1 ; RUN: opt < %s -instsimplify -S | FileCheck %s 2 target datalayout = "p:32:32" 3 4 define i1 @ptrtoint() { 5 ; CHECK-LABEL: @ptrtoint( 6 %a = alloca i8 7 %tmp = ptrtoint i8* %a to i32 8 %r = icmp eq i32 %tmp, 0 9 ret i1 %r 10 ; CHECK: ret i1 false 11 } 12 13 define i1 @bitcast() { 14 ; CHECK-LABEL: @bitcast( 15 %a = alloca i32 16 %b = alloca i64 17 %x = bitcast i32* %a to i8* 18 %y = bitcast i64* %b to i8* 19 %cmp = icmp eq i8* %x, %y 20 ret i1 %cmp 21 ; CHECK-NEXT: ret i1 false 22 } 23 24 define i1 @gep() { 25 ; CHECK-LABEL: @gep( 26 %a = alloca [3 x i8], align 8 27 %x = getelementptr inbounds [3 x i8], [3 x i8]* %a, i32 0, i32 0 28 %cmp = icmp eq i8* %x, null 29 ret i1 %cmp 30 ; CHECK-NEXT: ret i1 false 31 } 32 33 define i1 @gep2() { 34 ; CHECK-LABEL: @gep2( 35 %a = alloca [3 x i8], align 8 36 %x = getelementptr inbounds [3 x i8], [3 x i8]* %a, i32 0, i32 0 37 %y = getelementptr inbounds [3 x i8], [3 x i8]* %a, i32 0, i32 0 38 %cmp = icmp eq i8* %x, %y 39 ret i1 %cmp 40 ; CHECK-NEXT: ret i1 true 41 } 42 43 ; PR11238 44 %gept = type { i32, i32 } 45 @gepy = global %gept zeroinitializer, align 8 46 @gepz = extern_weak global %gept 47 48 define i1 @gep3() { 49 ; CHECK-LABEL: @gep3( 50 %x = alloca %gept, align 8 51 %a = getelementptr %gept, %gept* %x, i64 0, i32 0 52 %b = getelementptr %gept, %gept* %x, i64 0, i32 1 53 %equal = icmp eq i32* %a, %b 54 ret i1 %equal 55 ; CHECK-NEXT: ret i1 false 56 } 57 58 define i1 @gep4() { 59 ; CHECK-LABEL: @gep4( 60 %x = alloca %gept, align 8 61 %a = getelementptr %gept, %gept* @gepy, i64 0, i32 0 62 %b = getelementptr %gept, %gept* @gepy, i64 0, i32 1 63 %equal = icmp eq i32* %a, %b 64 ret i1 %equal 65 ; CHECK-NEXT: ret i1 false 66 } 67 68 define i1 @gep5() { 69 ; CHECK-LABEL: @gep5( 70 %x = alloca %gept, align 8 71 %a = getelementptr inbounds %gept, %gept* %x, i64 0, i32 1 72 %b = getelementptr %gept, %gept* @gepy, i64 0, i32 0 73 %equal = icmp eq i32* %a, %b 74 ret i1 %equal 75 ; CHECK-NEXT: ret i1 false 76 } 77 78 define i1 @gep6(%gept* %x) { 79 ; Same as @gep3 but potentially null. 80 ; CHECK-LABEL: @gep6( 81 %a = getelementptr %gept, %gept* %x, i64 0, i32 0 82 %b = getelementptr %gept, %gept* %x, i64 0, i32 1 83 %equal = icmp eq i32* %a, %b 84 ret i1 %equal 85 ; CHECK-NEXT: ret i1 false 86 } 87 88 define i1 @gep7(%gept* %x) { 89 ; CHECK-LABEL: @gep7( 90 %a = getelementptr %gept, %gept* %x, i64 0, i32 0 91 %b = getelementptr %gept, %gept* @gepz, i64 0, i32 0 92 %equal = icmp eq i32* %a, %b 93 ret i1 %equal 94 ; CHECK: ret i1 %equal 95 } 96 97 define i1 @gep8(%gept* %x) { 98 ; CHECK-LABEL: @gep8( 99 %a = getelementptr %gept, %gept* %x, i32 1 100 %b = getelementptr %gept, %gept* %x, i32 -1 101 %equal = icmp ugt %gept* %a, %b 102 ret i1 %equal 103 ; CHECK: ret i1 %equal 104 } 105 106 define i1 @gep9(i8* %ptr) { 107 ; CHECK-LABEL: @gep9( 108 ; CHECK-NOT: ret 109 ; CHECK: ret i1 true 110 111 entry: 112 %first1 = getelementptr inbounds i8, i8* %ptr, i32 0 113 %first2 = getelementptr inbounds i8, i8* %first1, i32 1 114 %first3 = getelementptr inbounds i8, i8* %first2, i32 2 115 %first4 = getelementptr inbounds i8, i8* %first3, i32 4 116 %last1 = getelementptr inbounds i8, i8* %first2, i32 48 117 %last2 = getelementptr inbounds i8, i8* %last1, i32 8 118 %last3 = getelementptr inbounds i8, i8* %last2, i32 -4 119 %last4 = getelementptr inbounds i8, i8* %last3, i32 -4 120 %first.int = ptrtoint i8* %first4 to i32 121 %last.int = ptrtoint i8* %last4 to i32 122 %cmp = icmp ne i32 %last.int, %first.int 123 ret i1 %cmp 124 } 125 126 define i1 @gep10(i8* %ptr) { 127 ; CHECK-LABEL: @gep10( 128 ; CHECK-NOT: ret 129 ; CHECK: ret i1 true 130 131 entry: 132 %first1 = getelementptr inbounds i8, i8* %ptr, i32 -2 133 %first2 = getelementptr inbounds i8, i8* %first1, i32 44 134 %last1 = getelementptr