1 ; RUN: opt < %s -sroa -S | FileCheck %s 2 ; RUN: opt < %s -passes=sroa -S | FileCheck %s 3 4 target datalayout = "e-p:64:64:64-p1:16:16:16-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-n8:16:32:64" 5 6 declare void @llvm.lifetime.start(i64, i8* nocapture) 7 declare void @llvm.lifetime.end(i64, i8* nocapture) 8 9 define i32 @test0() { 10 ; CHECK-LABEL: @test0( 11 ; CHECK-NOT: alloca 12 ; CHECK: ret i32 13 14 entry: 15 %a1 = alloca i32 16 %a2 = alloca float 17 18 %a1.i8 = bitcast i32* %a1 to i8* 19 call void @llvm.lifetime.start(i64 4, i8* %a1.i8) 20 21 store i32 0, i32* %a1 22 %v1 = load i32, i32* %a1 23 24 call void @llvm.lifetime.end(i64 4, i8* %a1.i8) 25 26 %a2.i8 = bitcast float* %a2 to i8* 27 call void @llvm.lifetime.start(i64 4, i8* %a2.i8) 28 29 store float 0.0, float* %a2 30 %v2 = load float , float * %a2 31 %v2.int = bitcast float %v2 to i32 32 %sum1 = add i32 %v1, %v2.int 33 34 call void @llvm.lifetime.end(i64 4, i8* %a2.i8) 35 36 ret i32 %sum1 37 } 38 39 define i32 @test1() { 40 ; CHECK-LABEL: @test1( 41 ; CHECK-NOT: alloca 42 ; CHECK: ret i32 0 43 44 entry: 45 %X = alloca { i32, float } 46 %Y = getelementptr { i32, float }, { i32, float }* %X, i64 0, i32 0 47 store i32 0, i32* %Y 48 %Z = load i32, i32* %Y 49 ret i32 %Z 50 } 51 52 define i64 @test2(i64 %X) { 53 ; CHECK-LABEL: @test2( 54 ; CHECK-NOT: alloca 55 ; CHECK: ret i64 %X 56 57 entry: 58 %A = alloca [8 x i8] 59 %B = bitcast [8 x i8]* %A to i64* 60 store i64 %X, i64* %B 61 br label %L2 62 63 L2: 64 %Z = load i64, i64* %B 65 ret i64 %Z 66 } 67 68 define void @test3(i8* %dst, i8* %src) { 69 ; CHECK-LABEL: @test3( 70 71 entry: 72 %a = alloca [300 x i8] 73 ; CHECK-NOT: alloca 74 ; CHECK: %[[test3_a1:.*]] = alloca [42 x i8] 75 ; CHECK-NEXT: %[[test3_a2:.*]] = alloca [99 x i8] 76 ; CHECK-NEXT: %[[test3_a3:.*]] = alloca [16 x i8] 77 ; CHECK-NEXT: %[[test3_a4:.*]] = alloca [42 x i8] 78 ; CHECK-NEXT: %[[test3_a5:.*]] = alloca [7 x i8] 79 ; CHECK-NEXT: %[[test3_a6:.*]] = alloca [7 x i8] 80 ; CHECK-NEXT: %[[test3_a7:.*]] = alloca [85 x i8] 81 82 %b = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 0 83 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 300, i32 1, i1 false) 84 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a1]], i64 0, i64 0 85 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %src, i32 42 86 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 42 87 ; CHECK-NEXT: %[[test3_r1:.*]] = load i8, i8* %[[gep]] 88 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 43 89 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [99 x i8], [99 x i8]* %[[test3_a2]], i64 0, i64 0 90 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 99 91 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 142 92 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0 93 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 16 94 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 158 95 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 0 96 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 42 97 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 200 98 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0 99 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 100 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 207 101 ; CHECK-NEXT: %[[test3_r2:.*]] = load i8, i8* %[[gep]] 102 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 208 103 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0 104 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 105 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 215 106 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0 107 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 85 108 109 ; Clobber a single element of the array, this should be promotable. 110 %c = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 42 111 store i8 0, i8* %c 112 113 ; Make a sequence of overlapping stores to the array. These overlap both in 114 ; forward strides and in shrinking accesses. 115 %overlap.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 142 116 %overlap.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 143 117 %overlap.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 144 118 %overlap.4.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 145 119 %overlap.5.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 146 120 %overlap.6.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 147 121 %overlap.7.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 148 122 %overlap.8.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 149 123 %overlap.9.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 150 124 %overlap.1.i16 = bitcast i8* %overlap.1.i8 to i16* 125 %overlap.1.i32 = bitcast i8* %overlap.1.i8 to i32* 126 %overlap.1.i64 = bitcast i8* %overlap.1.i8 to i64* 127 %overlap.2.i64 = bitcast i8* %overlap.2.i8 to i64* 128 %overlap.3.i64 = bitcast i8* %overlap.3.i8 to i64* 129 %overlap.4.i64 = bitcast i8* %overlap.4.i8 to i64* 130 %overlap.5.i64 = bitcast i8* %overlap.5.i8 to i64* 131 %overlap.6.i64 = bitcast i8* %overlap.6.i8 to i64* 132 %overlap.7.i64 = bitcast i8* %overlap.7.i8 to i64* 133 %overlap.8.i64 = bitcast i8* %overlap.8.i8 to i64* 134 %overlap.9.i64 = bitcast i8* %overlap.9.i8 to i64* 135 store i8 1, i8* %overlap.1.i8 136 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0 137 ; CHECK-NEXT: store i8 1, i8* %[[gep]] 138 store i16 1, i16* %overlap.1.i16 139 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i16* 140 ; CHECK-NEXT: store i16 1, i16* %[[bitcast]] 141 store i32 1, i32* %overlap.1.i32 142 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i32* 143 ; CHECK-NEXT: store i32 1, i32* %[[bitcast]] 144 store i64 1, i64* %overlap.1.i64 145 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i64* 146 ; CHECK-NEXT: store i64 1, i64* %[[bitcast]] 147 store i64 2, i64* %overlap.2.i64 148 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 1 149 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* 150 ; CHECK-NEXT: store i64 2, i64* %[[bitcast]] 151 store i64 3, i64* %overlap.3.i64 152 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 2 153 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* 154 ; CHECK-NEXT: store i64 3, i64* %[[bitcast]] 155 store i64 4, i64* %overlap.4.i64 156 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 3 157 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* 158 ; CHECK-NEXT: store i64 4, i64* %[[bitcast]] 159 store i64 5, i64* %overlap.5.i64 160 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 4 161 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* 162 ; CHECK-NEXT: store i64 5, i64* %[[bitcast]] 163 store i64 6, i64* %overlap.6.i64 164 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 5 165 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* 166 ; CHECK-NEXT: store i64 6, i64* %[[bitcast]] 167 store i64 7, i64* %overlap.7.i64 168 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 6 169 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* 170 ; CHECK-NEXT: store i64 7, i64* %[[bitcast]] 171 store i64 8, i64* %overlap.8.i64 172 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 7 173 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* 174 ; CHECK-NEXT: store i64 8, i64* %[[bitcast]] 175 store i64 9, i64* %overlap.9.i64 176 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 8 177 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* 178 ; CHECK-NEXT: store i64 9, i64* %[[bitcast]] 179 180 ; Make two sequences of overlapping stores with more gaps and irregularities. 181 %overlap2.1.0.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 200 182 %overlap2.1.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 201 183 %overlap2.1.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 202 184 %overlap2.1.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 203 185 186 %overlap2.2.0.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 208 187 %overlap2.2.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 209 188 %overlap2.2.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 210 189 %overlap2.2.