Home | History | Annotate | Download | only in libjpeg
      1 /*
      2  * jchuff.c
      3  *
      4  * Copyright (C) 1991-1997, Thomas G. Lane.
      5  * Modified 2006-2009 by Guido Vollbeding.
      6  * This file is part of the Independent JPEG Group's software.
      7  * For conditions of distribution and use, see the accompanying README file.
      8  *
      9  * This file contains Huffman entropy encoding routines.
     10  * Both sequential and progressive modes are supported in this single module.
     11  *
     12  * Much of the complexity here has to do with supporting output suspension.
     13  * If the data destination module demands suspension, we want to be able to
     14  * back up to the start of the current MCU.  To do this, we copy state
     15  * variables into local working storage, and update them back to the
     16  * permanent JPEG objects only upon successful completion of an MCU.
     17  *
     18  * We do not support output suspension for the progressive JPEG mode, since
     19  * the library currently does not allow multiple-scan files to be written
     20  * with output suspension.
     21  */
     22 
     23 #define JPEG_INTERNALS
     24 #include "jinclude.h"
     25 #include "jpeglib.h"
     26 
     27 
     28 /* The legal range of a DCT coefficient is
     29  *  -1024 .. +1023  for 8-bit data;
     30  * -16384 .. +16383 for 12-bit data.
     31  * Hence the magnitude should always fit in 10 or 14 bits respectively.
     32  */
     33 
     34 #if BITS_IN_JSAMPLE == 8
     35 #define MAX_COEF_BITS 10
     36 #else
     37 #define MAX_COEF_BITS 14
     38 #endif
     39 
     40 /* Derived data constructed for each Huffman table */
     41 
     42 typedef struct {
     43   unsigned int ehufco[256];	/* code for each symbol */
     44   char ehufsi[256];		/* length of code for each symbol */
     45   /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
     46 } c_derived_tbl;
     47 
     48 
     49 /* Expanded entropy encoder object for Huffman encoding.
     50  *
     51  * The savable_state subrecord contains fields that change within an MCU,
     52  * but must not be updated permanently until we complete the MCU.
     53  */
     54 
     55 typedef struct {
     56   INT32 put_buffer;		/* current bit-accumulation buffer */
     57   int put_bits;			/* # of bits now in it */
     58   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
     59 } savable_state;
     60 
     61 /* This macro is to work around compilers with missing or broken
     62  * structure assignment.  You'll need to fix this code if you have
     63  * such a compiler and you change MAX_COMPS_IN_SCAN.
     64  */
     65 
     66 #ifndef NO_STRUCT_ASSIGN
     67 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
     68 #else
     69 #if MAX_COMPS_IN_SCAN == 4
     70 #define ASSIGN_STATE(dest,src)  \
     71         ((dest).put_buffer = (src).put_buffer, \
     72          (dest).put_bits = (src).put_bits, \
     73          (dest).last_dc_val[0] = (src).last_dc_val[0], \
     74          (dest).last_dc_val[1] = (src).last_dc_val[1], \
     75          (dest).last_dc_val[2] = (src).last_dc_val[2], \
     76          (dest).last_dc_val[3] = (src).last_dc_val[3])
     77 #endif
     78 #endif
     79 
     80 
     81 typedef struct {
     82   struct jpeg_entropy_encoder pub; /* public fields */
     83 
     84   savable_state saved;		/* Bit buffer & DC state at start of MCU */
     85 
     86   /* These fields are NOT loaded into local working state. */
     87   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
     88   int next_restart_num;		/* next restart number to write (0-7) */
     89 
     90   /* Pointers to derived tables (these workspaces have image lifespan) */
     91   c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
     92   c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
     93 
     94   /* Statistics tables for optimization */
     95   long * dc_count_ptrs[NUM_HUFF_TBLS];
     96   long * ac_count_ptrs[NUM_HUFF_TBLS];
     97 
     98   /* Following fields used only in progressive mode */
     99 
    100   /* Mode flag: TRUE for optimization, FALSE for actual data output */
    101   boolean gather_statistics;
    102 
    103   /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
    104    */
    105   JOCTET * next_output_byte;	/* => next byte to write in buffer */
    106   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
    107   j_compress_ptr cinfo;		/* link to cinfo (needed for dump_buffer) */
    108 
    109   /* Coding status for AC components */
    110   int ac_tbl_no;		/* the table number of the single component */
    111   unsigned int EOBRUN;		/* run length of EOBs */
    112   unsigned int BE;		/* # of buffered correction bits before MCU */
    113   char * bit_buffer;		/* buffer for correction bits (1 per char) */
    114   /* packing correction bits tightly would save some space but cost time... */
    115 } huff_entropy_encoder;
    116 
    117 typedef huff_entropy_encoder * huff_entropy_ptr;
    118 
    119 /* Working state while writing an MCU (sequential mode).
    120  * This struct contains all the fields that are needed by subroutines.
    121  */
    122 
    123 typedef struct {
    124   JOCTET * next_output_byte;	/* => next byte to write in buffer */
    125   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
    126   savable_state cur;		/* Current bit buffer & DC state */
    127   j_compress_ptr cinfo;		/* dump_buffer needs access to this */
    128 } working_state;
    129 
    130 /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
    131  * buffer can hold.  Larger sizes may slightly improve compression, but
    132  * 1000 is already well into the realm of overkill.
    133  * The minimum safe size is 64 bits.
    134  */
    135 
    136 #define MAX_CORR_BITS  1000	/* Max # of correction bits I can buffer */
    137 
    138 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
    139  * We assume that int right shift is unsigned if INT32 right shift is,
    140  * which should be safe.
    141  */
    142 
    143 #ifdef RIGHT_SHIFT_IS_UNSIGNED
    144 #define ISHIFT_TEMPS	int ishift_temp;
    145 #define IRIGHT_SHIFT(x,shft)  \
    146         ((ishift_temp = (x)) < 0 ? \
    147          (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
    148          (ishift_temp >> (shft)))
    149 #else
    150 #define ISHIFT_TEMPS
    151 #define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
    152 #endif
    153 
    154 
    155 /*
    156  * Compute the derived values for a Huffman table.
    157  * This routine also performs some validation checks on the table.
    158  */
    159 
    160 LOCAL(void)
    161 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
    162                          c_derived_tbl ** pdtbl)
    163 {
    164   JHUFF_TBL *htbl;
    165   c_derived_tbl *dtbl;
    166   int p, i, l, lastp, si, maxsymbol;
    167   char huffsize[257];
    168   unsigned int huffcode[257];
    169   unsigned int code;
    170 
    171   /* Note that huffsize[] and huffcode[] are filled in code-length order,
    172    * paralleling the order of the symbols themselves in htbl->huffval[].
