Home | History | Annotate | Download | only in Disassembler
      1 //===-- X86DisassemblerDecoder.cpp - Disassembler decoder -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is part of the X86 Disassembler.
     11 // It contains the implementation of the instruction decoder.
     12 // Documentation for the disassembler can be found in X86Disassembler.h.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include <cstdarg>   /* for va_*()       */
     17 #include <cstdio>    /* for vsnprintf()  */
     18 #include <cstdlib>   /* for exit()       */
     19 #include <cstring>   /* for memset()     */
     20 
     21 #include "X86DisassemblerDecoder.h"
     22 
     23 using namespace llvm::X86Disassembler;
     24 
     25 /// Specifies whether a ModR/M byte is needed and (if so) which
     26 /// instruction each possible value of the ModR/M byte corresponds to.  Once
     27 /// this information is known, we have narrowed down to a single instruction.
     28 struct ModRMDecision {
     29   uint8_t modrm_type;
     30   uint16_t instructionIDs;
     31 };
     32 
     33 /// Specifies which set of ModR/M->instruction tables to look at
     34 /// given a particular opcode.
     35 struct OpcodeDecision {
     36   ModRMDecision modRMDecisions[256];
     37 };
     38 
     39 /// Specifies which opcode->instruction tables to look at given
     40 /// a particular context (set of attributes).  Since there are many possible
     41 /// contexts, the decoder first uses CONTEXTS_SYM to determine which context
     42 /// applies given a specific set of attributes.  Hence there are only IC_max
     43 /// entries in this table, rather than 2^(ATTR_max).
     44 struct ContextDecision {
     45   OpcodeDecision opcodeDecisions[IC_max];
     46 };
     47 
     48 #include "X86GenDisassemblerTables.inc"
     49 
     50 #ifndef NDEBUG
     51 #define debug(s) do { Debug(__FILE__, __LINE__, s); } while (0)
     52 #else
     53 #define debug(s) do { } while (0)
     54 #endif
     55 
     56 
     57 /*
     58  * contextForAttrs - Client for the instruction context table.  Takes a set of
     59  *   attributes and returns the appropriate decode context.
     60  *
     61  * @param attrMask  - Attributes, from the enumeration attributeBits.
     62  * @return          - The InstructionContext to use when looking up an
     63  *                    an instruction with these attributes.
     64  */
     65 static InstructionContext contextForAttrs(uint16_t attrMask) {
     66   return static_cast<InstructionContext>(CONTEXTS_SYM[attrMask]);
     67 }
     68 
     69 /*
     70  * modRMRequired - Reads the appropriate instruction table to determine whether
     71  *   the ModR/M byte is required to decode a particular instruction.
     72  *
     73  * @param type        - The opcode type (i.e., how many bytes it has).
     74  * @param insnContext - The context for the instruction, as returned by
     75  *                      contextForAttrs.
     76  * @param opcode      - The last byte of the instruction's opcode, not counting
     77  *                      ModR/M extensions and escapes.
     78  * @return            - true if the ModR/M byte is required, false otherwise.
     79  */
     80 static int modRMRequired(OpcodeType type,
     81                          InstructionContext insnContext,
     82                          uint16_t opcode) {
     83   const struct ContextDecision* decision = nullptr;
     84 
     85   switch (type) {
     86   case ONEBYTE:
     87     decision = &ONEBYTE_SYM;
     88     break;
     89   case TWOBYTE:
     90     decision = &TWOBYTE_SYM;
     91     break;
     92   case THREEBYTE_38:
     93     decision = &THREEBYTE38_SYM;
     94     break;
     95   case THREEBYTE_3A:
     96     decision = &THREEBYTE3A_SYM;
     97     break;
     98   case XOP8_MAP:
     99     decision = &XOP8_MAP_SYM;
    100     break;
    101   case XOP9_MAP:
    102     decision = &XOP9_MAP_SYM;
    103     break;
    104   case XOPA_MAP:
    105     decision = &XOPA_MAP_SYM;
    106     break;
    107   }
    108 
    109   return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
    110     modrm_type != MODRM_ONEENTRY;
    111 }
    112 
    113 /*
    114  * decode - Reads the appropriate instruction table to obtain the unique ID of
    115  *   an instruction.
    116  *
    117  * @param type        - See modRMRequired().
    118  * @param insnContext - See modRMRequired().
    119  * @param opcode      - See modRMRequired().
    120  * @param modRM       - The ModR/M byte if required, or any value if not.
    121  * @return            - The UID of the instruction, or 0 on failure.
    122  */
    123 static InstrUID decode(OpcodeType type,
    124                        InstructionContext insnContext,
    125                        uint8_t opcode,
    126                        uint8_t modRM) {
    127   const struct ModRMDecision* dec = nullptr;
    128 
    129   switch (type) {
    130   case ONEBYTE:
    131     dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    132     break;
    133   case TWOBYTE:
    134     dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    135     break;
    136   case THREEBYTE_38:
    137     dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    138     break;
    139   case THREEBYTE_3A:
    140     dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    141     break;
    142   case XOP8_MAP:
    143     dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    144     break;
    145   case XOP9_MAP:
    146     dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    147     break;
    148   case XOPA_MAP:
    149     dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    150     break;
    151   }
    152 
    153   switch (dec->modrm_type) {
    154   default:
    155     debug("Corrupt table!  Unknown modrm_type");
    156     return 0;
    157   case MODRM_ONEENTRY:
    158     return modRMTable[dec->instructionIDs];
    159   case MODRM_SPLITRM:
    160     if (modFromModRM(modRM) == 0x3)
    161       return modRMTable[dec->instructionIDs+1];
    162     return modRMTable[dec->instructionIDs];
    163   case MODRM_SPLITREG:
    164     if (modFromModRM(modRM) == 0x3)
    165       return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
    166     return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
    167   case MODRM_SPLITMISC:
    168     if (modFromModRM(modRM) == 0x3)
    169       return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8];
    170     return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
    171   case MODRM_FULL:
    172     return modRMTable[dec->instructionIDs+modRM];
    173   }
    174 }
    175 
    176 /*
    177  * specifierForUID - Given a UID, returns the name and operand specification for
    178  *   that instruction.
    179  *
    180  * @param uid - The unique ID for the instruction.  This should be returned by
    181  *              decode(); specifierForUID will not check bounds.
    182  * @return    - A pointer to the specification for that instruction.
    183  */
    184 static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
    185   return &INSTRUCTIONS_SYM[uid];
    186 }
    187 
    188 /*
    189  * consumeByte - Uses the reader function provided by the user to consume one
    190  *   byte from the instruction's memory and advance the cursor.
    191  *
    192  * @param insn  - The instruction with the reader function to use.  The cursor
    193  *                for this instruction is advanced.
    194  * @param byte  - A pointer to a pre-allocated memory buffer to be populated
    195  *                with the data read.
    196  * @return      - 0 if the read was successful; nonzero otherwise.
    197  */
    198 static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
    199   int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
    200 
    201   if (!ret)
    202     ++(insn->readerCursor);
    203 
    204   return ret;
    205 }
    206 
    207 /*
    208  * lookAtByte - Like consumeByte, but does not advance the cursor.
    209  *
    210  * @param insn  - See consumeByte().
    211  * @param byte  - See consumeByte().
    212  * @return      - See consumeByte().
    213  */
    214 static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
    215   return insn->reader(insn->readerArg, byte, insn->readerCursor);
    216 }
    217 
    218 static void unconsumeByte(struct InternalInstruction* insn) {
    219   insn->readerCursor--;
    220 }
    221 
    222 #define CONSUME_FUNC(name, type)                                  \
    223   static int name(struct InternalInstruction* insn, type* ptr) {  \
    224     type combined = 0;                                            \
    225     unsigned offset;                                              \
    226     for (offset = 0; offset < sizeof(type); ++offset) {           \
    227       uint8_t byte;                                               \
    228       int ret = insn->reader(insn->readerArg,                     \
    229                              &byte,                               \
    230                              insn->readerCursor + offset);        \
    231       if (ret)                                                    \
    232         return ret;                                               \
    233       combined = combined | ((uint64_t)byte << (offset * 8));     \
    234     }                                                             \
    235     *ptr = combined;                                              \
    236     insn->readerCursor += sizeof(type);                           \
    237     return 0;                                                     \
    238   }
    239 
    240 /*
    241  * consume* - Use the reader function provided by the user to consume data
    242  *   values of various sizes from the instruction's memory and advance the
    243  *   cursor appropriately.  These readers perform endian conversion.
    244  *
    245  * @param insn    - See consumeByte().
    246  * @param ptr     - A pointer to a pre-allocated memory of appropriate size to
    247  *                  be populated with the data read.
    248  * @return        - See consumeByte().