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 211 190 191 %overlap2.1.0.i16 = bitcast i8* %overlap2.1.0.i8 to i16* 192 %overlap2.1.0.i32 = bitcast i8* %overlap2.1.0.i8 to i32* 193 %overlap2.1.1.i32 = bitcast i8* %overlap2.1.1.i8 to i32* 194 %overlap2.1.2.i32 = bitcast i8* %overlap2.1.2.i8 to i32* 195 %overlap2.1.3.i32 = bitcast i8* %overlap2.1.3.i8 to i32* 196 store i8 1, i8* %overlap2.1.0.i8 197 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0 198 ; CHECK-NEXT: store i8 1, i8* %[[gep]] 199 store i16 1, i16* %overlap2.1.0.i16 200 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i16* 201 ; CHECK-NEXT: store i16 1, i16* %[[bitcast]] 202 store i32 1, i32* %overlap2.1.0.i32 203 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i32* 204 ; CHECK-NEXT: store i32 1, i32* %[[bitcast]] 205 store i32 2, i32* %overlap2.1.1.i32 206 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 1 207 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32* 208 ; CHECK-NEXT: store i32 2, i32* %[[bitcast]] 209 store i32 3, i32* %overlap2.1.2.i32 210 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 2 211 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32* 212 ; CHECK-NEXT: store i32 3, i32* %[[bitcast]] 213 store i32 4, i32* %overlap2.1.3.i32 214 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 3 215 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32* 216 ; CHECK-NEXT: store i32 4, i32* %[[bitcast]] 217 218 %overlap2.2.0.i32 = bitcast i8* %overlap2.2.0.i8 to i32* 219 %overlap2.2.1.i16 = bitcast i8* %overlap2.2.1.i8 to i16* 220 %overlap2.2.1.i32 = bitcast i8* %overlap2.2.1.i8 to i32* 221 %overlap2.2.2.i32 = bitcast i8* %overlap2.2.2.i8 to i32* 222 %overlap2.2.3.i32 = bitcast i8* %overlap2.2.3.i8 to i32* 223 store i32 1, i32* %overlap2.2.0.i32 224 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a6]] to i32* 225 ; CHECK-NEXT: store i32 1, i32* %[[bitcast]] 226 store i8 1, i8* %overlap2.2.1.i8 227 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1 228 ; CHECK-NEXT: store i8 1, i8* %[[gep]] 229 store i16 1, i16* %overlap2.2.1.i16 230 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1 231 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16* 232 ; CHECK-NEXT: store i16 1, i16* %[[bitcast]] 233 store i32 1, i32* %overlap2.2.1.i32 234 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1 235 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32* 236 ; CHECK-NEXT: store i32 1, i32* %[[bitcast]] 237 store i32 3, i32* %overlap2.2.2.i32 238 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 2 239 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32* 240 ; CHECK-NEXT: store i32 3, i32* %[[bitcast]] 241 store i32 4, i32* %overlap2.2.3.i32 242 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 3 243 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32* 244 ; CHECK-NEXT: store i32 4, i32* %[[bitcast]] 245 246 %overlap2.prefix = getelementptr i8, i8* %overlap2.1.1.i8, i64 -4 247 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.prefix, i8* %src, i32 8, i32 1, i1 false) 248 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 39 249 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %src, i32 3 250 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 3 251 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0 252 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 5 253 254 ; Bridge between the overlapping areas 255 call void @llvm.memset.p0i8.i32(i8* %overlap2.1.2.i8, i8 42, i32 8, i32 1, i1 false) 256 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 2 257 ; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[gep]], i8 42, i32 5 258 ; ...promoted i8 store... 259 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0 260 ; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[gep]], i8 42, i32 2 261 262 ; Entirely within the second overlap. 263 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.1.i8, i8* %src, i32 5, i32 1, i1 false) 264 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1 265 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 5 266 267 ; Trailing past the second overlap. 268 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.2.i8, i8* %src, i32 8, i32 1, i1 false) 269 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 2 270 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 5 271 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 5 272 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0 273 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 3 274 275 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 300, i32 1, i1 false) 276 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a1]], i64 0, i64 0 277 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[gep]], i32 42 278 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 42 279 ; CHECK-NEXT: store i8 0, i8* %[[gep]] 280 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 43 281 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [99 x i8], [99 x i8]* %[[test3_a2]], i64 0, i64 0 282 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 99 283 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 142 284 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0 285 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 16 286 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 158 287 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 0 288 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 42 289 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 200 290 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0 291 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 292 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 207 293 ; CHECK-NEXT: store i8 42, i8* %[[gep]] 294 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 208 295 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0 296 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 297 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 215 298 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0 299 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 85 300 301 ret void 302 } 303 304 define void @test4(i8* %dst, i8* %src) { 305 ; CHECK-LABEL: @test4( 306 307 entry: 308 %a = alloca [100 x i8] 309 ; CHECK-NOT: alloca 310 ; CHECK: %[[test4_a1:.*]] = alloca [20 x i8] 311 ; CHECK-NEXT: %[[test4_a2:.*]] = alloca [7 x i8] 312 ; CHECK-NEXT: %[[test4_a3:.*]] = alloca [10 x i8] 313 ; CHECK-NEXT: %[[test4_a4:.*]] = alloca [7 x i8] 314 ; CHECK-NEXT: %[[test4_a5:.*]] = alloca [7 x i8] 315 ; CHECK-NEXT: %[[test4_a6:.*]] = alloca [40 x i8] 316 317 %b = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 0 318 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 100, i32 1, i1 false) 319 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8], [20 x i8]* %[[test4_a1]], i64 0, i64 0 320 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 20 321 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 20 322 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16* 323 ; CHECK-NEXT: %[[test4_r1:.*]] = load i16, i16* %[[bitcast]] 324 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 22 325 ; CHECK-NEXT: %[[test4_r2:.*]] = load i8, i8* %[[gep]] 326 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 23 327 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0 328 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 329 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 30 330 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [10 x i8], [10 x i8]* %[[test4_a3]], i64 0, i64 0 331 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 10 332 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 40 333 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16* 334 ; CHECK-NEXT: %[[test4_r3:.*]] = load i16, i16* %[[bitcast]] 335 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 42 336 ; CHECK-NEXT: %[[test4_r4:.*]] = load i8, i8* %[[gep]] 337 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 43 338 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0 339 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 340 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 50 341 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16* 342 ; CHECK-NEXT: %[[test4_r5:.*]] = load i16, i16* %[[bitcast]] 343 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 52 344 ; CHECK-NEXT: %[[test4_r6:.