    173    */
    174 
    175   /* Find the input Huffman table */
    176   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
    177     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
    178   htbl =
    179     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
    180   if (htbl == NULL)
    181     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
    182 
    183   /* Allocate a workspace if we haven't already done so. */
    184   if (*pdtbl == NULL)
    185     *pdtbl = (c_derived_tbl *)
    186       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    187                                   SIZEOF(c_derived_tbl));
    188   dtbl = *pdtbl;
    189 
    190   /* Figure C.1: make table of Huffman code length for each symbol */
    191 
    192   p = 0;
    193   for (l = 1; l <= 16; l++) {
    194     i = (int) htbl->bits[l];
    195     if (i < 0 || p + i > 256)	/* protect against table overrun */
    196       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    197     while (i--)
    198       huffsize[p++] = (char) l;
    199   }
    200   huffsize[p] = 0;
    201   lastp = p;
    202 
    203   /* Figure C.2: generate the codes themselves */
    204   /* We also validate that the counts represent a legal Huffman code tree. */
    205 
    206   code = 0;
    207   si = huffsize[0];
    208   p = 0;
    209   while (huffsize[p]) {
    210     while (((int) huffsize[p]) == si) {
    211       huffcode[p++] = code;
    212       code++;
    213     }
    214     /* code is now 1 more than the last code used for codelength si; but
    215      * it must still fit in si bits, since no code is allowed to be all ones.
    216      */
    217     if (((INT32) code) >= (((INT32) 1) << si))
    218       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    219     code <<= 1;
    220     si++;
    221   }
    222 
    223   /* Figure C.3: generate encoding tables */
    224   /* These are code and size indexed by symbol value */
    225 
    226   /* Set all codeless symbols to have code length 0;
    227    * this lets us detect duplicate VAL entries here, and later
    228    * allows emit_bits to detect any attempt to emit such symbols.
    229    */
    230   MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
    231 
    232   /* This is also a convenient place to check for out-of-range
    233    * and duplicated VAL entries.  We allow 0..255 for AC symbols
    234    * but only 0..15 for DC.  (We could constrain them further
    235    * based on data depth and mode, but this seems enough.)
    236    */
    237   maxsymbol = isDC ? 15 : 255;
    238 
    239   for (p = 0; p < lastp; p++) {
    240     i = htbl->huffval[p];
    241     if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
    242       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    243     dtbl->ehufco[i] = huffcode[p];
    244     dtbl->ehufsi[i] = huffsize[p];
    245   }
    246 }
    247 
    248 
    249 /* Outputting bytes to the file.
    250  * NB: these must be called only when actually outputting,
    251  * that is, entropy->gather_statistics == FALSE.
    252  */
    253 
    254 /* Emit a byte, taking 'action' if must suspend. */
    255 #define emit_byte_s(state,val,action)  \
    256         { *(state)->next_output_byte++ = (JOCTET) (val);  \
    257           if (--(state)->free_in_buffer == 0)  \
    258             if (! dump_buffer_s(state))  \
    259               { action; } }
    260 
    261 /* Emit a byte */
    262 #define emit_byte_e(entropy,val)  \
    263         { *(entropy)->next_output_byte++ = (JOCTET) (val);  \
    264           if (--(entropy)->free_in_buffer == 0)  \
    265             dump_buffer_e(entropy); }
    266 
    267 
    268 LOCAL(boolean)
    269 dump_buffer_s (working_state * state)
    270 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
    271 {
    272   struct jpeg_destination_mgr * dest = state->cinfo->dest;
    273 
    274   if (! (*dest->empty_output_buffer) (state->cinfo))
    275     return FALSE;
    276   /* After a successful buffer dump, must reset buffer pointers */
    277   state->next_output_byte = dest->next_output_byte;
    278   state->free_in_buffer = dest->free_in_buffer;
    279   return TRUE;
    280 }
    281 
    282 
    283 LOCAL(void)
    284 dump_buffer_e (huff_entropy_ptr entropy)
    285 /* Empty the output buffer; we do not support suspension in this case. */
    286 {
    287   struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
    288 
    289   if (! (*dest->empty_output_buffer) (entropy->cinfo))
    290     ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
    291   /* After a successful buffer dump, must reset buffer pointers */
    292   entropy->next_output_byte = dest->next_output_byte;
    293   entropy->free_in_buffer = dest->free_in_buffer;
    294 }
    295 
    296 
    297 /* Outputting bits to the file */
    298 
    299 /* Only the right 24 bits of put_buffer are used; the valid bits are
    300  * left-justified in this part.  At most 16 bits can be passed to emit_bits
    301  * in one call, and we never retain more than 7 bits in put_buffer
    302  * between calls, so 24 bits are sufficient.
    303  */
    304 
    305 INLINE
    306 LOCAL(boolean)
    307 emit_bits_s (working_state * state, unsigned int code, int size)
    308 /* Emit some bits; return TRUE if successful, FALSE if must suspend */
    309 {
    310   /* This routine is heavily used, so it's worth coding tightly. */
    311   register INT32 put_buffer = (INT32) code;
    312   register int put_bits = state->cur.put_bits;
    313 
    314   /* if size is 0, caller used an invalid Huffman table entry */
    315   if (size == 0)
    316     ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
    317 
    318   put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
    319 
    320   put_bits += size;		/* new number of bits in buffer */
    321 
    322   put_buffer <<= 24 - put_bits; /* align incoming bits */
    323 
    324   put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
    325 
    326   while (put_bits >= 8) {
    327     int c = (int) ((put_buffer >> 16) & 0xFF);
    328 
    329     emit_byte_s(state, c, return FALSE);
    330     if (c == 0xFF) {		/* need to stuff a zero byte? */
    331       emit_byte_s(state, 0, return FALSE);
    332     }
    333     put_buffer <<= 8;
    334     put_bits -= 8;
    335   }
    336 
    337   state->cur.put_buffer = put_buffer; /* update state variables */
    338   state->cur.put_bits = put_bits;
    339 
    340   return TRUE;
    341 }
    342 
    343 
    344 INLINE
    345 LOCAL(void)
    346 emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size)
    347 /* Emit some bits, unless we are in gather mode */
    348 {
    349   /* This routine is heavily used, so it's worth coding tightly. */
    350   register INT32 put_buffer = (INT32) code;
    351   register int put_bits = entropy->saved.put_bits;
    352 
    353   /* if size is 0, caller used an invalid Huffman table entry */
    354   if (size == 0)
    355     ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
    356 
    357   if (entropy->gather_statistics)
    358     return;			/* do nothing if we're only getting stats */
    359 
    360   put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
    361 
    362   put_bits += size;		/* new number of bits in buffer */
    363 
    364   put_buffer <<= 24 - put_bits; /* align incoming bits */
    365 
    366   /* and merge with old buffer contents */
    367   put_buffer |= entropy->saved.put_buffer;
    368 
    369   while (put_bits >= 8) {
    370     int c = (int) ((put_buffer >> 16) & 0xFF);
    371 
    372     emit_byte_e(entropy, c);
    373     if (c == 0xFF) {		/* need to stuff a zero byte? */
    374       emit_byte_e(entropy, 0);
    375     }
    376     put_buffer <<= 8;
    377     put_bits -= 8;
    378   }
    379 
    380   entropy->saved.put_buffer = put_buffer; /* update variables */
    381   entropy->saved.put_bits = put_bits;
    382 }
    383 
    384 
    385 LOCAL(boolean)
    386 flush_bits_s (working_state * state)
    387 {
    388   if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */
    389     return FALSE;
    390   state->cur.put_buffer = 0;	     /* and reset bit-buffer to empty */
    391   state->cur.put_bits = 0;
    392   return TRUE;
    393 }
    394 
    395 
    396 LOCAL(void)
    397 flush_bits_e (huff_entropy_ptr entropy)
    398 {
    399   emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */
    400   entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */
    401   entropy->saved.put_bits = 0;
    402 }
    403 
    404 
    405 /*
    406  * Emit (or just count) a Huffman symbol.