    249  */
    250 CONSUME_FUNC(consumeInt8, int8_t)
    251 CONSUME_FUNC(consumeInt16, int16_t)
    252 CONSUME_FUNC(consumeInt32, int32_t)
    253 CONSUME_FUNC(consumeUInt16, uint16_t)
    254 CONSUME_FUNC(consumeUInt32, uint32_t)
    255 CONSUME_FUNC(consumeUInt64, uint64_t)
    256 
    257 /*
    258  * dbgprintf - Uses the logging function provided by the user to log a single
    259  *   message, typically without a carriage-return.
    260  *
    261  * @param insn    - The instruction containing the logging function.
    262  * @param format  - See printf().
    263  * @param ...     - See printf().
    264  */
    265 static void dbgprintf(struct InternalInstruction* insn,
    266                       const char* format,
    267                       ...) {
    268   char buffer[256];
    269   va_list ap;
    270 
    271   if (!insn->dlog)
    272     return;
    273 
    274   va_start(ap, format);
    275   (void)vsnprintf(buffer, sizeof(buffer), format, ap);
    276   va_end(ap);
    277 
    278   insn->dlog(insn->dlogArg, buffer);
    279 
    280   return;
    281 }
    282 
    283 /*
    284  * setPrefixPresent - Marks that a particular prefix is present at a particular
    285  *   location.
    286  *
    287  * @param insn      - The instruction to be marked as having the prefix.
    288  * @param prefix    - The prefix that is present.
    289  * @param location  - The location where the prefix is located (in the address
    290  *                    space of the instruction's reader).
    291  */
    292 static void setPrefixPresent(struct InternalInstruction* insn,
    293                                     uint8_t prefix,
    294                                     uint64_t location)
    295 {
    296   insn->prefixPresent[prefix] = 1;
    297   insn->prefixLocations[prefix] = location;
    298 }
    299 
    300 /*
    301  * isPrefixAtLocation - Queries an instruction to determine whether a prefix is
    302  *   present at a given location.
    303  *
    304  * @param insn      - The instruction to be queried.
    305  * @param prefix    - The prefix.
    306  * @param location  - The location to query.
    307  * @return          - Whether the prefix is at that location.
    308  */
    309 static bool isPrefixAtLocation(struct InternalInstruction* insn,
    310                                uint8_t prefix,
    311                                uint64_t location)
    312 {
    313   return insn->prefixPresent[prefix] == 1 &&
    314      insn->prefixLocations[prefix] == location;
    315 }
    316 
    317 /*
    318  * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
    319  *   instruction as having them.  Also sets the instruction's default operand,
    320  *   address, and other relevant data sizes to report operands correctly.
    321  *
    322  * @param insn  - The instruction whose prefixes are to be read.
    323  * @return      - 0 if the instruction could be read until the end of the prefix
    324  *                bytes, and no prefixes conflicted; nonzero otherwise.
    325  */
    326 static int readPrefixes(struct InternalInstruction* insn) {
    327   bool isPrefix = true;
    328   bool prefixGroups[4] = { false };
    329   uint64_t prefixLocation;
    330   uint8_t byte = 0;
    331   uint8_t nextByte;
    332 
    333   bool hasAdSize = false;
    334   bool hasOpSize = false;
    335 
    336   dbgprintf(insn, "readPrefixes()");
    337 
    338   while (isPrefix) {
    339     prefixLocation = insn->readerCursor;
    340 
    341     /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */
    342     if (consumeByte(insn, &byte))
    343       break;
    344 
    345     /*
    346      * If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
    347      * break and let it be disassembled as a normal "instruction".
    348      */
    349     if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0)
    350       break;
    351 
    352     if (insn->readerCursor - 1 == insn->startLocation
    353         && (byte == 0xf2 || byte == 0xf3)
    354         && !lookAtByte(insn, &nextByte))
    355     {
    356       /*
    357        * If the byte is 0xf2 or 0xf3, and any of the following conditions are
    358        * met:
    359        * - it is followed by a LOCK (0xf0) prefix
    360        * - it is followed by an xchg instruction
    361        * then it should be disassembled as a xacquire/xrelease not repne/rep.
    362        */
    363       if ((byte == 0xf2 || byte == 0xf3) &&
    364           ((nextByte == 0xf0) ||
    365           ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90)))
    366         insn->xAcquireRelease = true;
    367       /*
    368        * Also if the byte is 0xf3, and the following condition is met:
    369        * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
    370        *                       "mov mem, imm" (opcode 0xc6/0xc7) instructions.
    371        * then it should be disassembled as an xrelease not rep.
    372        */
    373       if (byte == 0xf3 &&
    374           (nextByte == 0x88 || nextByte == 0x89 ||
    375            nextByte == 0xc6 || nextByte == 0xc7))
    376         insn->xAcquireRelease = true;
    377       if (insn->mode == MODE_64BIT && (nextByte & 0xf0) == 0x40) {
    378         if (consumeByte(insn, &nextByte))
    379           return -1;
    380         if (lookAtByte(insn, &nextByte))
    381           return -1;
    382         unconsumeByte(insn);
    383       }
    384       if (nextByte != 0x0f && nextByte != 0x90)
    385         break;
    386     }
    387 
    388     switch (byte) {
    389     case 0xf0:  /* LOCK */
    390     case 0xf2:  /* REPNE/REPNZ */
    391     case 0xf3:  /* REP or REPE/REPZ */
    392       if (prefixGroups[0])
    393         dbgprintf(insn, "Redundant Group 1 prefix");
    394       prefixGroups[0] = true;
    395       setPrefixPresent(insn, byte, prefixLocation);
    396       break;
    397     case 0x2e:  /* CS segment override -OR- Branch not taken */
    398     case 0x36:  /* SS segment override -OR- Branch taken */
    399     case 0x3e:  /* DS segment override */
    400     case 0x26:  /* ES segment override */
    401     case 0x64:  /* FS segment override */
    402     case 0x65:  /* GS segment override */
    403       switch (byte) {
    404       case 0x2e:
    405         insn->segmentOverride = SEG_OVERRIDE_CS;
    406         break;
    407       case 0x36:
    408         insn->segmentOverride = SEG_OVERRIDE_SS;
    409         break;
    410       case 0x3e:
    411         insn->segmentOverride = SEG_OVERRIDE_DS;
    412         break;
    413       case 0x26:
    414         insn->segmentOverride = SEG_OVERRIDE_ES;
    415         break;
    416       case 0x64:
    417         insn->segmentOverride = SEG_OVERRIDE_FS;
    418         break;
    419       case 0x65:
    420         insn->segmentOverride = SEG_OVERRIDE_GS;
    421         break;
    422       default:
    423         debug("Unhandled override");
    424         return -1;
    425       }
    426       if (prefixGroups[1])
    427         dbgprintf(insn, "Redundant Group 2 prefix");
    428       prefixGroups[1] = true;
    429       setPrefixPresent(insn, byte, prefixLocation);
    430       break;
    431     case 0x66:  /* Operand-size override */
    432       if (prefixGroups[2])
    433         dbgprintf(insn, "Redundant Group 3 prefix");
    434       prefixGroups[2] = true;
    435       hasOpSize = true;
    436       setPrefixPresent(insn, byte, prefixLocation);
    437       break;
    438     case 0x67:  /* Address-size override */
    439       if (prefixGroups[3])
    440         dbgprintf(insn, "Redundant Group 4 prefix");
    441       prefixGroups[3] = true;
    442       hasAdSize = true;
    443       setPrefixPresent(insn, byte, prefixLocation);
    444       break;
    445     default:    /* Not a prefix byte */
    446       isPrefix = false;
    447       break;
    448     }
    449 
    450     if (isPrefix)
    451       dbgprintf(insn, "Found prefix 0x%hhx", byte);
    452   }
    453 
    454   insn->vectorExtensionType = TYPE_NO_VEX_XOP;
    455 
    456   if (byte == 0x62) {
    457     uint8_t byte1, byte2;
    458 
    459     if (consumeByte(insn, &byte1)) {
    460       dbgprintf(insn, "Couldn't read second byte of EVEX prefix");
    461       return -1;
    462     }
    463 
    464     if (lookAtByte(insn, &byte2)) {
    465       dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
    466       return -1;
    467     }
    468 
    469     if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
    470        ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
    471       insn->vectorExtensionType = TYPE_EVEX;
    472     } else {
    473       unconsumeByte(insn); /* unconsume byte1 */
    474       unconsumeByte(insn); /* unconsume byte  */
    475       insn->necessaryPrefixLocation = insn->readerCursor - 2;
    476     }
    477 
    478     if (insn->vectorExtensionType == TYPE_EVEX) {
    479       insn->vectorExtensionPrefix[0] = byte;
    480       insn->vectorExtensionPrefix[1] = byte1;
    481       if (consumeByte(insn, &insn->vectorExtensionPrefix[2])) {
    482         dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
    483         return -1;
    484       }
    485       if (consumeByte(insn, &insn->vectorExtensionPrefix[3])) {
    486         dbgprintf(insn, "Couldn't read fourth byte of EVEX prefix");
    487         return -1;
    488       }
    489 
    490       /* We simulate the REX prefix for simplicity's sake */
    491       if (insn->mode == MODE_64BIT) {
    492         insn->rexPrefix = 0x40
    493                         | (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3)
    494                         | (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2)
    495                         | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1)
    496                         | (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
    497       }
    498 
    499       dbgprintf(insn, "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
    500               insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
    501               insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]);
    502     }
    503   } else if (byte == 0xc4) {
    504     uint8_t byte1;
    505 
    506     if (lookAtByte(insn, &byte1)) {
    507       dbgprintf(insn, "Couldn't read second byte of VEX");
    508       return -1;
    509     }
    510 
    511     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