*]] = load i8, i8* %[[gep]] 345 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 53 346 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0 347 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 348 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 60 349 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [40 x i8], [40 x i8]* %[[test4_a6]], i64 0, i64 0 350 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 40 351 352 %a.src.1 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 20 353 %a.dst.1 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 40 354 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.1, i32 10, i32 1, i1 false) 355 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0 356 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0 357 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 358 359 ; Clobber a single element of the array, this should be promotable, and be deleted. 360 %c = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 42 361 store i8 0, i8* %c 362 363 %a.src.2 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 50 364 call void @llvm.memmove.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.2, i32 10, i32 1, i1 false) 365 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0 366 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0 367 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 368 369 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 100, i32 1, i1 false) 370 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8], [20 x i8]* %[[test4_a1]], i64 0, i64 0 371 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[gep]], i32 20 372 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 20 373 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16* 374 ; CHECK-NEXT: store i16 %[[test4_r1]], i16* %[[bitcast]] 375 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 22 376 ; CHECK-NEXT: store i8 %[[test4_r2]], i8* %[[gep]] 377 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 23 378 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0 379 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 380 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 30 381 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [10 x i8], [10 x i8]* %[[test4_a3]], i64 0, i64 0 382 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 10 383 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 40 384 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16* 385 ; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]] 386 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 42 387 ; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]] 388 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 43 389 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0 390 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 391 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 50 392 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16* 393 ; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]] 394 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 52 395 ; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]] 396 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 53 397 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0 398 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 399 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 60 400 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [40 x i8], [40 x i8]* %[[test4_a6]], i64 0, i64 0 401 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 40 402 403 ret void 404 } 405 406 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i32, i1) nounwind 407 declare void @llvm.memcpy.p1i8.p0i8.i32(i8 addrspace(1)* nocapture, i8* nocapture, i32, i32, i1) nounwind 408 declare void @llvm.memmove.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i32, i1) nounwind 409 declare void @llvm.memset.p0i8.i32(i8* nocapture, i8, i32, i32, i1) nounwind 410 411 define i16 @test5() { 412 ; CHECK-LABEL: @test5( 413 ; CHECK-NOT: alloca float 414 ; CHECK: %[[cast:.*]] = bitcast float 0.0{{.*}} to i32 415 ; CHECK-NEXT: %[[shr:.*]] = lshr i32 %[[cast]], 16 416 ; CHECK-NEXT: %[[trunc:.*]] = trunc i32 %[[shr]] to i16 417 ; CHECK-NEXT: ret i16 %[[trunc]] 418 419 entry: 420 %a = alloca [4 x i8] 421 %fptr = bitcast [4 x i8]* %a to float* 422 store float 0.0, float* %fptr 423 %ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 2 424 %iptr = bitcast i8* %ptr to i16* 425 %val = load i16, i16* %iptr 426 ret i16 %val 427 } 428 429 define i32 @test6() { 430 ; CHECK-LABEL: @test6( 431 ; CHECK: alloca i32 432 ; CHECK-NEXT: store volatile i32 433 ; CHECK-NEXT: load i32, i32* 434 ; CHECK-NEXT: ret i32 435 436 entry: 437 %a = alloca [4 x i8] 438 %ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 0 439 call void @llvm.memset.p0i8.i32(i8* %ptr, i8 42, i32 4, i32 1, i1 true) 440 %iptr = bitcast i8* %ptr to i32* 441 %val = load i32, i32* %iptr 442 ret i32 %val 443 } 444 445 define void @test7(i8* %src, i8* %dst) { 446 ; CHECK-LABEL: @test7( 447 ; CHECK: alloca i32 448 ; CHECK-NEXT: bitcast i8* %src to i32* 449 ; CHECK-NEXT: load volatile i32, i32* 450 ; CHECK-NEXT: store volatile i32 451 ; CHECK-NEXT: bitcast i8* %dst to i32* 452 ; CHECK-NEXT: load volatile i32, i32* 453 ; CHECK-NEXT: store volatile i32 454 ; CHECK-NEXT: ret 455 456 entry: 457 %a = alloca [4 x i8] 458 %ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 0 459 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 true) 460 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 true) 461 ret void 462 } 463 464 465 %S1 = type { i32, i32, [16 x i8] } 466 %S2 = type { %S1*, %S2* } 467 468 define %S2 @test8(%S2* %s2) { 469 ; CHECK-LABEL: @test8( 470 entry: 471 %new = alloca %S2 472 ; CHECK-NOT: alloca 473 474 %s2.next.ptr = getelementptr %S2, %S2* %s2, i64 0, i32 1 475 %s2.next = load %S2*, %S2** %s2.next.ptr 476 ; CHECK: %[[gep:.*]] = getelementptr %S2, %S2* %s2, i64 0, i32 1 477 ; CHECK-NEXT: %[[next:.*]] = load %S2*, %S2** %[[gep]] 478 479 %s2.next.s1.ptr = getelementptr %S2, %S2* %s2.next, i64 0, i32 0 480 %s2.next.s1 = load %S1*, %S1** %s2.next.s1.ptr 481 %new.s1.ptr = getelementptr %S2, %S2* %new, i64 0, i32 0 482 store %S1* %s2.next.s1, %S1** %new.s1.ptr 483 %s2.next.next.ptr = getelementptr %S2, %S2* %s2.next, i64 0, i32 1 484 %s2.next.next = load %S2*, %S2** %s2.next.next.ptr 485 %new.next.ptr = getelementptr %S2, %S2* %new, i64 0, i32 1 486 store %S2* %s2.next.next, %S2** %new.next.ptr 487 ; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2, %S2* %[[next]], i64 0, i32 0 488 ; CHECK-NEXT: %[[next_s1:.*]] = load %S1*, %S1** %[[gep]] 489 ; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2, %S2* %[[next]], i64 0, i32 1 490 ; CHECK-NEXT: %[[next_next:.*]] = load %S2*, %S2** %[[gep]] 491 492 %new.s1 = load %S1*, %S1** %new.s1.ptr 493 %result1 = insertvalue %S2 undef, %S1* %new.s1, 0 494 ; CHECK-NEXT: %[[result1:.*]] = insertvalue %S2 undef, %S1* %[[next_s1]], 0 495 %new.next = load %S2*, %S2** %new.next.ptr 496 %result2 = insertvalue %S2 %result1, %S2* %new.next, 1 497 ; CHECK-NEXT: %[[result2:.*]] = insertvalue %S2 %[[result1]], %S2* %[[next_next]], 1 498 ret %S2 %result2 499 ; CHECK-NEXT: ret %S2 %[[result2]] 500 } 501 502 define i64 @test9() { 503 ; Ensure we can handle loads off the end of an alloca even when wrapped in 504 ; weird bit casts and types. This is valid IR due to the alignment and masking 505 ; off the bits past the end of the alloca. 506 ; 507 ; CHECK-LABEL: @test9( 508 ; CHECK-NOT: alloca 509 ; CHECK: %[[b2:.*]] = zext i8 26 to i64 510 ; CHECK-NEXT: %[[s2:.*]] = shl i64 %[[b2]], 16 511 ; CHECK-NEXT: %[[m2:.*]] = and i64 undef, -16711681 512 ; CHECK-NEXT: %[[i2:.*]] = or i64 %[[m2]], %[[s2]] 513 ; CHECK-NEXT: %[[b1:.*]] = zext i8 0 to i64 514 ; CHECK-NEXT: %[[s1:.*]] = shl i64 %[[b1]], 8 515 ; CHECK-NEXT: %[[m1:.*]] = and i64 %[[i2]], -65281 516 ; CHECK-NEXT: %[[i1:.*]] = or i64 %[[m1]], %[[s1]] 517 ; CHECK-NEXT: %[[b0:.*]] = zext i8 0 to i64 518 ; CHECK-NEXT: %[[m0:.*]] = and i64 %[[i1]], -256 519 ; CHECK-NEXT: %[[i0:.*]] = or i64 %[[m0]], %[[b0]] 520 ; CHECK-NEXT: %[[result:.