1 <?xml version="1.0"?> 2 <!-- 3 14x28 fullbody detector (see the detailed description below). 4 5 ////////////////////////////////////////////////////////////////////////// 6 | Contributors License Agreement 7 | IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 8 | By downloading, copying, installing or using the software you agree 9 | to this license. 10 | If you do not agree to this license, do not download, install, 11 | copy or use the software. 12 | 13 | Copyright (c) 2004, Hannes Kruppa and Bernt Schiele (ETH Zurich, Switzerland). 14 | All rights reserved. 15 | 16 | Redistribution and use in source and binary forms, with or without 17 | modification, are permitted provided that the following conditions are 18 | met: 19 | 20 | * Redistributions of source code must retain the above copyright 21 | notice, this list of conditions and the following disclaimer. 22 | * Redistributions in binary form must reproduce the above 23 | copyright notice, this list of conditions and the following 24 | disclaimer in the documentation and/or other materials provided 25 | with the distribution. 26 | * The name of Contributor may not used to endorse or promote products 27 | derived from this software without specific prior written permission. 28 | 29 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 33 | CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 34 | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 35 | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 36 | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 37 | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 38 | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 39 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Back to 40 | Top 41 ////////////////////////////////////////////////////////////////////////// 42 43 "Haar"-based Detectors For Pedestrian Detection 44 =============================================== 45 by Hannes Kruppa and Bernt Schiele, ETH Zurich, Switzerland 46 47 This archive provides the following three detectors: 48 - upper body detector (most fun, useful in many scenarios!) 49 - lower body detector 50 - full body detector 51 52 These detectors have been successfully applied to pedestrian detection 53 in still images. They can be directly passed as parameters to the 54 program HaarFaceDetect. 55 NOTE: These detectors deal with frontal and backside views but not 56 with side views (also see "Known limitations" below). 57 58 RESEARCHERS: 59 If you are using any of the detectors or involved ideas please cite 60 this paper (available at www.vision.ethz.ch/publications/): 61 62 @InProceedings{Kruppa03-bmvc, 63 author = "Hannes Kruppa, Modesto Castrillon-Santana and Bernt Schiele", 64 title = "Fast and Robust Face Finding via Local Context." 65 booktitle = "Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance" 66 year = "2003", 67 month = "October" 68 } 69 70 COMMERCIAL: 71 If you have any commercial interest in this work please contact 72 hkruppa (a] inf.ethz.ch 73 74 75 ADDITIONAL INFORMATION 76 ====================== 77 Check out the demo movie, e.g. using mplayer or any (Windows/Linux-) player 78 that can play back .mpg movies. 79 Under Linux that's: 80 > ffplay demo.mpg 81 or: 82 > mplayer demo.mpg 83 84 The movie shows a person walking towards the camera in a realistic 85 indoor setting. Using ffplay or mplayer you can pause and continue the 86 movie by pressing the space bar. 87 88 Detections coming from the different detectors are visualized using 89 different line styles: 90 upper body : dotted line 91 lower body : dashed line 92 full body : solid line 93 94 You will notice that successful detections containing the target do 95 not sit tightly on the body but also include some of the background 96 left and right. This is not a bug but accurately reflects the 97 employed training data which also includes portions of the background 98 to ensure proper silhouette representation. If you want to get a 99 feeling for the training data check out the CBCL data set: 100 http://www.ai.mit.edu/projects/cbcl/software-datasets/PedestrianData.html 101 102 There is also a small number of false alarms in this sequence. 103 NOTE: This is per frame detection, not tracking (which is also one of 104 the reasons why it is not mislead by the person's shadow on the back 105 wall). 106 107 On an Intel Xeon 1.7GHz machine the detectors operate at something 108 between 6Hz to 14 Hz (on 352 x 288 frames per second) depending on the 109 detector. The detectors work as well on much lower image resolutions 110 which is always an interesting possibility for speed-ups or 111 "coarse-to-fine" search strategies. 112 113 Additional information e.g. on training parameters, detector 114 combination, detecting other types of objects (e.g. cars) etc. is 115 available in my PhD thesis report (available end of June). Check out 116 www.vision.ethz.ch/kruppa/ 117 118 119 KNOWN LIMITATIONS 120 ================== 121 1) the detectors only support frontal and back views but not sideviews. 