Home | History | Annotate | Download | only in libjpeg
      1 /*
      2  * jdcoefct.c
      3  *
      4  * Copyright (C) 1994-1997, Thomas G. Lane.
      5  * Modified 2002-2011 by Guido Vollbeding.
      6  * This file is part of the Independent JPEG Group's software.
      7  * For conditions of distribution and use, see the accompanying README file.
      8  *
      9  * This file contains the coefficient buffer controller for decompression.
     10  * This controller is the top level of the JPEG decompressor proper.
     11  * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
     12  *
     13  * In buffered-image mode, this controller is the interface between
     14  * input-oriented processing and output-oriented processing.
     15  * Also, the input side (only) is used when reading a file for transcoding.
     16  */
     17 
     18 #define JPEG_INTERNALS
     19 #include "jinclude.h"
     20 #include "jpeglib.h"
     21 
     22 /* Block smoothing is only applicable for progressive JPEG, so: */
     23 #ifndef D_PROGRESSIVE_SUPPORTED
     24 #undef BLOCK_SMOOTHING_SUPPORTED
     25 #endif
     26 
     27 /* Private buffer controller object */
     28 
     29 typedef struct {
     30   struct jpeg_d_coef_controller pub; /* public fields */
     31 
     32   /* These variables keep track of the current location of the input side. */
     33   /* cinfo->input_iMCU_row is also used for this. */
     34   JDIMENSION MCU_ctr;		/* counts MCUs processed in current row */
     35   int MCU_vert_offset;		/* counts MCU rows within iMCU row */
     36   int MCU_rows_per_iMCU_row;	/* number of such rows needed */
     37 
     38   /* The output side's location is represented by cinfo->output_iMCU_row. */
     39 
     40   /* In single-pass modes, it's sufficient to buffer just one MCU.
     41    * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
     42    * and let the entropy decoder write into that workspace each time.
     43    * (On 80x86, the workspace is FAR even though it's not really very big;
     44    * this is to keep the module interfaces unchanged when a large coefficient
     45    * buffer is necessary.)
     46    * In multi-pass modes, this array points to the current MCU's blocks
     47    * within the virtual arrays; it is used only by the input side.
     48    */
     49   JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
     50 
     51 #ifdef D_MULTISCAN_FILES_SUPPORTED
     52   /* In multi-pass modes, we need a virtual block array for each component. */
     53   jvirt_barray_ptr whole_image[MAX_COMPONENTS];
     54 #endif
     55 
     56 #ifdef BLOCK_SMOOTHING_SUPPORTED
     57   /* When doing block smoothing, we latch coefficient Al values here */
     58   int * coef_bits_latch;
     59 #define SAVED_COEFS  6		/* we save coef_bits[0..5] */
     60 #endif
     61 } my_coef_controller;
     62 
     63 typedef my_coef_controller * my_coef_ptr;
     64 
     65 /* Forward declarations */
     66 METHODDEF(int) decompress_onepass
     67         JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
     68 #ifdef D_MULTISCAN_FILES_SUPPORTED
     69 METHODDEF(int) decompress_data
     70         JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
     71 #endif
     72 #ifdef BLOCK_SMOOTHING_SUPPORTED
     73 LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
     74 METHODDEF(int) decompress_smooth_data
     75         JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
     76 #endif
     77 
     78 
     79 LOCAL(void)
     80 start_iMCU_row (j_decompress_ptr cinfo)
     81 /* Reset within-iMCU-row counters for a new row (input side) */
     82 {
     83   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
     84 
     85   /* In an interleaved scan, an MCU row is the same as an iMCU row.
     86    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
     87    * But at the bottom of the image, process only what's left.
     88    */
     89   if (cinfo->comps_in_scan > 1) {
     90     coef->MCU_rows_per_iMCU_row = 1;
     91   } else {
     92     if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
     93       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
     94     else
     95       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
     96   }
     97 
     98   coef->MCU_ctr = 0;
     99   coef->MCU_vert_offset = 0;
    100 }
    101 
    102 
    103 /*
    104  * Initialize for an input processing pass.