    407  */
    408 
    409 INLINE
    410 LOCAL(void)
    411 emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
    412 {
    413   if (entropy->gather_statistics)
    414     entropy->dc_count_ptrs[tbl_no][symbol]++;
    415   else {
    416     c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no];
    417     emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
    418   }
    419 }
    420 
    421 
    422 INLINE
    423 LOCAL(void)
    424 emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
    425 {
    426   if (entropy->gather_statistics)
    427     entropy->ac_count_ptrs[tbl_no][symbol]++;
    428   else {
    429     c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no];
    430     emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
    431   }
    432 }
    433 
    434 
    435 /*
    436  * Emit bits from a correction bit buffer.
    437  */
    438 
    439 LOCAL(void)
    440 emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart,
    441                     unsigned int nbits)
    442 {
    443   if (entropy->gather_statistics)
    444     return;			/* no real work */
    445 
    446   while (nbits > 0) {
    447     emit_bits_e(entropy, (unsigned int) (*bufstart), 1);
    448     bufstart++;
    449     nbits--;
    450   }
    451 }
    452 
    453 
    454 /*
    455  * Emit any pending EOBRUN symbol.
    456  */
    457 
    458 LOCAL(void)
    459 emit_eobrun (huff_entropy_ptr entropy)
    460 {
    461   register int temp, nbits;
    462 
    463   if (entropy->EOBRUN > 0) {	/* if there is any pending EOBRUN */
    464     temp = entropy->EOBRUN;
    465     nbits = 0;
    466     while ((temp >>= 1))
    467       nbits++;
    468     /* safety check: shouldn't happen given limited correction-bit buffer */
    469     if (nbits > 14)
    470       ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
    471 
    472     emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
    473     if (nbits)
    474       emit_bits_e(entropy, entropy->EOBRUN, nbits);
    475 
    476     entropy->EOBRUN = 0;
    477 
    478     /* Emit any buffered correction bits */
    479     emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
    480     entropy->BE = 0;
    481   }
    482 }
    483 
    484 
    485 /*
    486  * Emit a restart marker & resynchronize predictions.
    487  */
    488 
    489 LOCAL(boolean)
    490 emit_restart_s (working_state * state, int restart_num)
    491 {
    492   int ci;
    493 
    494   if (! flush_bits_s(state))
    495     return FALSE;
    496 
    497   emit_byte_s(state, 0xFF, return FALSE);
    498   emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE);
    499 
    500   /* Re-initialize DC predictions to 0 */
    501   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
    502     state->cur.last_dc_val[ci] = 0;
    503 
    504   /* The restart counter is not updated until we successfully write the MCU. */
    505 
    506   return TRUE;
    507 }
    508 
    509 
    510 LOCAL(void)
    511 emit_restart_e (huff_entropy_ptr entropy, int restart_num)
    512 {
    513   int ci;
    514 
    515   emit_eobrun(entropy);
    516 
    517   if (! entropy->gather_statistics) {
    518     flush_bits_e(entropy);
    519     emit_byte_e(entropy, 0xFF);
    520     emit_byte_e(entropy, JPEG_RST0 + restart_num);
    521   }
    522 
    523   if (entropy->cinfo->Ss == 0) {
    524     /* Re-initialize DC predictions to 0 */
    525     for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
    526       entropy->saved.last_dc_val[ci] = 0;
    527   } else {
    528     /* Re-initialize all AC-related fields to 0 */
    529     entropy->EOBRUN = 0;
    530     entropy->BE = 0;
    531   }
    532 }
    533 
    534 
    535 /*
    536  * MCU encoding for DC initial scan (either spectral selection,
    537  * or first pass of successive approximation).
    538  */
    539 
    540 METHODDEF(boolean)
    541 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    542 {
    543   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    544   register int temp, temp2;
    545   register int nbits;
    546   int blkn, ci;
    547   int Al = cinfo->Al;
    548   JBLOCKROW block;
    549   jpeg_component_info * compptr;
    550   ISHIFT_TEMPS
    551 
    552   entropy->next_output_byte = cinfo->dest->next_output_byte;
    553   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    554 
    555   /* Emit restart marker if needed */
    556   if (cinfo->restart_interval)
    557     if (entropy->restarts_to_go == 0)
    558       emit_restart_e(entropy, entropy->next_restart_num);
    559 
    560   /* Encode the MCU data blocks */
    561   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    562     block = MCU_data[blkn];
    563     ci = cinfo->MCU_membership[blkn];
    564     compptr = cinfo->cur_comp_info[ci];
    565 
    566     /* Compute the DC value after the required point transform by Al.
    567      * This is simply an arithmetic right shift.
    568      */
    569     temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
    570 
    571     /* DC differences are figured on the point-transformed values. */
    572     temp = temp2 - entropy->saved.last_dc_val[ci];
    573     entropy->saved.last_dc_val[ci] = temp2;
    574 
    575     /* Encode the DC coefficient difference per section G.1.2.1 */
    576     temp2 = temp;
    577     if (temp < 0) {
    578       temp = -temp;		/* temp is abs value of input */
    579       /* For a negative input, want temp2 = bitwise complement of abs(input) */
    580       /* This code assumes we are on a two's complement machine */
    581       temp2--;
    582     }
    583 
    584     /* Find the number of bits needed for the magnitude of the coefficient */
    585     nbits = 0;
    586     while (temp) {
    587       nbits++;
    588       temp >>= 1;
    589     }
    590     /* Check for out-of-range coefficient values.
    591      * Since we're encoding a difference, the range limit is twice as much.
    592      */
    593     if (nbits > MAX_COEF_BITS+1)
    594       ERREXIT(cinfo, JERR_BAD_DCT_COEF);
    595 
    596     /* Count/emit the Huffman-coded symbol for the number of bits */
    597     emit_dc_symbol(entropy, compptr->dc_tbl_no, nbits);
    598 
    599     /* Emit that number of bits of the value, if positive, */
    600     /* or the complement of its magnitude, if negative. */
    601     if (nbits)			/* emit_bits rejects calls with size 0 */
    602       emit_bits_e(entropy, (unsigned int) temp2, nbits);
    603   }
    604 
    605   cinfo->dest->next_output_byte = entropy->next_output_byte;
    606   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    607 
    608   /* Update restart-interval state too */
    609   if (cinfo->restart_interval) {
    610     if (entropy->restarts_to_go == 0) {
    611       entropy->restarts_to_go = cinfo->restart_interval;
    612       entropy->next_restart_num++;
    613       entropy->next_restart_num &= 7;
    614     }
    615     entropy->restarts_to_go--;
    616   }
    617 
    618   return TRUE;
    619 }
    620 
    621 
    622 /*
    623  * MCU encoding for AC initial scan (either spectral selection,
    624  * or first pass of successive approximation).