    512       insn->vectorExtensionType = TYPE_VEX_3B;
    513       insn->necessaryPrefixLocation = insn->readerCursor - 1;
    514     } else {
    515       unconsumeByte(insn);
    516       insn->necessaryPrefixLocation = insn->readerCursor - 1;
    517     }
    518 
    519     if (insn->vectorExtensionType == TYPE_VEX_3B) {
    520       insn->vectorExtensionPrefix[0] = byte;
    521       consumeByte(insn, &insn->vectorExtensionPrefix[1]);
    522       consumeByte(insn, &insn->vectorExtensionPrefix[2]);
    523 
    524       /* We simulate the REX prefix for simplicity's sake */
    525 
    526       if (insn->mode == MODE_64BIT) {
    527         insn->rexPrefix = 0x40
    528                         | (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3)
    529                         | (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2)
    530                         | (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1)
    531                         | (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
    532       }
    533 
    534       dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
    535                 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
    536                 insn->vectorExtensionPrefix[2]);
    537     }
    538   } else if (byte == 0xc5) {
    539     uint8_t byte1;
    540 
    541     if (lookAtByte(insn, &byte1)) {
    542       dbgprintf(insn, "Couldn't read second byte of VEX");
    543       return -1;
    544     }
    545 
    546     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
    547       insn->vectorExtensionType = TYPE_VEX_2B;
    548     } else {
    549       unconsumeByte(insn);
    550     }
    551 
    552     if (insn->vectorExtensionType == TYPE_VEX_2B) {
    553       insn->vectorExtensionPrefix[0] = byte;
    554       consumeByte(insn, &insn->vectorExtensionPrefix[1]);
    555 
    556       if (insn->mode == MODE_64BIT) {
    557         insn->rexPrefix = 0x40
    558                         | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
    559       }
    560 
    561       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
    562       default:
    563         break;
    564       case VEX_PREFIX_66:
    565         hasOpSize = true;
    566         break;
    567       }
    568 
    569       dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx",
    570                 insn->vectorExtensionPrefix[0],
    571                 insn->vectorExtensionPrefix[1]);
    572     }
    573   } else if (byte == 0x8f) {
    574     uint8_t byte1;
    575 
    576     if (lookAtByte(insn, &byte1)) {
    577       dbgprintf(insn, "Couldn't read second byte of XOP");
    578       return -1;
    579     }
    580 
    581     if ((byte1 & 0x38) != 0x0) { /* 0 in these 3 bits is a POP instruction. */
    582       insn->vectorExtensionType = TYPE_XOP;
    583       insn->necessaryPrefixLocation = insn->readerCursor - 1;
    584     } else {
    585       unconsumeByte(insn);
    586       insn->necessaryPrefixLocation = insn->readerCursor - 1;
    587     }
    588 
    589     if (insn->vectorExtensionType == TYPE_XOP) {
    590       insn->vectorExtensionPrefix[0] = byte;
    591       consumeByte(insn, &insn->vectorExtensionPrefix[1]);
    592       consumeByte(insn, &insn->vectorExtensionPrefix[2]);
    593 
    594       /* We simulate the REX prefix for simplicity's sake */
    595 
    596       if (insn->mode == MODE_64BIT) {
    597         insn->rexPrefix = 0x40
    598                         | (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3)
    599                         | (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2)
    600                         | (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1)
    601                         | (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
    602       }
    603 
    604       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
    605       default:
    606         break;
    607       case VEX_PREFIX_66:
    608         hasOpSize = true;
    609         break;
    610       }
    611 
    612       dbgprintf(insn, "Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
    613                 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
    614                 insn->vectorExtensionPrefix[2]);
    615     }
    616   } else {
    617     if (insn->mode == MODE_64BIT) {
    618       if ((byte & 0xf0) == 0x40) {
    619         uint8_t opcodeByte;
    620 
    621         if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) {
    622           dbgprintf(insn, "Redundant REX prefix");
    623           return -1;
    624         }
    625 
    626         insn->rexPrefix = byte;
    627         insn->necessaryPrefixLocation = insn->readerCursor - 2;
    628 
    629         dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
    630       } else {
    631         unconsumeByte(insn);
    632         insn->necessaryPrefixLocation = insn->readerCursor - 1;
    633       }
    634     } else {
    635       unconsumeByte(insn);
    636       insn->necessaryPrefixLocation = insn->readerCursor - 1;
    637     }
    638   }
    639 
    640   if (insn->mode == MODE_16BIT) {
    641     insn->registerSize       = (hasOpSize ? 4 : 2);
    642     insn->addressSize        = (hasAdSize ? 4 : 2);
    643     insn->displacementSize   = (hasAdSize ? 4 : 2);
    644     insn->immediateSize      = (hasOpSize ? 4 : 2);
    645   } else if (insn->mode == MODE_32BIT) {
    646     insn->registerSize       = (hasOpSize ? 2 : 4);
    647     insn->addressSize        = (hasAdSize ? 2 : 4);
    648     insn->displacementSize   = (hasAdSize ? 2 : 4);
    649     insn->immediateSize      = (hasOpSize ? 2 : 4);
    650   } else if (insn->mode == MODE_64BIT) {
    651     if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
    652       insn->registerSize       = 8;
    653       insn->addressSize        = (hasAdSize ? 4 : 8);
    654       insn->displacementSize   = 4;
    655       insn->immediateSize      = 4;
    656     } else if (insn->rexPrefix) {
    657       insn->registerSize       = (hasOpSize ? 2 : 4);
    658       insn->addressSize        = (hasAdSize ? 4 : 8);
    659       insn->displacementSize   = (hasOpSize ? 2 : 4);
    660       insn->immediateSize      = (hasOpSize ? 2 : 4);
    661     } else {
    662       insn->registerSize       = (hasOpSize ? 2 : 4);
    663       insn->addressSize        = (hasAdSize ? 4 : 8);
    664       insn->displacementSize   = (hasOpSize ? 2 : 4);
    665       insn->immediateSize      = (hasOpSize ? 2 : 4);
    666     }
    667   }
    668 
    669   return 0;
    670 }
    671 
    672 /*
    673  * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
    674  *   extended or escape opcodes).
    675  *
    676  * @param insn  - The instruction whose opcode is to be read.
    677  * @return      - 0 if the opcode could be read successfully; nonzero otherwise.
    678  */
    679 static int readOpcode(struct InternalInstruction* insn) {
    680   /* Determine the length of the primary opcode */
    681 
    682   uint8_t current;
    683 
    684   dbgprintf(insn, "readOpcode()");
    685 
    686   insn->opcodeType = ONEBYTE;
    687 
    688   if (insn->vectorExtensionType == TYPE_EVEX) {
    689     switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
    690     default:
    691       dbgprintf(insn, "Unhandled mm field for instruction (0x%hhx)",
    692                 mmFromEVEX2of4(insn->vectorExtensionPrefix[1]));
    693       return -1;
    694     case VEX_LOB_0F:
    695       insn->opcodeType = TWOBYTE;
    696       return consumeByte(insn, &insn->opcode);
    697     case VEX_LOB_0F38:
    698       insn->opcodeType = THREEBYTE_38;
    699       return consumeByte(insn, &insn->opcode);
    700     case VEX_LOB_0F3A:
    701       insn->opcodeType = THREEBYTE_3A;
    702       return consumeByte(insn, &insn->opcode);
    703     }
    704   } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
    705     switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
    706     default:
    707       dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
    708                 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
    709       return -1;
    710     case VEX_LOB_0F:
    711       insn->opcodeType = TWOBYTE;
    712       return consumeByte(insn, &insn->opcode);
    713     case VEX_LOB_0F38:
    714       insn->opcodeType = THREEBYTE_38;
    715       return consumeByte(insn, &insn->opcode);
    716     case VEX_LOB_0F3A:
    717       insn->opcodeType = THREEBYTE_3A;
    718       return consumeByte(insn, &insn->opcode);
    719     }
    720   } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
    721     insn->opcodeType = TWOBYTE;
    722     return consumeByte(insn, &insn->opcode);
    723   } else if (insn->vectorExtensionType == TYPE_XOP) {
    724     switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
    725     default:
    726       dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
    727                 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
    728       return -1;
    729     case XOP_MAP_SELECT_8:
    730       insn->opcodeType = XOP8_MAP;
    731       return consumeByte(insn, &insn->opcode);
    732     case XOP_MAP_SELECT_9:
    733       insn->opcodeType = XOP9_MAP;
    734       return consumeByte(insn, &insn->opcode);
    735     case XOP_MAP_SELECT_A:
    736       insn->opcodeType = XOPA_MAP;
    737       return consumeByte(insn, &insn->opcode);
    738     }
    739   }
    740 
    741   if (consumeByte(insn, &current))
    742     return -1;
    743 
    744   if (current == 0x0f) {
    745     dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
    746 
    747     if (consumeByte(insn, &current))
    748       return -1;
    749 
    750     if (current == 0x38) {
    751       dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
    752 
    753       if (consumeByte(insn, &current))
    754         return -1;
    755 
    756       insn->opcodeType = THREEBYTE_38;
    757     } else if (current == 0x3a) {
    758       dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
    759 
    760       if (consumeByte(insn, &current))
    761         return -1;
    762 
    763       insn->opcodeType = THREEBYTE_3A;
    764     } else {
    765       dbgprintf(insn, "Didn't find a three-byte escape prefix");
    766 
    767       insn->opcodeType = TWOBYTE;
    768     }
    769   }
    770 
    771   /*
    772    * At this point we have consumed the full opcode.
