
    487                Requires<[HasV9, HasHardQuad]>;
    488 
    489 let DecoderMethod = "DecodeStoreFP" in
    490   let Defs = [FSR] in {
    491     let rd = 0 in {
    492       def STFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins),
    493                      "st %fsr, [$addr]", []>;
    494       def STFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins),
    495                      "st %fsr, [$addr]", []>;
    496     }
    497     let rd = 1 in {
    498       def STXFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins),
    499                      "stx %fsr, [$addr]", []>, Requires<[HasV9]>;
    500       def STXFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins),
    501                      "stx %fsr, [$addr]", []>, Requires<[HasV9]>;
    502     }
    503   }
    504 
    505 // Section B.8 - SWAP Register with Memory Instruction
    506 // (Atomic swap)
    507 let Constraints = "$val = $dst", DecoderMethod = "DecodeSWAP" in {
    508   def SWAPrr : F3_1<3, 0b001111,
    509                  (outs IntRegs:$dst), (ins MEMrr:$addr, IntRegs:$val),
    510                  "swap [$addr], $dst",
    511                  [(set i32:$dst, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>;
    512   def SWAPri : F3_2<3, 0b001111,
    513                  (outs IntRegs:$dst), (ins MEMri:$addr, IntRegs:$val),
    514                  "swap [$addr], $dst",
    515                  [(set i32:$dst, (atomic_swap_32 ADDRri:$addr, i32:$val))]>;
    516   def SWAPArr : F3_1_asi<3, 0b011111,
    517                  (outs IntRegs:$dst), (ins MEMrr:$addr, i8imm:$asi, IntRegs:$val),
    518                  "swapa [$addr] $asi, $dst",
    519                  [/*FIXME: pattern?*/]>;
    520 }
    521 
    522 
    523 // Section B.9 - SETHI Instruction, p. 104
    524 def SETHIi: F2_1<0b100,
    525                  (outs IntRegs:$rd), (ins i32imm:$imm22),
    526                  "sethi $imm22, $rd",
    527                  [(set i32:$rd, SETHIimm:$imm22)]>;
    528 
    529 // Section B.10 - NOP Instruction, p. 105
    530 // (It's a special case of SETHI)
    531 let rd = 0, imm22 = 0 in
    532   def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
    533 
    534 // Section B.11 - Logical Instructions, p. 106
    535 defm AND    : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>;
    536 
    537 def ANDNrr  : F3_1<2, 0b000101,
    538                    (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
    539                    "andn $rs1, $rs2, $rd",
    540                    [(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>;
    541 def ANDNri  : F3_2<2, 0b000101,
    542                    (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
    543                    "andn $rs1, $simm13, $rd", []>;
    544 
    545 defm OR     : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>;
    546 
    547 def ORNrr   : F3_1<2, 0b000110,
    548                    (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
    549                    "orn $rs1, $rs2, $rd",
    550                    [(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>;
    551 def ORNri   : F3_2<2, 0b000110,
    552                    (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
    553                    "orn $rs1, $simm13, $rd", []>;
    554 defm XOR    : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>;
    555 
    556 def XNORrr  : F3_1<2, 0b000111,
    557                    (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
    558                    "xnor $rs1, $rs2, $rd",
    559                    [(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>;
    560 def XNORri  : F3_2<2, 0b000111,
    561                    (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
    562                    "xnor $rs1, $simm13, $rd", []>;
    563 
    564 let Defs = [ICC] in {
    565   defm ANDCC  : F3_12np<"andcc",  0b010001>;
    566   defm ANDNCC : F3_12np<"andncc", 0b010101>;
    567   defm ORCC   : F3_12np<"orcc",   0b010010>;
    568   defm ORNCC  : F3_12np<"orncc",  0b010110>;
    569   defm XORCC  : F3_12np<"xorcc",  0b010011>;
    570   defm XNORCC : F3_12np<"xnorcc", 0b010111>;
    571 }
    572 
    573 // Section B.12 - Shift Instructions, p. 107
    574 defm SLL : F3_12<"sll", 0b100101, shl, IntRegs, i32, simm13Op>;
    575 defm SRL : F3_12<"srl", 0b100110, srl, IntRegs, i32, simm13Op>;
    576 defm SRA : F3_12<"sra", 0b100111, sra, IntRegs, i32, simm13Op>;
    577 
    578 // Section B.13 - Add Instructions, p. 108
    579 defm ADD   : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>;
    580 
    581 // "LEA" forms of add (patterns to make tblgen happy)
    582 let Predicates = [Is32Bit], isCodeGenOnly = 1 in
    583   def LEA_ADDri   : F3_2<2, 0b000000,
    584                      (outs IntRegs:$dst), (ins MEMri:$addr),
    585                      "add ${addr:arith}, $dst",
    586                      [(set iPTR:$dst, ADDRri:$addr)]>;
    587 
    588 let Defs = [ICC] in
    589   defm ADDCC  : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>;
    590 
    591 let Uses = [ICC] in
    592   defm ADDC   : F3_12np<"addx", 0b001000>;
    593 
    594 let Uses = [ICC], Defs = [ICC] in
    595   defm ADDE  : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>;
    596 
    597 // Section B.15 - Subtract Instructions, p. 110
    598 defm SUB    : F3_12  <"sub"  , 0b000100, sub, IntRegs, i32, simm13Op>;
    599 let Uses = [ICC], Defs = [ICC] in
    600   defm SUBE   : F3_12  <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>;
    601 
    602 let Defs = [ICC] in
    603   defm SUBCC  : F3_12  <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>;
    604 
    605 let Uses = [ICC] in
    606   defm SUBC   : F3_12np <"subx", 0b001100>;
    607 
    608 // cmp (from Section A.3) is a specialized alias for subcc
    609 let Defs = [ICC], rd = 0 in {
    610   def CMPrr   : F3_1<2, 0b010100,
    611                      (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
    612                      "cmp $rs1, $rs2",
    613                      [(SPcmpicc i32:$rs1, i32:$rs2)]>;
    614   def CMPri   : F3_2<2, 0b010100,
    615                      (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
    616                      "cmp $rs1, $simm13",
    617                      [(SPcmpicc i32:$rs1, (i32 simm13:$simm13))]>;
    618 }
    619 