    625  */
    626 
    627 METHODDEF(boolean)
    628 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    629 {
    630   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    631   register int temp, temp2;
    632   register int nbits;
    633   register int r, k;
    634   int Se, Al;
    635   const int * natural_order;
    636   JBLOCKROW block;
    637 
    638   entropy->next_output_byte = cinfo->dest->next_output_byte;
    639   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    640 
    641   /* Emit restart marker if needed */
    642   if (cinfo->restart_interval)
    643     if (entropy->restarts_to_go == 0)
    644       emit_restart_e(entropy, entropy->next_restart_num);
    645 
    646   Se = cinfo->Se;
    647   Al = cinfo->Al;
    648   natural_order = cinfo->natural_order;
    649 
    650   /* Encode the MCU data block */
    651   block = MCU_data[0];
    652 
    653   /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
    654 
    655   r = 0;			/* r = run length of zeros */
    656 
    657   for (k = cinfo->Ss; k <= Se; k++) {
    658     if ((temp = (*block)[natural_order[k]]) == 0) {
    659       r++;
    660       continue;
    661     }
    662     /* We must apply the point transform by Al.  For AC coefficients this
    663      * is an integer division with rounding towards 0.  To do this portably
    664      * in C, we shift after obtaining the absolute value; so the code is
    665      * interwoven with finding the abs value (temp) and output bits (temp2).
    666      */
    667     if (temp < 0) {
    668       temp = -temp;		/* temp is abs value of input */
    669       temp >>= Al;		/* apply the point transform */
    670       /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
    671       temp2 = ~temp;
    672     } else {
    673       temp >>= Al;		/* apply the point transform */
    674       temp2 = temp;
    675     }
    676     /* Watch out for case that nonzero coef is zero after point transform */
    677     if (temp == 0) {
    678       r++;
    679       continue;
    680     }
    681 
    682     /* Emit any pending EOBRUN */
    683     if (entropy->EOBRUN > 0)
    684       emit_eobrun(entropy);
    685     /* if run length > 15, must emit special run-length-16 codes (0xF0) */
    686     while (r > 15) {
    687       emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
    688       r -= 16;
    689     }
    690 
    691     /* Find the number of bits needed for the magnitude of the coefficient */
    692     nbits = 1;			/* there must be at least one 1 bit */
    693     while ((temp >>= 1))
    694       nbits++;
    695     /* Check for out-of-range coefficient values */
    696     if (nbits > MAX_COEF_BITS)
    697       ERREXIT(cinfo, JERR_BAD_DCT_COEF);
    698 
    699     /* Count/emit Huffman symbol for run length / number of bits */
    700     emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
    701 
    702     /* Emit that number of bits of the value, if positive, */
    703     /* or the complement of its magnitude, if negative. */
    704     emit_bits_e(entropy, (unsigned int) temp2, nbits);
    705 
    706     r = 0;			/* reset zero run length */
    707   }
    708 
    709   if (r > 0) {			/* If there are trailing zeroes, */
    710     entropy->EOBRUN++;		/* count an EOB */
    711     if (entropy->EOBRUN == 0x7FFF)
    712       emit_eobrun(entropy);	/* force it out to avoid overflow */
    713   }
    714 
    715   cinfo->dest->next_output_byte = entropy->next_output_byte;
    716   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    717 
    718   /* Update restart-interval state too */
    719   if (cinfo->restart_interval) {
    720     if (entropy->restarts_to_go == 0) {
    721       entropy->restarts_to_go = cinfo->restart_interval;
    722       entropy->next_restart_num++;
    723       entropy->next_restart_num &= 7;
    724     }
    725     entropy->restarts_to_go--;
    726   }
    727 
    728   return TRUE;
    729 }
    730 
    731 
    732 /*
    733  * MCU encoding for DC successive approximation refinement scan.
    734  * Note: we assume such scans can be multi-component, although the spec
    735  * is not very clear on the point.
    736  */
    737 
    738 METHODDEF(boolean)
    739 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    740 {
    741   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    742   register int temp;
    743   int blkn;
    744   int Al = cinfo->Al;
    745   JBLOCKROW block;
    746 
    747   entropy->next_output_byte = cinfo->dest->next_output_byte;
    748   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    749 
    750   /* Emit restart marker if needed */
    751   if (cinfo->restart_interval)
    752     if (entropy->restarts_to_go == 0)
    753       emit_restart_e(entropy, entropy->next_restart_num);
    754 
    755   /* Encode the MCU data blocks */
    756   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    757     block = MCU_data[blkn];
    758 
    759     /* We simply emit the Al'th bit of the DC coefficient value. */
    760     temp = (*block)[0];
    761     emit_bits_e(entropy, (unsigned int) (temp >> Al), 1);
    762   }
    763 
    764   cinfo->dest->next_output_byte = entropy->next_output_byte;
    765   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    766 
    767   /* Update restart-interval state too */
    768   if (cinfo->restart_interval) {
    769     if (entropy->restarts_to_go == 0) {
    770       entropy->restarts_to_go = cinfo->restart_interval;
    771       entropy->next_restart_num++;
    772       entropy->next_restart_num &= 7;
    773     }
    774     entropy->restarts_to_go--;
    775   }
    776 
    777   return TRUE;
    778 }
    779 
    780 
    781 /*
    782  * MCU encoding for AC successive approximation refinement scan.
    783  */
    784 
    785 METHODDEF(boolean)
    786 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    787 {
    788   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    789   register int temp;
    790   register int r, k;
    791   int EOB;
    792   char *BR_buffer;
    793   unsigned int BR;
    794   int Se, Al;
    795   const int * natural_order;
    796   JBLOCKROW block;
    797   int absvalues[DCTSIZE2];
    798 
    799   entropy->next_output_byte = cinfo->dest->next_output_byte;
    800   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    801 
    802   /* Emit restart marker if needed */
    803   if (cinfo->restart_interval)
    804     if (entropy->restarts_to_go == 0)
    805       emit_restart_e(entropy, entropy->next_restart_num);
    806 
    807   Se = cinfo->Se;
    808   Al = cinfo->Al;
    809   natural_order = cinfo->natural_order;
    810 
    811   /* Encode the MCU data block */
    812   block = MCU_data[0];
    813 
    814   /* It is convenient to make a pre-pass to determine the transformed
    815    * coefficients' absolute values and the EOB position.
    816    */
    817   EOB = 0;
    818   for (k = cinfo->Ss; k <= Se; k++) {
    819     temp = (*block)[natural_order[k]];
    820     /* We must apply the point transform by Al.  For AC coefficients this
    821      * is an integer division with rounding towards 0.  To do this portably
    822      * in C, we shift after obtaining the absolute value.