    105  */
    106 
    107 METHODDEF(void)
    108 start_input_pass (j_decompress_ptr cinfo)
    109 {
    110   cinfo->input_iMCU_row = 0;
    111   start_iMCU_row(cinfo);
    112 }
    113 
    114 
    115 /*
    116  * Initialize for an output processing pass.
    117  */
    118 
    119 METHODDEF(void)
    120 start_output_pass (j_decompress_ptr cinfo)
    121 {
    122 #ifdef BLOCK_SMOOTHING_SUPPORTED
    123   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    124 
    125   /* If multipass, check to see whether to use block smoothing on this pass */
    126   if (coef->pub.coef_arrays != NULL) {
    127     if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
    128       coef->pub.decompress_data = decompress_smooth_data;
    129     else
    130       coef->pub.decompress_data = decompress_data;
    131   }
    132 #endif
    133   cinfo->output_iMCU_row = 0;
    134 }
    135 
    136 
    137 /*
    138  * Decompress and return some data in the single-pass case.
    139  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
    140  * Input and output must run in lockstep since we have only a one-MCU buffer.
    141  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
    142  *
    143  * NB: output_buf contains a plane for each component in image,
    144  * which we index according to the component's SOF position.
    145  */
    146 
    147 METHODDEF(int)
    148 decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
    149 {
    150   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    151   JDIMENSION MCU_col_num;	/* index of current MCU within row */
    152   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
    153   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
    154   int blkn, ci, xindex, yindex, yoffset, useful_width;
    155   JSAMPARRAY output_ptr;
    156   JDIMENSION start_col, output_col;
    157   jpeg_component_info *compptr;
    158   inverse_DCT_method_ptr inverse_DCT;
    159 
    160   /* Loop to process as much as one whole iMCU row */
    161   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
    162        yoffset++) {
    163     for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
    164          MCU_col_num++) {
    165       /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
    166       if (cinfo->lim_Se)	/* can bypass in DC only case */
    167         FMEMZERO((void FAR *) coef->MCU_buffer[0],
    168                  (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
    169       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
    170         /* Suspension forced; update state counters and exit */
    171         coef->MCU_vert_offset = yoffset;
    172         coef->MCU_ctr = MCU_col_num;
    173         return JPEG_SUSPENDED;
    174       }
    175       /* Determine where data should go in output_buf and do the IDCT thing.
    176        * We skip dummy blocks at the right and bottom edges (but blkn gets
    177        * incremented past them!).  Note the inner loop relies on having
    178        * allocated the MCU_buffer[] blocks sequentially.
    179        */
    180       blkn = 0;			/* index of current DCT block within MCU */
    181       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    182         compptr = cinfo->cur_comp_info[ci];
    183         /* Don't bother to IDCT an uninteresting component. */
    184         if (! compptr->component_needed) {
    185           blkn += compptr->MCU_blocks;
    186           continue;
    187         }
    188         inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
    189         useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
    190                                                     : compptr->last_col_width;
    191         output_ptr = output_buf[compptr->component_index] +
    192           yoffset * compptr->DCT_v_scaled_size;
    193         start_col = MCU_col_num * compptr->MCU_sample_width;
    194         for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
    195           if (cinfo->input_iMCU_row < last_iMCU_row ||
    196               yoffset+yindex < compptr->last_row_height) {
    197             output_col = start_col;
    198             for (xindex = 0; xindex < useful_width; xindex++) {
    199               (*inverse_DCT) (cinfo, compptr,
    200                               (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
    201                               output_ptr, output_col);
    202               output_col += compptr->DCT_h_scaled_size;
    203             }
    204           }
    205           blkn += compptr->MCU_width;
    206           output_ptr += compptr->DCT_v_scaled_size;
    207         }
    208       }
    209     }
    210     /* Completed an MCU row, but perhaps not an iMCU row */
    211     coef->MCU_ctr = 0;
    212   }
    213   /* Completed the iMCU row, advance counters for next one */
    214   cinfo->output_iMCU_row++;
    215   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
    216     start_iMCU_row(cinfo);
    217     return JPEG_ROW_COMPLETED;
    218   }
    219   /* Completed the scan */
    220   (*cinfo->inputctl->finish_input_pass) (cinfo);
    221   return JPEG_SCAN_COMPLETED;
    222 }
    223 
    224 
    225 /*
    226  * Dummy consume-input routine for single-pass operation.