    620 // Section B.18 - Multiply Instructions, p. 113
    621 let Defs = [Y] in {
    622   defm UMUL : F3_12np<"umul", 0b001010>;
    623   defm SMUL : F3_12  <"smul", 0b001011, mul, IntRegs, i32, simm13Op>;
    624 }
    625 
    626 let Defs = [Y, ICC] in {
    627   defm UMULCC : F3_12np<"umulcc", 0b011010>;
    628   defm SMULCC : F3_12np<"smulcc", 0b011011>;
    629 }
    630 
    631 let Defs = [Y, ICC], Uses = [Y, ICC] in {
    632   defm MULSCC : F3_12np<"mulscc", 0b100100>;
    633 }
    634 
    635 // Section B.19 - Divide Instructions, p. 115
    636 let Uses = [Y], Defs = [Y] in {
    637   defm UDIV : F3_12np<"udiv", 0b001110>;
    638   defm SDIV : F3_12np<"sdiv", 0b001111>;
    639 }
    640 
    641 let Uses = [Y], Defs = [Y, ICC] in {
    642   defm UDIVCC : F3_12np<"udivcc", 0b011110>;
    643   defm SDIVCC : F3_12np<"sdivcc", 0b011111>;
    644 }
    645 
    646 // Section B.20 - SAVE and RESTORE, p. 117
    647 defm SAVE    : F3_12np<"save"   , 0b111100>;
    648 defm RESTORE : F3_12np<"restore", 0b111101>;
    649 
    650 // Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
    651 
    652 // unconditional branch class.
    653 class BranchAlways<dag ins, string asmstr, list<dag> pattern>
    654   : F2_2<0b010, 0, (outs), ins, asmstr, pattern> {
    655   let isBranch     = 1;
    656   let isTerminator = 1;
    657   let hasDelaySlot = 1;
    658   let isBarrier    = 1;
    659 }
    660 
    661 let cond = 8 in
    662   def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>;
    663 
    664 
    665 let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
    666 
    667 // conditional branch class:
    668 class BranchSP<dag ins, string asmstr, list<dag> pattern>
    669  : F2_2<0b010, 0, (outs), ins, asmstr, pattern>;
    670 
    671 // conditional branch with annul class:
    672 class BranchSPA<dag ins, string asmstr, list<dag> pattern>
    673  : F2_2<0b010, 1, (outs), ins, asmstr, pattern>;
    674 
    675 // Conditional branch class on %icc|%xcc with predication:
    676 multiclass IPredBranch<string regstr, list<dag> CCPattern> {
    677   def CC    : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
    678                   !strconcat("b$cond ", !strconcat(regstr, ", $imm19")),
    679                    CCPattern>;
    680   def CCA   : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
    681                   !strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")),
    682                    []>;
    683   def CCNT  : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
    684                    !strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")),
    685                    []>;
    686   def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
    687                    !strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")),
    688                    []>;
    689 }
    690 
    691 } // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
    692 
    693 
    694 // Indirect branch instructions.
    695 let isTerminator = 1, isBarrier = 1,  hasDelaySlot = 1, isBranch =1,
    696      isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in {
    697   def BINDrr  : F3_1<2, 0b111000,
    698                    (outs), (ins MEMrr:$ptr),
    699                    "jmp $ptr",
    700                    [(brind ADDRrr:$ptr)]>;
    701   def BINDri  : F3_2<2, 0b111000,
    702                    (outs), (ins MEMri:$ptr),
    703                    "jmp $ptr",
    704                    [(brind ADDRri:$ptr)]>;
    705 }
    706 
    707 let Uses = [ICC] in {
    708   def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond),
    709                          "b$cond $imm22",
    710                         [(SPbricc bb:$imm22, imm:$cond)]>;
    711   def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond),
    712                          "b$cond,a $imm22", []>;
    713 
    714   let Predicates = [HasV9], cc = 0b00 in
    715     defm BPI : IPredBranch<"%icc", []>;
    716 }
    717 
    718 // Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
    719 
    720 let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
    721 
    722 // floating-point conditional branch class:
    723 class FPBranchSP<dag ins, string asmstr, list<dag> pattern>
    724  : F2_2<0b110, 0, (outs), ins, asmstr, pattern>;
    725 
    726 // floating-point conditional branch with annul class:
    727 class FPBranchSPA<dag ins, string asmstr, list<dag> pattern>
    728  : F2_2<0b110, 1, (outs), ins, asmstr, pattern>;
    729 
    730 // Conditional branch class on %fcc0-%fcc3 with predication:
    731 multiclass FPredBranch {
    732   def CC    : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
    733                                          FCCRegs:$cc),
    734                   "fb$cond $cc, $imm19", []>;
    735   def CCA   : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
    736                                          FCCRegs:$cc),
    737                   "fb$cond,a $cc, $imm19", []>;
    738   def CCNT  : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
    739                                          FCCRegs:$cc),
    740                   "fb$cond,pn $cc, $imm19", []>;
    741   def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
    742                                          FCCRegs:$cc),
    743                   "fb$cond,a,pn $cc, $imm19", []>;
    744 }
    745 } // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
    746 
    747 let Uses = [FCC0] in {
    748   def FBCOND  : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
    749                               "fb$cond $imm22",
    750                               [(SPbrfcc bb:$imm22, imm:$cond)]>;
    751   def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
    752                              "fb$cond,a $imm22", []>;
    753 }
    754 
    755 let Predicates = [HasV9] in
    756   defm BPF : FPredBranch;
    757 
    758 
    759 // Section B.24 - Call and Link Instruction, p. 125
    760 // This is the only Format 1 instruction
    761 let Uses = [O6],
    762     hasDelaySlot = 1, isCall = 1 in {
    763   def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops),
    764                     "call $disp", []> {
    765     bits<30> disp;
    766     let op = 1;
    767     let Inst{29-0} = disp;
    768   }
    769 
    770   // indirect calls: special cases of JMPL.