    823      */
    824     if (temp < 0)
    825       temp = -temp;		/* temp is abs value of input */
    826     temp >>= Al;		/* apply the point transform */
    827     absvalues[k] = temp;	/* save abs value for main pass */
    828     if (temp == 1)
    829       EOB = k;			/* EOB = index of last newly-nonzero coef */
    830   }
    831 
    832   /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
    833 
    834   r = 0;			/* r = run length of zeros */
    835   BR = 0;			/* BR = count of buffered bits added now */
    836   BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
    837 
    838   for (k = cinfo->Ss; k <= Se; k++) {
    839     if ((temp = absvalues[k]) == 0) {
    840       r++;
    841       continue;
    842     }
    843 
    844     /* Emit any required ZRLs, but not if they can be folded into EOB */
    845     while (r > 15 && k <= EOB) {
    846       /* emit any pending EOBRUN and the BE correction bits */
    847       emit_eobrun(entropy);
    848       /* Emit ZRL */
    849       emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
    850       r -= 16;
    851       /* Emit buffered correction bits that must be associated with ZRL */
    852       emit_buffered_bits(entropy, BR_buffer, BR);
    853       BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
    854       BR = 0;
    855     }
    856 
    857     /* If the coef was previously nonzero, it only needs a correction bit.
    858      * NOTE: a straight translation of the spec's figure G.7 would suggest
    859      * that we also need to test r > 15.  But if r > 15, we can only get here
    860      * if k > EOB, which implies that this coefficient is not 1.
    861      */
    862     if (temp > 1) {
    863       /* The correction bit is the next bit of the absolute value. */
    864       BR_buffer[BR++] = (char) (temp & 1);
    865       continue;
    866     }
    867 
    868     /* Emit any pending EOBRUN and the BE correction bits */
    869     emit_eobrun(entropy);
    870 
    871     /* Count/emit Huffman symbol for run length / number of bits */
    872     emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
    873 
    874     /* Emit output bit for newly-nonzero coef */
    875     temp = ((*block)[natural_order[k]] < 0) ? 0 : 1;
    876     emit_bits_e(entropy, (unsigned int) temp, 1);
    877 
    878     /* Emit buffered correction bits that must be associated with this code */
    879     emit_buffered_bits(entropy, BR_buffer, BR);
    880     BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
    881     BR = 0;
    882     r = 0;			/* reset zero run length */
    883   }
    884 
    885   if (r > 0 || BR > 0) {	/* If there are trailing zeroes, */
    886     entropy->EOBRUN++;		/* count an EOB */
    887     entropy->BE += BR;		/* concat my correction bits to older ones */
    888     /* We force out the EOB if we risk either:
    889      * 1. overflow of the EOB counter;
    890      * 2. overflow of the correction bit buffer during the next MCU.
    891      */
    892     if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
    893       emit_eobrun(entropy);
    894   }
    895 
    896   cinfo->dest->next_output_byte = entropy->next_output_byte;
    897   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    898 
    899   /* Update restart-interval state too */
    900   if (cinfo->restart_interval) {
    901     if (entropy->restarts_to_go == 0) {
    902       entropy->restarts_to_go = cinfo->restart_interval;
    903       entropy->next_restart_num++;
    904       entropy->next_restart_num &= 7;
    905     }
    906     entropy->restarts_to_go--;
    907   }
    908 
    909   return TRUE;
    910 }
    911 
    912 
    913 /* Encode a single block's worth of coefficients */
    914 
    915 LOCAL(boolean)
    916 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
    917                   c_derived_tbl *dctbl, c_derived_tbl *actbl)
    918 {
    919   register int temp, temp2;
    920   register int nbits;
    921   register int k, r, i;
    922   int Se = state->cinfo->lim_Se;
    923   const int * natural_order = state->cinfo->natural_order;
    924 
    925   /* Encode the DC coefficient difference per section F.1.2.1 */
    926 
    927   temp = temp2 = block[0] - last_dc_val;
    928 
    929   if (temp < 0) {
    930     temp = -temp;		/* temp is abs value of input */
    931     /* For a negative input, want temp2 = bitwise complement of abs(input) */
    932     /* This code assumes we are on a two's complement machine */
    933     temp2--;
    934   }
    935 
    936   /* Find the number of bits needed for the magnitude of the coefficient */
    937   nbits = 0;
    938   while (temp) {
    939     nbits++;
    940     temp >>= 1;
    941   }
    942   /* Check for out-of-range coefficient values.
    943    * Since we're encoding a difference, the range limit is twice as much.
    944    */
    945   if (nbits > MAX_COEF_BITS+1)
    946     ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
    947 
    948   /* Emit the Huffman-coded symbol for the number of bits */
    949   if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
    950     return FALSE;
    951 
    952   /* Emit that number of bits of the value, if positive, */
    953   /* or the complement of its magnitude, if negative. */
    954   if (nbits)			/* emit_bits rejects calls with size 0 */
    955     if (! emit_bits_s(state, (unsigned int) temp2, nbits))
    956       return FALSE;
    957 
    958   /* Encode the AC coefficients per section F.1.2.2 */
    959 
    960   r = 0;			/* r = run length of zeros */
    961 
    962   for (k = 1; k <= Se; k++) {
    963     if ((temp = block[natural_order[k]]) == 0) {
    964       r++;
    965     } else {
    966       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
    967       while (r > 15) {
    968         if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
    969           return FALSE;
    970         r -= 16;
    971       }
    972 
    973       temp2 = temp;
    974       if (temp < 0) {
    975         temp = -temp;		/* temp is abs value of input */
    976         /* This code assumes we are on a two's complement machine */
    977         temp2--;
    978       }
    979 
    980       /* Find the number of bits needed for the magnitude of the coefficient */
    981       nbits = 1;		/* there must be at least one 1 bit */
    982       while ((temp >>= 1))
    983         nbits++;
    984       /* Check for out-of-range coefficient values */
    985       if (nbits > MAX_COEF_BITS)
    986         ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
    987 
    988       /* Emit Huffman symbol for run length / number of bits */
    989       i = (r << 4) + nbits;
    990       if (! emit_bits_s(state, actbl->ehufco[i], actbl->ehufsi[i]))
    991         return FALSE;
    992 
    993       /* Emit that number of bits of the value, if positive, */
    994       /* or the complement of its magnitude, if negative. */
    995       if (! emit_bits_s(state, (unsigned int) temp2, nbits))
    996         return FALSE;
    997 
    998       r = 0;
    999     }
   1000   }
   1001 
   1002   /* If the last coef(s) were zero, emit an end-of-block code */
   1003   if (r > 0)
   1004     if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0]))
   1005       return FALSE;
   1006 
   1007   return TRUE;
   1008 }
   1009 
   1010 
   1011 /*
   1012  * Encode and output one MCU's worth of Huffman-compressed coefficients.