*]] = and i64 %[[i0]], 16777215 521 ; CHECK-NEXT: ret i64 %[[result]] 522 523 entry: 524 %a = alloca { [3 x i8] }, align 8 525 %gep1 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 0 526 store i8 0, i8* %gep1, align 1 527 %gep2 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 1 528 store i8 0, i8* %gep2, align 1 529 %gep3 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 2 530 store i8 26, i8* %gep3, align 1 531 %cast = bitcast { [3 x i8] }* %a to { i64 }* 532 %elt = getelementptr inbounds { i64 }, { i64 }* %cast, i32 0, i32 0 533 %load = load i64, i64* %elt 534 %result = and i64 %load, 16777215 535 ret i64 %result 536 } 537 538 define %S2* @test10() { 539 ; CHECK-LABEL: @test10( 540 ; CHECK-NOT: alloca %S2* 541 ; CHECK: ret %S2* null 542 543 entry: 544 %a = alloca [8 x i8] 545 %ptr = getelementptr [8 x i8], [8 x i8]* %a, i32 0, i32 0 546 call void @llvm.memset.p0i8.i32(i8* %ptr, i8 0, i32 8, i32 1, i1 false) 547 %s2ptrptr = bitcast i8* %ptr to %S2** 548 %s2ptr = load %S2*, %S2** %s2ptrptr 549 ret %S2* %s2ptr 550 } 551 552 define i32 @test11() { 553 ; CHECK-LABEL: @test11( 554 ; CHECK-NOT: alloca 555 ; CHECK: ret i32 0 556 557 entry: 558 %X = alloca i32 559 br i1 undef, label %good, label %bad 560 561 good: 562 %Y = getelementptr i32, i32* %X, i64 0 563 store i32 0, i32* %Y 564 %Z = load i32, i32* %Y 565 ret i32 %Z 566 567 bad: 568 %Y2 = getelementptr i32, i32* %X, i64 1 569 store i32 0, i32* %Y2 570 %Z2 = load i32, i32* %Y2 571 ret i32 %Z2 572 } 573 574 define i8 @test12() { 575 ; We fully promote these to the i24 load or store size, resulting in just masks 576 ; and other operations that instcombine will fold, but no alloca. 577 ; 578 ; CHECK-LABEL: @test12( 579 580 entry: 581 %a = alloca [3 x i8] 582 %b = alloca [3 x i8] 583 ; CHECK-NOT: alloca 584 585 %a0ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 0 586 store i8 0, i8* %a0ptr 587 %a1ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 1 588 store i8 0, i8* %a1ptr 589 %a2ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 2 590 store i8 0, i8* %a2ptr 591 %aiptr = bitcast [3 x i8]* %a to i24* 592 %ai = load i24, i24* %aiptr 593 ; CHECK-NOT: store 594 ; CHECK-NOT: load 595 ; CHECK: %[[ext2:.*]] = zext i8 0 to i24 596 ; CHECK-NEXT: %[[shift2:.*]] = shl i24 %[[ext2]], 16 597 ; CHECK-NEXT: %[[mask2:.*]] = and i24 undef, 65535 598 ; CHECK-NEXT: %[[insert2:.*]] = or i24 %[[mask2]], %[[shift2]] 599 ; CHECK-NEXT: %[[ext1:.*]] = zext i8 0 to i24 600 ; CHECK-NEXT: %[[shift1:.*]] = shl i24 %[[ext1]], 8 601 ; CHECK-NEXT: %[[mask1:.*]] = and i24 %[[insert2]], -65281 602 ; CHECK-NEXT: %[[insert1:.*]] = or i24 %[[mask1]], %[[shift1]] 603 ; CHECK-NEXT: %[[ext0:.*]] = zext i8 0 to i24 604 ; CHECK-NEXT: %[[mask0:.*]] = and i24 %[[insert1]], -256 605 ; CHECK-NEXT: %[[insert0:.*]] = or i24 %[[mask0]], %[[ext0]] 606 607 %biptr = bitcast [3 x i8]* %b to i24* 608 store i24 %ai, i24* %biptr 609 %b0ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 0 610 %b0 = load i8, i8* %b0ptr 611 %b1ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 1 612 %b1 = load i8, i8* %b1ptr 613 %b2ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 2 614 %b2 = load i8, i8* %b2ptr 615 ; CHECK-NOT: store 616 ; CHECK-NOT: load 617 ; CHECK: %[[trunc0:.*]] = trunc i24 %[[insert0]] to i8 618 ; CHECK-NEXT: %[[shift1:.*]] = lshr i24 %[[insert0]], 8 619 ; CHECK-NEXT: %[[trunc1:.*]] = trunc i24 %[[shift1]] to i8 620 ; CHECK-NEXT: %[[shift2:.*]] = lshr i24 %[[insert0]], 16 621 ; CHECK-NEXT: %[[trunc2:.*]] = trunc i24 %[[shift2]] to i8 622 623 %bsum0 = add i8 %b0, %b1 624 %bsum1 = add i8 %bsum0, %b2 625 ret i8 %bsum1 626 ; CHECK: %[[sum0:.*]] = add i8 %[[trunc0]], %[[trunc1]] 627 ; CHECK-NEXT: %[[sum1:.*]] = add i8 %[[sum0]], %[[trunc2]] 628 ; CHECK-NEXT: ret i8 %[[sum1]] 629 } 630 631 define i32 @test13() { 632 ; Ensure we don't crash and handle undefined loads that straddle the end of the 633 ; allocation. 634 ; CHECK-LABEL: @test13( 635 ; CHECK: %[[value:.*]] = zext i8 0 to i16 636 ; CHECK-NEXT: %[[ret:.*]] = zext i16 %[[value]] to i32 637 ; CHECK-NEXT: ret i32 %[[ret]] 638 639 entry: 640 %a = alloca [3 x i8], align 2 641 %b0ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 0 642 store i8 0, i8* %b0ptr 643 %b1ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 1 644 store i8 0, i8* %b1ptr 645 %b2ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 2 646 store i8 0, i8* %b2ptr 647 %iptrcast = bitcast [3 x i8]* %a to i16* 648 %iptrgep = getelementptr i16, i16* %iptrcast, i64 1 649 %i = load i16, i16* %iptrgep 650 %ret = zext i16 %i to i32 651 ret i32 %ret 652 } 653 654 %test14.struct = type { [3 x i32] } 655 656 define void @test14(...) nounwind uwtable { 657 ; This is a strange case where we split allocas into promotable partitions, but 658 ; also gain enough data to prove they must be dead allocas due to GEPs that walk 659 ; across two adjacent allocas. Test that we don't try to promote or otherwise 660 ; do bad things to these dead allocas, they should just be removed. 661 ; CHECK-LABEL: @test14( 662 ; CHECK-NEXT: entry: 663 ; CHECK-NEXT: ret void 664 665 entry: 666 %a = alloca %test14.struct 667 %p = alloca %test14.struct* 668 %0 = bitcast %test14.struct* %a to i8* 669 %1 = getelementptr i8, i8* %0, i64 12 670 %2 = bitcast i8* %1 to %test14.struct* 671 %3 = getelementptr inbounds %test14.struct, %test14.struct* %2, i32 0, i32 0 672 %4 = getelementptr inbounds %test14.struct, %test14.struct* %a, i32 0, i32 0 673 %5 = bitcast [3 x i32]* %3 to i32* 674 %6 = bitcast [3 x i32]* %4 to i32* 675 %7 = load i32, i32* %6, align 4 676 store i32 %7, i32* %5, align 4 677 %8 = getelementptr inbounds i32, i32* %5, i32 1 678 %9 = getelementptr inbounds i32, i32* %6, i32 1 679 %10 = load i32, i32* %9, align 4 680 store i32 %10, i32* %8, align 4 681 %11 = getelementptr inbounds i32, i32* %5, i32 2 682 %12 = getelementptr inbounds i32, i32* %6, i32 2 683 %13 = load i32, i32* %12, align 4 684 store i32 %13, i32* %11, align 4 685 ret void 686 } 687 688 define i32 @test15(i1 %flag) nounwind uwtable { 689 ; Ensure that when there are dead instructions using an alloca that are not 690 ; loads or stores we still delete them during partitioning and rewriting. 691 ; Otherwise we'll go to promote them while thy still have unpromotable uses. 692 ; CHECK-LABEL: @test15( 693 ; CHECK-NEXT: entry: 694 ; CHECK-NEXT: br label %loop 695 ; CHECK: loop: 696 ; CHECK-NEXT: br label %loop 697 698 entry: 699 %l0 = alloca i64 700 %l1 = alloca i64 701 %l2 = alloca i64 702 %l3 = alloca i64 703 br label %loop 704 705 loop: 706 %dead3 = phi i8* [ %gep3, %loop ], [ null, %entry ] 707 708 store i64 1879048192, i64* %l0, align 8 709 %bc0 = bitcast i64* %l0 to i8* 710 %gep0 = getelementptr i8, i8* %bc0, i64 3 711 %dead0 = bitcast i8* %gep0 to i64* 712 713 store i64 1879048192, i64* %l1, align 8 714 %bc1 = bitcast i64* %l1 to i8* 715 %gep1 = getelementptr i8, i8* %bc1, i64 3 716 %dead1 = getelementptr i8, i8* %gep1, i64 1 717 718 store i64 1879048192, i64* %l2, align 8 719 %bc2 = bitcast i64* %l2 to i8* 720 %gep2.1 = getelementptr i8, i8* %bc2, i64 1 721 %gep2.2 = getelementptr i8, i8* %bc2, i64 3 722 ; Note that this select should get visited multiple times due to using two 723 ; different GEPs off the same alloca. We should only delete it once. 724 %dead2 = select i1 %flag, i8* %gep2.1, i8* %gep2.2 725 726 store i64 1879048192, i64* %l3, align 8 727 %bc3 = bitcast i64* %l3 to i8* 728 %gep3 = getelementptr i8, i8* %bc3, i64 3 729 730 br label %loop 731 } 732 733 define void @test16(i8* %src, i8* %dst) { 734 ; Ensure that we can promote an alloca of [3 x i8] to an i24 SSA value. 735 ; CHECK-LABEL: @test16( 736 ; CHECK-NOT: alloca 737 ; CHECK: %[[srccast:.*]] = bitcast i8* %src to i24* 738 ; CHECK-NEXT: load i24, i24* %[[srccast]] 739 ; CHECK-NEXT: %[[dstcast:.*]] = bitcast i8* %dst to i24* 740 ; CHECK-NEXT: store i24 0, i24* %[[dstcast]] 741 ; CHECK-NEXT: ret void 742 743 entry: 744 %a = alloca [3 x i8] 745 %ptr = getelementptr [3 x i8], [3 x i8]* %a, i32 0, i32 0 746 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 false) 747 %cast = bitcast i8* %ptr to i24* 748 store i24 0, i24* %cast 749 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 false) 750 ret void 751 } 752 753 define void @test17(i8* %src, i8* %dst) { 754 ; Ensure that we can rewrite unpromotable memcpys which extend past the end of 755 ; the alloca. 756 ; CHECK-LABEL: @test17( 757 ; CHECK: %[[a:.*]] = alloca [3 x i8] 758 ; CHECK-NEXT: %[[ptr:.*]] = getelementptr [3 x i8], [3 x i8]* %[[a]], i32 0, i32 0 759 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[ptr]], i8* %src, 760 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[ptr]], 761 ; CHECK-NEXT: ret void 762 763 entry: 764 %a = alloca [3 x i8] 765 %ptr = getelementptr [3 x i8], [3 x i8]* %a, i32 0, i32 0 766 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 true) 767 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 true) 768 ret void 769 } 770 771 define void @test18(i8* %src, i8* %dst, i32 %size) { 772 ; Preserve transfer instrinsics with a variable size, even if they overlap with 773 ; fixed size operations. Further, continue to split and promote allocas preceding 774 ; the variable sized intrinsic. 