    773    * Anything we consume from here on must be unconsumed.
    774    */
    775 
    776   insn->opcode = current;
    777 
    778   return 0;
    779 }
    780 
    781 static int readModRM(struct InternalInstruction* insn);
    782 
    783 /*
    784  * getIDWithAttrMask - Determines the ID of an instruction, consuming
    785  *   the ModR/M byte as appropriate for extended and escape opcodes,
    786  *   and using a supplied attribute mask.
    787  *
    788  * @param instructionID - A pointer whose target is filled in with the ID of the
    789  *                        instruction.
    790  * @param insn          - The instruction whose ID is to be determined.
    791  * @param attrMask      - The attribute mask to search.
    792  * @return              - 0 if the ModR/M could be read when needed or was not
    793  *                        needed; nonzero otherwise.
    794  */
    795 static int getIDWithAttrMask(uint16_t* instructionID,
    796                              struct InternalInstruction* insn,
    797                              uint16_t attrMask) {
    798   bool hasModRMExtension;
    799 
    800   InstructionContext instructionClass = contextForAttrs(attrMask);
    801 
    802   hasModRMExtension = modRMRequired(insn->opcodeType,
    803                                     instructionClass,
    804                                     insn->opcode);
    805 
    806   if (hasModRMExtension) {
    807     if (readModRM(insn))
    808       return -1;
    809 
    810     *instructionID = decode(insn->opcodeType,
    811                             instructionClass,
    812                             insn->opcode,
    813                             insn->modRM);
    814   } else {
    815     *instructionID = decode(insn->opcodeType,
    816                             instructionClass,
    817                             insn->opcode,
    818                             0);
    819   }
    820 
    821   return 0;
    822 }
    823 
    824 /*
    825  * is16BitEquivalent - Determines whether two instruction names refer to
    826  * equivalent instructions but one is 16-bit whereas the other is not.
    827  *
    828  * @param orig  - The instruction that is not 16-bit
    829  * @param equiv - The instruction that is 16-bit
    830  */
    831 static bool is16BitEquivalent(const char* orig, const char* equiv) {
    832   off_t i;
    833 
    834   for (i = 0;; i++) {
    835     if (orig[i] == '\0' && equiv[i] == '\0')
    836       return true;
    837     if (orig[i] == '\0' || equiv[i] == '\0')
    838       return false;
    839     if (orig[i] != equiv[i]) {
    840       if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
    841         continue;
    842       if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
    843         continue;
    844       if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
    845         continue;
    846       return false;
    847     }
    848   }
    849 }
    850 
    851 /*
    852  * is64Bit - Determines whether this instruction is a 64-bit instruction.
    853  *
    854  * @param name - The instruction that is not 16-bit
    855  */
    856 static bool is64Bit(const char* name) {
    857   off_t i;
    858 
    859   for (i = 0;; ++i) {
    860     if (name[i] == '\0')
    861       return false;
    862     if (name[i] == '6' && name[i+1] == '4')
    863       return true;
    864   }
    865 }
    866 
    867 /*
    868  * getID - Determines the ID of an instruction, consuming the ModR/M byte as
    869  *   appropriate for extended and escape opcodes.  Determines the attributes and
    870  *   context for the instruction before doing so.
    871  *
    872  * @param insn  - The instruction whose ID is to be determined.
    873  * @return      - 0 if the ModR/M could be read when needed or was not needed;
    874  *                nonzero otherwise.
    875  */
    876 static int getID(struct InternalInstruction* insn, const void *miiArg) {
    877   uint16_t attrMask;
    878   uint16_t instructionID;
    879 
    880   dbgprintf(insn, "getID()");
    881 
    882   attrMask = ATTR_NONE;
    883 
    884   if (insn->mode == MODE_64BIT)
    885     attrMask |= ATTR_64BIT;
    886 
    887   if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
    888     attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
    889 
    890     if (insn->vectorExtensionType == TYPE_EVEX) {
    891       switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
    892       case VEX_PREFIX_66:
    893         attrMask |= ATTR_OPSIZE;
    894         break;
    895       case VEX_PREFIX_F3:
    896         attrMask |= ATTR_XS;
    897         break;
    898       case VEX_PREFIX_F2:
    899         attrMask |= ATTR_XD;
    900         break;
    901       }
    902 
    903       if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
    904         attrMask |= ATTR_EVEXKZ;
    905       if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
    906         attrMask |= ATTR_EVEXB;
    907       if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
    908         attrMask |= ATTR_EVEXK;
    909       if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
    910         attrMask |= ATTR_EVEXL;
    911       if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
    912         attrMask |= ATTR_EVEXL2;
    913     } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
    914       switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
    915       case VEX_PREFIX_66:
    916         attrMask |= ATTR_OPSIZE;
    917         break;
    918       case VEX_PREFIX_F3:
    919         attrMask |= ATTR_XS;
    920         break;
    921       case VEX_PREFIX_F2:
    922         attrMask |= ATTR_XD;
    923         break;
    924       }
    925 
    926       if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
    927         attrMask |= ATTR_VEXL;
    928     } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
    929       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
    930       case VEX_PREFIX_66:
    931         attrMask |= ATTR_OPSIZE;
    932         break;
    933       case VEX_PREFIX_F3:
    934         attrMask |= ATTR_XS;
    935         break;
    936       case VEX_PREFIX_F2:
    937         attrMask |= ATTR_XD;
    938         break;
    939       }
    940 
    941       if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
    942         attrMask |= ATTR_VEXL;
    943     } else if (insn->vectorExtensionType == TYPE_XOP) {
    944       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
    945       case VEX_PREFIX_66:
    946         attrMask |= ATTR_OPSIZE;
    947         break;
    948       case VEX_PREFIX_F3:
    949         attrMask |= ATTR_XS;
    950         break;
    951       case VEX_PREFIX_F2:
    952         attrMask |= ATTR_XD;
    953         break;
    954       }
    955 
    956       if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
    957         attrMask |= ATTR_VEXL;
    958     } else {
    959       return -1;
    960     }
    961   } else {
    962     if (insn->mode != MODE_16BIT && isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation))
    963       attrMask |= ATTR_OPSIZE;
    964     else if (isPrefixAtLocation(insn, 0x67, insn->necessaryPrefixLocation))
    965       attrMask |= ATTR_ADSIZE;
    966     else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation))
    967       attrMask |= ATTR_XS;
    968     else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation))
    969       attrMask |= ATTR_XD;
    970   }
    971 
    972   if (insn->rexPrefix & 0x08)
    973     attrMask |= ATTR_REXW;
    974 
    975   /*
    976    * JCXZ/JECXZ need special handling for 16-bit mode because the meaning
    977    * of the AdSize prefix is inverted w.r.t. 32-bit mode.
    978    */
    979   if (insn->mode == MODE_16BIT && insn->opcodeType == ONEBYTE &&
    980       insn->opcode == 0xE3)
    981     attrMask ^= ATTR_ADSIZE;
    982 
    983   /*
    984    * In 64-bit mode all f64 superscripted opcodes ignore opcode size prefix
    985    * CALL/JMP/JCC instructions need to ignore 0x66 and consume 4 bytes
    986    */
    987 
    988   if (insn->mode == MODE_64BIT &&
    989       isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation)) {
    990     switch (insn->opcode) {
    991     case 0xE8:
    992     case 0xE9:
    993       // Take care of psubsb and other mmx instructions.