    227  */
    228 
    229 METHODDEF(int)
    230 dummy_consume_data (j_decompress_ptr cinfo)
    231 {
    232   return JPEG_SUSPENDED;	/* Always indicate nothing was done */
    233 }
    234 
    235 
    236 #ifdef D_MULTISCAN_FILES_SUPPORTED
    237 
    238 /*
    239  * Consume input data and store it in the full-image coefficient buffer.
    240  * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
    241  * ie, v_samp_factor block rows for each component in the scan.
    242  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
    243  */
    244 
    245 METHODDEF(int)
    246 consume_data (j_decompress_ptr cinfo)
    247 {
    248   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    249   JDIMENSION MCU_col_num;	/* index of current MCU within row */
    250   int blkn, ci, xindex, yindex, yoffset;
    251   JDIMENSION start_col;
    252   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
    253   JBLOCKROW buffer_ptr;
    254   jpeg_component_info *compptr;
    255 
    256   /* Align the virtual buffers for the components used in this scan. */
    257   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    258     compptr = cinfo->cur_comp_info[ci];
    259     buffer[ci] = (*cinfo->mem->access_virt_barray)
    260       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
    261        cinfo->input_iMCU_row * compptr->v_samp_factor,
    262        (JDIMENSION) compptr->v_samp_factor, TRUE);
    263     /* Note: entropy decoder expects buffer to be zeroed,
    264      * but this is handled automatically by the memory manager
    265      * because we requested a pre-zeroed array.
    266      */
    267   }
    268 
    269   /* Loop to process one whole iMCU row */
    270   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
    271        yoffset++) {
    272     for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
    273          MCU_col_num++) {
    274       /* Construct list of pointers to DCT blocks belonging to this MCU */
    275       blkn = 0;			/* index of current DCT block within MCU */
    276       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    277         compptr = cinfo->cur_comp_info[ci];
    278         start_col = MCU_col_num * compptr->MCU_width;
    279         for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
    280           buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
    281           for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
    282             coef->MCU_buffer[blkn++] = buffer_ptr++;
    283           }
    284         }
    285       }
    286       /* Try to fetch the MCU. */
    287       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
    288         /* Suspension forced; update state counters and exit */
    289         coef->MCU_vert_offset = yoffset;
    290         coef->MCU_ctr = MCU_col_num;
    291         return JPEG_SUSPENDED;
    292       }
    293     }
    294     /* Completed an MCU row, but perhaps not an iMCU row */
    295     coef->MCU_ctr = 0;
    296   }
    297   /* Completed the iMCU row, advance counters for next one */
    298   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
    299     start_iMCU_row(cinfo);
    300     return JPEG_ROW_COMPLETED;
    301   }
    302   /* Completed the scan */
    303   (*cinfo->inputctl->finish_input_pass) (cinfo);
    304   return JPEG_SCAN_COMPLETED;
    305 }
    306 
    307 
    308 /*
    309  * Decompress and return some data in the multi-pass case.
    310  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
    311  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
    312  *
    313  * NB: output_buf contains a plane for each component in image.
