Home | History | Annotate | Download | only in SystemZ
      1 //==- SystemZRegisterInfo.td - SystemZ register definitions -*- tablegen -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 //===----------------------------------------------------------------------===//
     11 // Class definitions.
     12 //===----------------------------------------------------------------------===//
     13 
     14 class SystemZReg<string n> : Register<n> {
     15   let Namespace = "SystemZ";
     16 }
     17 
     18 class SystemZRegWithSubregs<string n, list<Register> subregs>
     19   : RegisterWithSubRegs<n, subregs> {
     20   let Namespace = "SystemZ";
     21 }
     22 
     23 let Namespace = "SystemZ" in {
     24 def subreg_l32   : SubRegIndex<32, 0>;  // Also acts as subreg_ll32.
     25 def subreg_h32   : SubRegIndex<32, 32>; // Also acts as subreg_lh32.
     26 def subreg_l64   : SubRegIndex<64, 0>;
     27 def subreg_h64   : SubRegIndex<64, 64>;
     28 def subreg_r32   : SubRegIndex<32, 32>; // Reinterpret a wider reg as 32 bits.
     29 def subreg_r64   : SubRegIndex<64, 64>; // Reinterpret a wider reg as 64 bits.
     30 def subreg_hh32  : ComposedSubRegIndex<subreg_h64, subreg_h32>;
     31 def subreg_hl32  : ComposedSubRegIndex<subreg_h64, subreg_l32>;
     32 def subreg_hr32  : ComposedSubRegIndex<subreg_h64, subreg_r32>;
     33 }
     34 
     35 // Define a register class that contains values of types TYPES and an
     36 // associated operand called NAME.  SIZE is the size and alignment
     37 // of the registers and REGLIST is the list of individual registers.
     38 multiclass SystemZRegClass<string name, list<ValueType> types, int size,
     39                            dag regList> {
     40   def AsmOperand : AsmOperandClass {
     41     let Name = name;
     42     let ParserMethod = "parse"##name;
     43     let RenderMethod = "addRegOperands";
     44   }
     45   def Bit : RegisterClass<"SystemZ", types, size, regList> {
     46     let Size = size;
     47   }
     48   def "" : RegisterOperand<!cast<RegisterClass>(name##"Bit")> {
     49     let ParserMatchClass = !cast<AsmOperandClass>(name##"AsmOperand");
     50   }
     51 }
     52 
     53 //===----------------------------------------------------------------------===//
     54 // General-purpose registers
     55 //===----------------------------------------------------------------------===//
     56 
     57 // Lower 32 bits of one of the 16 64-bit general-purpose registers
     58 class GPR32<bits<16> num, string n> : SystemZReg<n> {
     59   let HWEncoding = num;
     60 }
     61 
     62 // One of the 16 64-bit general-purpose registers.
     63 class GPR64<bits<16> num, string n, GPR32 low, GPR32 high>
     64  : SystemZRegWithSubregs<n, [low, high]> {
     65   let HWEncoding = num;
     66   let SubRegIndices = [subreg_l32, subreg_h32];
     67 }
     68 
     69 // 8 even-odd pairs of GPR64s.
     70 class GPR128<bits<16> num, string n, GPR64 low, GPR64 high>
     71  : SystemZRegWithSubregs<n, [low, high]> {
     72   let HWEncoding = num;
     73   let SubRegIndices = [subreg_l64, subreg_h64];
     74 }
     75 
     76 // General-purpose registers
     77 foreach I = 0-15 in {
     78   def R#I#L : GPR32<I, "r"#I>;
     79   def R#I#H : GPR32<I, "r"#I>;
     80   def R#I#D : GPR64<I, "r"#I, !cast<GPR32>("R"#I#"L"), !cast<GPR32>("R"#I#"H")>,
     81                     DwarfRegNum<[I]>;
     82 }
     83 
     84 foreach I = [0, 2, 4, 6, 8, 10, 12, 14] in {
     85   def R#I#Q : GPR128<I, "r"#I, !cast<GPR64>("R"#!add(I, 1)#"D"),
     86                      !cast<GPR64>("R"#I#"D")>;
     87 }
     88 
     89 /// Allocate the callee-saved R6-R13 backwards. That way they can be saved
     90 /// together with R14 and R15 in one prolog instruction.
     91 defm GR32  : SystemZRegClass<"GR32",  [i32], 32,
     92                              (add (sequence "R%uL",  0, 5),
     93                                   (sequence "R%uL", 15, 6))>;
     94 defm GRH32 : SystemZRegClass<"GRH32", [i32], 32,
     95                              (add (sequence "R%uH",  0, 5),
     96                                   (sequence "R%uH", 15, 6))>;
     97 defm GR64  : SystemZRegClass<"GR64",  [i64], 64,
     98                              (add (sequence "R%uD",  0, 5),
     99                                   (sequence "R%uD", 15, 6))>;
    100 
    101 // Combine the low and high GR32s into a single class.  This can only be
    102 // used for virtual registers if the high-word facility is available.