inbounds i8, i8* %ptr, i32 48 135 %last2 = getelementptr inbounds i8, i8* %last1, i32 -6 136 %first.int = ptrtoint i8* %first2 to i32 137 %last.int = ptrtoint i8* %last2 to i32 138 %cmp = icmp eq i32 %last.int, %first.int 139 ret i1 %cmp 140 } 141 142 define i1 @gep11(i8* %ptr) { 143 ; CHECK-LABEL: @gep11( 144 ; CHECK-NOT: ret 145 ; CHECK: ret i1 true 146 147 entry: 148 %first1 = getelementptr inbounds i8, i8* %ptr, i32 -2 149 %last1 = getelementptr inbounds i8, i8* %ptr, i32 48 150 %last2 = getelementptr inbounds i8, i8* %last1, i32 -6 151 %cmp = icmp ult i8* %first1, %last2 152 ret i1 %cmp 153 } 154 155 define i1 @gep12(i8* %ptr) { 156 ; CHECK-LABEL: @gep12( 157 ; CHECK-NOT: ret 158 ; CHECK: ret i1 %cmp 159 160 entry: 161 %first1 = getelementptr inbounds i8, i8* %ptr, i32 -2 162 %last1 = getelementptr inbounds i8, i8* %ptr, i32 48 163 %last2 = getelementptr inbounds i8, i8* %last1, i32 -6 164 %cmp = icmp slt i8* %first1, %last2 165 ret i1 %cmp 166 } 167 168 define i1 @gep13(i8* %ptr) { 169 ; CHECK-LABEL: @gep13( 170 ; We can prove this GEP is non-null because it is inbounds. 171 %x = getelementptr inbounds i8, i8* %ptr, i32 1 172 %cmp = icmp eq i8* %x, null 173 ret i1 %cmp 174 ; CHECK-NEXT: ret i1 false 175 } 176 177 define i1 @gep14({ {}, i8 }* %ptr) { 178 ; CHECK-LABEL: @gep14( 179 ; We can't simplify this because the offset of one in the GEP actually doesn't 180 ; move the pointer. 181 %x = getelementptr inbounds { {}, i8 }, { {}, i8 }* %ptr, i32 0, i32 1 182 %cmp = icmp eq i8* %x, null 183 ret i1 %cmp 184 ; CHECK-NOT: ret i1 false 185 } 186 187 define i1 @gep15({ {}, [4 x {i8, i8}]}* %ptr, i32 %y) { 188 ; CHECK-LABEL: @gep15( 189 ; We can prove this GEP is non-null even though there is a user value, as we 190 ; would necessarily violate inbounds on one side or the other. 191 %x = getelementptr inbounds { {}, [4 x {i8, i8}]}, { {}, [4 x {i8, i8}]}* %ptr, i32 0, i32 1, i32 %y, i32 1 192 %cmp = icmp eq i8* %x, null 193 ret i1 %cmp 194 ; CHECK-NEXT: ret i1 false 195 } 196 197 define i1 @gep16(i8* %ptr, i32 %a) { 198 ; CHECK-LABEL: @gep16( 199 ; We can prove this GEP is non-null because it is inbounds and because we know 200 ; %b is non-zero even though we don't know its value. 201 %b = or i32 %a, 1 202 %x = getelementptr inbounds i8, i8* %ptr, i32 %b 203 %cmp = icmp eq i8* %x, null 204 ret i1 %cmp 205 ; CHECK-NEXT: ret i1 false 206 } 207 208 define i1 @zext(i32 %x) { 209 ; CHECK-LABEL: @zext( 210 %e1 = zext i32 %x to i64 211 %e2 = zext i32 %x to i64 212 %r = icmp eq i64 %e1, %e2 213 ret i1 %r 214 ; CHECK: ret i1 true 215 } 216 217 define i1 @zext2(i1 %x) { 218 ; CHECK-LABEL: @zext2( 219 %e = zext i1 %x to i32 220 %c = icmp ne i32 %e, 0 221 ret i1 %c 222 ; CHECK: ret i1 %x 223 } 224 225 define i1 @zext3() { 226 ; CHECK-LABEL: @zext3( 227 %e = zext i1 1 to i32 228 %c = icmp ne i32 %e, 0 229 ret i1 %c 230 ; CHECK: ret i1 true 231 } 232 233 define i1 @sext(i32 %x) { 234 ; CHECK-LABEL: @sext( 235 %e1 = sext i32 %x to i64 236 %e2 = sext i32 %x to i64 237 %r = icmp eq i64 %e1, %e2 238 ret i1 %r 239 ; CHECK: ret i1 true 240 } 241 242 define i1 @sext2(i1 %x) { 243 ; CHECK-LABEL: @sext2( 244 %e = sext i1 %x to i32 245 %c = icmp ne i32 %e, 0 246 ret i1 %c 247 ; CHECK: ret i1 %x 248 } 249 250 define i1 @sext3() { 251 ; CHECK-LABEL: @sext3( 252 %e = sext i1 1 to i32 253 %c = icmp ne i32 %e, 0 254 ret i1 %c 255 ; CHECK: ret i1 true 256 } 257 258 define i1 @add(i32 %x, i32 %y) { 259 ; CHECK-LABEL: @add( 260 %l = lshr i32 %x, 1 261 %q = lshr i32 %y, 1 262 %r = or i32 %q, 1 263 %s = add i32 %l, %r 264 %c = icmp eq i32 %s, 0 265 ret i1 %c 266 ; CHECK: ret i1 false 267 } 268 269 define i1 @add2(i8 %x, i8 %y) { 270 ; CHECK-LABEL: @add2( 271 %l = or i8 %x, 128 272 %r = or i8 %y, 129 273 %s = add i8 %l, %r 274 %c = icmp eq i8 %s, 0 275 