    771   let isCodeGenOnly = 1, rd = 15 in {
    772     def CALLrr : F3_1<2, 0b111000,
    773                       (outs), (ins MEMrr:$ptr, variable_ops),
    774                       "call $ptr",
    775                       [(call ADDRrr:$ptr)]>;
    776     def CALLri : F3_2<2, 0b111000,
    777                       (outs), (ins MEMri:$ptr, variable_ops),
    778                       "call $ptr",
    779                       [(call ADDRri:$ptr)]>;
    780   }
    781 }
    782 
    783 // Section B.25 - Jump and Link Instruction
    784 
    785 // JMPL Instruction.
    786 let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
    787     DecoderMethod = "DecodeJMPL" in {
    788   def JMPLrr: F3_1<2, 0b111000, (outs IntRegs:$dst), (ins MEMrr:$addr),
    789                   "jmpl $addr, $dst", []>;
    790   def JMPLri: F3_2<2, 0b111000, (outs IntRegs:$dst), (ins MEMri:$addr),
    791                   "jmpl $addr, $dst", []>;
    792 }
    793 
    794 // Section A.3 - Synthetic Instructions, p. 85
    795 // special cases of JMPL:
    796 let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
    797     isCodeGenOnly = 1 in {
    798   let rd = 0, rs1 = 15 in
    799     def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
    800                    "jmp %o7+$val", [(retflag simm13:$val)]>;
    801 
    802   let rd = 0, rs1 = 31 in
    803     def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
    804                   "jmp %i7+$val", []>;
    805 }
    806 
    807 // Section B.26 - Return from Trap Instruction
    808 let isReturn = 1, isTerminator = 1, hasDelaySlot = 1,
    809      isBarrier = 1, rd = 0, DecoderMethod = "DecodeReturn" in {
    810   def RETTrr : F3_1<2, 0b111001, (outs), (ins MEMrr:$addr),
    811                        "rett $addr", []>;
    812   def RETTri : F3_2<2, 0b111001, (outs), (ins MEMri:$addr),
    813                        "rett $addr", []>;
    814 }
    815 
    816 
    817 // Section B.27 - Trap on Integer Condition Codes Instruction
    818 multiclass TRAP<string regStr> {
    819   def rr : TRAPSPrr<0b111010, (outs), (ins IntRegs:$rs1, IntRegs:$rs2,
    820                                        CCOp:$cond),
    821               !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"), []>;
    822   def ri : TRAPSPri<0b111010, (outs), (ins IntRegs:$rs1, i32imm:$imm,
    823                                       CCOp:$cond),
    824               !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"), []>;
    825 }
    826 
    827 let hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
    828   defm TICC : TRAP<"%icc">;
    829 
    830 let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in
    831   def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>;
    832 
    833 // Section B.28 - Read State Register Instructions
    834 let rs2 = 0 in
    835   def RDASR : F3_1<2, 0b101000,
    836                  (outs IntRegs:$rd), (ins ASRRegs:$rs1),
    837                  "rd $rs1, $rd", []>;
    838 
    839 // PSR, WIM, and TBR don't exist on the SparcV9, only the V8.
    840 let Predicates = [HasNoV9] in {
    841   let rs2 = 0, rs1 = 0, Uses=[PSR] in
    842     def RDPSR : F3_1<2, 0b101001,
    843 		     (outs IntRegs:$rd), (ins),
    844 		     "rd %psr, $rd", []>;
    845 
    846   let rs2 = 0, rs1 = 0, Uses=[WIM] in
    847     def RDWIM : F3_1<2, 0b101010,
    848 		     (outs IntRegs:$rd), (ins),
    849 		     "rd %wim, $rd", []>;
    850 
    851   let rs2 = 0, rs1 = 0, Uses=[TBR] in
    852     def RDTBR : F3_1<2, 0b101011,
    853 		     (outs IntRegs:$rd), (ins),
    854 		     "rd %tbr, $rd", []>;
    855 }
    856 
    857 // Section B.29 - Write State Register Instructions
    858 def WRASRrr : F3_1<2, 0b110000,
    859                  (outs ASRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
    860                  "wr $rs1, $rs2, $rd", []>;
    861 def WRASRri : F3_2<2, 0b110000,
    862                  (outs ASRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
    863                  "wr $rs1, $simm13, $rd", []>;
    864 
    865 // PSR, WIM, and TBR don't exist on the SparcV9, only the V8.