   1013  */
   1014 
   1015 METHODDEF(boolean)
   1016 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
   1017 {
   1018   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
   1019   working_state state;
   1020   int blkn, ci;
   1021   jpeg_component_info * compptr;
   1022 
   1023   /* Load up working state */
   1024   state.next_output_byte = cinfo->dest->next_output_byte;
   1025   state.free_in_buffer = cinfo->dest->free_in_buffer;
   1026   ASSIGN_STATE(state.cur, entropy->saved);
   1027   state.cinfo = cinfo;
   1028 
   1029   /* Emit restart marker if needed */
   1030   if (cinfo->restart_interval) {
   1031     if (entropy->restarts_to_go == 0)
   1032       if (! emit_restart_s(&state, entropy->next_restart_num))
   1033         return FALSE;
   1034   }
   1035 
   1036   /* Encode the MCU data blocks */
   1037   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
   1038     ci = cinfo->MCU_membership[blkn];
   1039     compptr = cinfo->cur_comp_info[ci];
   1040     if (! encode_one_block(&state,
   1041                            MCU_data[blkn][0], state.cur.last_dc_val[ci],
   1042                            entropy->dc_derived_tbls[compptr->dc_tbl_no],
   1043                            entropy->ac_derived_tbls[compptr->ac_tbl_no]))
   1044       return FALSE;
   1045     /* Update last_dc_val */
   1046     state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
   1047   }
   1048 
   1049   /* Completed MCU, so update state */
   1050   cinfo->dest->next_output_byte = state.next_output_byte;
   1051   cinfo->dest->free_in_buffer = state.free_in_buffer;
   1052   ASSIGN_STATE(entropy->saved, state.cur);
   1053 
   1054   /* Update restart-interval state too */
   1055   if (cinfo->restart_interval) {
   1056     if (entropy->restarts_to_go == 0) {
   1057       entropy->restarts_to_go = cinfo->restart_interval;
   1058       entropy->next_restart_num++;
   1059       entropy->next_restart_num &= 7;
   1060     }
   1061     entropy->restarts_to_go--;
   1062   }
   1063 
   1064   return TRUE;
   1065 }
   1066 
   1067 
   1068 /*
   1069  * Finish up at the end of a Huffman-compressed scan.
   1070  */
   1071 
   1072 METHODDEF(void)
   1073 finish_pass_huff (j_compress_ptr cinfo)
   1074 {
   1075   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
   1076   working_state state;
   1077 
   1078   if (cinfo->progressive_mode) {
   1079     entropy->next_output_byte = cinfo->dest->next_output_byte;
   1080     entropy->free_in_buffer = cinfo->dest->free_in_buffer;
   1081 
   1082     /* Flush out any buffered data */
   1083     emit_eobrun(entropy);
   1084     flush_bits_e(entropy);
   1085 
   1086     cinfo->dest->next_output_byte = entropy->next_output_byte;
   1087     cinfo->dest->free_in_buffer = entropy->free_in_buffer;
   1088   } else {
   1089     /* Load up working state ... flush_bits needs it */
   1090     state.next_output_byte = cinfo->dest->next_output_byte;
   1091     state.free_in_buffer = cinfo->dest->free_in_buffer;
   1092     ASSIGN_STATE(state.cur, entropy->saved);
   1093     state.cinfo = cinfo;
   1094 
   1095     /* Flush out the last data */
   1096     if (! flush_bits_s(&state))
   1097       ERREXIT(cinfo, JERR_CANT_SUSPEND);
   1098 
   1099     /* Update state */
   1100     cinfo->dest->next_output_byte = state.next_output_byte;
   1101     cinfo->dest->free_in_buffer = state.free_in_buffer;
   1102     ASSIGN_STATE(entropy->saved, state.cur);
   1103   }
   1104 }
   1105 
   1106 
   1107 /*
   1108  * Huffman coding optimization.
   1109  *
   1110  * We first scan the supplied data and count the number of uses of each symbol
   1111  * that is to be Huffman-coded. (This process MUST agree with the code above.)
   1112  * Then we build a Huffman coding tree for the observed counts.
   1113  * Symbols which are not needed at all for the particular image are not
   1114  * assigned any code, which saves space in the DHT marker as well as in
   1115  * the compressed data.
   1116  */
   1117 
   1118 
   1119 /* Process a single block's worth of coefficients */
   1120 
   1121 LOCAL(void)
   1122 htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
   1123                  long dc_counts[], long ac_counts[])
   1124 {
   1125   register int temp;
   1126   register int nbits;
   1127   register int k, r;
   1128   int Se = cinfo->lim_Se;
   1129   const int * natural_order = cinfo->natural_order;
   1130 
   1131   /* Encode the DC coefficient difference per section F.1.2.1 */
   1132 
   1133   temp = block[0] - last_dc_val;
   1134   if (temp < 0)
   1135     temp = -temp;
   1136 
   1137   /* Find the number of bits needed for the magnitude of the coefficient */
   1138   nbits = 0;
   1139   while (temp) {
   1140     nbits++;
   1141     temp >>= 1;
   1142   }
   1143   /* Check for out-of-range coefficient values.
   1144    * Since we're encoding a difference, the range limit is twice as much.
   1145    */
   1146   if (nbits > MAX_COEF_BITS+1)
   1147     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
   1148 
   1149   /* Count the Huffman symbol for the number of bits */
   1150   dc_counts[nbits]++;
   1151 
   1152   /* Encode the AC coefficients per section F.1.2.2 */
   1153 
   1154   r = 0;			/* r = run length of zeros */
   1155 
   1156   for (k = 1; k <= Se; k++) {
   1157     if ((temp = block[natural_order[k]]) == 0) {
   1158       r++;
   1159     } else {
   1160       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
   1161       while (r > 15) {
   1162         ac_counts[0xF0]++;
   1163         r -= 16;
   1164       }
   1165 
   1166       /* Find the number of bits needed for the magnitude of the coefficient */
   1167       if (temp < 0)
   1168         temp = -temp;
   1169 
   1170       /* Find the number of bits needed for the magnitude of the coefficient */
   1171       nbits = 1;		/* there must be at least one 1 bit */
   1172       while ((temp >>= 1))
   1173         nbits++;
   1174       /* Check for out-of-range coefficient values */
   1175       if (nbits > MAX_COEF_BITS)
   1176         ERREXIT(cinfo, JERR_BAD_DCT_COEF);
   1177 
   1178       /* Count Huffman symbol for run length / number of bits */
   1179       ac_counts[(r << 4) + nbits]++;
   1180 
   1181       r = 0;
   1182     }
   1183   }
   1184 
   1185   /* If the last coef(s) were zero, emit an end-of-block code */
   1186   if (r > 0)
   1187     ac_counts[0]++;
   1188 }
   1189 
   1190 
   1191 /*
   1192  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
   1193  * No data is actually output, so no suspension return is possible.
   1194  */
   1195 
   1196 METHODDEF(boolean)
   1197 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
   1198 {
   1199   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
   1200   int blkn, ci;
   1201   jpeg_component_info * compptr;
   1202 
   1203   /* Take care of restart intervals if needed */
   1204   if (cinfo->restart_interval) {
   1205     if (entropy->restarts_to_go == 0) {
   1206       /* Re-initialize DC predictions to 0 */
   1207       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
   1208         entropy->saved.last_dc_val[ci] = 0;
   1209       /* Update restart state */
   1210       entropy->restarts_to_go = cinfo->restart_interval;
   1211     }
   1212     entropy->restarts_to_go--;
   1213   }
   1214 
   1215   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
   1216     ci = cinfo->MCU_membership[blkn];
   1217     compptr = cinfo->cur_comp_info[ci];
   1218     htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
   1219                     entropy->dc_count_ptrs[compptr->dc_tbl_no],
   1220                     entropy->ac_count_ptrs[compptr->ac_tbl_no]);
   1221     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
   1222   }
   1223 
   1224   return TRUE;
   1225 }
   1226 
   1227 
   1228 /*
   1229  * Generate the best Huffman code table for the given counts, fill htbl.