    994       if (insn->opcodeType == ONEBYTE) {
    995         attrMask ^= ATTR_OPSIZE;
    996         insn->immediateSize = 4;
    997         insn->displacementSize = 4;
    998       }
    999       break;
   1000     case 0x82:
   1001     case 0x83:
   1002     case 0x84:
   1003     case 0x85:
   1004     case 0x86:
   1005     case 0x87:
   1006     case 0x88:
   1007     case 0x89:
   1008     case 0x8A:
   1009     case 0x8B:
   1010     case 0x8C:
   1011     case 0x8D:
   1012     case 0x8E:
   1013     case 0x8F:
   1014       // Take care of lea and three byte ops.
   1015       if (insn->opcodeType == TWOBYTE) {
   1016         attrMask ^= ATTR_OPSIZE;
   1017         insn->immediateSize = 4;
   1018         insn->displacementSize = 4;
   1019       }
   1020       break;
   1021     }
   1022   }
   1023 
   1024   if (getIDWithAttrMask(&instructionID, insn, attrMask))
   1025     return -1;
   1026 
   1027   /* The following clauses compensate for limitations of the tables. */
   1028 
   1029   if (insn->mode != MODE_64BIT &&
   1030       insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
   1031     /*
   1032      * The tables can't distinquish between cases where the W-bit is used to
   1033      * select register size and cases where its a required part of the opcode.
   1034      */
   1035     if ((insn->vectorExtensionType == TYPE_EVEX &&
   1036          wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
   1037         (insn->vectorExtensionType == TYPE_VEX_3B &&
   1038          wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
   1039         (insn->vectorExtensionType == TYPE_XOP &&
   1040          wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
   1041 
   1042       uint16_t instructionIDWithREXW;
   1043       if (getIDWithAttrMask(&instructionIDWithREXW,
   1044                             insn, attrMask | ATTR_REXW)) {
   1045         insn->instructionID = instructionID;
   1046         insn->spec = specifierForUID(instructionID);
   1047         return 0;
   1048       }
   1049 
   1050       const char *SpecName = GetInstrName(instructionIDWithREXW, miiArg);
   1051       // If not a 64-bit instruction. Switch the opcode.
   1052       if (!is64Bit(SpecName)) {
   1053         insn->instructionID = instructionIDWithREXW;
   1054         insn->spec = specifierForUID(instructionIDWithREXW);
   1055         return 0;
   1056       }
   1057     }
   1058   }
   1059 
   1060   /*
   1061    * Absolute moves need special handling.
   1062    * -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
   1063    *  inverted w.r.t.
   1064    * -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
   1065    *  any position.
   1066    */
   1067   if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) {
   1068     /* Make sure we observed the prefixes in any position. */
   1069     if (insn->prefixPresent[0x67])
   1070       attrMask |= ATTR_ADSIZE;
   1071     if (insn->prefixPresent[0x66])
   1072       attrMask |= ATTR_OPSIZE;
   1073 
   1074     /* In 16-bit, invert the attributes. */
   1075     if (insn->mode == MODE_16BIT)
   1076       attrMask ^= ATTR_ADSIZE | ATTR_OPSIZE;
   1077 
   1078     if (getIDWithAttrMask(&instructionID, insn, attrMask))
   1079       return -1;
   1080 
   1081     insn->instructionID = instructionID;
   1082     insn->spec = specifierForUID(instructionID);
   1083     return 0;
   1084   }
   1085 
   1086   if ((insn->mode == MODE_16BIT || insn->prefixPresent[0x66]) &&
   1087       !(attrMask & ATTR_OPSIZE)) {
   1088     /*
   1089      * The instruction tables make no distinction between instructions that
   1090      * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
   1091      * particular spot (i.e., many MMX operations).  In general we're
   1092      * conservative, but in the specific case where OpSize is present but not
   1093      * in the right place we check if there's a 16-bit operation.
   1094      */
   1095 
   1096     const struct InstructionSpecifier *spec;
   1097     uint16_t instructionIDWithOpsize;
   1098     const char *specName, *specWithOpSizeName;
   1099 
   1100     spec = specifierForUID(instructionID);
   1101 
   1102     if (getIDWithAttrMask(&instructionIDWithOpsize,
   1103                           insn,
   1104                           attrMask | ATTR_OPSIZE)) {
   1105       /*
   1106        * ModRM required with OpSize but not present; give up and return version
   1107        * without OpSize set
   1108        */
   1109 
   1110       insn->instructionID = instructionID;
   1111       insn->spec = spec;
   1112       return 0;
   1113     }
   1114 
   1115     specName = GetInstrName(instructionID, miiArg);
   1116     specWithOpSizeName = GetInstrName(instructionIDWithOpsize, miiArg);
   1117 
   1118     if (is16BitEquivalent(specName, specWithOpSizeName) &&
   1119         (insn->mode == MODE_16BIT) ^ insn->prefixPresent[0x66]) {
   1120       insn->instructionID = instructionIDWithOpsize;
   1121       insn->spec = specifierForUID(instructionIDWithOpsize);
   1122     } else {
   1123       insn->instructionID = instructionID;
   1124       insn->spec = spec;
   1125     }
   1126     return 0;
   1127   }
   1128 
   1129   if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
   1130       insn->rexPrefix & 0x01) {
   1131     /*
   1132      * NOOP shouldn't decode as NOOP if REX.b is set. Instead
   1133      * it should decode as XCHG %r8, %eax.
   1134      */
   1135 
   1136     const struct InstructionSpecifier *spec;
   1137     uint16_t instructionIDWithNewOpcode;
   1138     const struct InstructionSpecifier *specWithNewOpcode;
   1139 
   1140     spec = specifierForUID(instructionID);
   1141 
   1142     /* Borrow opcode from one of the other XCHGar opcodes */
   1143     insn->opcode = 0x91;
   1144 
   1145     if (getIDWithAttrMask(&instructionIDWithNewOpcode,
   1146                           insn,
   1147                           attrMask)) {
   1148       insn->opcode = 0x90;
   1149 
   1150       insn->instructionID = instructionID;
   1151       insn->spec = spec;
   1152       return 0;
   1153     }
   1154 
   1155     specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
   1156 
   1157     /* Change back */
   1158     insn->opcode = 0x90;
   1159 
   1160     insn->instructionID = instructionIDWithNewOpcode;
   1161     insn->spec = specWithNewOpcode;
   1162 
   1163     return 0;
   1164   }
   1165 
   1166   insn->instructionID = instructionID;
   1167   insn->spec = specifierForUID(insn->instructionID);
   1168 
   1169   return 0;
   1170 }
   1171 
   1172 /*
   1173  * readSIB - Consumes the SIB byte to determine addressing information for an
   1174  *   instruction.
   1175  *
   1176  * @param insn  - The instruction whose SIB byte is to be read.
   1177  * @return      - 0 if the SIB byte was successfully read; nonzero otherwise.
   1178  */
   1179 static int readSIB(struct InternalInstruction* insn) {
   1180   SIBIndex sibIndexBase = SIB_INDEX_NONE;
   1181   SIBBase sibBaseBase = SIB_BASE_NONE;
   1182   uint8_t index, base;
   1183 
   1184   dbgprintf(insn, "readSIB()");
   1185 
   1186   if (insn->consumedSIB)
   1187     return 0;
   1188 
   1189   insn->consumedSIB = true;
   1190 
   1191   switch (insn->addressSize) {
   1192   case 2:
   1193     dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
   1194     return -1;
   1195   case 4:
   1196     sibIndexBase = SIB_INDEX_EAX;
   1197     sibBaseBase = SIB_BASE_EAX;
   1198     break;
   1199   case 8:
   1200     sibIndexBase = SIB_INDEX_RAX;
   1201     sibBaseBase = SIB_BASE_RAX;
   1202     break;
   1203   }
   1204 
   1205   if (consumeByte(insn, &insn->sib))
   1206     return -1;
   1207 
   1208   index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
   1209 
   1210   // FIXME: The fifth bit (bit index 4) is only to be used for instructions
   1211   // that understand VSIB indexing. ORing the bit in here is mildy dangerous
   1212   // because performing math on an 'enum SIBIndex' can produce garbage.
   1213   // Excluding the "none" value, it should cover 6 spaces of register names:
   1214   //   - 16 possibilities for 16-bit GPR starting at SIB_INDEX_BX_SI
   1215   //   - 16 possibilities for 32-bit GPR starting at SIB_INDEX_EAX
   1216   //   - 16 possibilities for 64-bit GPR starting at SIB_INDEX_RAX
   1217   //   - 32 possibilities for each of XMM, YMM, ZMM registers
   1218   // When sibIndexBase gets assigned SIB_INDEX_RAX as it does in 64-bit mode,
   1219   // summing in a fully decoded index between 0 and 31 can end up with a value
   1220   // that looks like something in the low half of the XMM range.