ret i1 %c 276 ; CHECK: ret i1 false 277 } 278 279 define i1 @add3(i8 %x, i8 %y) { 280 ; CHECK-LABEL: @add3( 281 %l = zext i8 %x to i32 282 %r = zext i8 %y to i32 283 %s = add i32 %l, %r 284 %c = icmp eq i32 %s, 0 285 ret i1 %c 286 ; CHECK: ret i1 %c 287 } 288 289 define i1 @add4(i32 %x, i32 %y) { 290 ; CHECK-LABEL: @add4( 291 %z = add nsw i32 %y, 1 292 %s1 = add nsw i32 %x, %y 293 %s2 = add nsw i32 %x, %z 294 %c = icmp slt i32 %s1, %s2 295 ret i1 %c 296 ; CHECK: ret i1 true 297 } 298 299 define i1 @add5(i32 %x, i32 %y) { 300 ; CHECK-LABEL: @add5( 301 %z = add nuw i32 %y, 1 302 %s1 = add nuw i32 %x, %z 303 %s2 = add nuw i32 %x, %y 304 %c = icmp ugt i32 %s1, %s2 305 ret i1 %c 306 ; CHECK: ret i1 true 307 } 308 309 define i1 @add6(i64 %A, i64 %B) { 310 ; CHECK-LABEL: @add6( 311 %s1 = add i64 %A, %B 312 %s2 = add i64 %B, %A 313 %cmp = icmp eq i64 %s1, %s2 314 ret i1 %cmp 315 ; CHECK: ret i1 true 316 } 317 318 define i1 @addpowtwo(i32 %x, i32 %y) { 319 ; CHECK-LABEL: @addpowtwo( 320 %l = lshr i32 %x, 1 321 %r = shl i32 1, %y 322 %s = add i32 %l, %r 323 %c = icmp eq i32 %s, 0 324 ret i1 %c 325 ; CHECK: ret i1 false 326 } 327 328 define i1 @or(i32 %x) { 329 ; CHECK-LABEL: @or( 330 %o = or i32 %x, 1 331 %c = icmp eq i32 %o, 0 332 ret i1 %c 333 ; CHECK: ret i1 false 334 } 335 336 define i1 @shl1(i32 %x) { 337 ; CHECK-LABEL: @shl1( 338 %s = shl i32 1, %x 339 %c = icmp eq i32 %s, 0 340 ret i1 %c 341 ; CHECK: ret i1 false 342 } 343 344 define i1 @shl2(i32 %X) { 345 ; CHECK: @shl2 346 %sub = shl nsw i32 -1, %X 347 %cmp = icmp eq i32 %sub, 31 348 ret i1 %cmp 349 ; CHECK-NEXT: ret i1 false 350 } 351 352 define i1 @shl3(i32 %X) { 353 ; CHECK: @shl3 354 %sub = shl nuw i32 4, %X 355 %cmp = icmp eq i32 %sub, 31 356 ret i1 %cmp 357 ; CHECK-NEXT: ret i1 false 358 } 359 360 define i1 @shl4(i32 %X) { 361 ; CHECK: @shl4 362 %sub = shl nsw i32 -1, %X 363 %cmp = icmp sle i32 %sub, -1 364 ret i1 %cmp 365 ; CHECK-NEXT: ret i1 true 366 } 367 368 define i1 @shl5(i32 %X) { 369 ; CHECK: @shl5 370 %sub = shl nuw i32 4, %X 371 %cmp = icmp ugt i32 %sub, 3 372 ret i1 %cmp 373 ; CHECK-NEXT: ret i1 true 374 } 375 376 define i1 @lshr1(i32 %x) { 377 ; CHECK-LABEL: @lshr1( 378 %s = lshr i32 -1, %x 379 %c = icmp eq i32 %s, 0 380 ret i1 %c 381 ; CHECK: ret i1 false 382 } 383 384 define i1 @lshr2(i32 %x) { 385 ; CHECK-LABEL: @lshr2( 386 %s = lshr i32 %x, 30 387 %c = icmp ugt i32 %s, 8 388 ret i1 %c 389 ; CHECK: ret i1 false 390 } 391 392 define i1 @lshr3(i32 %x) { 393 ; CHECK-LABEL: @lshr3( 394 %s = lshr i32 %x, %x 395 %c = icmp eq i32 %s, 0 396 ret i1 %c 397 ; CHECK: ret i1 true 398 } 399 400 define i1 @ashr1(i32 %x) { 401 ; CHECK-LABEL: @ashr1( 402 %s = ashr i32 -1, %x 403 %c = icmp eq i32 %s, 0 404 ret i1 %c 405 ; CHECK: ret i1 false 406 } 407 408 define i1 @ashr2(i32 %x) { 409 ; CHECK-LABEL: @ashr2( 410 %s = ashr i32 %x, 30 411 %c = icmp slt i32 %s, -5 412 ret i1 %c 413 ; CHECK: ret i1 false 414 } 415 416 define i1 @ashr3(i32 %x) { 417 ; CHECK-LABEL: @ashr3( 418 %s = ashr i32 %x, %x 419 %c = icmp eq i32 %s, 0 420 ret i1 %c 421 ; CHECK: ret i1 true 422 } 423 424 define i1 @select1(i1 %cond) { 425 ; CHECK-LABEL: @select1( 426 %s = select i1 %cond, i32 1, i32 0 427 %c = icmp eq i32 %s, 1 428 ret i1 %c 429 ; CHECK: ret i1 %cond 430 } 431 432 define i1 @select2(i1 %cond) { 433 ; CHECK-LABEL: @select2( 434 %x = zext i1 %cond to i32 435 %s = select i1 %cond, i32 %x, i32 0 436 %c = icmp ne i32 %s, 0 437 ret i1 %c 438 ; CHECK: ret i1 %cond 439 } 440 441 define i1 @select3(i1 %cond) { 442 ; CHECK-LABEL: @select3( 443 %x = zext i1 %cond to i32 444 %s = select i1 %cond, i32 1, i32 %x 445 %c = icmp ne i32 %s, 0 446 ret i1 %c 447 ; CHECK: ret i1 %cond 448 } 449 450 define i1 @select4(i1 %cond) { 451 ; CHECK-LABEL: @select4( 452 %invert = xor i1 %cond, 1 453 %s = select