    314  */
    315 
    316 METHODDEF(int)
    317 decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
    318 {
    319   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    320   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
    321   JDIMENSION block_num;
    322   int ci, block_row, block_rows;
    323   JBLOCKARRAY buffer;
    324   JBLOCKROW buffer_ptr;
    325   JSAMPARRAY output_ptr;
    326   JDIMENSION output_col;
    327   jpeg_component_info *compptr;
    328   inverse_DCT_method_ptr inverse_DCT;
    329 
    330   /* Force some input to be done if we are getting ahead of the input. */
    331   while (cinfo->input_scan_number < cinfo->output_scan_number ||
    332          (cinfo->input_scan_number == cinfo->output_scan_number &&
    333           cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
    334     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
    335       return JPEG_SUSPENDED;
    336   }
    337 
    338   /* OK, output from the virtual arrays. */
    339   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    340        ci++, compptr++) {
    341     /* Don't bother to IDCT an uninteresting component. */
    342     if (! compptr->component_needed)
    343       continue;
    344     /* Align the virtual buffer for this component. */
    345     buffer = (*cinfo->mem->access_virt_barray)
    346       ((j_common_ptr) cinfo, coef->whole_image[ci],
    347        cinfo->output_iMCU_row * compptr->v_samp_factor,
    348        (JDIMENSION) compptr->v_samp_factor, FALSE);
    349     /* Count non-dummy DCT block rows in this iMCU row. */
    350     if (cinfo->output_iMCU_row < last_iMCU_row)
    351       block_rows = compptr->v_samp_factor;
    352     else {
    353       /* NB: can't use last_row_height here; it is input-side-dependent! */
    354       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
    355       if (block_rows == 0) block_rows = compptr->v_samp_factor;
    356     }
    357     inverse_DCT = cinfo->idct->inverse_DCT[ci];
    358     output_ptr = output_buf[ci];
    359     /* Loop over all DCT blocks to be processed. */
    360     for (block_row = 0; block_row < block_rows; block_row++) {
    361       buffer_ptr = buffer[block_row];
    362       output_col = 0;
    363       for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
    364         (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
    365                         output_ptr, output_col);
    366         buffer_ptr++;
    367         output_col += compptr->DCT_h_scaled_size;
    368       }
    369       output_ptr += compptr->DCT_v_scaled_size;
    370     }
    371   }
    372 
    373   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
    374     return JPEG_ROW_COMPLETED;
    375   return JPEG_SCAN_COMPLETED;
    376 }
    377 
    378 #endif /* D_MULTISCAN_FILES_SUPPORTED */
    379 
    380 
    381 #ifdef BLOCK_SMOOTHING_SUPPORTED
    382 
    383 /*
    384  * This code applies interblock smoothing as described by section K.8
    385  * of the JPEG standard: the first 5 AC coefficients are estimated from
    386  * the DC values of a DCT block and its 8 neighboring blocks.
    387  * We apply smoothing only for progressive JPEG decoding, and only if
    388  * the coefficients it can estimate are not yet known to full precision.
    389  */
    390 
    391 /* Natural-order array positions of the first 5 zigzag-order coefficients */
    392 #define Q01_POS  1
    393 #define Q10_POS  8
    394 #define Q20_POS  16
    395 #define Q11_POS  9
    396 #define Q02_POS  2
    397 
    398 /*
    399  * Determine whether block smoothing is applicable and safe.
    400  * We also latch the current states of the coef_bits[] entries for the
    401  * AC coefficients; otherwise, if the input side of the decompressor
    402  * advances into a new scan, we might think the coefficients are known
    403  * more accurately than they really are.
    404  */
    405 
    406 LOCAL(boolean)
    407 smoothing_ok (j_decompress_ptr cinfo)
    408 {
    409   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    410   boolean smoothing_useful = FALSE;
    411   int ci, coefi;
    412   jpeg_component_info *compptr;
    413   JQUANT_TBL * qtable;
    414   int * coef_bits;
    415   int * coef_bits_latch;
    416 
    417   if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
    418     return FALSE;
    419 
    420   /* Allocate latch area if not already done */
    421   if (coef->coef_bits_latch == NULL)
    422     coef->coef_bits_latch = (int *)
    423       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    424                                   cinfo->num_components *
    425                                   (SAVED_COEFS * SIZEOF(int)));
    426   coef_bits_latch = coef->coef_bits_latch;
    427 
    428   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    429        ci++, compptr++) {
    430     /* All components' quantization values must already be latched. */
    431     if ((qtable = compptr->quant_table) == NULL)
    432       return FALSE;
    433     /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
    434     if (qtable->quantval[0] == 0 ||
    435         qtable->quantval[Q01_POS] == 0 ||
    436         qtable->quantval[Q10_POS] == 0 ||
    437         qtable->quantval[Q20_POS] == 0 ||
    438         qtable->quantval[Q11_POS] == 0 ||
    439         qtable->quantval[Q02_POS] == 0)
    440       return FALSE;
    441     /* DC values must be at least partly known for all components. */
    442     coef_bits = cinfo->coef_bits[ci];
    443     if (coef_bits[0] < 0)
    444       return FALSE;
    445     /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
    446     for (coefi = 1; coefi <= 5; coefi++) {
    447       coef_bits_latch[coefi] = coef_bits[coefi];
    448       if (coef_bits[coefi] != 0)
    449         smoothing_useful = TRUE;
    450     }
    451     coef_bits_latch += SAVED_COEFS;
    452   }
    453 
    454   return smoothing_useful;
    455 }
    456 
    457 
    458 /*
    459  * Variant of decompress_data for use when doing block smoothing.
