1 //==- SystemZRegisterInfo.td - SystemZ register definitions -*- tablegen -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 //===----------------------------------------------------------------------===// 11 // Class definitions. 12 //===----------------------------------------------------------------------===// 13 14 class SystemZReg<string n> : Register<n> { 15 let Namespace = "SystemZ"; 16 } 17 18 class SystemZRegWithSubregs<string n, list<Register> subregs> 19 : RegisterWithSubRegs<n, subregs> { 20 let Namespace = "SystemZ"; 21 } 22 23 let Namespace = "SystemZ" in { 24 def subreg_l32 : SubRegIndex<32, 0>; // Also acts as subreg_ll32. 25 def subreg_h32 : SubRegIndex<32, 32>; // Also acts as subreg_lh32. 26 def subreg_l64 : SubRegIndex<64, 0>; 27 def subreg_h64 : SubRegIndex<64, 64>; 28 def subreg_r32 : SubRegIndex<32, 32>; // Reinterpret a wider reg as 32 bits. 29 def subreg_r64 : SubRegIndex<64, 64>; // Reinterpret a wider reg as 64 bits. 30 def subreg_hh32 : ComposedSubRegIndex<subreg_h64, subreg_h32>; 31 def subreg_hl32 : ComposedSubRegIndex<subreg_h64, subreg_l32>; 32 def subreg_hr32 : ComposedSubRegIndex<subreg_h64, subreg_r32>; 33 } 34 35 // Define a register class that contains values of types TYPES and an 36 // associated operand called NAME. SIZE is the size and alignment 37 // of the registers and REGLIST is the list of individual registers. 38 multiclass SystemZRegClass<string name, list<ValueType> types, int size, 39 dag regList> { 40 def AsmOperand : AsmOperandClass { 41 let Name = name; 42 let ParserMethod = "parse"##name; 43 let RenderMethod = "addRegOperands"; 44 } 45 def Bit : RegisterClass<"SystemZ", types, size, regList> { 46 let Size = size; 47 } 48 def "" : RegisterOperand<!cast<RegisterClass>(name##"Bit")> { 49 let ParserMatchClass = !cast<AsmOperandClass>(name##"AsmOperand"); 50 } 51 } 52 53 //===----------------------------------------------------------------------===// 54 // General-purpose registers 55 //===----------------------------------------------------------------------===// 56 57 // Lower 32 bits of one of the 16 64-bit general-purpose registers 58 class GPR32<bits<16> num, string n> : SystemZReg<n> { 59 let HWEncoding = num; 60 } 61 62 // One of the 16 64-bit general-purpose registers. 63 class GPR64<bits<16> num, string n, GPR32 low, GPR32 high> 64 : SystemZRegWithSubregs<n, [low, high]> { 65 let HWEncoding = num; 66 let SubRegIndices = [subreg_l32, subreg_h32]; 67 } 68 69 // 8 even-odd pairs of GPR64s. 70 class GPR128<bits<16> num, string n, GPR64 low, GPR64 high> 71 : SystemZRegWithSubregs<n, [low, high]> { 72 let HWEncoding = num; 73 let SubRegIndices = [subreg_l64, subreg_h64]; 74 } 75 76 // General-purpose registers 77 foreach I = 0-15 in { 78 def R#I#L : GPR32<I, "r"#I>; 79 def R#I#H : GPR32<I, "r"#I>; 80 def R#I#D : GPR64<I, "r"#I, !cast<GPR32>("R"#I#"L"), !cast<GPR32>("R"#I#"H")>, 81 DwarfRegNum<[I]>; 82 } 83 84 foreach I = [0, 2, 4, 6, 8, 10, 12, 14] in { 85 def R#I#Q : GPR128<I, "r"#I, !cast<GPR64>("R"#!add(I, 1)#"D"), 86 !cast<GPR64>("R"#I#"D")>; 87 } 88 89 /// Allocate the callee-saved R6-R13 backwards. That way they can be saved 90 /// together with R14 and R15 in one prolog instruction. 91 defm GR32 : SystemZRegClass<"GR32", [i32], 32, 92 (add (sequence "R%uL", 0, 5), 93 (sequence "R%uL", 15, 6))>; 94 defm GRH32 : SystemZRegClass<"GRH32", [i32], 32, 95 (add (sequence "R%uH", 0, 5), 96 (sequence "R%uH", 15, 6))>; 97 defm GR64 : SystemZRegClass<"GR64", [i64], 64, 98 (add (sequence "R%uD", 0, 5), 99 (sequence "R%uD", 15, 6))>; 100 101 // Combine the low and high GR32s into a single class. This can only be 102 // used for virtual registers if the high-word facility is available. 