    866 let Predicates = [HasNoV9] in {
    867   let Defs = [PSR], rd=0 in {
    868     def WRPSRrr : F3_1<2, 0b110001,
    869 		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
    870 		     "wr $rs1, $rs2, %psr", []>;
    871     def WRPSRri : F3_2<2, 0b110001,
    872 		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
    873 		     "wr $rs1, $simm13, %psr", []>;
    874   }
    875 
    876   let Defs = [WIM], rd=0 in {
    877     def WRWIMrr : F3_1<2, 0b110010,
    878 		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
    879 		     "wr $rs1, $rs2, %wim", []>;
    880     def WRWIMri : F3_2<2, 0b110010,
    881 		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
    882 		     "wr $rs1, $simm13, %wim", []>;
    883   }
    884 
    885   let Defs = [TBR], rd=0 in {
    886     def WRTBRrr : F3_1<2, 0b110011,
    887 		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
    888 		     "wr $rs1, $rs2, %tbr", []>;
    889     def WRTBRri : F3_2<2, 0b110011,
    890 		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
    891 		     "wr $rs1, $simm13, %tbr", []>;
    892   }
    893 }
    894 
    895 // Section B.30 - STBAR Instruction
    896 let hasSideEffects = 1, rd = 0, rs1 = 0b01111, rs2 = 0 in
    897   def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>;
    898 
    899 
    900 // Section B.31 - Unimplmented Instruction
    901 let rd = 0 in
    902   def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22),
    903                   "unimp $imm22", []>;
    904 
    905 // Section B.32 - Flush Instruction Memory
    906 let rd = 0 in {
    907   def FLUSHrr : F3_1<2, 0b111011, (outs), (ins MEMrr:$addr),
    908                        "flush $addr", []>;
    909   def FLUSHri : F3_2<2, 0b111011, (outs), (ins MEMri:$addr),
    910                        "flush $addr", []>;
    911 
    912   // The no-arg FLUSH is only here for the benefit of the InstAlias
    913   // "flush", which cannot seem to use FLUSHrr, due to the inability
    914   // to construct a MEMrr with fixed G0 registers.
    915   let rs1 = 0, rs2 = 0 in
    916     def FLUSH   : F3_1<2, 0b111011, (outs), (ins), "flush %g0", []>;
    917 }
    918 
    919 // Section B.33 - Floating-point Operate (FPop) Instructions
    920 
    921 // Convert Integer to Floating-point Instructions, p. 141
    922 def FITOS : F3_3u<2, 0b110100, 0b011000100,
    923                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
    924                  "fitos $rs2, $rd",
    925                  [(set FPRegs:$rd, (SPitof FPRegs:$rs2))]>;
    926 def FITOD : F3_3u<2, 0b110100, 0b011001000,
    927                  (outs DFPRegs:$rd), (ins FPRegs:$rs2),
    928                  "fitod $rs2, $rd",
    929                  [(set DFPRegs:$rd, (SPitof FPRegs:$rs2))]>;
    930 def FITOQ : F3_3u<2, 0b110100, 0b011001100,
    931                  (outs QFPRegs:$rd), (ins FPRegs:$rs2),
    932                  "fitoq $rs2, $rd",
    933                  [(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>,
    934                  Requires<[HasHardQuad]>;
    935 
    936 // Convert Floating-point to Integer Instructions, p. 142
    937 def FSTOI : F3_3u<2, 0b110100, 0b011010001,
    938                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
    939                  "fstoi $rs2, $rd",
    940                  [(set FPRegs:$rd, (SPftoi FPRegs:$rs2))]>;
    941 def FDTOI : F3_3u<2, 0b110100, 0b011010010,
    942                  (outs FPRegs:$rd), (ins DFPRegs:$rs2),
    943                  "fdtoi $rs2, $rd",
    944                  [(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))]>;
    945 def FQTOI : F3_3u<2, 0b110100, 0b011010011,
    946                  (outs FPRegs:$rd), (ins QFPRegs:$rs2),
    947                  "fqtoi $rs2, $rd",
    948                  [(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>,
    949                  Requires<[HasHardQuad]>;
    950 
    951 // Convert between Floating-point Formats Instructions, p. 143
    952 def FSTOD : F3_3u<2, 0b110100, 0b011001001,
    953                  (outs DFPRegs:$rd), (ins FPRegs:$rs2),
    954                  "fstod $rs2, $rd",
    955                  [(set f64:$rd, (fextend f32:$rs2))]>;
    956 def FSTOQ : F3_3u<2, 0b110100, 0b011001101,
    957                  (outs QFPRegs:$rd), (ins FPRegs:$rs2),
    958                  "fstoq $rs2, $rd",
    959                  [(set f128:$rd, (fextend f32:$rs2))]>,
    960                  Requires<[HasHardQuad]>;
    961 def FDTOS : F3_3u<2, 0b110100, 0b011000110,
    962                  (outs FPRegs:$rd), (ins DFPRegs:$rs2),
    963                  "fdtos $rs2, $rd",
    964                  [(set f32:$rd, (fround f64:$rs2))]>;
    965 def FDTOQ : F3_3u<2, 0b110100, 0b011001110,
    966                  (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
    967                  "fdtoq $rs2, $rd",
    968                  [(set f128:$rd, (fextend f64:$rs2))]>,
    969                  Requires<[HasHardQuad]>;
    970 def FQTOS : F3_3u<2, 0b110100, 0b011000111,
    971                  (outs FPRegs:$rd), (ins QFPRegs:$rs2),
    972                  "fqtos $rs2, $rd",
    973                  [(set f32:$rd, (fround f128:$rs2))]>,
    974                  Requires<[HasHardQuad]>;
    975 def FQTOD : F3_3u<2, 0b110100, 0b011001011,
    976                  (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
    977                  "fqtod $rs2, $rd",
    978                  [(set f64:$rd, (fround f128:$rs2))]>,
    979                  Requires<[HasHardQuad]>;
    980 
    981 // Floating-point Move Instructions, p. 144
    982 def FMOVS : F3_3u<2, 0b110100, 0b000000001,