   1221   // translateRMMemory() tries to reverse the damage, with only partial success,
   1222   // as evidenced by known bugs in "test/MC/Disassembler/X86/x86-64.txt"
   1223   if (insn->vectorExtensionType == TYPE_EVEX)
   1224     index |= v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4;
   1225 
   1226   if (index == 0x4) {
   1227     insn->sibIndex = SIB_INDEX_NONE;
   1228   } else {
   1229     insn->sibIndex = (SIBIndex)(sibIndexBase + index);
   1230   }
   1231 
   1232   insn->sibScale = 1 << scaleFromSIB(insn->sib);
   1233 
   1234   base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
   1235 
   1236   switch (base) {
   1237   case 0x5:
   1238   case 0xd:
   1239     switch (modFromModRM(insn->modRM)) {
   1240     case 0x0:
   1241       insn->eaDisplacement = EA_DISP_32;
   1242       insn->sibBase = SIB_BASE_NONE;
   1243       break;
   1244     case 0x1:
   1245       insn->eaDisplacement = EA_DISP_8;
   1246       insn->sibBase = (SIBBase)(sibBaseBase + base);
   1247       break;
   1248     case 0x2:
   1249       insn->eaDisplacement = EA_DISP_32;
   1250       insn->sibBase = (SIBBase)(sibBaseBase + base);
   1251       break;
   1252     case 0x3:
   1253       debug("Cannot have Mod = 0b11 and a SIB byte");
   1254       return -1;
   1255     }
   1256     break;
   1257   default:
   1258     insn->sibBase = (SIBBase)(sibBaseBase + base);
   1259     break;
   1260   }
   1261 
   1262   return 0;
   1263 }
   1264 
   1265 /*
   1266  * readDisplacement - Consumes the displacement of an instruction.
   1267  *
   1268  * @param insn  - The instruction whose displacement is to be read.
   1269  * @return      - 0 if the displacement byte was successfully read; nonzero
   1270  *                otherwise.
   1271  */
   1272 static int readDisplacement(struct InternalInstruction* insn) {
   1273   int8_t d8;
   1274   int16_t d16;
   1275   int32_t d32;
   1276 
   1277   dbgprintf(insn, "readDisplacement()");
   1278 
   1279   if (insn->consumedDisplacement)
   1280     return 0;
   1281 
   1282   insn->consumedDisplacement = true;
   1283   insn->displacementOffset = insn->readerCursor - insn->startLocation;
   1284 
   1285   switch (insn->eaDisplacement) {
   1286   case EA_DISP_NONE:
   1287     insn->consumedDisplacement = false;
   1288     break;
   1289   case EA_DISP_8:
   1290     if (consumeInt8(insn, &d8))
   1291       return -1;
   1292     insn->displacement = d8;
   1293     break;
   1294   case EA_DISP_16:
   1295     if (consumeInt16(insn, &d16))
   1296       return -1;
   1297     insn->displacement = d16;
   1298     break;
   1299   case EA_DISP_32:
   1300     if (consumeInt32(insn, &d32))
   1301       return -1;
   1302     insn->displacement = d32;
   1303     break;
   1304   }
   1305 
   1306   insn->consumedDisplacement = true;
   1307   return 0;
   1308 }
   1309 
   1310 /*
   1311  * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
   1312  *   displacement) for an instruction and interprets it.
   1313  *
   1314  * @param insn  - The instruction whose addressing information is to be read.
   1315  * @return      - 0 if the information was successfully read; nonzero otherwise.
   1316  */
   1317 static int readModRM(struct InternalInstruction* insn) {
   1318   uint8_t mod, rm, reg;
   1319 
   1320   dbgprintf(insn, "readModRM()");
   1321 
   1322   if (insn->consumedModRM)
   1323     return 0;
   1324 
   1325   if (consumeByte(insn, &insn->modRM))
   1326     return -1;
   1327   insn->consumedModRM = true;
   1328 
   1329   mod     = modFromModRM(insn->modRM);
   1330   rm      = rmFromModRM(insn->modRM);
   1331   reg     = regFromModRM(insn->modRM);
   1332 
   1333   /*
   1334    * This goes by insn->registerSize to pick the correct register, which messes
   1335    * up if we're using (say) XMM or 8-bit register operands.  That gets fixed in
   1336    * fixupReg().
   1337    */
   1338   switch (insn->registerSize) {
   1339   case 2:
   1340     insn->regBase = MODRM_REG_AX;
   1341     insn->eaRegBase = EA_REG_AX;
   1342     break;
   1343   case 4:
   1344     insn->regBase = MODRM_REG_EAX;
   1345     insn->eaRegBase = EA_REG_EAX;
   1346     break;
   1347   case 8:
   1348     insn->regBase = MODRM_REG_RAX;
   1349     insn->eaRegBase = EA_REG_RAX;
   1350     break;
   1351   }
   1352 
   1353   reg |= rFromREX(insn->rexPrefix) << 3;
   1354   rm  |= bFromREX(insn->rexPrefix) << 3;
   1355   if (insn->vectorExtensionType == TYPE_EVEX) {
   1356     reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
   1357     rm  |=  xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
   1358   }
   1359 
   1360   insn->reg = (Reg)(insn->regBase + reg);
   1361 
   1362   switch (insn->addressSize) {
   1363   case 2:
   1364     insn->eaBaseBase = EA_BASE_BX_SI;
   1365 
   1366     switch (mod) {
   1367     case 0x0:
   1368       if (rm == 0x6) {
   1369         insn->eaBase = EA_BASE_NONE;
   1370         insn->eaDisplacement = EA_DISP_16;
   1371         if (readDisplacement(insn))
   1372           return -1;
   1373       } else {
   1374         insn->eaBase = (EABase)(insn->eaBaseBase + rm);
   1375         insn->eaDisplacement = EA_DISP_NONE;
   1376       }
   1377       break;
   1378     case 0x1:
   1379       insn->eaBase = (EABase)(insn->eaBaseBase + rm);
   1380       insn->eaDisplacement = EA_DISP_8;
   1381       insn->displacementSize = 1;
   1382       if (readDisplacement(insn))
   1383         return -1;
   1384       break;
   1385     case 0x2:
   1386       insn->eaBase = (EABase)(insn->eaBaseBase + rm);
   1387       insn->eaDisplacement = EA_DISP_16;
   1388       if (readDisplacement(insn))
   1389         return -1;
   1390       break;
   1391     case 0x3:
   1392       insn->eaBase = (EABase)(insn->eaRegBase + rm);
   1393       if (readDisplacement(insn))
   1394         return -1;
   1395       break;
   1396     }
   1397     break;
   1398   case 4:
   1399   case 8:
   1400     insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
   1401 
   1402     switch (mod) {
   1403     case 0x0:
   1404       insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
   1405       // In determining whether RIP-relative mode is used (rm=5),
   1406       // or whether a SIB byte is present (rm=4),
   1407       // the extension bits (REX.b and EVEX.x) are ignored.
   1408       switch (rm & 7) {
   1409       case 0x4: // SIB byte is present
   1410         insn->eaBase = (insn->addressSize == 4 ?