   1230  *
   1231  * The JPEG standard requires that no symbol be assigned a codeword of all
   1232  * one bits (so that padding bits added at the end of a compressed segment
   1233  * can't look like a valid code).  Because of the canonical ordering of
   1234  * codewords, this just means that there must be an unused slot in the
   1235  * longest codeword length category.  Section K.2 of the JPEG spec suggests
   1236  * reserving such a slot by pretending that symbol 256 is a valid symbol
   1237  * with count 1.  In theory that's not optimal; giving it count zero but
   1238  * including it in the symbol set anyway should give a better Huffman code.
   1239  * But the theoretically better code actually seems to come out worse in
   1240  * practice, because it produces more all-ones bytes (which incur stuffed
   1241  * zero bytes in the final file).  In any case the difference is tiny.
   1242  *
   1243  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
   1244  * If some symbols have a very small but nonzero probability, the Huffman tree
   1245  * must be adjusted to meet the code length restriction.  We currently use
   1246  * the adjustment method suggested in JPEG section K.2.  This method is *not*
   1247  * optimal; it may not choose the best possible limited-length code.  But
   1248  * typically only very-low-frequency symbols will be given less-than-optimal
   1249  * lengths, so the code is almost optimal.  Experimental comparisons against
   1250  * an optimal limited-length-code algorithm indicate that the difference is
   1251  * microscopic --- usually less than a hundredth of a percent of total size.
   1252  * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
   1253  */
   1254 
   1255 LOCAL(void)
   1256 jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
   1257 {
   1258 #define MAX_CLEN 32		/* assumed maximum initial code length */
   1259   UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */
   1260   int codesize[257];		/* codesize[k] = code length of symbol k */
   1261   int others[257];		/* next symbol in current branch of tree */
   1262   int c1, c2;
   1263   int p, i, j;
   1264   long v;
   1265 
   1266   /* This algorithm is explained in section K.2 of the JPEG standard */
   1267 
   1268   MEMZERO(bits, SIZEOF(bits));
   1269   MEMZERO(codesize, SIZEOF(codesize));
   1270   for (i = 0; i < 257; i++)
   1271     others[i] = -1;		/* init links to empty */
   1272 
   1273   freq[256] = 1;		/* make sure 256 has a nonzero count */
   1274   /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
   1275    * that no real symbol is given code-value of all ones, because 256
   1276    * will be placed last in the largest codeword category.
   1277    */
   1278 
   1279   /* Huffman's basic algorithm to assign optimal code lengths to symbols */
   1280 
   1281   for (;;) {
   1282     /* Find the smallest nonzero frequency, set c1 = its symbol */
   1283     /* In case of ties, take the larger symbol number */
   1284     c1 = -1;
   1285     v = 1000000000L;
   1286     for (i = 0; i <= 256; i++) {
   1287       if (freq[i] && freq[i] <= v) {
   1288         v = freq[i];
   1289         c1 = i;
   1290       }
   1291     }
   1292 
   1293     /* Find the next smallest nonzero frequency, set c2 = its symbol */
   1294     /* In case of ties, take the larger symbol number */
   1295     c2 = -1;
   1296     v = 1000000000L;
   1297     for (i = 0; i <= 256; i++) {
   1298       if (freq[i] && freq[i] <= v && i != c1) {
   1299         v = freq[i];
   1300         c2 = i;
   1301       }
   1302     }
   1303 
   1304     /* Done if we've merged everything into one frequency */
   1305     if (c2 < 0)
   1306       break;
   1307 
   1308     /* Else merge the two counts/trees */
   1309     freq[c1] += freq[c2];
   1310     freq[c2] = 0;
   1311 
   1312     /* Increment the codesize of everything in c1's tree branch */
   1313     codesize[c1]++;
   1314     while (others[c1] >= 0) {
   1315       c1 = others[c1];
   1316       codesize[c1]++;
   1317     }
   1318 
   1319     others[c1] = c2;		/* chain c2 onto c1's tree branch */
   1320 
   1321     /* Increment the codesize of everything in c2's tree branch */
   1322     codesize[c2]++;
   1323     while (others[c2] >= 0) {
   1324       c2 = others[c2];
   1325       codesize[c2]++;
   1326     }
   1327   }
   1328 
   1329   /* Now count the number of symbols of each code length */
   1330   for (i = 0; i <= 256; i++) {
   1331     if (codesize[i]) {
   1332       /* The JPEG standard seems to think that this can't happen, */
   1333       /* but I'm paranoid... */
   1334       if (codesize[i] > MAX_CLEN)
   1335         ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
   1336 
   1337       bits[codesize[i]]++;
   1338     }
   1339   }
   1340 
   1341   /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
   1342    * Huffman procedure assigned any such lengths, we must adjust the coding.
   1343    * Here is what the JPEG spec says about how this next bit works:
   1344    * Since symbols are paired for the longest Huffman code, the symbols are
   1345    * removed from this length category two at a time.  The prefix for the pair
   1346    * (which is one bit shorter) is allocated to one of the pair; then,
   1347    * skipping the BITS entry for that prefix length, a code word from the next
   1348    * shortest nonzero BITS entry is converted into a prefix for two code words
   1349    * one bit longer.
   1350    */
   1351 
   1352   for (i = MAX_CLEN; i > 16; i--) {
   1353     while (bits[i] > 0) {
   1354       j = i - 2;		/* find length of new prefix to be used */
   1355       while (bits[j] == 0)
   1356         j--;
   1357 
   1358       bits[i] -= 2;		/* remove two symbols */
   1359       bits[i-1]++;		/* one goes in this length */
   1360       bits[j+1] += 2;		/* two new symbols in this length */
   1361       bits[j]--;		/* symbol of this length is now a prefix */
   1362     }
   1363   }
   1364 
   1365   /* Remove the count for the pseudo-symbol 256 from the largest codelength */
   1366   while (bits[i] == 0)		/* find largest codelength still in use */
   1367     i--;
   1368   bits[i]--;
   1369 
   1370   /* Return final symbol counts (only for lengths 0..16) */
   1371   MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
   1372 
   1373   /* Return a list of the symbols sorted by code length */
   1374   /* It's not real clear to me why we don't need to consider the codelength
   1375    * changes made above, but the JPEG spec seems to think this works.
   1376    */
   1377   p = 0;
   1378   for (i = 1; i <= MAX_CLEN; i++) {
   1379     for (j = 0; j <= 255; j++) {
   1380       if (codesize[j] == i) {
   1381         htbl->huffval[p] = (UINT8) j;
   1382         p++;
   1383       }
   1384     }
   1385   }
   1386 
   1387   /* Set sent_table FALSE so updated table will be written to JPEG file. */
   1388   htbl->sent_table = FALSE;
   1389 }
   1390 
   1391 
   1392 /*
   1393  * Finish up a statistics-gathering pass and create the new Huffman tables.