103 defm GRX32 : SystemZRegClass<"GRX32", [i32], 32, 104 (add (sequence "R%uL", 0, 5), 105 (sequence "R%uH", 0, 5), 106 R15L, R15H, R14L, R14H, R13L, R13H, 107 R12L, R12H, R11L, R11H, R10L, R10H, 108 R9L, R9H, R8L, R8H, R7L, R7H, R6L, R6H)>; 109 110 // The architecture doesn't really have any i128 support, so model the 111 // register pairs as untyped instead. 112 defm GR128 : SystemZRegClass<"GR128", [untyped], 128, 113 (add R0Q, R2Q, R4Q, R12Q, R10Q, R8Q, R6Q, R14Q)>; 114 115 // Base and index registers. Everything except R0, which in an address 116 // context evaluates as 0. 117 defm ADDR32 : SystemZRegClass<"ADDR32", [i32], 32, (sub GR32Bit, R0L)>; 118 defm ADDR64 : SystemZRegClass<"ADDR64", [i64], 64, (sub GR64Bit, R0D)>; 119 120 // Not used directly, but needs to exist for ADDR32 and ADDR64 subregs 121 // of a GR128. 122 defm ADDR128 : SystemZRegClass<"ADDR128", [untyped], 128, (sub GR128Bit, R0Q)>; 123 124 //===----------------------------------------------------------------------===// 125 // Floating-point registers 126 //===----------------------------------------------------------------------===// 127 128 // Maps FPR register numbers to their DWARF encoding. 129 class DwarfMapping<int id> { int Id = id; } 130 131 def F0Dwarf : DwarfMapping<16>; 132 def F2Dwarf : DwarfMapping<17>; 133 def F4Dwarf : DwarfMapping<18>; 134 def F6Dwarf : DwarfMapping<19>; 135 136 def F1Dwarf : DwarfMapping<20>; 137 def F3Dwarf : DwarfMapping<21>; 138 def F5Dwarf : DwarfMapping<22>; 139 def F7Dwarf : DwarfMapping<23>; 140 141 def F8Dwarf : DwarfMapping<24>; 142 def F10Dwarf : DwarfMapping<25>; 143 def F12Dwarf : DwarfMapping<26>; 144 def F14Dwarf : DwarfMapping<27>; 145 146 def F9Dwarf : DwarfMapping<28>; 147 def F11Dwarf : DwarfMapping<29>; 148 def F13Dwarf : DwarfMapping<30>; 149 def F15Dwarf : DwarfMapping<31>; 150 151 def F16Dwarf : DwarfMapping<68>; 152 def F18Dwarf : DwarfMapping<69>; 153 def F20Dwarf : DwarfMapping<70>; 154 def F22Dwarf : DwarfMapping<71>; 155 156 def F17Dwarf : DwarfMapping<72>; 157 def F19Dwarf : DwarfMapping<73>; 158 def F21Dwarf : DwarfMapping<74>; 159 def F23Dwarf : DwarfMapping<75>; 160 161 def F24Dwarf : DwarfMapping<76>; 162 def F26Dwarf : DwarfMapping<77>; 163 def F28Dwarf : DwarfMapping<78>; 164 def F30Dwarf : DwarfMapping<79>; 165 166 def F25Dwarf : DwarfMapping<80>; 167 def F27Dwarf : DwarfMapping<81>; 168 def F29Dwarf : DwarfMapping<82>; 169 def F31Dwarf : DwarfMapping<83>; 170 171 // Upper 32 bits of one of the floating-point registers 172 class FPR32<bits<16> num, string n> : SystemZReg<n> { 173 let HWEncoding = num; 174 } 175 176 // One of the floating-point registers. 177 class FPR64<bits<16> num, string n, FPR32 high> 178 : SystemZRegWithSubregs<n, [high]> { 179 let HWEncoding = num; 180 let SubRegIndices = [subreg_r32]; 181 } 182 183 // 8 pairs of FPR64s, with a one-register gap inbetween. 184 class FPR128<bits<16> num, string n, FPR64 low, FPR64 high> 185 : SystemZRegWithSubregs<n, [low, high]> { 186 let HWEncoding = num; 187 let SubRegIndices = [subreg_l64, subreg_h64]; 188 } 189 190 // Floating-point registers. Registers 16-31 require the vector facility. 