   1411                         EA_BASE_sib : EA_BASE_sib64);
   1412         if (readSIB(insn) || readDisplacement(insn))
   1413           return -1;
   1414         break;
   1415       case 0x5: // RIP-relative
   1416         insn->eaBase = EA_BASE_NONE;
   1417         insn->eaDisplacement = EA_DISP_32;
   1418         if (readDisplacement(insn))
   1419           return -1;
   1420         break;
   1421       default:
   1422         insn->eaBase = (EABase)(insn->eaBaseBase + rm);
   1423         break;
   1424       }
   1425       break;
   1426     case 0x1:
   1427       insn->displacementSize = 1;
   1428       /* FALLTHROUGH */
   1429     case 0x2:
   1430       insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
   1431       switch (rm & 7) {
   1432       case 0x4: // SIB byte is present
   1433         insn->eaBase = EA_BASE_sib;
   1434         if (readSIB(insn) || readDisplacement(insn))
   1435           return -1;
   1436         break;
   1437       default:
   1438         insn->eaBase = (EABase)(insn->eaBaseBase + rm);
   1439         if (readDisplacement(insn))
   1440           return -1;
   1441         break;
   1442       }
   1443       break;
   1444     case 0x3:
   1445       insn->eaDisplacement = EA_DISP_NONE;
   1446       insn->eaBase = (EABase)(insn->eaRegBase + rm);
   1447       break;
   1448     }
   1449     break;
   1450   } /* switch (insn->addressSize) */
   1451 
   1452   return 0;
   1453 }
   1454 
   1455 #define GENERIC_FIXUP_FUNC(name, base, prefix)            \
   1456   static uint8_t name(struct InternalInstruction *insn,   \
   1457                       OperandType type,                   \
   1458                       uint8_t index,                      \
   1459                       uint8_t *valid) {                   \
   1460     *valid = 1;                                           \
   1461     switch (type) {                                       \
   1462     default:                                              \
   1463       debug("Unhandled register type");                   \
   1464       *valid = 0;                                         \
   1465       return 0;                                           \
   1466     case TYPE_Rv:                                         \
   1467       return base + index;                                \
   1468     case TYPE_R8:                                         \
   1469       if (insn->rexPrefix &&                              \
   1470          index >= 4 && index <= 7) {                      \
   1471         return prefix##_SPL + (index - 4);                \
   1472       } else {                                            \
   1473         return prefix##_AL + index;                       \
   1474       }                                                   \
   1475     case TYPE_R16:                                        \
   1476       return prefix##_AX + index;                         \
   1477     case TYPE_R32:                                        \
   1478       return prefix##_EAX + index;                        \
   1479     case TYPE_R64:                                        \
   1480       return prefix##_RAX + index;                        \
   1481     case TYPE_XMM512:                                     \
   1482       return prefix##_ZMM0 + index;                       \
   1483     case TYPE_XMM256:                                     \
   1484       return prefix##_YMM0 + index;                       \
   1485     case TYPE_XMM128:                                     \
   1486     case TYPE_XMM64:                                      \
   1487     case TYPE_XMM32:                                      \
   1488     case TYPE_XMM:                                        \
   1489       return prefix##_XMM0 + index;                       \
   1490     case TYPE_VK1:                                        \
   1491     case TYPE_VK2:                                        \
   1492     case TYPE_VK4:                                        \
   1493     case TYPE_VK8:                                        \
   1494     case TYPE_VK16:                                       \
   1495     case TYPE_VK32:                                       \
   1496     case TYPE_VK64:                                       \
   1497       if (index > 7)                                      \
   1498         *valid = 0;                                       \
   1499       return prefix##_K0 + index;                         \
   1500     case TYPE_MM64:                                       \
   1501       return prefix##_MM0 + (index & 0x7);                \
   1502     case TYPE_SEGMENTREG:                                 \
   1503       if (index > 5)                                      \
   1504         *valid = 0;                                       \
   1505       return prefix##_ES + index;                         \
   1506     case TYPE_DEBUGREG:                                   \
   1507       return prefix##_DR0 + index;                        \
   1508     case TYPE_CONTROLREG:                                 \
   1509       return prefix##_CR0 + index;                        \
   1510     }                                                     \
   1511   }
   1512 
   1513 /*
   1514  * fixup*Value - Consults an operand type to determine the meaning of the
   1515  *   reg or R/M field.  If the operand is an XMM operand, for example, an
   1516  *   operand would be XMM0 instead of AX, which readModRM() would otherwise
   1517  *   misinterpret it as.
   1518  *
   1519  * @param insn  - The instruction containing the operand.
   1520  * @param type  - The operand type.
   1521  * @param index - The existing value of the field as reported by readModRM().
   1522  * @param valid - The address of a uint8_t.  The target is set to 1 if the
   1523  *                field is valid for the register class; 0 if not.
   1524  * @return      - The proper value.
   1525  */
   1526 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase,    MODRM_REG)
   1527 GENERIC_FIXUP_FUNC(fixupRMValue,  insn->eaRegBase,  EA_REG)
   1528 
   1529 /*
   1530  * fixupReg - Consults an operand specifier to determine which of the
   1531  *   fixup*Value functions to use in correcting readModRM()'ss interpretation.
   1532  *
   1533  * @param insn  - See fixup*Value().
   1534  * @param op    - The operand specifier.
   1535  * @return      - 0 if fixup was successful; -1 if the register returned was
   1536  *                invalid for its class.
   1537  */
   1538 static int fixupReg(struct InternalInstruction *insn,
   1539                     const struct OperandSpecifier *op) {
   1540   uint8_t valid;
   1541 
   1542   dbgprintf(insn, "fixupReg()");
   1543 
   1544   switch ((OperandEncoding)op->encoding) {
   1545   default:
   1546     debug("Expected a REG or R/M encoding in fixupReg");
   1547     return -1;
   1548   case ENCODING_VVVV:
   1549     insn->vvvv = (Reg)fixupRegValue(insn,
   1550                                     (OperandType)op->type,
   1551                                     insn->vvvv,
   1552                                     &valid);
   1553     if (!valid)
   1554       return -1;
   1555     break;
   1556   case ENCODING_REG:
   1557     insn->reg = (Reg)fixupRegValue(insn,
   1558                                    (OperandType)op->type,
   1559                                    insn->reg - insn->regBase,
   1560                                    &valid);
   1561     if (!valid)
   1562       return -1;
   1563     break;
   1564   CASE_ENCODING_RM:
   1565     if (insn->eaBase >= insn->eaRegBase) {
   1566       insn->eaBase = (EABase)fixupRMValue(insn,
   1567                                           (OperandType)op->type,
   1568                                           insn->eaBase - insn->eaRegBase,
   1569                                           &valid);
   1570       if (!valid)
   1571         return -1;
   1572     }
   1573     break;
   1574   }
   1575 
   1576   return 0;
   1577 }
   1578 
   1579 /*
   1580  * readOpcodeRegister - Reads an operand from the opcode field of an
   1581  *   instruction and interprets it appropriately given the operand width.
   1582  *   Handles AddRegFrm instructions.
   1583  *
   1584  * @param insn  - the instruction whose opcode field is to be read.
   1585  * @param size  - The width (in bytes) of the register being specified.
   1586  *                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
   1587  *                RAX.
   1588  * @return      - 0 on success; nonzero otherwise.
   1589  */
   1590 static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
   1591   dbgprintf(insn, "readOpcodeRegister()");
   1592 
   1593   if (size == 0)
   1594     size = insn->registerSize;
   1595 
   1596   switch (size) {
   1597   case 1:
   1598     insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
   1599                                                   | (insn->opcode & 7)));
   1600     if (insn->rexPrefix &&
   1601         insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
   1602         insn->opcodeRegister < MODRM_REG_AL + 0x8) {
   1603       insn->opcodeRegister = (Reg)(MODRM_REG_SPL
   1604                                    + (insn->opcodeRegister - MODRM_REG_AL - 4));
   1605     }
   1606 
   1607     break;
   1608   case 2:
   1609     insn->opcodeRegister = (Reg)(MODRM_REG_AX
   1610                                  + ((bFromREX(insn->rexPrefix) << 3)
   1611                                     | (insn->opcode & 7)));
   1612     break;
   1613   case 4:
   1614     insn->opcodeRegister = (Reg)(MODRM_REG_EAX
   1615                                  + ((bFromREX(insn->rexPrefix) << 3)
   1616                                     | (insn->opcode & 7)));
   1617     break;
   1618   case 8:
   1619     insn->opcodeRegister = (Reg)(MODRM_REG_RAX
   1620                                  + ((bFromREX(insn->rexPrefix) << 3)
   1621                                     | (insn->opcode & 7)));
   1622     break;
   1623   }
   1624 
   1625   return 0;
   1626 }
   1627 
   1628 /*
   1629  * readImmediate - Consumes an immediate operand from an instruction, given the
   1630  *   desired operand size.
   1631  *
   1632  * @param insn  - The instruction whose operand is to be read.
   1633  * @param size  - The width (in bytes) of the operand.
   1634  * @return      - 0 if the immediate was successfully consumed; nonzero
   1635  *                otherwise.
   1636  */
   1637 static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
   1638   uint8_t imm8;
   1639   uint16_t imm16;
   1640   uint32_t imm32;
   1641   uint64_t imm64;
   1642 
   1643   dbgprintf(insn, "readImmediate()");
   1644 
   1645   if (insn->numImmediatesConsumed == 2) {
   1646     debug("Already consumed two immediates");
   1647     return -1;
   1648   }
   1649 
   1650   if (size == 0)
   1651     size = insn->immediateSize;
   1652   else
   1653     insn->immediateSize = size;
   1654   insn->immediateOffset = insn->readerCursor - insn->startLocation;
   1655 
   1656   switch (size) {
   1657   case 1:
   1658     if (consumeByte(insn, &imm8))
   1659       return -1;
   1660     insn->immediates[insn->numImmediatesConsumed] = imm8;
   1661     break;
   1662   case 2:
   1663     if (consumeUInt16(insn, &imm16))
   1664       return -1;
   1665     insn->immediates[insn->numImmediatesConsumed] = imm16;
   1666     break;
   1667   case 4:
   1668     if (consumeUInt32(insn, &imm32))
   1669       return -1;
   1670     insn->immediates[insn->numImmediatesConsumed] = imm32;
   1671     break;
   1672   case 8:
   1673     if (consumeUInt64(insn, &imm64))
   1674       return -1;
   1675     insn->immediates[insn->numImmediatesConsumed] = imm64;
   1676     break;
   1677   }
   1678 
   1679   insn->numImmediatesConsumed++;
   1680 
   1681   return 0;
   1682 }
   1683 
   1684 /*
   1685  * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
   1686  *
   1687  * @param insn  - The instruction whose operand is to be read.