775 ; CHECK-LABEL: @test18( 776 ; CHECK: %[[a:.*]] = alloca [34 x i8] 777 ; CHECK: %[[srcgep1:.*]] = getelementptr inbounds i8, i8* %src, i64 4 778 ; CHECK-NEXT: %[[srccast1:.*]] = bitcast i8* %[[srcgep1]] to i32* 779 ; CHECK-NEXT: %[[srcload:.*]] = load i32, i32* %[[srccast1]] 780 ; CHECK-NEXT: %[[agep1:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0 781 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[agep1]], i8* %src, i32 %size, 782 ; CHECK-NEXT: %[[agep2:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0 783 ; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[agep2]], i8 42, i32 %size, 784 ; CHECK-NEXT: %[[dstcast1:.*]] = bitcast i8* %dst to i32* 785 ; CHECK-NEXT: store i32 42, i32* %[[dstcast1]] 786 ; CHECK-NEXT: %[[dstgep1:.*]] = getelementptr inbounds i8, i8* %dst, i64 4 787 ; CHECK-NEXT: %[[dstcast2:.*]] = bitcast i8* %[[dstgep1]] to i32* 788 ; CHECK-NEXT: store i32 %[[srcload]], i32* %[[dstcast2]] 789 ; CHECK-NEXT: %[[agep3:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0 790 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[agep3]], i32 %size, 791 ; CHECK-NEXT: ret void 792 793 entry: 794 %a = alloca [42 x i8] 795 %ptr = getelementptr [42 x i8], [42 x i8]* %a, i32 0, i32 0 796 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 8, i32 1, i1 false) 797 %ptr2 = getelementptr [42 x i8], [42 x i8]* %a, i32 0, i32 8 798 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr2, i8* %src, i32 %size, i32 1, i1 false) 799 call void @llvm.memset.p0i8.i32(i8* %ptr2, i8 42, i32 %size, i32 1, i1 false) 800 %cast = bitcast i8* %ptr to i32* 801 store i32 42, i32* %cast 802 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 8, i32 1, i1 false) 803 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr2, i32 %size, i32 1, i1 false) 804 ret void 805 } 806 807 %opaque = type opaque 808 809 define i32 @test19(%opaque* %x) { 810 ; This input will cause us to try to compute a natural GEP when rewriting 811 ; pointers in such a way that we try to GEP through the opaque type. Previously, 812 ; a check for an unsized type was missing and this crashed. Ensure it behaves 813 ; reasonably now. 814 ; CHECK-LABEL: @test19( 815 ; CHECK-NOT: alloca 816 ; CHECK: ret i32 undef 817 818 entry: 819 %a = alloca { i64, i8* } 820 %cast1 = bitcast %opaque* %x to i8* 821 %cast2 = bitcast { i64, i8* }* %a to i8* 822 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast2, i8* %cast1, i32 16, i32 1, i1 false) 823 %gep = getelementptr inbounds { i64, i8* }, { i64, i8* }* %a, i32 0, i32 0 824 %val = load i64, i64* %gep 825 ret i32 undef 826 } 827 828 define i32 @test20() { 829 ; Ensure we can track negative offsets (before the beginning of the alloca) and 830 ; negative relative offsets from offsets starting past the end of the alloca. 831 ; CHECK-LABEL: @test20( 832 ; CHECK-NOT: alloca 833 ; CHECK: %[[sum1:.*]] = add i32 1, 2 834 ; CHECK: %[[sum2:.*]] = add i32 %[[sum1]], 3 835 ; CHECK: ret i32 %[[sum2]] 836 837 entry: 838 %a = alloca [3 x i32] 839 %gep1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 0 840 store i32 1, i32* %gep1 841 %gep2.1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 -2 842 %gep2.2 = getelementptr i32, i32* %gep2.1, i32 3 843 store i32 2, i32* %gep2.2 844 %gep3.1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 14 845 %gep3.2 = getelementptr i32, i32* %gep3.1, i32 -12 846 store i32 3, i32* %gep3.2 847 848 %load1 = load i32, i32* %gep1 849 %load2 = load i32, i32* %gep2.2 850 %load3 = load i32, i32* %gep3.2 851 %sum1 = add i32 %load1, %load2 852 %sum2 = add i32 %sum1, %load3 853 ret i32 %sum2 854 } 855 856 declare void @llvm.memset.p0i8.i64(i8* nocapture, i8, i64, i32, i1) nounwind 857 858 define i8 @test21() { 859 ; Test allocations and offsets which border on overflow of the int64_t used 860 ; internally. This is really awkward to really test as LLVM doesn't really 861 ; support such extreme constructs cleanly. 862 ; CHECK-LABEL: @test21( 863 ; CHECK-NOT: alloca 864 ; CHECK: or i8 -1, -1 865 866 entry: 867 %a = alloca [2305843009213693951 x i8] 868 %gep0 = getelementptr [2305843009213693951 x i8], [2305843009213693951 x i8]* %a, i64 0, i64 2305843009213693949 869 store i8 255, i8* %gep0 870 %gep1 = getelementptr [2305843009213693951 x i8], [2305843009213693951 x i8]* %a, i64 0, i64 -9223372036854775807 871 %gep2 = getelementptr i8, i8* %gep1, i64 -1 872 call void @llvm.memset.p0i8.i64(i8* %gep2, i8 0, i64 18446744073709551615, i32 1, i1 false) 873 %gep3 = getelementptr i8, i8* %gep1, i64 9223372036854775807 874 %gep4 = getelementptr i8, i8* %gep3, i64 9223372036854775807 875 %gep5 = getelementptr i8, i8* %gep4, i64 -6917529027641081857 876 store i8 255, i8* %gep5 877 %cast1 = bitcast i8* %gep4 to i32* 878 store i32 0, i32* %cast1 879 %load = load i8, i8* %gep0 880 %gep6 = getelementptr i8, i8* %gep0, i32 1 881 %load2 = load i8, i8* %gep6 882 %result = or i8 %load, %load2 883 ret i8 %result 884 } 885 886 %PR13916.struct = type { i8 } 887 888 define void @PR13916.1() { 889 ; Ensure that we handle overlapping memcpy intrinsics correctly, especially in 890 ; the case where there is a directly identical value for both source and dest. 891 ; CHECK: @PR13916.1 892 ; CHECK-NOT: alloca 893 ; CHECK: ret void 894 895 entry: 896 %a = alloca i8 897 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a, i8* %a, i32 1, i32 1, i1 false) 898 %tmp2 = load i8, i8* %a 899 ret void 900 } 901 902 define void @PR13916.2() { 903 ; Check whether we continue to handle them correctly when they start off with 904 ; different pointer value chains, but during rewriting we coalesce them into the 905 ; same value. 906 ; CHECK: @PR13916.2 907 ; CHECK-NOT: alloca 908 ; CHECK: ret void 909 910 entry: 911 %a = alloca %PR13916.struct, align 1 912 br i1 undef, label %if.then, label %if.end 913 914 if.then: 915 %tmp0 = bitcast %PR13916.struct* %a to i8* 916 %tmp1 = bitcast %PR13916.struct* %a to i8* 917 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %tmp0, i8* %tmp1, i32 1, i32 1, i1 false) 918 br label %if.end 919 920 if.end: 921 %gep = getelementptr %PR13916.struct, %PR13916.struct* %a, i32 0, i32 0 922 %tmp2 = load i8, i8* %gep 923 ret void 924 } 925 926 define void @PR13990() { 927 ; Ensure we can handle cases where processing one alloca causes the other 928 ; alloca to become dead and get deleted. This might crash or fail under 929 ; Valgrind if we regress. 930 ; CHECK-LABEL: @PR13990( 931 ; CHECK-NOT: alloca 932 ; CHECK: unreachable 933 ; CHECK: unreachable 934 935 entry: 936 %tmp1 = alloca i8* 937 %tmp2 = alloca i8* 938 br i1 undef, label %bb1, label %bb2 939 940 bb1: 941 store i8* undef, i8** %tmp2 942 br i1 undef, label %bb2, label %bb3 943 944 bb2: 945 %tmp50 = select i1 undef, i8** %tmp2, i8** %tmp1 946 br i1 undef, label %bb3, label %bb4 947 948 bb3: 949 unreachable 950 951 bb4: 952 unreachable 953 } 954 955 define double @PR13969(double %x) { 956 ; Check that we detect when promotion will un-escape an alloca and iterate to 957 ; re-try running SROA over that alloca. Without that, the two allocas that are 958 ; stored into a dead alloca don't get rewritten and promoted. 959 ; CHECK-LABEL: @PR13969( 960 961 entry: 962 %a = alloca double 963 %b = alloca double* 964 %c = alloca double 965 ; CHECK-NOT: alloca 966 967 store double %x, double* %a 968 store double* %c, double** %b 969 store double* %a, double** %b 970 store double %x, double* %c 971 %ret = load double, double* %a 972 ; CHECK-NOT: store 973 ; CHECK-NOT: load 974 975 ret double %ret 976 ; CHECK: ret double %x 977 } 978 979 %PR14034.struct = type { { {} }, i32, %PR14034.list } 980 %PR14034.list = type { %PR14034.list*, %PR14034.list* } 981 982 define void @PR14034() { 983 ; This test case tries to form GEPs into the empty leading struct members, and 984 ; subsequently crashed (under valgrind) before we fixed the PR. The important 985 ; thing is to handle empty structs gracefully. 986 ; CHECK-LABEL: @PR14034( 987 988 entry: 989 %a = alloca %PR14034.struct 990 %list = getelementptr %PR14034.struct, %PR14034.struct* %a, i32 0, i32 2 991 %prev = getelementptr %PR14034.list, %PR14034.list* %list, i32 0, i32 1 992 store %PR14034.list* undef, %PR14034.list** %prev 993 %cast0 = bitcast %PR14034.struct* undef to i8* 994 %cast1 = bitcast %PR14034.struct* %a to i8* 995 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast0, i8* %cast1, i32 12, i32 0, i1 false) 996 ret void 997 } 998 999 define i32 @test22(i32 %x) { 1000 ; Test that SROA and promotion is not confused by a grab bax mixture of pointer 1001 ; types involving wrapper aggregates and zero-length aggregate members. 