    460  */
    461 
    462 METHODDEF(int)
    463 decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
    464 {
    465   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    466   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
    467   JDIMENSION block_num, last_block_column;
    468   int ci, block_row, block_rows, access_rows;
    469   JBLOCKARRAY buffer;
    470   JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
    471   JSAMPARRAY output_ptr;
    472   JDIMENSION output_col;
    473   jpeg_component_info *compptr;
    474   inverse_DCT_method_ptr inverse_DCT;
    475   boolean first_row, last_row;
    476   JBLOCK workspace;
    477   int *coef_bits;
    478   JQUANT_TBL *quanttbl;
    479   INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
    480   int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
    481   int Al, pred;
    482 
    483   /* Force some input to be done if we are getting ahead of the input. */
    484   while (cinfo->input_scan_number <= cinfo->output_scan_number &&
    485          ! cinfo->inputctl->eoi_reached) {
    486     if (cinfo->input_scan_number == cinfo->output_scan_number) {
    487       /* If input is working on current scan, we ordinarily want it to
    488        * have completed the current row.  But if input scan is DC,
    489        * we want it to keep one row ahead so that next block row's DC
    490        * values are up to date.
    491        */
    492       JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
    493       if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
    494         break;
    495     }
    496     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
    497       return JPEG_SUSPENDED;
    498   }
    499 
    500   /* OK, output from the virtual arrays. */
    501   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    502        ci++, compptr++) {
    503     /* Don't bother to IDCT an uninteresting component. */
    504     if (! compptr->component_needed)
    505       continue;
    506     /* Count non-dummy DCT block rows in this iMCU row. */
    507     if (cinfo->output_iMCU_row < last_iMCU_row) {
    508       block_rows = compptr->v_samp_factor;
    509       access_rows = block_rows * 2; /* this and next iMCU row */
    510       last_row = FALSE;
    511     } else {
    512       /* NB: can't use last_row_height here; it is input-side-dependent! */
    513       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
    514       if (block_rows == 0) block_rows = compptr->v_samp_factor;
    515       access_rows = block_rows; /* this iMCU row only */
    516       last_row = TRUE;
    517     }
    518     /* Align the virtual buffer for this component. */
    519     if (cinfo->output_iMCU_row > 0) {
    520       access_rows += compptr->v_samp_factor; /* prior iMCU row too */
    521       buffer = (*cinfo->mem->access_virt_barray)
    522         ((j_common_ptr) cinfo, coef->whole_image[ci],
    523          (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
    524          (JDIMENSION) access_rows, FALSE);
    525       buffer += compptr->v_samp_factor;	/* point to current iMCU row */
    526       first_row = FALSE;
    527     } else {
    528       buffer = (*cinfo->mem->access_virt_barray)
    529         ((j_common_ptr) cinfo, coef->whole_image[ci],
    530          (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
    531       first_row = TRUE;
    532     }
    533     /* Fetch component-dependent info */
    534     coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
    535     quanttbl = compptr->quant_table;
    536     Q00 = quanttbl->quantval[0];
    537     Q01 = quanttbl->quantval[Q01_POS];
    538     Q10 = quanttbl->quantval[Q10_POS];
    539     Q20 = quanttbl->quantval[Q20_POS];
    540     Q11 = quanttbl->quantval[Q11_POS];
    541     Q02 = quanttbl->quantval[Q02_POS];
    542     inverse_DCT = cinfo->idct->inverse_DCT[ci];
    543     output_ptr = output_buf[ci];
    544     /* Loop over all DCT blocks to be processed. */
    545     for (block_row = 0; block_row < block_rows; block_row++) {
    546       buffer_ptr = buffer[block_row];
    547       if (first_row && block_row == 0)
    548         prev_block_row = buffer_ptr;
    549       else
    550         prev_block_row = buffer[block_row-1];
    551       if (last_row && block_row == block_rows-1)
    552         next_block_row = buffer_ptr;
    553       else
    554         next_block_row = buffer[block_row+1];
    555       /* We fetch the surrounding DC values using a sliding-register approach.