i1 %invert, i32 0, i32 1 454 %c = icmp ne i32 %s, 0 455 ret i1 %c 456 ; CHECK: ret i1 %cond 457 } 458 459 define i1 @select5(i32 %x) { 460 ; CHECK-LABEL: @select5( 461 %c = icmp eq i32 %x, 0 462 %s = select i1 %c, i32 1, i32 %x 463 %c2 = icmp eq i32 %s, 0 464 ret i1 %c2 465 ; CHECK: ret i1 false 466 } 467 468 define i1 @select6(i32 %x) { 469 ; CHECK-LABEL: @select6( 470 %c = icmp sgt i32 %x, 0 471 %s = select i1 %c, i32 %x, i32 4 472 %c2 = icmp eq i32 %s, 0 473 ret i1 %c2 474 ; CHECK: ret i1 %c2 475 } 476 477 define i1 @urem1(i32 %X, i32 %Y) { 478 ; CHECK-LABEL: @urem1( 479 %A = urem i32 %X, %Y 480 %B = icmp ult i32 %A, %Y 481 ret i1 %B 482 ; CHECK: ret i1 true 483 } 484 485 define i1 @urem2(i32 %X, i32 %Y) { 486 ; CHECK-LABEL: @urem2( 487 %A = urem i32 %X, %Y 488 %B = icmp eq i32 %A, %Y 489 ret i1 %B 490 ; CHECK: ret i1 false 491 } 492 493 define i1 @urem3(i32 %X) { 494 ; CHECK-LABEL: @urem3( 495 %A = urem i32 %X, 10 496 %B = icmp ult i32 %A, 15 497 ret i1 %B 498 ; CHECK: ret i1 true 499 } 500 501 define i1 @urem4(i32 %X) { 502 ; CHECK-LABEL: @urem4( 503 %A = urem i32 %X, 15 504 %B = icmp ult i32 %A, 10 505 ret i1 %B 506 ; CHECK: ret i1 %B 507 } 508 509 define i1 @urem5(i16 %X, i32 %Y) { 510 ; CHECK-LABEL: @urem5( 511 %A = zext i16 %X to i32 512 %B = urem i32 %A, %Y 513 %C = icmp slt i32 %B, %Y 514 ret i1 %C 515 ; CHECK-NOT: ret i1 true 516 } 517 518 define i1 @urem6(i32 %X, i32 %Y) { 519 ; CHECK-LABEL: @urem6( 520 %A = urem i32 %X, %Y 521 %B = icmp ugt i32 %Y, %A 522 ret i1 %B 523 ; CHECK: ret i1 true 524 } 525 526 define i1 @urem7(i32 %X) { 527 ; CHECK-LABEL: @urem7( 528 %A = urem i32 1, %X 529 %B = icmp sgt i32 %A, %X 530 ret i1 %B 531 ; CHECK-NOT: ret i1 false 532 } 533 534 define i1 @srem1(i32 %X) { 535 ; CHECK-LABEL: @srem1( 536 %A = srem i32 %X, -5 537 %B = icmp sgt i32 %A, 5 538 ret i1 %B 539 ; CHECK: ret i1 false 540 } 541 542 ; PR9343 #15 543 ; CHECK-LABEL: @srem2( 544 ; CHECK: ret i1 false 545 define i1 @srem2(i16 %X, i32 %Y) { 546 %A = zext i16 %X to i32 547 %B = add nsw i32 %A, 1 548 %C = srem i32 %B, %Y 549 %D = icmp slt i32 %C, 0 550 ret i1 %D 551 } 552 553 ; CHECK-LABEL: @srem3( 554 ; CHECK-NEXT: ret i1 false 555 define i1 @srem3(i16 %X, i32 %Y) { 556 %A = zext i16 %X to i32 557 %B = or i32 2147483648, %A 558 %C = sub nsw i32 1, %B 559 %D = srem i32 %C, %Y 560 %E = icmp slt i32 %D, 0 561 ret i1 %E 562 } 563 564 define i1 @udiv1(i32 %X) { 565 ; CHECK-LABEL: @udiv1( 566 %A = udiv i32 %X, 1000000 567 %B = icmp ult i32 %A, 5000 568 ret i1 %B 569 ; CHECK: ret i1 true 570 } 571 572 define i1 @udiv2(i32 %X, i32 %Y, i32 %Z) { 573 ; CHECK-LABEL: @udiv2( 574 %A = udiv exact i32 10, %Z 575 %B = udiv exact i32 20, %Z 576 %C = icmp ult i32 %A, %B 577 ret i1 %C 578 ; CHECK: ret i1 true 579 } 580 581 define i1 @udiv3(i32 %X, i32 %Y) { 582 ; CHECK-LABEL: @udiv3( 583 %A = udiv i32 %X, %Y 584 %C = icmp ugt i32 %A, %X 585 ret i1 %C 586 ; CHECK: ret i1 false 587 } 588 589 define i1 @udiv4(i32 %X, i32 %Y) { 590 ; CHECK-LABEL: @udiv4( 591 %A = udiv i32 %X, %Y 592 %C = icmp ule i32 %A, %X 593 ret i1 %C 594 ; CHECK: ret i1 true 595 } 596 597 define i1 @udiv5(i32 %X) { 598 ; CHECK-LABEL: @udiv5( 599 %A = udiv i32 123, %X 600 %C = icmp ugt i32 %A, 124 601 ret i1 %C 602 ; CHECK: ret i1 false 603 } 604 605 ; PR11340 606 define i1 @udiv6(i32 %X) nounwind { 607 ; CHECK-LABEL: @udiv6( 608 %A = udiv i32 1, %X 609 %C = icmp eq i32 %A, 0 610 ret i1 %C 611 ; CHECK: ret i1 %C 612 } 613 614 615 define i1 @sdiv1(i32 %X) { 616 ; CHECK-LABEL: @sdiv1( 617 %A = sdiv i32 %X, 1000000 618 %B = icmp slt i32 %A, 3000 619 ret i1 %B 620 ; CHECK: ret i1 true 621 } 622 623 define i1 @or1(i32 %X) { 624 ; CHECK-LABEL: @or1( 625 %A = or i32 %X, 62 626 %B = icmp ult i32 %A, 50 627 ret i1 %B 628 ; CHECK: ret i1 false 629 } 630 631 define i1 @and1(i32 %X) { 632 ; CHECK-LABEL: @and1( 633 %A = and i32 %X, 62 634 %B = icmp ugt i32 %A, 70 635 ret i1 %B 636 ; CHECK: ret i1 false 637 } 638 639 define i1 @mul1(i32 %X) { 640 ; CHECK-LABEL: @mul1( 641 ; Square of a non-zero number is non-zero if there is no overflow. 