    983                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
    984                  "fmovs $rs2, $rd", []>;
    985 def FNEGS : F3_3u<2, 0b110100, 0b000000101,
    986                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
    987                  "fnegs $rs2, $rd",
    988                  [(set f32:$rd, (fneg f32:$rs2))]>;
    989 def FABSS : F3_3u<2, 0b110100, 0b000001001,
    990                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
    991                  "fabss $rs2, $rd",
    992                  [(set f32:$rd, (fabs f32:$rs2))]>;
    993 
    994 
    995 // Floating-point Square Root Instructions, p.145
    996 def FSQRTS : F3_3u<2, 0b110100, 0b000101001,
    997                   (outs FPRegs:$rd), (ins FPRegs:$rs2),
    998                   "fsqrts $rs2, $rd",
    999                   [(set f32:$rd, (fsqrt f32:$rs2))]>;
   1000 def FSQRTD : F3_3u<2, 0b110100, 0b000101010,
   1001                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
   1002                   "fsqrtd $rs2, $rd",
   1003                   [(set f64:$rd, (fsqrt f64:$rs2))]>;
   1004 def FSQRTQ : F3_3u<2, 0b110100, 0b000101011,
   1005                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
   1006                   "fsqrtq $rs2, $rd",
   1007                   [(set f128:$rd, (fsqrt f128:$rs2))]>,
   1008                   Requires<[HasHardQuad]>;
   1009 
   1010 
   1011 
   1012 // Floating-point Add and Subtract Instructions, p. 146
   1013 def FADDS  : F3_3<2, 0b110100, 0b001000001,
   1014                   (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1015                   "fadds $rs1, $rs2, $rd",
   1016                   [(set f32:$rd, (fadd f32:$rs1, f32:$rs2))]>;
   1017 def FADDD  : F3_3<2, 0b110100, 0b001000010,
   1018                   (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1019                   "faddd $rs1, $rs2, $rd",
   1020                   [(set f64:$rd, (fadd f64:$rs1, f64:$rs2))]>;
   1021 def FADDQ  : F3_3<2, 0b110100, 0b001000011,
   1022                   (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1023                   "faddq $rs1, $rs2, $rd",
   1024                   [(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>,
   1025                   Requires<[HasHardQuad]>;
   1026 
   1027 def FSUBS  : F3_3<2, 0b110100, 0b001000101,
   1028                   (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1029                   "fsubs $rs1, $rs2, $rd",
   1030                   [(set f32:$rd, (fsub f32:$rs1, f32:$rs2))]>;
   1031 def FSUBD  : F3_3<2, 0b110100, 0b001000110,
   1032                   (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1033                   "fsubd $rs1, $rs2, $rd",
   1034                   [(set f64:$rd, (fsub f64:$rs1, f64:$rs2))]>;
   1035 def FSUBQ  : F3_3<2, 0b110100, 0b001000111,
   1036                   (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1037                   "fsubq $rs1, $rs2, $rd",
   1038                   [(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>,
   1039                   Requires<[HasHardQuad]>;
   1040 
   1041 
   1042 // Floating-point Multiply and Divide Instructions, p. 147
   1043 def FMULS  : F3_3<2, 0b110100, 0b001001001,
   1044                   (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1045                   "fmuls $rs1, $rs2, $rd",
   1046                   [(set f32:$rd, (fmul f32:$rs1, f32:$rs2))]>;
   1047 def FMULD  : F3_3<2, 0b110100, 0b001001010,
   1048                   (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1049                   "fmuld $rs1, $rs2, $rd",
   1050                   [(set f64:$rd, (fmul f64:$rs1, f64:$rs2))]>;
   1051 def FMULQ  : F3_3<2, 0b110100, 0b001001011,
   1052                   (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1053                   "fmulq $rs1, $rs2, $rd",
   1054                   [(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>,
   1055                   Requires<[HasHardQuad]>;
   1056 
   1057 def FSMULD : F3_3<2, 0b110100, 0b001101001,
   1058                   (outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1059                   "fsmuld $rs1, $rs2, $rd",
   1060                   [(set f64:$rd, (fmul (fextend f32:$rs1),
   1061                                         (fextend f32:$rs2)))]>;
   1062 def FDMULQ : F3_3<2, 0b110100, 0b001101110,
   1063                   (outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1064                   "fdmulq $rs1, $rs2, $rd",
   1065                   [(set f128:$rd, (fmul (fextend f64:$rs1),
   1066                                          (fextend f64:$rs2)))]>,
   1067                   Requires<[HasHardQuad]>;
   1068 
   1069 def FDIVS  : F3_3<2, 0b110100, 0b001001101,
   1070                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1071                  "fdivs $rs1, $rs2, $rd",
   1072                  [(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))]>;
   1073 def FDIVD  : F3_3<2, 0b110100, 0b001001110,
   1074                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1075                  "fdivd $rs1, $rs2, $rd",
   1076                  [(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))]>;
   1077 def FDIVQ  : F3_3<2, 0b110100, 0b001001111,
   1078                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1079                  "fdivq $rs1, $rs2, $rd",
   1080                  [(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>,
   1081                  Requires<[HasHardQuad]>;
   1082 
   1083 // Floating-point Compare Instructions, p. 148
   1084 // Note: the 2nd template arg is different for these guys.