    556        * Initialize all nine here so as to do the right thing on narrow pics.
    557        */
    558       DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
    559       DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
    560       DC7 = DC8 = DC9 = (int) next_block_row[0][0];
    561       output_col = 0;
    562       last_block_column = compptr->width_in_blocks - 1;
    563       for (block_num = 0; block_num <= last_block_column; block_num++) {
    564         /* Fetch current DCT block into workspace so we can modify it. */
    565         jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
    566         /* Update DC values */
    567         if (block_num < last_block_column) {
    568           DC3 = (int) prev_block_row[1][0];
    569           DC6 = (int) buffer_ptr[1][0];
    570           DC9 = (int) next_block_row[1][0];
    571         }
    572         /* Compute coefficient estimates per K.8.
    573          * An estimate is applied only if coefficient is still zero,
    574          * and is not known to be fully accurate.
    575          */
    576         /* AC01 */
    577         if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
    578           num = 36 * Q00 * (DC4 - DC6);
    579           if (num >= 0) {
    580             pred = (int) (((Q01<<7) + num) / (Q01<<8));
    581             if (Al > 0 && pred >= (1<<Al))
    582               pred = (1<<Al)-1;
    583           } else {
    584             pred = (int) (((Q01<<7) - num) / (Q01<<8));
    585             if (Al > 0 && pred >= (1<<Al))
    586               pred = (1<<Al)-1;
    587             pred = -pred;
    588           }
    589           workspace[1] = (JCOEF) pred;
    590         }
    591         /* AC10 */
    592         if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
    593           num = 36 * Q00 * (DC2 - DC8);
    594           if (num >= 0) {
    595             pred = (int) (((Q10<<7) + num) / (Q10<<8));
    596             if (Al > 0 && pred >= (1<<Al))
    597               pred = (1<<Al)-1;
    598           } else {
    599             pred = (int) (((Q10<<7) - num) / (Q10<<8));
    600             if (Al > 0 && pred >= (1<<Al))
    601               pred = (1<<Al)-1;
    602             pred = -pred;
    603           }
    604           workspace[8] = (JCOEF) pred;
    605         }
    606         /* AC20 */
    607         if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
    608           num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
    609           if (num >= 0) {
    610             pred = (int) (((Q20<<7) + num) / (Q20<<8));
    611             if (Al > 0 && pred >= (1<<Al))
    612               pred = (1<<Al)-1;
    613           } else {
    614             pred = (int) (((Q20<<7) - num) / (Q20<<8));
    615             if (Al > 0 && pred >= (1<<Al))
    616               pred = (1<<Al)-1;
    617             pred = -pred;
    618           }
    619           workspace[16] = (JCOEF) pred;
    620         }
    621         /* AC11 */
    622         if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
    623           num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
    624           if (num >= 0) {
    625             pred = (int) (((Q11<<7) + num) / (Q11<<8));
    626             if (Al > 0 && pred >= (1<<Al))
    627               pred = (1<<Al)-1;
    628           } else {
    629             pred = (int) (((Q11<<7) - num) / (Q11<<8));
    630             if (Al > 0 && pred >= (1<<Al))
    631               pred = (1<<Al)-1;
    632             pred = -pred;
    633           }
    634           workspace[9] = (JCOEF) pred;
    635         }
    636         /* AC02 */
    637         if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
    638           num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
    639           if (num >= 0) {
    640             pred = (int) (((Q02<<7) + num) / (Q02<<8));
    641             if (Al > 0 && pred >= (1<<Al))
    642               pred = (1<<Al)-1;
    643           } else {