642 %Y = or i32 %X, 1 643 %M = mul nuw i32 %Y, %Y 644 %C = icmp eq i32 %M, 0 645 ret i1 %C 646 ; CHECK: ret i1 false 647 } 648 649 define i1 @mul2(i32 %X) { 650 ; CHECK-LABEL: @mul2( 651 ; Square of a non-zero number is positive if there is no signed overflow. 652 %Y = or i32 %X, 1 653 %M = mul nsw i32 %Y, %Y 654 %C = icmp sgt i32 %M, 0 655 ret i1 %C 656 ; CHECK: ret i1 true 657 } 658 659 define i1 @mul3(i32 %X, i32 %Y) { 660 ; CHECK-LABEL: @mul3( 661 ; Product of non-negative numbers is non-negative if there is no signed overflow. 662 %XX = mul nsw i32 %X, %X 663 %YY = mul nsw i32 %Y, %Y 664 %M = mul nsw i32 %XX, %YY 665 %C = icmp sge i32 %M, 0 666 ret i1 %C 667 ; CHECK: ret i1 true 668 } 669 670 define <2 x i1> @vectorselect1(<2 x i1> %cond) { 671 ; CHECK-LABEL: @vectorselect1( 672 %invert = xor <2 x i1> %cond, <i1 1, i1 1> 673 %s = select <2 x i1> %invert, <2 x i32> <i32 0, i32 0>, <2 x i32> <i32 1, i32 1> 674 %c = icmp ne <2 x i32> %s, <i32 0, i32 0> 675 ret <2 x i1> %c 676 ; CHECK: ret <2 x i1> %cond 677 } 678 679 ; PR11948 680 define <2 x i1> @vectorselectcrash(i32 %arg1) { 681 %tobool40 = icmp ne i32 %arg1, 0 682 %cond43 = select i1 %tobool40, <2 x i16> <i16 -5, i16 66>, <2 x i16> <i16 46, i16 1> 683 %cmp45 = icmp ugt <2 x i16> %cond43, <i16 73, i16 21> 684 ret <2 x i1> %cmp45 685 } 686 687 ; PR12013 688 define i1 @alloca_compare(i64 %idx) { 689 %sv = alloca { i32, i32, [124 x i32] } 690 %1 = getelementptr inbounds { i32, i32, [124 x i32] }, { i32, i32, [124 x i32] }* %sv, i32 0, i32 2, i64 %idx 691 %2 = icmp eq i32* %1, null 692 ret i1 %2 693 ; CHECK: alloca_compare 694 ; CHECK: ret i1 false 695 } 696 697 ; PR12075 698 define i1 @infinite_gep() { 699 ret i1 1 700 701 unreachableblock: 702 %X = getelementptr i32, i32 *%X, i32 1 703 %Y = icmp eq i32* %X, null 704 ret i1 %Y 705 } 706 707 ; It's not valid to fold a comparison of an argument with an alloca, even though 708 ; that's tempting. An argument can't *alias* an alloca, however the aliasing rule 709 ; relies on restrictions against guessing an object's address and dereferencing. 710 ; There are no restrictions against guessing an object's address and comparing. 711 712 define i1 @alloca_argument_compare(i64* %arg) { 713 %alloc = alloca i64 714 %cmp = icmp eq i64* %arg, %alloc 715 ret i1 %cmp 716 ; CHECK: alloca_argument_compare 717 ; CHECK: ret i1 %cmp 718 } 719 720 ; As above, but with the operands reversed. 721 722 define i1 @alloca_argument_compare_swapped(i64* %arg) { 723 %alloc = alloca i64 724 %cmp = icmp eq i64* %alloc, %arg 725 ret i1 %cmp 726 ; CHECK: alloca_argument_compare_swapped 727 ; CHECK: ret i1 %cmp 728 } 729 730 ; Don't assume that a noalias argument isn't equal to a global variable's 731 ; address. This is an example where AliasAnalysis' NoAlias concept is 732 ; different from actual pointer inequality. 733 734 @y = external global i32 735 define zeroext i1 @external_compare(i32* noalias %x) { 736 %cmp = icmp eq i32* %x, @y 737 ret i1 %cmp 738 ; CHECK: external_compare 739 ; CHECK: ret i1 %cmp 740 } 741 742 define i1 @alloca_gep(i64 %a, i64 %b) { 743 ; CHECK-LABEL: @alloca_gep( 744 ; We can prove this GEP is non-null because it is inbounds and the pointer 745 ; is non-null. 746 %strs = alloca [1000 x [1001 x i8]], align 16 747 %x = getelementptr inbounds [1000 x [1001 x i8]], [1000 x [1001 x i8]]* %strs, i64 0, i64 %a, i64 %b 748 %cmp = icmp eq i8* %x, null 749 ret i1 %cmp 750 ; CHECK-NEXT: ret i1 false 751 } 752 753 define i1 @non_inbounds_gep_compare(i64* %a) { 754 ; CHECK-LABEL: @non_inbounds_gep_compare( 755 ; Equality compares with non-inbounds GEPs can be folded. 