   1085 // Note 2: the result of a FCMP is not available until the 2nd cycle
   1086 // after the instr is retired, but there is no interlock in Sparc V8.
   1087 // This behavior is modeled with a forced noop after the instruction in
   1088 // DelaySlotFiller.
   1089 
   1090 let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in {
   1091   def FCMPS  : F3_3c<2, 0b110101, 0b001010001,
   1092                    (outs), (ins FPRegs:$rs1, FPRegs:$rs2),
   1093                    "fcmps $rs1, $rs2",
   1094                    [(SPcmpfcc f32:$rs1, f32:$rs2)]>;
   1095   def FCMPD  : F3_3c<2, 0b110101, 0b001010010,
   1096                    (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1097                    "fcmpd $rs1, $rs2",
   1098                    [(SPcmpfcc f64:$rs1, f64:$rs2)]>;
   1099   def FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
   1100                    (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1101                    "fcmpq $rs1, $rs2",
   1102                    [(SPcmpfcc f128:$rs1, f128:$rs2)]>,
   1103                    Requires<[HasHardQuad]>;
   1104 }
   1105 
   1106 //===----------------------------------------------------------------------===//
   1107 // Instructions for Thread Local Storage(TLS).
   1108 //===----------------------------------------------------------------------===//
   1109 let isCodeGenOnly = 1, isAsmParserOnly = 1 in {
   1110 def TLS_ADDrr : F3_1<2, 0b000000,
   1111                     (outs IntRegs:$rd),
   1112                     (ins IntRegs:$rs1, IntRegs:$rs2, TLSSym:$sym),
   1113                     "add $rs1, $rs2, $rd, $sym",
   1114                     [(set i32:$rd,
   1115                         (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>;
   1116 
   1117 let mayLoad = 1 in
   1118   def TLS_LDrr : F3_1<3, 0b000000,
   1119                       (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
   1120                       "ld [$addr], $dst, $sym",
   1121                       [(set i32:$dst,
   1122                           (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
   1123 
   1124 let Uses = [O6], isCall = 1, hasDelaySlot = 1 in
   1125   def TLS_CALL : InstSP<(outs),
   1126                         (ins calltarget:$disp, TLSSym:$sym, variable_ops),
   1127                         "call $disp, $sym",
   1128                         [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)]> {
   1129   bits<30> disp;
   1130   let op = 1;
   1131   let Inst{29-0} = disp;
   1132 }
   1133 }
   1134 
   1135 //===----------------------------------------------------------------------===//
   1136 // V9 Instructions
   1137 //===----------------------------------------------------------------------===//
   1138 
   1139 // V9 Conditional Moves.
   1140 let Predicates = [HasV9], Constraints = "$f = $rd" in {
   1141   // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
   1142   let Uses = [ICC], intcc = 1, cc = 0b00 in {
   1143     def MOVICCrr
   1144       : F4_1<0b101100, (outs IntRegs:$rd),
   1145              (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
   1146              "mov$cond %icc, $rs2, $rd",
   1147              [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>;
   1148 
   1149     def MOVICCri
   1150       : F4_2<0b101100, (outs IntRegs:$rd),
   1151              (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
   1152              "mov$cond %icc, $simm11, $rd",
   1153              [(set i32:$rd,
   1154                     (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>;
   1155   }
   1156 
   1157   let Uses = [FCC0], intcc = 0, cc = 0b00 in {
   1158     def MOVFCCrr
   1159       : F4_1<0b101100, (outs IntRegs:$rd),
   1160              (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
   1161              "mov$cond %fcc0, $rs2, $rd",
   1162              [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>;
   1163     def MOVFCCri
   1164       : F4_2<0b101100, (outs IntRegs:$rd),
   1165              (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
   1166              "mov$cond %fcc0, $simm11, $rd",
   1167              [(set i32:$rd,
   1168                     (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>;
   1169   }
   1170 
   1171   let Uses = [ICC], intcc = 1, opf_cc = 0b00 in {
   1172     def FMOVS_ICC
   1173       : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
   1174              (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
   1175              "fmovs$cond %icc, $rs2, $rd",
   1176              [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>;
   1177     def FMOVD_ICC
   1178       : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
   1179                (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
   1180                "fmovd$cond %icc, $rs2, $rd",
   1181                [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>;
   1182     def FMOVQ_ICC
   1183       : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
   1184                (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
   1185                "fmovq$cond %icc, $rs2, $rd",
   1186                [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>,
   1187                Requires<[HasHardQuad]>;
   1188   }
   1189 
   1190   let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in {
   1191     def FMOVS_FCC
   1192       : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
   1193              (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
   1194              "fmovs$cond %fcc0, $rs2, $rd",
   1195              [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>;
   1196     def FMOVD_FCC
   1197       : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
   1198              (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
   1199              "fmovd$cond %fcc0, $rs2, $rd",
   1200              [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>;
   1201     def FMOVQ_FCC
   1202       : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
   1203              (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
   1204              "fmovq$cond %fcc0, $rs2, $rd",
   1205              [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>,
   1206              Requires<[HasHardQuad]>;
   1207   }
   1208 
   1209 }
   1210 
   1211 // Floating-Point Move Instructions, p. 164 of the V9 manual.