   1394  */
   1395 
   1396 METHODDEF(void)
   1397 finish_pass_gather (j_compress_ptr cinfo)
   1398 {
   1399   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
   1400   int ci, tbl;
   1401   jpeg_component_info * compptr;
   1402   JHUFF_TBL **htblptr;
   1403   boolean did_dc[NUM_HUFF_TBLS];
   1404   boolean did_ac[NUM_HUFF_TBLS];
   1405 
   1406   /* It's important not to apply jpeg_gen_optimal_table more than once
   1407    * per table, because it clobbers the input frequency counts!
   1408    */
   1409   if (cinfo->progressive_mode)
   1410     /* Flush out buffered data (all we care about is counting the EOB symbol) */
   1411     emit_eobrun(entropy);
   1412 
   1413   MEMZERO(did_dc, SIZEOF(did_dc));
   1414   MEMZERO(did_ac, SIZEOF(did_ac));
   1415 
   1416   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
   1417     compptr = cinfo->cur_comp_info[ci];
   1418     /* DC needs no table for refinement scan */
   1419     if (cinfo->Ss == 0 && cinfo->Ah == 0) {
   1420       tbl = compptr->dc_tbl_no;
   1421       if (! did_dc[tbl]) {
   1422         htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
   1423         if (*htblptr == NULL)
   1424           *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
   1425         jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]);
   1426         did_dc[tbl] = TRUE;
   1427       }
   1428     }
   1429     /* AC needs no table when not present */
   1430     if (cinfo->Se) {
   1431       tbl = compptr->ac_tbl_no;
   1432       if (! did_ac[tbl]) {
   1433         htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
   1434         if (*htblptr == NULL)
   1435           *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
   1436         jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]);
   1437         did_ac[tbl] = TRUE;
   1438       }
   1439     }
   1440   }
   1441 }
   1442 
   1443 
   1444 /*
   1445  * Initialize for a Huffman-compressed scan.
   1446  * If gather_statistics is TRUE, we do not output anything during the scan,
   1447  * just count the Huffman symbols used and generate Huffman code tables.
   1448  */
   1449 
   1450 METHODDEF(void)
   1451 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
   1452 {
   1453   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
   1454   int ci, tbl;
   1455   jpeg_component_info * compptr;
   1456 
   1457   if (gather_statistics)
   1458     entropy->pub.finish_pass = finish_pass_gather;
   1459   else
   1460     entropy->pub.finish_pass = finish_pass_huff;
   1461 
   1462   if (cinfo->progressive_mode) {
   1463     entropy->cinfo = cinfo;
   1464     entropy->gather_statistics = gather_statistics;
   1465 
   1466     /* We assume jcmaster.c already validated the scan parameters. */
   1467 
   1468     /* Select execution routine */
   1469     if (cinfo->Ah == 0) {
   1470       if (cinfo->Ss == 0)
   1471         entropy->pub.encode_mcu = encode_mcu_DC_first;
   1472       else
   1473         entropy->pub.encode_mcu = encode_mcu_AC_first;
   1474     } else {
   1475       if (cinfo->Ss == 0)
   1476         entropy->pub.encode_mcu = encode_mcu_DC_refine;
   1477       else {
   1478         entropy->pub.encode_mcu = encode_mcu_AC_refine;
   1479         /* AC refinement needs a correction bit buffer */
   1480         if (entropy->bit_buffer == NULL)
   1481           entropy->bit_buffer = (char *)
   1482             (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   1483                                         MAX_CORR_BITS * SIZEOF(char));
   1484       }
   1485     }
   1486 
   1487     /* Initialize AC stuff */
   1488     entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no;
   1489     entropy->EOBRUN = 0;
   1490     entropy->BE = 0;
   1491   } else {
   1492     if (gather_statistics)
   1493       entropy->pub.encode_mcu = encode_mcu_gather;
   1494     else
   1495       entropy->pub.encode_mcu = encode_mcu_huff;
   1496   }
   1497 
   1498   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
   1499     compptr = cinfo->cur_comp_info[ci];
   1500     /* DC needs no table for refinement scan */
   1501     if (cinfo->Ss == 0 && cinfo->Ah == 0) {
   1502       tbl = compptr->dc_tbl_no;
   1503       if (gather_statistics) {
   1504         /* Check for invalid table index */
   1505         /* (make_c_derived_tbl does this in the other path) */
   1506         if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
   1507           ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
   1508         /* Allocate and zero the statistics tables */
   1509         /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
   1510         if (entropy->dc_count_ptrs[tbl] == NULL)
   1511           entropy->dc_count_ptrs[tbl] = (long *)
   1512             (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   1513                                         257 * SIZEOF(long));
   1514         MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long));
   1515       } else {
   1516         /* Compute derived values for Huffman tables */
   1517         /* We may do this more than once for a table, but it's not expensive */
   1518         jpeg_make_c_derived_tbl(cinfo, TRUE, tbl,
   1519                                 & entropy->dc_derived_tbls[tbl]);
   1520       }
   1521       /* Initialize DC predictions to 0 */
   1522       entropy->saved.last_dc_val[ci] = 0;
   1523     }
   1524     /* AC needs no table when not present */
   1525     if (cinfo->Se) {
   1526       tbl = compptr->ac_tbl_no;
   1527       if (gather_statistics) {
   1528         if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
   1529           ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
   1530         if (entropy->ac_count_ptrs[tbl] == NULL)
   1531           entropy->ac_count_ptrs[tbl] = (long *)
   1532             (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   1533                                         257 * SIZEOF(long));
   1534         MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long));
   1535       } else {
   1536         jpeg_make_c_derived_tbl(cinfo, FALSE, tbl,
   1537                                 & entropy->ac_derived_tbls[tbl]);
   1538       }
   1539     }
   1540   }
   1541 
   1542   /* Initialize bit buffer to empty */
   1543   entropy->saved.put_buffer = 0;
   1544   entropy->saved.put_bits = 0;
   1545 
   1546   /* Initialize restart stuff */
   1547   entropy->restarts_to_go = cinfo->restart_interval;
   1548   entropy->next_restart_num = 0;
   1549 }
   1550 
   1551 
   1552 /*
   1553  * Module initialization routine for Huffman entropy encoding.
   1554  */
   1555 
   1556 GLOBAL(void)
   1557 jinit_huff_encoder (j_compress_ptr cinfo)
   1558 {
   1559   huff_entropy_ptr entropy;
   1560   int i;
   1561 
   1562   entropy = (huff_entropy_ptr)
   1563     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   1564                                 SIZEOF(huff_entropy_encoder));
   1565   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
   1566   entropy->pub.start_pass = start_pass_huff;
   1567 
   1568   /* Mark tables unallocated */
   1569   for (i = 0; i < NUM_HUFF_TBLS; i++) {
   1570     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
   1571     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
   1572   }
   1573 
   1574   if (cinfo->progressive_mode)
   1575     entropy->bit_buffer = NULL;	/* needed only in AC refinement scan */
   1576 }
   1577