756 %x = getelementptr i64, i64* %a, i64 42 757 %y = getelementptr inbounds i64, i64* %x, i64 -42 758 %z = getelementptr i64, i64* %a, i64 -42 759 %w = getelementptr inbounds i64, i64* %z, i64 42 760 %cmp = icmp eq i64* %y, %w 761 ret i1 %cmp 762 ; CHECK-NEXT: ret i1 true 763 } 764 765 define i1 @non_inbounds_gep_compare2(i64* %a) { 766 ; CHECK-LABEL: @non_inbounds_gep_compare2( 767 ; Equality compares with non-inbounds GEPs can be folded. 768 %x = getelementptr i64, i64* %a, i64 4294967297 769 %y = getelementptr i64, i64* %a, i64 1 770 %cmp = icmp eq i64* %y, %y 771 ret i1 %cmp 772 ; CHECK-NEXT: ret i1 true 773 } 774 775 define <4 x i8> @vectorselectfold(<4 x i8> %a, <4 x i8> %b) { 776 %false = icmp ne <4 x i8> zeroinitializer, zeroinitializer 777 %sel = select <4 x i1> %false, <4 x i8> %a, <4 x i8> %b 778 ret <4 x i8> %sel 779 780 ; CHECK-LABEL: @vectorselectfold 781 ; CHECK-NEXT: ret <4 x i8> %b 782 } 783 784 define <4 x i8> @vectorselectfold2(<4 x i8> %a, <4 x i8> %b) { 785 %true = icmp eq <4 x i8> zeroinitializer, zeroinitializer 786 %sel = select <4 x i1> %true, <4 x i8> %a, <4 x i8> %b 787 ret <4 x i8> %sel 788 789 ; CHECK-LABEL: @vectorselectfold 790 ; CHECK-NEXT: ret <4 x i8> %a 791 } 792 793 define i1 @compare_always_true_slt(i16 %a) { 794 %1 = zext i16 %a to i32 795 %2 = sub nsw i32 0, %1 796 %3 = icmp slt i32 %2, 1 797 ret i1 %3 798 799 ; CHECK-LABEL: @compare_always_true_slt 800 ; CHECK-NEXT: ret i1 true 801 } 802 803 define i1 @compare_always_true_sle(i16 %a) { 804 %1 = zext i16 %a to i32 805 %2 = sub nsw i32 0, %1 806 %3 = icmp sle i32 %2, 0 807 ret i1 %3 808 809 ; CHECK-LABEL: @compare_always_true_sle 810 ; CHECK-NEXT: ret i1 true 811 } 812 813 define i1 @compare_always_false_sgt(i16 %a) { 814 %1 = zext i16 %a to i32 815 %2 = sub nsw i32 0, %1 816 %3 = icmp sgt i32 %2, 0 817 ret i1 %3 818 819 ; CHECK-LABEL: @compare_always_false_sgt 820 ; CHECK-NEXT: ret i1 false 821 } 822 823 define i1 @compare_always_false_sge(i16 %a) { 824 %1 = zext i16 %a to i32 825 %2 = sub nsw i32 0, %1 826 %3 = icmp sge i32 %2, 1 827 ret i1 %3 828 829 ; CHECK-LABEL: @compare_always_false_sge 830 ; CHECK-NEXT: ret i1 false 831 } 832 833 define i1 @compare_always_false_eq(i16 %a) { 834 %1 = zext i16 %a to i32 835 %2 = sub nsw i32 0, %1 836 %3 = icmp eq i32 %2, 1 837 ret i1 %3 838 839 ; CHECK-LABEL: @compare_always_false_eq 840 ; CHECK-NEXT: ret i1 false 841 } 842 843 define i1 @compare_always_false_ne(i16 %a) { 844 %1 = zext i16 %a to i32 845 %2 = sub nsw i32 0, %1 846 %3 = icmp ne i32 %2, 1 847 ret i1 %3 848 849 ; CHECK-LABEL: @compare_always_false_ne 850 ; CHECK-NEXT: ret i1 true 851 } 852 853 define i1 @compare_dividend(i32 %a) { 854 %div = sdiv i32 2, %a 855 %cmp = icmp eq i32 %div, 3 856 ret i1 %cmp 857 858 ; CHECK-LABEL: @compare_dividend 859 ; CHECK-NEXT: ret i1 false 860 } 861 862 define i1 @lshr_ugt_false(i32 %a) { 863 %shr = lshr i32 1, %a 864 %cmp = icmp ugt i32 %shr, 1 865 ret i1 %cmp 866 ; CHECK-LABEL: @lshr_ugt_false 867 ; CHECK-NEXT: ret i1 false 868 } 869 870 define i1 @exact_lshr_ugt_false(i32 %a) { 871 %shr = lshr exact i32 30, %a 872 %cmp = icmp ult i32 %shr, 15 873 ret i1 %cmp 874 ; CHECK-LABEL: @exact_lshr_ugt_false 875 ; CHECK-NEXT: ret i1 false 876 } 877 878 define i1 @lshr_sgt_false(i32 %a) { 879 %shr = lshr i32 1, %a 880 %cmp = icmp sgt i32 %shr, 1 881 ret i1 %cmp 882 ; CHECK-LABEL: @lshr_sgt_false 883 ; CHECK-NEXT: ret i1 false 884 } 885 886 define i1 @ashr_sgt_false(i32 %a) { 887 %shr = ashr i32 -30, %a 888 %cmp = icmp sgt i32 %shr, -1 889 ret i1 %cmp 890 ; CHECK-LABEL: @ashr_sgt_false 891 ; CHECK-NEXT: ret i1 false 892 } 893 894 define i1 @exact_ashr_sgt_false(i32 %a) { 895 %shr = ashr exact i32 -30, %a 896 %cmp = icmp sgt i32 %shr, -15 897 ret i1 %cmp 898 ; CHECK-LABEL: @exact_ashr_sgt_false 899 ; CHECK-NEXT: ret i1 false 900 } 901 902 define i1 @nonnull_arg(i32* nonnull %i) { 903 %cmp = icmp eq i32* %i, null 904 ret i1 %cmp 905 ; CHECK-LABEL: @nonnull_arg 906 ; CHECK: ret i1 false 907 } 908 909 define i1 @nonnull_deref_arg(i32* dereferenceable(4) %i) { 910 %cmp = icmp eq i32* %i, null 911 ret i1 %cmp 912 ; CHECK-LABEL: @nonnull_deref_arg 913 ; CHECK: ret i1 false 914 } 915 916 define i1 @nonnull_deref_as_arg(i32 addrspace(1)* dereferenceable(4) %i) { 917 %cmp = icmp eq i32 addrspace(1)* %i, null 918 ret i1 %cmp 919 ; CHECK-LABEL: @nonnull_deref_as_arg 920 ; CHECK: icmp 921 ; CHECK: ret 922 } 923 924 declare nonnull i32* @returns_nonnull_helper() 925 define i1 @returns_nonnull() { 926 %call = call nonnull i32* @returns_nonnull_helper() 927 %cmp = icmp eq i32* %call, null 928 ret i1 %cmp 929 ; CHECK-LABEL: @returns_nonnull 930 ; CHECK: ret i1 false 931 } 932 933 declare dereferenceable(4) i32* @returns_nonnull_deref_helper() 934 define i1 @returns_nonnull_deref() { 935 %call = call dereferenceable(4) i32* @returns_nonnull_deref_helper() 936 %cmp = icmp eq i32* %call, null 937 ret i1 %cmp 938 ; CHECK-LABEL: @returns_nonnull_deref 939 ; CHECK: ret i1 false 940 } 941 942 declare dereferenceable(4) i32 addrspace(1)* @returns_nonnull_deref_as_helper() 943 define i1 @returns_nonnull_as_deref() { 944 %call = call dereferenceable(4) i32 addrspace(1)* @returns_nonnull_deref_as_helper() 945 %cmp = icmp eq i32 addrspace(1)* %call, null 946 ret i1 %cmp 947 ; CHECK-LABEL: @returns_nonnull_as_deref 948 ; CHECK: icmp 949 ; CHECK: ret 950 } 951 952 define i1 @nonnull_load(i32** %addr) { 953 %ptr = load i32*, i32** %addr, !nonnull !{} 954 %cmp = icmp eq i32* %ptr, null 955 ret i1 %cmp 956 ; CHECK-LABEL: @nonnull_load 957 ; CHECK: ret i1 false 958 } 959 960 define i1 @nonnull_load_as_outer(i32* addrspace(1)* %addr) { 961 %ptr = load i32*, i32* addrspace(1)* %addr, !nonnull !{} 962 %cmp = icmp eq i32* %ptr, null 963 ret i1 %cmp 964 ; CHECK-LABEL: @nonnull_load_as_outer 965 ; CHECK: ret i1 false 966 } 967 define i1 @nonnull_load_as_inner(i32 addrspace(1)** %addr) { 968 %ptr = load i32 addrspace(1)*, i32 addrspace(1)** %addr, !nonnull !{} 969 %cmp = icmp eq i32 addrspace(1)* %ptr, null 970 ret i1 %cmp 971 ; CHECK-LABEL: @nonnull_load_as_inner 972 ; CHECK: ret i1 false 973 } 974 975 ; If a bit is known to be zero for A and known to be one for B, 976 ; then A and B cannot be equal. 977 define i1 @icmp_eq_const(i32 %a) nounwind { 978 %b = mul nsw i32 %a, -2 979 %c = icmp eq i32 %b, 1 980 ret i1 %c 981 982 ; CHECK-LABEL: @icmp_eq_const 983 ; CHECK-NEXT: ret i1 false 984 } 985 986 define i1 @icmp_ne_const(i32 %a) nounwind { 987 %b = mul nsw i32 %a, -2 988 %c = icmp ne i32 %b, 1 989 ret i1 %c 990 991 ; CHECK-LABEL: @icmp_ne_const 992 ; CHECK-NEXT: ret i1 true 993 } 994 995 define i1 @icmp_sdiv_int_min(i32 %a) { 996 %div = sdiv i32 -2147483648, %a 997 %cmp = icmp ne i32 %div, -1073741824 998 ret i1 %cmp 999 1000 ; CHECK-LABEL: @icmp_sdiv_int_min 1001 ; CHECK-NEXT: [[DIV:%.*]] = sdiv i32 -2147483648, %a 1002 ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32 [[DIV]], -1073741824 1003 ; CHECK-NEXT: ret i1 [[CMP]] 1004 } 1005 1006 define i1 @icmp_sdiv_pr20288(i64 %a) { 1007 %div = sdiv i64 %a, -8589934592 1008 %cmp = icmp ne i64 %div, 1073741824 1009 ret i1 %cmp 1010 1011 ; CHECK-LABEL: @icmp_sdiv_pr20288 1012 ; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 %a, -8589934592 1013 ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i64 [[DIV]], 1073741824 1014 ; CHECK-NEXT: ret i1 [[CMP]] 1015 } 1016 1017 define i1 @icmp_sdiv_neg1(i64 %a) { 1018 %div = sdiv i64 %a, -1 1019 %cmp = icmp ne i64 %div, 1073741824 1020 ret i1 %cmp 1021 1022 ; CHECK-LABEL: @icmp_sdiv_neg1 1023 ; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 %a, -1 1024 ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i64 [[DIV]], 1073741824 1025 ; CHECK-NEXT: ret i1 [[CMP]] 1026 } 1027 1028 define i1 @icmp_known_bits(i4 %x, i4 %y) { 1029 %and1 = and i4 %y, -7 1030 %and2 = and i4 %x, -7 1031 %or1 = or i4 %and1, 2 1032 %or2 = or i4 %and2, 2 1033 %add = add i4 %or1, %or2 1034 %cmp = icmp eq i4 %add, 0 1035 ret i1 %cmp 1036 1037 ; CHECK-LABEL: @icmp_known_bits 1038 ; CHECK-NEXT: ret i1 false 1039 } 1040 1041 define i1 @icmp_shl_nuw_1(i64 %a) { 1042 %shl = shl nuw i64 1, %a 1043 %cmp = icmp ne i64 %shl, 0 1044 ret i1 %cmp 1045 1046 ; CHECK-LABEL: @icmp_shl_nuw_1 1047 ; CHECK-NEXT: ret i1 true 1048 } 1049 1050 define i1 @icmp_shl_nsw_neg1(i64 %a) { 1051 %shl = shl nsw i64 -1, %a 1052 %cmp = icmp sge i64 %shl, 3 1053 ret i1 %cmp 1054 1055 ; CHECK-LABEL: @icmp_shl_nsw_neg1 1056 ; CHECK-NEXT: ret i1 false 1057 } 1058 1059 define i1 @icmp_shl_nsw_1(i64 %a) { 1060 %shl = shl nsw i64 1, %a 1061 %cmp = icmp sge i64 %shl, 0 1062 ret i1 %cmp 1063 1064 ; CHECK-LABEL: @icmp_shl_nsw_1 1065 ; CHECK-NEXT: ret i1 true 1066 } 1067 1068 define i1 @icmp_shl_1_V_ugt_2147483648(i32 %V) { 1069 %shl = shl i32 1, %V 1070 %cmp = icmp ugt i32 %shl, 2147483648 1071 ret i1 %cmp 1072 1073 ; CHECK-LABEL: @icmp_shl_1_V_ugt_2147483648( 1074 ; CHECK-NEXT: ret i1 false 1075 } 1076 1077 define i1 @icmp_shl_1_V_ule_2147483648(i32 %V) { 1078 %shl = shl i32 1, %V 1079 %cmp = icmp ule i32 %shl, 2147483648 1080 ret i1 %cmp 1081 1082 ; CHECK-LABEL: @icmp_shl_1_V_ule_2147483648( 1083 ; CHECK-NEXT: ret i1 true 1084 } 1085 1086 define i1 @icmp_shl_1_V_eq_31(i32 %V) { 1087 %shl = shl i32 1, %V 1088 %cmp = icmp eq i32 %shl, 31 1089 ret i1 %cmp 1090 1091 ; CHECK-LABEL: @icmp_shl_1_V_eq_31( 1092 ; CHECK-NEXT: ret i1 false 1093 } 1094 1095 define i1 @icmp_shl_1_V_ne_31(i32 %V) { 1096 %shl = shl i32 1, %V 1097 %cmp = icmp ne i32 %shl, 31 1098 ret i1 %cmp 1099 1100 ; CHECK-LABEL: @icmp_shl_1_V_ne_31( 1101 ; CHECK-NEXT: ret i1 true 1102 } 1103 1104 define i1 @tautological1(i32 %A, i32 %B) { 1105 %C = and i32 %A, %B 1106 %D = icmp ugt i32 %C, %A 1107 ret i1 %D 1108 ; CHECK-LABEL: @tautological1( 1109 ; CHECK: ret i1 false 1110 } 1111 1112 define i1 @tautological2(i32 %A, i32 %B) { 1113 %C = and i32 %A, %B 1114 %D = icmp ule i32 %C, %A 1115 ret i1 %D 1116 ; CHECK-LABEL: @tautological2( 1117 ; CHECK: ret i1 true 1118 } 1119 1120 define i1 @tautological3(i32 %A, i32 %B) { 1121 %C = or i32 %A, %B 1122 %D = icmp ule i32 %A, %C 1123 ret i1 %D 1124 ; CHECK-LABEL: @tautological3( 1125 ; CHECK: ret i1 true 1126 } 1127 1128 define i1 @tautological4(i32 %A, i32 %B) { 1129 %C = or i32 %A, %B 1130 %D = icmp ugt i32 %A, %C 1131 ret i1 %D 1132 ; CHECK-LABEL: @tautological4( 1133 ; CHECK: ret i1 false 1134 } 1135 1136 define i1 @tautological5(i32 %A, i32 %B) { 1137 %C = or i32 %A, %B 1138 %D = icmp ult i32 %C, %A 1139 ret i1 %D 1140 ; CHECK-LABEL: @tautological5( 1141 ; CHECK: ret i1 false 1142 } 1143 1144 define i1 @tautological6(i32 %A, i32 %B) { 1145 %C = or i32 %A, %B 1146 %D = icmp uge i32 %C, %A 1147 ret i1 %D 1148 ; CHECK-LABEL: @tautological6( 1149 ; CHECK: ret i1 true 1150 } 1151 1152 define i1 @tautological7(i32 %A, i32 %B) { 1153 %C = and i32 %A, %B 1154 %D = icmp uge i32 %A, %C 1155 ret i1 %D 1156 ; CHECK-LABEL: @tautological7( 1157 ; CHECK: ret i1 true 1158 } 1159 1160 define i1 @tautological8(i32 %A, i32 %B) { 1161 %C = and i32 %A, %B 1162 %D = icmp ult i32 %A, %C 1163 ret i1 %D 1164 ; CHECK-LABEL: @tautological8( 1165 ; CHECK: ret i1 false 1166 } 1167 1168 define i1 @tautological9(i32 %x) { 1169 %add = add nuw i32 %x, 13 1170 %cmp = icmp ne i32 %add, 12 1171 ret i1 %cmp 1172 ; CHECK-LABEL: @tautological9( 1173 ; CHECK: ret i1 true 1174 } 1175