1002 ; CHECK-LABEL: @test22( 1003 1004 entry: 1005 %a1 = alloca { { [1 x { i32 }] } } 1006 %a2 = alloca { {}, { float }, [0 x i8] } 1007 %a3 = alloca { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } } 1008 ; CHECK-NOT: alloca 1009 1010 %wrap1 = insertvalue [1 x { i32 }] undef, i32 %x, 0, 0 1011 %gep1 = getelementptr { { [1 x { i32 }] } }, { { [1 x { i32 }] } }* %a1, i32 0, i32 0, i32 0 1012 store [1 x { i32 }] %wrap1, [1 x { i32 }]* %gep1 1013 1014 %gep2 = getelementptr { { [1 x { i32 }] } }, { { [1 x { i32 }] } }* %a1, i32 0, i32 0 1015 %ptrcast1 = bitcast { [1 x { i32 }] }* %gep2 to { [1 x { float }] }* 1016 %load1 = load { [1 x { float }] }, { [1 x { float }] }* %ptrcast1 1017 %unwrap1 = extractvalue { [1 x { float }] } %load1, 0, 0 1018 1019 %wrap2 = insertvalue { {}, { float }, [0 x i8] } undef, { float } %unwrap1, 1 1020 store { {}, { float }, [0 x i8] } %wrap2, { {}, { float }, [0 x i8] }* %a2 1021 1022 %gep3 = getelementptr { {}, { float }, [0 x i8] }, { {}, { float }, [0 x i8] }* %a2, i32 0, i32 1, i32 0 1023 %ptrcast2 = bitcast float* %gep3 to <4 x i8>* 1024 %load3 = load <4 x i8>, <4 x i8>* %ptrcast2 1025 %valcast1 = bitcast <4 x i8> %load3 to i32 1026 1027 %wrap3 = insertvalue [1 x [1 x i32]] undef, i32 %valcast1, 0, 0 1028 %wrap4 = insertvalue { [1 x [1 x i32]], {} } undef, [1 x [1 x i32]] %wrap3, 0 1029 %gep4 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }, { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1 1030 %ptrcast3 = bitcast { [0 x double], [1 x [1 x <4 x i8>]], {} }* %gep4 to { [1 x [1 x i32]], {} }* 1031 store { [1 x [1 x i32]], {} } %wrap4, { [1 x [1 x i32]], {} }* %ptrcast3 1032 1033 %gep5 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }, { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1, i32 1, i32 0 1034 %ptrcast4 = bitcast [1 x <4 x i8>]* %gep5 to { {}, float, {} }* 1035 %load4 = load { {}, float, {} }, { {}, float, {} }* %ptrcast4 1036 %unwrap2 = extractvalue { {}, float, {} } %load4, 1 1037 %valcast2 = bitcast float %unwrap2 to i32 1038 1039 ret i32 %valcast2 1040 ; CHECK: ret i32 1041 } 1042 1043 define void @PR14059.1(double* %d) { 1044 ; In PR14059 a peculiar construct was identified as something that is used 1045 ; pervasively in ARM's ABI-calling-convention lowering: the passing of a struct 1046 ; of doubles via an array of i32 in order to place the data into integer 1047 ; registers. This in turn was missed as an optimization by SROA due to the 1048 ; partial loads and stores of integers to the double alloca we were trying to 1049 ; form and promote. The solution is to widen the integer operations to be 1050 ; whole-alloca operations, and perform the appropriate bitcasting on the 1051 ; *values* rather than the pointers. When this works, partial reads and writes 1052 ; via integers can be promoted away. 1053 ; CHECK: @PR14059.1 1054 ; CHECK-NOT: alloca 1055 ; CHECK: ret void 1056 1057 entry: 1058 %X.sroa.0.i = alloca double, align 8 1059 %0 = bitcast double* %X.sroa.0.i to i8* 1060 call void @llvm.lifetime.start(i64 -1, i8* %0) 1061 1062 ; Store to the low 32-bits... 1063 %X.sroa.0.0.cast2.i = bitcast double* %X.sroa.0.i to i32* 1064 store i32 0, i32* %X.sroa.0.0.cast2.i, align 8 1065 1066 ; Also use a memset to the middle 32-bits for fun. 1067 %X.sroa.0.2.raw_idx2.i = getelementptr inbounds i8, i8* %0, i32 2 1068 call void @llvm.memset.p0i8.i64(i8* %X.sroa.0.2.raw_idx2.i, i8 0, i64 4, i32 1, i1 false) 1069 1070 ; Or a memset of the whole thing. 1071 call void @llvm.memset.p0i8.i64(i8* %0, i8 0, i64 8, i32 1, i1 false) 1072 1073 ; Write to the high 32-bits with a memcpy. 1074 %X.sroa.0.4.raw_idx4.i = getelementptr inbounds i8, i8* %0, i32 4 1075 %d.raw = bitcast double* %d to i8* 1076 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %X.sroa.0.4.raw_idx4.i, i8* %d.raw, i32 4, i32 1, i1 false) 1077 1078 ; Store to the high 32-bits... 1079 %X.sroa.0.4.cast5.i = bitcast i8* %X.sroa.0.4.raw_idx4.i to i32* 1080 store i32 1072693248, i32* %X.sroa.0.4.cast5.i, align 4 1081 1082 ; Do the actual math... 1083 %X.sroa.0.0.load1.i = load double, double* %X.sroa.0.i, align 8 1084 %accum.real.i = load double, double* %d, align 8 1085 %add.r.i = fadd double %accum.real.i, %X.sroa.0.0.load1.i 1086 store double %add.r.i, double* %d, align 8 1087 call void @llvm.lifetime.end(i64 -1, i8* %0) 1088 ret void 1089 } 1090 1091 define i64 @PR14059.2({ float, float }* %phi) { 1092 ; Check that SROA can split up alloca-wide integer loads and stores where the 1093 ; underlying alloca has smaller components that are accessed independently. This 1094 ; shows up particularly with ABI lowering patterns coming out of Clang that rely 1095 ; on the particular register placement of a single large integer return value. 1096 ; CHECK: @PR14059.2 1097 1098 entry: 1099 %retval = alloca { float, float }, align 4 1100 ; CHECK-NOT: alloca 1101 1102 %0 = bitcast { float, float }* %retval to i64* 1103 store i64 0, i64* %0 1104 ; CHECK-NOT: store 1105 1106 %phi.realp = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 0 1107 %phi.real = load float, float* %phi.realp 1108 %phi.imagp = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 1 1109 %phi.imag = load float, float* %phi.imagp 1110 ; CHECK: %[[realp:.*]] = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 0 1111 ; CHECK-NEXT: %[[real:.*]] = load float, float* %[[realp]] 1112 ; CHECK-NEXT: %[[imagp:.*]] = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 1 1113 ; CHECK-NEXT: %[[imag:.*]] = load float, float* %[[imagp]] 1114 1115 %real = getelementptr inbounds { float, float }, { float, float }* %retval, i32 0, i32 0 1116 %imag = getelementptr inbounds { float, float }, { float, float }* %retval, i32 0, i32 1 1117 store float %phi.real, float* %real 1118 store float %phi.imag, float* %imag 1119 ; CHECK-NEXT: %[[real_convert:.*]] = bitcast float %[[real]] to i32 1120 ; CHECK-NEXT: %[[imag_convert:.*]] = bitcast float %[[imag]] to i32 1121 ; CHECK-NEXT: %[[imag_ext:.*]] = zext i32 %[[imag_convert]] to i64 1122 ; CHECK-NEXT: %[[imag_shift:.*]] = shl i64 %[[imag_ext]], 32 1123 ; CHECK-NEXT: %[[imag_mask:.*]] = and i64 undef, 4294967295 1124 ; CHECK-NEXT: %[[imag_insert:.*]] = or i64 %[[imag_mask]], %[[imag_shift]] 1125 ; CHECK-NEXT: %[[real_ext:.*]] = zext i32 %[[real_convert]] to i64 1126 ; CHECK-NEXT: %[[real_mask:.*]] = and i64 %[[imag_insert]], -4294967296 1127 ; CHECK-NEXT: %[[real_insert:.*]] = or i64 %[[real_mask]], %[[real_ext]] 1128 1129 %1 = load i64, i64* %0, align 1 1130 ret i64 %1 1131 ; CHECK-NEXT: ret i64 %[[real_insert]] 1132 } 1133 1134 define void @PR14105({ [16 x i8] }* %ptr) { 1135 ; Ensure that when rewriting the GEP index '-1' for this alloca we preserve is 1136 ; sign as negative. We use a volatile memcpy to ensure promotion never actually 1137 ; occurs. 1138 ; CHECK-LABEL: @PR14105( 1139 1140 entry: 1141 %a = alloca { [16 x i8] }, align 8 1142 ; CHECK: alloca [16 x i8], align 8 1143 1144 %gep = getelementptr inbounds { [16 x i8] }, { [16 x i8] }* %ptr, i64 -1 1145 ; CHECK-NEXT: getelementptr inbounds { [16 x i8] }, { [16 x i8] }* %ptr, i64 -1, i32 0, i64 0 1146 1147 %cast1 = bitcast { [16 x i8 ] }* %gep to i8* 1148 %cast2 = bitcast { [16 x i8 ] }* %a to i8* 1149 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast1, i8* %cast2, i32 16, i32 8, i1 true) 1150 ret void 1151 ; CHECK: ret 1152 } 1153 1154 define void @PR14105_as1({ [16 x i8] } addrspace(1)* %ptr) { 1155 ; Make sure this the right address space pointer is used for type check. 1156 ; CHECK-LABEL: @PR14105_as1( 1157 1158 entry: 1159 %a = alloca { [16 x i8] }, align 8 1160 ; CHECK: alloca [16 x i8], align 8 1161 1162 %gep = getelementptr inbounds { [16 x i8] }, { [16 x i8] } addrspace(1)* %ptr, i64 -1 1163 ; CHECK-NEXT: getelementptr inbounds { [16 x i8] }, { [16 x i8] } addrspace(1)* %ptr, i16 -1, i32 0, i16 0 1164 1165 %cast1 = bitcast { [16 x i8 ] } addrspace(1)* %gep to i8 addrspace(1)* 1166 %cast2 = bitcast { [16 x i8 ] }* %a to i8* 1167 call void @llvm.memcpy.p1i8.p0i8.i32(i8 addrspace(1)* %cast1, i8* %cast2, i32 16, i32 8, i1 true) 1168 ret void 1169 ; CHECK: ret 1170 } 1171 1172 define void @PR14465() { 1173 ; Ensure that we don't crash when analyzing a alloca larger than the maximum 1174 ; integer type width (MAX_INT_BITS) supported by llvm (1048576*32 > (1<<23)-1). 