191 foreach I = 0-15 in { 192 def F#I#S : FPR32<I, "f"#I>; 193 def F#I#D : FPR64<I, "f"#I, !cast<FPR32>("F"#I#"S")>, 194 DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>; 195 } 196 foreach I = 16-31 in { 197 def F#I#S : FPR32<I, "v"#I>; 198 def F#I#D : FPR64<I, "v"#I, !cast<FPR32>("F"#I#"S")>, 199 DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>; 200 } 201 202 foreach I = [0, 1, 4, 5, 8, 9, 12, 13] in { 203 def F#I#Q : FPR128<I, "f"#I, !cast<FPR64>("F"#!add(I, 2)#"D"), 204 !cast<FPR64>("F"#I#"D")>; 205 } 206 207 // There's no store-multiple instruction for FPRs, so we're not fussy 208 // about the order in which call-saved registers are allocated. 209 defm FP32 : SystemZRegClass<"FP32", [f32], 32, (sequence "F%uS", 0, 15)>; 210 defm FP64 : SystemZRegClass<"FP64", [f64], 64, (sequence "F%uD", 0, 15)>; 211 defm FP128 : SystemZRegClass<"FP128", [f128], 128, 212 (add F0Q, F1Q, F4Q, F5Q, F8Q, F9Q, F12Q, F13Q)>; 213 214 //===----------------------------------------------------------------------===// 215 // Vector registers 216 //===----------------------------------------------------------------------===// 217 218 // A full 128-bit vector register, with an FPR64 as its high part. 219 class VR128<bits<16> num, string n, FPR64 high> 220 : SystemZRegWithSubregs<n, [high]> { 221 let HWEncoding = num; 222 let SubRegIndices = [subreg_r64]; 223 } 224 225 // Full vector registers. 226 foreach I = 0-31 in { 227 def V#I : VR128<I, "v"#I, !cast<FPR64>("F"#I#"D")>, 228 DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>; 229 } 230 231 // Class used to store 32-bit values in the first element of a vector 232 // register. f32 scalars are used for the WLEDB and WLDEB instructions. 233 defm VR32 : SystemZRegClass<"VR32", [f32, v4i8, v2i16], 32, 234 (add (sequence "F%uS", 0, 7), 235 (sequence "F%uS", 16, 31), 236 (sequence "F%uS", 8, 15))>; 237 238 // Class used to store 64-bit values in the upper half of a vector register. 239 // The vector facility also includes scalar f64 instructions that operate 240 // on the full vector register set. 241 defm VR64 : SystemZRegClass<"VR64", [f64, v8i8, v4i16, v2i32, v2f32], 64, 242 (add (sequence "F%uD", 0, 7), 243 (sequence "F%uD", 16, 31), 244 (sequence "F%uD", 8, 15))>; 245 246 // The subset of vector registers that can be used for floating-point 247 // operations too. 248 defm VF128 : SystemZRegClass<"VF128", 249 [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128, 250 (sequence "V%u", 0, 15)>; 251 252 // All vector registers. 253 defm VR128 : SystemZRegClass<"VR128", 254 [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128, 255 (add (sequence "V%u", 0, 7), 256 (sequence "V%u", 16, 31), 257 (sequence "V%u", 8, 15))>; 258 259 // Attaches a ValueType to a register operand, to make the instruction 260 // definitions easier. 261 class TypedReg<ValueType vtin, RegisterOperand opin> { 262 ValueType vt = vtin; 263 RegisterOperand op = opin; 264 } 265 266 def v32eb : TypedReg<f32, VR32>; 267 def v64g : TypedReg<i64, VR64>; 268 def v64db : TypedReg<f64, VR64>; 269 def v128b : TypedReg<v16i8, VR128>; 270 def v128h : TypedReg<v8i16, VR128>; 271 def v128f : TypedReg<v4i32, VR128>; 272 def v128g : TypedReg<v2i64, VR128>; 273 def v128q : TypedReg<v16i8, VR128>; 274 def v128eb : TypedReg<v4f32, VR128>; 275 def v128db : TypedReg<v2f64, VR128>; 276 def v128any : TypedReg<untyped, VR128>; 277 278 //===----------------------------------------------------------------------===// 279 // Other registers 280 //===----------------------------------------------------------------------===// 281 282 // The 2-bit condition code field of the PSW. Every register named in an 283 // inline asm needs a class associated with it. 284 def CC : SystemZReg<"cc">; 285 let isAllocatable = 0 in 286 def CCRegs : RegisterClass<"SystemZ", [i32], 32, (add CC)>; 287