    103 defm GRX32 : SystemZRegClass<"GRX32", [i32], 32,
    104                              (add (sequence "R%uL",  0, 5),
    105                                   (sequence "R%uH",  0, 5),
    106                                   R15L, R15H, R14L, R14H, R13L, R13H,
    107                                   R12L, R12H, R11L, R11H, R10L, R10H,
    108                                   R9L, R9H, R8L, R8H, R7L, R7H, R6L, R6H)>;
    109 
    110 // The architecture doesn't really have any i128 support, so model the
    111 // register pairs as untyped instead.
    112 defm GR128 : SystemZRegClass<"GR128", [untyped], 128,
    113                              (add R0Q, R2Q, R4Q, R12Q, R10Q, R8Q, R6Q, R14Q)>;
    114 
    115 // Base and index registers.  Everything except R0, which in an address
    116 // context evaluates as 0.
    117 defm ADDR32 : SystemZRegClass<"ADDR32", [i32], 32, (sub GR32Bit, R0L)>;
    118 defm ADDR64 : SystemZRegClass<"ADDR64", [i64], 64, (sub GR64Bit, R0D)>;
    119 
    120 // Not used directly, but needs to exist for ADDR32 and ADDR64 subregs
    121 // of a GR128.
    122 defm ADDR128 : SystemZRegClass<"ADDR128", [untyped], 128, (sub GR128Bit, R0Q)>;
    123 
    124 //===----------------------------------------------------------------------===//
    125 // Floating-point registers
    126 //===----------------------------------------------------------------------===//
    127 
    128 // Maps FPR register numbers to their DWARF encoding.
    129 class DwarfMapping<int id> { int Id = id; }
    130 
    131 def F0Dwarf  : DwarfMapping<16>;
    132 def F2Dwarf  : DwarfMapping<17>;
    133 def F4Dwarf  : DwarfMapping<18>;
    134 def F6Dwarf  : DwarfMapping<19>;
    135 
    136 def F1Dwarf  : DwarfMapping<20>;
    137 def F3Dwarf  : DwarfMapping<21>;
    138 def F5Dwarf  : DwarfMapping<22>;
    139 def F7Dwarf  : DwarfMapping<23>;
    140 
    141 def F8Dwarf  : DwarfMapping<24>;
    142 def F10Dwarf : DwarfMapping<25>;
    143 def F12Dwarf : DwarfMapping<26>;
    144 def F14Dwarf : DwarfMapping<27>;
    145 
    146 def F9Dwarf  : DwarfMapping<28>;
    147 def F11Dwarf : DwarfMapping<29>;
    148 def F13Dwarf : DwarfMapping<30>;
    149 def F15Dwarf : DwarfMapping<31>;
    150 
    151 def F16Dwarf : DwarfMapping<68>;
    152 def F18Dwarf : DwarfMapping<69>;
    153 def F20Dwarf : DwarfMapping<70>;
    154 def F22Dwarf : DwarfMapping<71>;
    155 
    156 def F17Dwarf : DwarfMapping<72>;
    157 def F19Dwarf : DwarfMapping<73>;
    158 def F21Dwarf : DwarfMapping<74>;
    159 def F23Dwarf : DwarfMapping<75>;
    160 
    161 def F24Dwarf : DwarfMapping<76>;
    162 def F26Dwarf : DwarfMapping<77>;
    163 def F28Dwarf : DwarfMapping<78>;
    164 def F30Dwarf : DwarfMapping<79>;
    165 
    166 def F25Dwarf : DwarfMapping<80>;
    167 def F27Dwarf : DwarfMapping<81>;
    168 def F29Dwarf : DwarfMapping<82>;
    169 def F31Dwarf : DwarfMapping<83>;
    170 
    171 // Upper 32 bits of one of the floating-point registers
    172 class FPR32<bits<16> num, string n> : SystemZReg<n> {
    173   let HWEncoding = num;
    174 }
    175 
    176 // One of the floating-point registers.
    177 class FPR64<bits<16> num, string n, FPR32 high>
    178  : SystemZRegWithSubregs<n, [high]> {
    179   let HWEncoding = num;
    180   let SubRegIndices = [subreg_r32];
    181 }
    182 
    183 // 8 pairs of FPR64s, with a one-register gap inbetween.
    184 class FPR128<bits<16> num, string n, FPR64 low, FPR64 high>
    185  : SystemZRegWithSubregs<n, [low, high]> {
    186   let HWEncoding = num;
    187   let SubRegIndices = [subreg_l64, subreg_h64];
    188 }
    189 
    190 // Floating-point registers.  Registers 16-31 require the vector facility.