   1212 let Predicates = [HasV9] in {
   1213   def FMOVD : F3_3u<2, 0b110100, 0b000000010,
   1214                    (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
   1215                    "fmovd $rs2, $rd", []>;
   1216   def FMOVQ : F3_3u<2, 0b110100, 0b000000011,
   1217                    (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
   1218                    "fmovq $rs2, $rd", []>,
   1219                    Requires<[HasHardQuad]>;
   1220   def FNEGD : F3_3u<2, 0b110100, 0b000000110,
   1221                    (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
   1222                    "fnegd $rs2, $rd",
   1223                    [(set f64:$rd, (fneg f64:$rs2))]>;
   1224   def FNEGQ : F3_3u<2, 0b110100, 0b000000111,
   1225                    (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
   1226                    "fnegq $rs2, $rd",
   1227                    [(set f128:$rd, (fneg f128:$rs2))]>,
   1228                    Requires<[HasHardQuad]>;
   1229   def FABSD : F3_3u<2, 0b110100, 0b000001010,
   1230                    (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
   1231                    "fabsd $rs2, $rd",
   1232                    [(set f64:$rd, (fabs f64:$rs2))]>;
   1233   def FABSQ : F3_3u<2, 0b110100, 0b000001011,
   1234                    (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
   1235                    "fabsq $rs2, $rd",
   1236                    [(set f128:$rd, (fabs f128:$rs2))]>,
   1237                    Requires<[HasHardQuad]>;
   1238 }
   1239 
   1240 // Floating-point compare instruction with %fcc0-%fcc3.
   1241 def V9FCMPS  : F3_3c<2, 0b110101, 0b001010001,
   1242                (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1243                "fcmps $rd, $rs1, $rs2", []>;
   1244 def V9FCMPD  : F3_3c<2, 0b110101, 0b001010010,
   1245                 (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1246                 "fcmpd $rd, $rs1, $rs2", []>;
   1247 def V9FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
   1248                 (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1249                 "fcmpq $rd, $rs1, $rs2", []>,
   1250                  Requires<[HasHardQuad]>;
   1251 
   1252 let hasSideEffects = 1 in {
   1253   def V9FCMPES  : F3_3c<2, 0b110101, 0b001010101,
   1254                    (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1255                    "fcmpes $rd, $rs1, $rs2", []>;
   1256   def V9FCMPED  : F3_3c<2, 0b110101, 0b001010110,
   1257                    (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1258                    "fcmped $rd, $rs1, $rs2", []>;
   1259   def V9FCMPEQ  : F3_3c<2, 0b110101, 0b001010111,
   1260                    (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1261                    "fcmpeq $rd, $rs1, $rs2", []>,
   1262                    Requires<[HasHardQuad]>;
   1263 }
   1264 
   1265 // Floating point conditional move instrucitons with %fcc0-%fcc3.
   1266 let Predicates = [HasV9] in {
   1267   let Constraints = "$f = $rd", intcc = 0 in {
   1268     def V9MOVFCCrr
   1269       : F4_1<0b101100, (outs IntRegs:$rd),
   1270              (ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
   1271              "mov$cond $cc, $rs2, $rd", []>;
   1272     def V9MOVFCCri
   1273       : F4_2<0b101100, (outs IntRegs:$rd),
   1274              (ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond),
   1275              "mov$cond $cc, $simm11, $rd", []>;
   1276     def V9FMOVS_FCC
   1277       : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
   1278              (ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
   1279              "fmovs$cond $opf_cc, $rs2, $rd", []>;
   1280     def V9FMOVD_FCC
   1281       : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
   1282              (ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
   1283              "fmovd$cond $opf_cc, $rs2, $rd", []>;
   1284     def V9FMOVQ_FCC
   1285       : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
   1286              (ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
   1287              "fmovq$cond $opf_cc, $rs2, $rd", []>,
   1288              Requires<[HasHardQuad]>;
   1289   } // Constraints = "$f = $rd", ...
   1290 } // let Predicates = [hasV9]
   1291 
   1292 
   1293 // POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
   1294 // the top 32-bits before using it.  To do this clearing, we use a SRLri X,0.
   1295 let rs1 = 0 in
   1296   def POPCrr : F3_1<2, 0b101110,
   1297                     (outs IntRegs:$rd), (ins IntRegs:$rs2),
   1298                     "popc $rs2, $rd", []>, Requires<[HasV9]>;
   1299 def : Pat<(ctpop i32:$src),
   1300           (POPCrr (SRLri $src, 0))>;
   1301 
   1302 let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in
   1303  def MEMBARi : F3_2<2, 0b101000, (outs), (ins simm13Op:$simm13),
   1304                     "membar $simm13", []>;
   1305 
   1306 // TODO: Should add a CASArr variant. In fact, the CAS instruction,
   1307 // unlike other instructions, only comes in a form which requires an
   1308 // ASI be provided. The ASI value hardcoded here is ASI_PRIMARY, the
   1309 // default unprivileged ASI for SparcV9.  (Also of note: some modern
   1310 // SparcV8 implementations provide CASA as an extension, but require
   1311 // the use of SparcV8's default ASI, 0xA ("User Data") instead.)