1175 ; CHECK-LABEL: @PR14465( 1176 1177 %stack = alloca [1048576 x i32], align 16 1178 ; CHECK: alloca [1048576 x i32] 1179 %cast = bitcast [1048576 x i32]* %stack to i8* 1180 call void @llvm.memset.p0i8.i64(i8* %cast, i8 -2, i64 4194304, i32 16, i1 false) 1181 ret void 1182 ; CHECK: ret 1183 } 1184 1185 define void @PR14548(i1 %x) { 1186 ; Handle a mixture of i1 and i8 loads and stores to allocas. This particular 1187 ; pattern caused crashes and invalid output in the PR, and its nature will 1188 ; trigger a mixture in several permutations as we resolve each alloca 1189 ; iteratively. 1190 ; Note that we don't do a particularly good *job* of handling these mixtures, 1191 ; but the hope is that this is very rare. 1192 ; CHECK-LABEL: @PR14548( 1193 1194 entry: 1195 %a = alloca <{ i1 }>, align 8 1196 %b = alloca <{ i1 }>, align 8 1197 ; CHECK: %[[a:.*]] = alloca i8, align 8 1198 ; CHECK-NEXT: %[[b:.*]] = alloca i8, align 8 1199 1200 %b.i1 = bitcast <{ i1 }>* %b to i1* 1201 store i1 %x, i1* %b.i1, align 8 1202 %b.i8 = bitcast <{ i1 }>* %b to i8* 1203 %foo = load i8, i8* %b.i8, align 1 1204 ; CHECK-NEXT: %[[b_cast:.*]] = bitcast i8* %[[b]] to i1* 1205 ; CHECK-NEXT: store i1 %x, i1* %[[b_cast]], align 8 1206 ; CHECK-NEXT: {{.*}} = load i8, i8* %[[b]], align 8 1207 1208 %a.i8 = bitcast <{ i1 }>* %a to i8* 1209 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.i8, i8* %b.i8, i32 1, i32 1, i1 false) nounwind 1210 %bar = load i8, i8* %a.i8, align 1 1211 %a.i1 = getelementptr inbounds <{ i1 }>, <{ i1 }>* %a, i32 0, i32 0 1212 %baz = load i1, i1* %a.i1, align 1 1213 ; CHECK-NEXT: %[[copy:.*]] = load i8, i8* %[[b]], align 8 1214 ; CHECK-NEXT: store i8 %[[copy]], i8* %[[a]], align 8 1215 ; CHECK-NEXT: {{.*}} = load i8, i8* %[[a]], align 8 1216 ; CHECK-NEXT: %[[a_cast:.*]] = bitcast i8* %[[a]] to i1* 1217 ; CHECK-NEXT: {{.*}} = load i1, i1* %[[a_cast]], align 8 1218 1219 ret void 1220 } 1221 1222 define <3 x i8> @PR14572.1(i32 %x) { 1223 ; Ensure that a split integer store which is wider than the type size of the 1224 ; alloca (relying on the alloc size padding) doesn't trigger an assert. 1225 ; CHECK: @PR14572.1 1226 1227 entry: 1228 %a = alloca <3 x i8>, align 4 1229 ; CHECK-NOT: alloca 1230 1231 %cast = bitcast <3 x i8>* %a to i32* 1232 store i32 %x, i32* %cast, align 1 1233 %y = load <3 x i8>, <3 x i8>* %a, align 4 1234 ret <3 x i8> %y 1235 ; CHECK: ret <3 x i8> 1236 } 1237 1238 define i32 @PR14572.2(<3 x i8> %x) { 1239 ; Ensure that a split integer load which is wider than the type size of the 1240 ; alloca (relying on the alloc size padding) doesn't trigger an assert. 1241 ; CHECK: @PR14572.2 1242 1243 entry: 1244 %a = alloca <3 x i8>, align 4 1245 ; CHECK-NOT: alloca 1246 1247 store <3 x i8> %x, <3 x i8>* %a, align 1 1248 %cast = bitcast <3 x i8>* %a to i32* 1249 %y = load i32, i32* %cast, align 4 1250 ret i32 %y 1251 ; CHECK: ret i32 1252 } 1253 1254 define i32 @PR14601(i32 %x) { 1255 ; Don't try to form a promotable integer alloca when there is a variable length 1256 ; memory intrinsic. 1257 ; CHECK-LABEL: @PR14601( 1258 1259 entry: 1260 %a = alloca i32 1261 ; CHECK: alloca 1262 1263 %a.i8 = bitcast i32* %a to i8* 1264 call void @llvm.memset.p0i8.i32(i8* %a.i8, i8 0, i32 %x, i32 1, i1 false) 1265 %v = load i32, i32* %a 1266 ret i32 %v 1267 } 1268 1269 define void @PR15674(i8* %data, i8* %src, i32 %size) { 1270 ; Arrange (via control flow) to have unmerged stores of a particular width to 1271 ; an alloca where we incrementally store from the end of the array toward the 1272 ; beginning of the array. Ensure that the final integer store, despite being 1273 ; convertable to the integer type that we end up promoting this alloca toward, 1274 ; doesn't get widened to a full alloca store. 1275 ; CHECK-LABEL: @PR15674( 1276 1277 entry: 1278 %tmp = alloca [4 x i8], align 1 1279 ; CHECK: alloca i32 1280 1281 switch i32 %size, label %end [ 1282 i32 4, label %bb4 1283 i32 3, label %bb3 1284 i32 2, label %bb2 1285 i32 1, label %bb1 1286 ] 1287 1288 bb4: 1289 %src.gep3 = getelementptr inbounds i8, i8* %src, i32 3 1290 %src.3 = load i8, i8* %src.gep3 1291 %tmp.gep3 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 3 1292 store i8 %src.3, i8* %tmp.gep3 1293 ; CHECK: store i8 1294 1295 br label %bb3 1296 1297 bb3: 1298 %src.gep2 = getelementptr inbounds i8, i8* %src, i32 2 1299 %src.2 = load i8, i8* %src.gep2 1300 %tmp.gep2 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 2 1301 store i8 %src.2, i8* %tmp.gep2 1302 ; CHECK: store i8 1303 1304 br label %bb2 1305 1306 bb2: 1307 %src.gep1 = getelementptr inbounds i8, i8* %src, i32 1 1308 %src.1 = load i8, i8* %src.gep1 1309 %tmp.gep1 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 1 1310 store i8 %src.1, i8* %tmp.gep1 1311 ; CHECK: store i8 1312 1313 br label %bb1 1314 1315 bb1: 1316 %src.gep0 = getelementptr inbounds i8, i8* %src, i32 0 1317 %src.0 = load i8, i8* %src.gep0 1318 %tmp.gep0 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 0 1319 store i8 %src.0, i8* %tmp.gep0 1320 ; CHECK: store i8 1321 1322 br label %end 1323 1324 end: 1325 %tmp.raw = bitcast [4 x i8]* %tmp to i8* 1326 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %data, i8* %tmp.raw, i32 %size, i32 1, i1 false) 1327 ret void 1328 ; CHECK: ret void 1329 } 1330 1331 define void @PR15805(i1 %a, i1 %b) { 1332 ; CHECK-LABEL: @PR15805( 1333 ; CHECK-NOT: alloca 1334 ; CHECK: ret void 1335 1336 %c = alloca i64, align 8 1337 %p.0.c = select i1 undef, i64* %c, i64* %c 1338 %cond.in = select i1 undef, i64* %p.0.c, i64* %c 1339 %cond = load i64, i64* %cond.in, align 8 1340 ret void 1341 } 1342 1343 define void @PR15805.1(i1 %a, i1 %b) { 1344 ; Same as the normal PR15805, but rigged to place the use before the def inside 1345 ; of looping unreachable code. This helps ensure that we aren't sensitive to the 1346 ; order in which the uses of the alloca are visited. 1347 ; 1348 ; CHECK-LABEL: @PR15805.1( 1349 ; CHECK-NOT: alloca 1350 ; CHECK: ret void 1351 1352 %c = alloca i64, align 8 1353 br label %exit 1354 1355 loop: 1356 %cond.in = select i1 undef, i64* %c, i64* %p.0.c 1357 %p.0.c = select i1 undef, i64* %c, i64* %c 1358 %cond = load i64, i64* %cond.in, align 8 1359 br i1 undef, label %loop, label %exit 1360 1361 exit: 1362 ret void 1363 } 1364 1365 define void @PR16651.1(i8* %a) { 1366 ; This test case caused a crash due to the volatile memcpy in combination with 1367 ; lowering to integer loads and stores of a width other than that of the original 1368 ; memcpy. 1369 ; 1370 ; CHECK-LABEL: @PR16651.1( 1371 ; CHECK: alloca i16 1372 ; CHECK: alloca i8 1373 ; CHECK: alloca i8 1374 ; CHECK: unreachable 1375 1376 entry: 1377 %b = alloca i32, align 4 1378 %b.cast = bitcast i32* %b to i8* 1379 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b.cast, i8* %a, i32 4, i32 4, i1 true) 1380 %b.gep = getelementptr inbounds i8, i8* %b.cast, i32 2 1381 load i8, i8* %b.gep, align 2 1382 unreachable 1383 } 1384 1385 define void @PR16651.2() { 1386 ; This test case caused a crash due to failing to promote given a select that 1387 ; can't be speculated. It shouldn't be promoted, but we missed that fact when 1388 ; analyzing whether we could form a vector promotion because that code didn't 1389 ; bail on select instructions. 