    644             pred = (int) (((Q02<<7) - num) / (Q02<<8));
    645             if (Al > 0 && pred >= (1<<Al))
    646               pred = (1<<Al)-1;
    647             pred = -pred;
    648           }
    649           workspace[2] = (JCOEF) pred;
    650         }
    651         /* OK, do the IDCT */
    652         (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
    653                         output_ptr, output_col);
    654         /* Advance for next column */
    655         DC1 = DC2; DC2 = DC3;
    656         DC4 = DC5; DC5 = DC6;
    657         DC7 = DC8; DC8 = DC9;
    658         buffer_ptr++, prev_block_row++, next_block_row++;
    659         output_col += compptr->DCT_h_scaled_size;
    660       }
    661       output_ptr += compptr->DCT_v_scaled_size;
    662     }
    663   }
    664 
    665   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
    666     return JPEG_ROW_COMPLETED;
    667   return JPEG_SCAN_COMPLETED;
    668 }
    669 
    670 #endif /* BLOCK_SMOOTHING_SUPPORTED */
    671 
    672 
    673 /*
    674  * Initialize coefficient buffer controller.
    675  */
    676 
    677 GLOBAL(void)
    678 jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
    679 {
    680   my_coef_ptr coef;
    681 
    682   coef = (my_coef_ptr)
    683     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    684                                 SIZEOF(my_coef_controller));
    685   cinfo->coef = (struct jpeg_d_coef_controller *) coef;
    686   coef->pub.start_input_pass = start_input_pass;
    687   coef->pub.start_output_pass = start_output_pass;
    688 #ifdef BLOCK_SMOOTHING_SUPPORTED
    689   coef->coef_bits_latch = NULL;
    690 #endif
    691 
    692   /* Create the coefficient buffer. */
    693   if (need_full_buffer) {
    694 #ifdef D_MULTISCAN_FILES_SUPPORTED
    695     /* Allocate a full-image virtual array for each component, */
    696     /* padded to a multiple of samp_factor DCT blocks in each direction. */
    697     /* Note we ask for a pre-zeroed array. */
    698     int ci, access_rows;
    699     jpeg_component_info *compptr;
    700 
    701     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    702          ci++, compptr++) {
    703       access_rows = compptr->v_samp_factor;
    704 #ifdef BLOCK_SMOOTHING_SUPPORTED
    705       /* If block smoothing could be used, need a bigger window */
    706       if (cinfo->progressive_mode)
    707         access_rows *= 3;
    708 #endif
    709       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
    710         ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
    711          (JDIMENSION) jround_up((long) compptr->width_in_blocks,
    712                                 (long) compptr->h_samp_factor),
    713          (JDIMENSION) jround_up((long) compptr->height_in_blocks,
    714                                 (long) compptr->v_samp_factor),
    715          (JDIMENSION) access_rows);
    716     }
    717     coef->pub.consume_data = consume_data;
    718     coef->pub.decompress_data = decompress_data;
    719     coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
    720 #else
    721     ERREXIT(cinfo, JERR_NOT_COMPILED);
    722 #endif
    723   } else {
    724     /* We only need a single-MCU buffer. */
    725     JBLOCKROW buffer;
    726     int i;
    727 
    728     buffer = (JBLOCKROW)
    729       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    730                                   D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
    731     for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
    732       coef->MCU_buffer[i] = buffer + i;
    733     }
    734     if (cinfo->lim_Se == 0)	/* DC only case: want to bypass later */
    735       FMEMZERO((void FAR *) buffer,
    736                (size_t) (D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)));
    737     coef->pub.consume_data = dummy_consume_data;
    738     coef->pub.decompress_data = decompress_onepass;
    739     coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
    740   }
    741 }
    742