   1688  * @return      - 0 if the vvvv was successfully consumed; nonzero
   1689  *                otherwise.
   1690  */
   1691 static int readVVVV(struct InternalInstruction* insn) {
   1692   dbgprintf(insn, "readVVVV()");
   1693 
   1694   int vvvv;
   1695   if (insn->vectorExtensionType == TYPE_EVEX)
   1696     vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
   1697             vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
   1698   else if (insn->vectorExtensionType == TYPE_VEX_3B)
   1699     vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
   1700   else if (insn->vectorExtensionType == TYPE_VEX_2B)
   1701     vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
   1702   else if (insn->vectorExtensionType == TYPE_XOP)
   1703     vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
   1704   else
   1705     return -1;
   1706 
   1707   if (insn->mode != MODE_64BIT)
   1708     vvvv &= 0x7;
   1709 
   1710   insn->vvvv = static_cast<Reg>(vvvv);
   1711   return 0;
   1712 }
   1713 
   1714 /*
   1715  * readMaskRegister - Reads an mask register from the opcode field of an
   1716  *   instruction.
   1717  *
   1718  * @param insn    - The instruction whose opcode field is to be read.
   1719  * @return        - 0 on success; nonzero otherwise.
   1720  */
   1721 static int readMaskRegister(struct InternalInstruction* insn) {
   1722   dbgprintf(insn, "readMaskRegister()");
   1723 
   1724   if (insn->vectorExtensionType != TYPE_EVEX)
   1725     return -1;
   1726 
   1727   insn->writemask =
   1728       static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
   1729   return 0;
   1730 }
   1731 
   1732 /*
   1733  * readOperands - Consults the specifier for an instruction and consumes all
   1734  *   operands for that instruction, interpreting them as it goes.
   1735  *
   1736  * @param insn  - The instruction whose operands are to be read and interpreted.
   1737  * @return      - 0 if all operands could be read; nonzero otherwise.
   1738  */
   1739 static int readOperands(struct InternalInstruction* insn) {
   1740   int hasVVVV, needVVVV;
   1741   int sawRegImm = 0;
   1742 
   1743   dbgprintf(insn, "readOperands()");
   1744 
   1745   /* If non-zero vvvv specified, need to make sure one of the operands
   1746      uses it. */
   1747   hasVVVV = !readVVVV(insn);
   1748   needVVVV = hasVVVV && (insn->vvvv != 0);
   1749 
   1750   for (const auto &Op : x86OperandSets[insn->spec->operands]) {
   1751     switch (Op.encoding) {
   1752     case ENCODING_NONE:
   1753     case ENCODING_SI:
   1754     case ENCODING_DI:
   1755       break;
   1756     case ENCODING_REG:
   1757     CASE_ENCODING_RM:
   1758       if (readModRM(insn))
   1759         return -1;
   1760       if (fixupReg(insn, &Op))
   1761         return -1;
   1762       // Apply the AVX512 compressed displacement scaling factor.
   1763       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
   1764         insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
   1765       break;
   1766     case ENCODING_CB:
   1767     case ENCODING_CW:
   1768     case ENCODING_CD:
   1769     case ENCODING_CP:
   1770     case ENCODING_CO:
   1771     case ENCODING_CT:
   1772       dbgprintf(insn, "We currently don't hande code-offset encodings");
   1773       return -1;
   1774     case ENCODING_IB:
   1775       if (sawRegImm) {
   1776         /* Saw a register immediate so don't read again and instead split the
   1777            previous immediate.  FIXME: This is a hack. */
   1778         insn->immediates[insn->numImmediatesConsumed] =
   1779           insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
   1780         ++insn->numImmediatesConsumed;
   1781         break;
   1782       }
   1783       if (readImmediate(insn, 1))
   1784         return -1;
   1785       if (Op.type == TYPE_XMM128 ||
   1786           Op.type == TYPE_XMM256)
   1787         sawRegImm = 1;
   1788       break;
   1789     case ENCODING_IW:
   1790       if (readImmediate(insn, 2))
   1791         return -1;
   1792       break;
   1793     case ENCODING_ID:
   1794       if (readImmediate(insn, 4))
   1795         return -1;
   1796       break;
   1797     case ENCODING_IO:
   1798       if (readImmediate(insn, 8))
   1799         return -1;
   1800       break;
   1801     case ENCODING_Iv:
   1802       if (readImmediate(insn, insn->immediateSize))
   1803         return -1;
   1804       break;
   1805     case ENCODING_Ia:
   1806       if (readImmediate(insn, insn->addressSize))
   1807         return -1;
   1808       break;
   1809     case ENCODING_RB:
   1810       if (readOpcodeRegister(insn, 1))
   1811         return -1;
   1812       break;
   1813     case ENCODING_RW:
   1814       if (readOpcodeRegister(insn, 2))
   1815         return -1;
   1816       break;
   1817     case ENCODING_RD:
   1818       if (readOpcodeRegister(insn, 4))
   1819         return -1;
   1820       break;
   1821     case ENCODING_RO:
   1822       if (readOpcodeRegister(insn, 8))
   1823         return -1;
   1824       break;
   1825     case ENCODING_Rv:
   1826       if (readOpcodeRegister(insn, 0))
   1827         return -1;
   1828       break;
   1829     case ENCODING_FP:
   1830       break;
   1831     case ENCODING_VVVV:
   1832       needVVVV = 0; /* Mark that we have found a VVVV operand. */
   1833       if (!hasVVVV)
   1834         return -1;
   1835       if (fixupReg(insn, &Op))
   1836         return -1;
   1837       break;
   1838     case ENCODING_WRITEMASK:
   1839       if (readMaskRegister(insn))
   1840         return -1;
   1841       break;
   1842     case ENCODING_DUP:
   1843       break;
   1844     default:
   1845       dbgprintf(insn, "Encountered an operand with an unknown encoding.");
   1846       return -1;
   1847     }
   1848   }
   1849 
   1850   /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
   1851   if (needVVVV) return -1;
   1852 
   1853   return 0;
   1854 }
   1855 
   1856 /*
   1857  * decodeInstruction - Reads and interprets a full instruction provided by the
   1858  *   user.
   1859  *
   1860  * @param insn      - A pointer to the instruction to be populated.  Must be
   1861  *                    pre-allocated.
   1862  * @param reader    - The function to be used to read the instruction's bytes.
   1863  * @param readerArg - A generic argument to be passed to the reader to store
   1864  *                    any internal state.
   1865  * @param logger    - If non-NULL, the function to be used to write log messages
   1866  *                    and warnings.
   1867  * @param loggerArg - A generic argument to be passed to the logger to store
   1868  *                    any internal state.
   1869  * @param startLoc  - The address (in the reader's address space) of the first
   1870  *                    byte in the instruction.
   1871  * @param mode      - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
   1872  *                    decode the instruction in.
   1873  * @return          - 0 if the instruction's memory could be read; nonzero if
   1874  *                    not.
   1875  */
   1876 int llvm::X86Disassembler::decodeInstruction(
   1877     struct InternalInstruction *insn, byteReader_t reader,
   1878     const void *readerArg, dlog_t logger, void *loggerArg, const void *miiArg,
   1879     uint64_t startLoc, DisassemblerMode mode) {
   1880   memset(insn, 0, sizeof(struct InternalInstruction));
   1881 
   1882   insn->reader = reader;
   1883   insn->readerArg = readerArg;
   1884   insn->dlog = logger;
   1885   insn->dlogArg = loggerArg;
   1886   insn->startLocation = startLoc;
   1887   insn->readerCursor = startLoc;
   1888   insn->mode = mode;
   1889   insn->numImmediatesConsumed = 0;
   1890 
   1891   if (readPrefixes(insn)       ||
   1892       readOpcode(insn)         ||
   1893       getID(insn, miiArg)      ||
   1894       insn->instructionID == 0 ||
   1895       readOperands(insn))
   1896     return -1;
   1897 
   1898   insn->operands = x86OperandSets[insn->spec->operands];
   1899 
   1900   insn->length = insn->readerCursor - insn->startLocation;
   1901 
   1902   dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
   1903             startLoc, insn->readerCursor, insn->length);
   1904 
   1905   if (insn->length > 15)
   1906     dbgprintf(insn, "Instruction exceeds 15-byte limit");
   1907 
   1908   return 0;
   1909 }
   1910