1390 ; 1391 ; CHECK-LABEL: @PR16651.2( 1392 ; CHECK: alloca <2 x float> 1393 ; CHECK: ret void 1394 1395 entry: 1396 %tv1 = alloca { <2 x float>, <2 x float> }, align 8 1397 %0 = getelementptr { <2 x float>, <2 x float> }, { <2 x float>, <2 x float> }* %tv1, i64 0, i32 1 1398 store <2 x float> undef, <2 x float>* %0, align 8 1399 %1 = getelementptr inbounds { <2 x float>, <2 x float> }, { <2 x float>, <2 x float> }* %tv1, i64 0, i32 1, i64 0 1400 %cond105.in.i.i = select i1 undef, float* null, float* %1 1401 %cond105.i.i = load float, float* %cond105.in.i.i, align 8 1402 ret void 1403 } 1404 1405 define void @test23(i32 %x) { 1406 ; CHECK-LABEL: @test23( 1407 ; CHECK-NOT: alloca 1408 ; CHECK: ret void 1409 entry: 1410 %a = alloca i32, align 4 1411 store i32 %x, i32* %a, align 4 1412 %gep1 = getelementptr inbounds i32, i32* %a, i32 1 1413 %gep0 = getelementptr inbounds i32, i32* %a, i32 0 1414 %cast1 = bitcast i32* %gep1 to i8* 1415 %cast0 = bitcast i32* %gep0 to i8* 1416 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast1, i8* %cast0, i32 4, i32 1, i1 false) 1417 ret void 1418 } 1419 1420 define void @PR18615() { 1421 ; CHECK-LABEL: @PR18615( 1422 ; CHECK-NOT: alloca 1423 ; CHECK: ret void 1424 entry: 1425 %f = alloca i8 1426 %gep = getelementptr i8, i8* %f, i64 -1 1427 call void @llvm.memcpy.p0i8.p0i8.i32(i8* undef, i8* %gep, i32 1, i32 1, i1 false) 1428 ret void 1429 } 1430 1431 define void @test24(i8* %src, i8* %dst) { 1432 ; CHECK-LABEL: @test24( 1433 ; CHECK: alloca i64, align 16 1434 ; CHECK: load volatile i64, i64* %{{[^,]*}}, align 1 1435 ; CHECK: store volatile i64 %{{[^,]*}}, i64* %{{[^,]*}}, align 16 1436 ; CHECK: load volatile i64, i64* %{{[^,]*}}, align 16 1437 ; CHECK: store volatile i64 %{{[^,]*}}, i64* %{{[^,]*}}, align 1 1438 1439 entry: 1440 %a = alloca i64, align 16 1441 %ptr = bitcast i64* %a to i8* 1442 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 8, i32 1, i1 true) 1443 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 8, i32 1, i1 true) 1444 ret void 1445 } 1446 1447 define float @test25() { 1448 ; Check that we split up stores in order to promote the smaller SSA values.. These types 1449 ; of patterns can arise because LLVM maps small memcpy's to integer load and 1450 ; stores. If we get a memcpy of an aggregate (such as C and C++ frontends would 1451 ; produce, but so might any language frontend), this will in many cases turn into 1452 ; an integer load and store. SROA needs to be extremely powerful to correctly 1453 ; handle these cases and form splitable and promotable SSA values. 1454 ; 1455 ; CHECK-LABEL: @test25( 1456 ; CHECK-NOT: alloca 1457 ; CHECK: %[[F1:.*]] = bitcast i32 0 to float 1458 ; CHECK: %[[F2:.*]] = bitcast i32 1065353216 to float 1459 ; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]] 1460 ; CHECK: ret float %[[SUM]] 1461 1462 entry: 1463 %a = alloca i64 1464 %b = alloca i64 1465 %a.cast = bitcast i64* %a to [2 x float]* 1466 %a.gep1 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 0 1467 %a.gep2 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 1 1468 %b.cast = bitcast i64* %b to [2 x float]* 1469 %b.gep1 = getelementptr [2 x float], [2 x float]* %b.cast, i32 0, i32 0 1470 %b.gep2 = getelementptr [2 x float], [2 x float]* %b.cast, i32 0, i32 1 1471 store float 0.0, float* %a.gep1 1472 store float 1.0, float* %a.gep2 1473 %v = load i64, i64* %a 1474 store i64 %v, i64* %b 1475 %f1 = load float, float* %b.gep1 1476 %f2 = load float, float* %b.gep2 1477 %ret = fadd float %f1, %f2 1478 ret float %ret 1479 } 1480 1481 @complex1 = external global [2 x float] 1482 @complex2 = external global [2 x float] 1483 1484 define void @test26() { 1485 ; Test a case of splitting up loads and stores against a globals. 1486 ; 1487 ; CHECK-LABEL: @test26( 1488 ; CHECK-NOT: alloca 1489 ; CHECK: %[[L1:.*]] = load i32, i32* bitcast 1490 ; CHECK: %[[L2:.*]] = load i32, i32* bitcast 1491 ; CHECK: %[[F1:.*]] = bitcast i32 %[[L1]] to float 1492 ; CHECK: %[[F2:.*]] = bitcast i32 %[[L2]] to float 1493 ; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]] 1494 ; CHECK: %[[C1:.*]] = bitcast float %[[SUM]] to i32 1495 ; CHECK: %[[C2:.*]] = bitcast float %[[SUM]] to i32 1496 ; CHECK: store i32 %[[C1]], i32* bitcast 1497 ; CHECK: store i32 %[[C2]], i32* bitcast 1498 ; CHECK: ret void 1499 1500 entry: 1501 %a = alloca i64 1502 %a.cast = bitcast i64* %a to [2 x float]* 1503 %a.gep1 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 0 1504 %a.gep2 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 1 1505 %v1 = load i64, i64* bitcast ([2 x float]* @complex1 to i64*) 1506 store i64 %v1, i64* %a 1507 %f1 = load float, float* %a.gep1 1508 %f2 = load float, float* %a.gep2 1509 %sum = fadd float %f1, %f2 1510 store float %sum, float* %a.gep1 1511 store float %sum, float* %a.gep2 1512 %v2 = load i64, i64* %a 1513 store i64 %v2, i64* bitcast ([2 x float]* @complex2 to i64*) 1514 ret void 1515 } 1516 1517 define float @test27() { 1518 ; Another, more complex case of splittable i64 loads and stores. This example 1519 ; is a particularly challenging one because the load and store both point into 1520 ; the alloca SROA is processing, and they overlap but at an offset. 1521 ; 1522 ; CHECK-LABEL: @test27( 1523 ; CHECK-NOT: alloca 1524 ; CHECK: %[[F1:.*]] = bitcast i32 0 to float 1525 ; CHECK: %[[F2:.*]] = bitcast i32 1065353216 to float 1526 ; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]] 1527 ; CHECK: ret float %[[SUM]] 1528 1529 entry: 1530 %a = alloca [12 x i8] 1531 %gep1 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 0 1532 %gep2 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 4 1533 %gep3 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 8 1534 %iptr1 = bitcast i8* %gep1 to i64* 1535 %iptr2 = bitcast i8* %gep2 to i64* 1536 %fptr1 = bitcast i8* %gep1 to float* 1537 %fptr2 = bitcast i8* %gep2 to float* 1538 %fptr3 = bitcast i8* %gep3 to float* 1539 store float 0.0, float* %fptr1 1540 store float 1.0, float* %fptr2 1541 %v = load i64, i64* %iptr1 1542 store i64 %v, i64* %iptr2 1543 %f1 = load float, float* %fptr2 1544 %f2 = load float, float* %fptr3 1545 %ret = fadd float %f1, %f2 1546 ret float %ret 1547 } 1548 1549 define i32 @PR22093() { 1550 ; Test that we don't try to pre-split a splittable store of a splittable but 1551 ; not pre-splittable load over the same alloca. We "handle" this case when the 1552 ; load is unsplittable but unrelated to this alloca by just generating extra 1553 ; loads without touching the original, but when the original load was out of 1554 ; this alloca we need to handle it specially to ensure the splits line up 1555 ; properly for rewriting. 1556 ; 1557 ; CHECK-LABEL: @PR22093( 1558 ; CHECK-NOT: alloca 1559 ; CHECK: alloca i16 1560 ; CHECK-NOT: alloca 1561 ; CHECK: store volatile i16 1562 1563 entry: 1564 %a = alloca i32 1565 %a.cast = bitcast i32* %a to i16* 1566 store volatile i16 42, i16* %a.cast 1567 %load = load i32, i32* %a 1568 store i32 %load, i32* %a 1569 ret i32 %load 1570 } 1571 1572 define void @PR22093.2() { 1573 ; Another way that we end up being unable to split a particular set of loads 1574 ; and stores can even have ordering importance. Here we have a load which is 1575 ; pre-splittable by itself, and the first store is also compatible. But the 1576 ; second store of the load makes the load unsplittable because of a mismatch of 1577 ; splits. Because this makes the load unsplittable, we also have to go back and 1578 ; remove the first store from the presplit candidates as its load won't be 1579 ; presplit. 1580 ; 1581 ; CHECK-LABEL: @PR22093.2( 1582 ; CHECK-NOT: alloca 1583 ; CHECK: alloca i16 1584 ; CHECK-NEXT: alloca i8 1585 ; CHECK-NOT: alloca 1586 ; CHECK: store volatile i16 1587 ; CHECK: store volatile i8 1588 1589 entry: 1590 %a = alloca i64 1591 %a.cast1 = bitcast i64* %a to i32* 1592 %a.cast2 = bitcast i64* %a to i16* 1593 store volatile i16 42, i16* %a.cast2 1594 %load = load i32, i32* %a.cast1 1595 store i32 %load, i32* %a.cast1 1596 %a.gep1 = getelementptr i32, i32* %a.cast1, i32 1 1597 %a.cast3 = bitcast i32* %a.gep1 to i8* 1598 store volatile i8 13, i8* %a.cast3 1599 store i32 %load, i32* %a.gep1 1600 ret void 1601 } 1602 1603 define void @PR23737() { 1604 ; CHECK-LABEL: @PR23737( 1605 ; CHECK: store atomic volatile {{.*}} seq_cst 1606 ; CHECK: load atomic volatile {{.*}} seq_cst 1607 entry: 1608 %ptr = alloca i64, align 8 1609 store atomic volatile i64 0, i64* %ptr seq_cst, align 8 1610 %load = load atomic volatile i64, i64* %ptr seq_cst, align 8 1611 ret void 1612 } 1613 1614 define i16 @PR24463() { 1615 ; Ensure we can handle a very interesting case where there is an integer-based 1616 ; rewrite of the uses of the alloca, but where one of the integers in that is 1617 ; a sub-integer that requires extraction *and* extends past the end of the 1618 ; alloca. In this case, we should extract the i8 and then zext it to i16. 1619 ; 1620 ; CHECK-LABEL: @PR24463( 1621 ; CHECK-NOT: alloca 1622 ; CHECK: %[[SHIFT:.*]] = lshr i16 0, 8 1623 ; CHECK: %[[TRUNC:.*]] = trunc i16 %[[SHIFT]] to i8 1624 ; CHECK: %[[ZEXT:.*]] = zext i8 %[[TRUNC]] to i16 1625 ; CHECK: ret i16 %[[ZEXT]] 1626 entry: 1627 %alloca = alloca [3 x i8] 1628 %gep1 = getelementptr inbounds [3 x i8], [3 x i8]* %alloca, i64 0, i64 1 1629 %bc1 = bitcast i8* %gep1 to i16* 1630 store i16 0, i16* %bc1 1631 %gep2 = getelementptr inbounds [3 x i8], [3 x i8]* %alloca, i64 0, i64 2 1632 %bc2 = bitcast i8* %gep2 to i16* 1633 %load = load i16, i16* %bc2 1634 ret i16 %load 1635 } 1636