   1312 let Predicates = [HasV9], Constraints = "$swap = $rd", asi = 0b10000000 in
   1313   def CASrr: F3_1_asi<3, 0b111100,
   1314                 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
   1315                                      IntRegs:$swap),
   1316                  "cas [$rs1], $rs2, $rd",
   1317                  [(set i32:$rd,
   1318                      (atomic_cmp_swap iPTR:$rs1, i32:$rs2, i32:$swap))]>;
   1319 
   1320 let Defs = [ICC] in {
   1321 defm TADDCC   : F3_12np<"taddcc",   0b100000>;
   1322 defm TSUBCC   : F3_12np<"tsubcc",   0b100001>;
   1323 
   1324 let hasSideEffects = 1 in {
   1325   defm TADDCCTV : F3_12np<"taddcctv", 0b100010>;
   1326   defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>;
   1327 }
   1328 }
   1329 
   1330 
   1331 // Section A.43 - Read Privileged Register Instructions
   1332 let Predicates = [HasV9] in {
   1333 let rs2 = 0 in
   1334   def RDPR : F3_1<2, 0b101010,
   1335                  (outs IntRegs:$rd), (ins PRRegs:$rs1),
   1336                  "rdpr $rs1, $rd", []>;
   1337 }
   1338 
   1339 // Section A.62 - Write Privileged Register Instructions
   1340 let Predicates = [HasV9] in {
   1341   def WRPRrr : F3_1<2, 0b110010,
   1342                    (outs PRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
   1343                    "wrpr $rs1, $rs2, $rd", []>;
   1344   def WRPRri : F3_2<2, 0b110010,
   1345                    (outs PRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
   1346                    "wrpr $rs1, $simm13, $rd", []>;
   1347 }
   1348 
   1349 //===----------------------------------------------------------------------===//
   1350 // Non-Instruction Patterns
   1351 //===----------------------------------------------------------------------===//
   1352 
   1353 // Small immediates.
   1354 def : Pat<(i32 simm13:$val),
   1355           (ORri (i32 G0), imm:$val)>;
   1356 // Arbitrary immediates.
   1357 def : Pat<(i32 imm:$val),
   1358           (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
   1359 
   1360 
   1361 // Global addresses, constant pool entries
   1362 let Predicates = [Is32Bit] in {
   1363 
   1364 def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
   1365 def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
   1366 def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
   1367 def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;
   1368 
   1369 // GlobalTLS addresses
   1370 def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
   1371 def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>;
   1372 def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
   1373           (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
   1374 def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
   1375           (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
   1376 
   1377 // Blockaddress
   1378 def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
   1379 def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>;
   1380 
   1381 // Add reg, lo.  This is used when taking the addr of a global/constpool entry.
   1382 def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>;
   1383 def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDri $r, tconstpool:$in)>;
   1384 def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
   1385                         (ADDri $r, tblockaddress:$in)>;
   1386 }
   1387 
   1388 // Calls:
   1389 def : Pat<(call tglobaladdr:$dst),
   1390           (CALL tglobaladdr:$dst)>;
   1391 def : Pat<(call texternalsym:$dst),
   1392           (CALL texternalsym:$dst)>;
   1393 
   1394 // Map integer extload's to zextloads.
   1395 def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
   1396 def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
   1397 def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
   1398 def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
   1399 def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
   1400 def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
   1401 
   1402 // zextload bool -> zextload byte
   1403 def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
   1404 def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
   1405 
   1406 // store 0, addr -> store %g0, addr
   1407 def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>;
   1408 def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>;
   1409 
   1410 // store bar for all atomic_fence in V8.
   1411 let Predicates = [HasNoV9] in
   1412   def : Pat<(atomic_fence imm, imm), (STBAR)>;
   1413 
   1414 // atomic_load_32 addr -> load addr
   1415 def : Pat<(i32 (atomic_load ADDRrr:$src)), (LDrr ADDRrr:$src)>;
   1416 def : Pat<(i32 (atomic_load ADDRri:$src)), (LDri ADDRri:$src)>;
   1417 
   1418 // atomic_store_32 val, addr -> store val, addr
   1419 def : Pat<(atomic_store ADDRrr:$dst, i32:$val), (STrr ADDRrr:$dst, $val)>;
   1420 def : Pat<(atomic_store ADDRri:$dst, i32:$val), (STri ADDRri:$dst, $val)>;
   1421 
   1422 // extract_vector
   1423 def : Pat<(extractelt (v2i32 IntPair:$Rn), 0),
   1424           (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_even))>;
   1425 def : Pat<(extractelt (v2i32 IntPair:$Rn), 1),
   1426           (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_odd))>;
   1427 
   1428 // build_vector
   1429 def : Pat<(build_vector (i32 IntRegs:$a1), (i32 IntRegs:$a2)),
   1430           (INSERT_SUBREG
   1431 	    (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (i32 IntRegs:$a1), sub_even),
   1432             (i32 IntRegs:$a2), sub_odd)>;
   1433 
   1434 
   1435 include "SparcInstr64Bit.td"
   1436 include "SparcInstrVIS.td"
   1437 include "SparcInstrAliases.td"
   1438