    191 foreach I = 0-15 in {
    192   def F#I#S : FPR32<I, "f"#I>;
    193   def F#I#D : FPR64<I, "f"#I, !cast<FPR32>("F"#I#"S")>,
    194               DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>;
    195 }
    196 foreach I = 16-31 in {
    197   def F#I#S : FPR32<I, "v"#I>;
    198   def F#I#D : FPR64<I, "v"#I, !cast<FPR32>("F"#I#"S")>,
    199               DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>;
    200 }
    201 
    202 foreach I = [0, 1, 4, 5, 8, 9, 12, 13] in {
    203   def F#I#Q  : FPR128<I, "f"#I, !cast<FPR64>("F"#!add(I, 2)#"D"),
    204                      !cast<FPR64>("F"#I#"D")>;
    205 }
    206 
    207 // There's no store-multiple instruction for FPRs, so we're not fussy
    208 // about the order in which call-saved registers are allocated.
    209 defm FP32  : SystemZRegClass<"FP32", [f32], 32, (sequence "F%uS", 0, 15)>;
    210 defm FP64  : SystemZRegClass<"FP64", [f64], 64, (sequence "F%uD", 0, 15)>;
    211 defm FP128 : SystemZRegClass<"FP128", [f128], 128,
    212                              (add F0Q, F1Q, F4Q, F5Q, F8Q, F9Q, F12Q, F13Q)>;
    213 
    214 //===----------------------------------------------------------------------===//
    215 // Vector registers
    216 //===----------------------------------------------------------------------===//
    217 
    218 // A full 128-bit vector register, with an FPR64 as its high part.
    219 class VR128<bits<16> num, string n, FPR64 high>
    220   : SystemZRegWithSubregs<n, [high]> {
    221   let HWEncoding = num;
    222   let SubRegIndices = [subreg_r64];
    223 }
    224 
    225 // Full vector registers.
    226 foreach I = 0-31 in {
    227   def V#I : VR128<I, "v"#I, !cast<FPR64>("F"#I#"D")>,
    228             DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>;
    229 }
    230 
    231 // Class used to store 32-bit values in the first element of a vector
    232 // register.  f32 scalars are used for the WLEDB and WLDEB instructions.
    233 defm VR32 : SystemZRegClass<"VR32", [f32, v4i8, v2i16], 32,
    234                             (add (sequence "F%uS", 0, 7),
    235                                  (sequence "F%uS", 16, 31),
    236                                  (sequence "F%uS", 8, 15))>;
    237 
    238 // Class used to store 64-bit values in the upper half of a vector register.
    239 // The vector facility also includes scalar f64 instructions that operate
    240 // on the full vector register set.
    241 defm VR64 : SystemZRegClass<"VR64", [f64, v8i8, v4i16, v2i32, v2f32], 64,
    242                             (add (sequence "F%uD", 0, 7),
    243                                  (sequence "F%uD", 16, 31),
    244                                  (sequence "F%uD", 8, 15))>;
    245 
    246 // The subset of vector registers that can be used for floating-point
    247 // operations too.
    248 defm VF128 : SystemZRegClass<"VF128",
    249                              [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128,
    250                              (sequence "V%u", 0, 15)>;
    251 
    252 // All vector registers.
    253 defm VR128 : SystemZRegClass<"VR128",
    254                              [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128,
    255                              (add (sequence "V%u", 0, 7),
    256                                   (sequence "V%u", 16, 31),
    257                                   (sequence "V%u", 8, 15))>;
    258 
    259 // Attaches a ValueType to a register operand, to make the instruction
    260 // definitions easier.
    261 class TypedReg<ValueType vtin, RegisterOperand opin> {
    262   ValueType vt = vtin;
    263   RegisterOperand op = opin;
    264 }
    265 
    266 def v32eb   : TypedReg<f32,     VR32>;
    267 def v64g    : TypedReg<i64,     VR64>;
    268 def v64db   : TypedReg<f64,     VR64>;
    269 def v128b   : TypedReg<v16i8,   VR128>;
    270 def v128h   : TypedReg<v8i16,   VR128>;
    271 def v128f   : TypedReg<v4i32,   VR128>;
    272 def v128g   : TypedReg<v2i64,   VR128>;
    273 def v128q   : TypedReg<v16i8,   VR128>;
    274 def v128eb  : TypedReg<v4f32,   VR128>;
    275 def v128db  : TypedReg<v2f64,   VR128>;
    276 def v128any : TypedReg<untyped, VR128>;
    277 
    278 //===----------------------------------------------------------------------===//
    279 // Other registers
    280 //===----------------------------------------------------------------------===//
    281 
    282 // The 2-bit condition code field of the PSW.  Every register named in an
    283 // inline asm needs a class associated with it.
    284 def CC : SystemZReg<"cc">;
    285 let isAllocatable = 0 in
    286   def CCRegs : RegisterClass<"SystemZ", [i32], 32, (add CC)>;
    287