122 Sideviews are trickier and it makes a lot of sense to include additional 123 modalities for their detection, e.g. motion information. I recommend 124 Viola and Jones' ICCV 2003 paper if this further interests you. 125 126 2) dont expect these detectors to be as accurate as a frontal face detector. 127 A frontal face as a pattern is pretty distinct with respect to other 128 patterns occuring in the world (i.e. image "background"). This is not so 129 for upper, lower and especially full bodies, because they have to rely 130 on fragile silhouette information rather than internal (facial) features. 131 Still, we found especially the upper body detector to perform amazingly well. 132 In contrast to a face detector these detectors will also work at very low 133 image resolutions 134 135 Acknowledgements 136 ================ 137 Thanks to Martin Spengler, ETH Zurich, for providing the demo movie. 138 --> 139 <opencv_storage> 140 <haarcascade_fullbody type_id="opencv-haar-classifier"> 141 <size>14 28</size> 142 <stages> 143 <_> 144 <!-- stage 0 --> 145 <trees> 146 <_> 147 <!-- tree 0 --> 148 <_> 149 <!-- root node --> 150 <feature> 151 <rects> 152 <_>1 5 12 21 -1.</_> 153 <_>5 5 4 21 3.</_></rects> 154 <tilted>0</tilted></feature> 155 <threshold>-0.0558205693960190</threshold> 156 <left_val>0.5869792103767395</left_val> 157 <right_val>-0.6281142234802246</right_val></_></_> 158 <_> 159 <!-- tree 1 --> 160 <_> 161 <!-- root node --> 162 <feature> 163 <rects> 164 <_>9 2 3 26 -1.</_> 165 <_>9 15 3 13 2.</_></rects> 166 <tilted>0</tilted></feature> 167 <threshold>-0.0388611815869808</threshold> 168 <left_val>-0.7091681957244873</left_val> 169 <right_val>0.2682121098041534</right_val></_></_> 170 <_> 171 <!-- tree 2 --> 172 <_> 173 <!-- root node --> 174 <feature> 175 <rects> 176 <_>1 4 12 23 -1.</_> 177 <_>5 4 4 23 3.</_></rects> 178 <tilted>0</tilted></feature> 179 <threshold>-0.2674087882041931</threshold> 180 <left_val>0.8308296203613281</left_val> 181 <right_val>-0.2259958982467651</right_val></_></_> 182 <_> 183 <!-- tree 3 --> 184 <_> 185 <!-- root node --> 186 <feature> 187 <rects> 188 <_>1 7 12 9 -1.</_> 189 <_>4 7 6 9 2.</_></rects> 190 <tilted>0</tilted></feature> 191 <threshold>0.0964197367429733</threshold> 192 <left_val>-0.1169784963130951</left_val> 193 <right_val>0.8725455999374390</right_val></_></_> 194 <_> 195 <!-- tree 4 --> 196 <_> 197 <!-- root node --> 198 <feature> 199 <rects> 200 <_>3 12 3 16 -1.</_> 201 <_>3 20 3 8 2.</_></rects> 202 <tilted>0</tilted></feature> 203 <threshold>-0.0107987103983760</threshold> 204 <left_val>-0.5721974968910217</left_val> 205 <right_val>0.2532565891742706</right_val></_></_> 206 <_> 207 <!-- tree 5 --> 208 <_> 209 <!-- root node --> 210 <feature> 211 <rects> 212 <_>4 8 6 6 -1.</_> 213 <_>4 11 6 3 2.</_></rects> 214 <tilted>0</tilted></feature> 215 <threshold>0.0113656399771571</threshold> 216 <left_val>0.1965083032846451</left_val> 217 <right_val>-0.7274463772773743</right_val></_></_> 218 <_> 219 <!-- tree 6 --> 220 <_> 221 <!-- root node --> 222 <feature> 223 <rects> 224 <_>1 25 12 3 -1.</_> 225 <_>5 25 4 3 3.</_></rects> 226 <tilted>0</tilted></feature> 227 <threshold>-5.0216919044032693e-004</threshold> 228 <left_val>0.2443515956401825</left_val> 229 <right_val>-0.5197358131408691</right_val></_></_> 230 <_> 231 <!-- tree 7 --> 232 <_> 233 <!-- root node --> 234 <feature> 235 <rects> 236 <_>6 25 8 3 -1.</_> 237 <_>6 25 4 3 2.</_></rects> 238 <tilted>0</tilted></feature> 239 <threshold>-0.0284624807536602</threshold> 240 <left_val>-0.8360729217529297</left_val> 241 <right_val>0.1115804016590118</right_val></_></_> 242 <_> 243 <!-- tree 8 --> 244 <_> 245 <!-- root node --> 246 <feature> 247 <rects> 248 <_>4 2 4 12 -1.</_> 249 <_>4 2 2 6 2.</_> 250 <_>6 8 2 6 2.</_></rects> 251 <tilted>0</tilted></feature> 252 <threshold>1.3473170110955834e-003</threshold> 253 <left_val>-0.3840653896331787</left_val> 254 <right_val>0.2676798999309540</right_val></_></_></trees> 255 <stage_threshold>-1.2288980484008789</stage_threshold> 256 <parent>-1</parent> 257 <next>-1</next></_> 258 <_> 259 <!-- stage 1 --> 260 <trees> 261 <_> 262 <!-- tree 0 --> 263 <_> 264 <!-- root node --> 265 <feature> 266 <rects> 267 <_>3 15 8 11 -1.</_> 268 <_>5 15 4 11 2.</_></rects> 269 <tilted>0</tilted></feature> 270 <threshold>-0.0107432203367352</threshold> 271 <left_val>0.4774732887744904</left_val> 272 <right_val>-0.6239293217658997</right_val></_></_> 273 <_> 274 <!-- tree 1 --> 275 <_> 276 <!-- root node --> 277 <feature> 278 <rects> 279 <_>6 9 6 6 -1.</_> 280 <_>8 9 2 6 3.</_></rects> 281 <tilted>0</tilted></feature> 282 <threshold>-1.3188569573685527e-003</threshold> 283 <left_val>0.2124266028404236</left_val> 284 <right_val>-0.2416270971298218</right_val></_></_> 285 <_> 286 <!-- tree 2 --> 287 <_> 288 <!-- root node --> 289 <feature> 290 <rects> 291 <_>2 9 6 6 -1.</_> 292 <_>4 9 2 6 3.</_></rects> 293 <tilted>0</tilted></feature> 294 <threshold>-5.5571161210536957e-003</threshold> 295 <left_val>0.3614785969257355</left_val> 296 <right_val>-0.3725171983242035</right_val></_></_> 297 <_> 298 <!-- tree 3 --> 299 <_> 300 <!-- root node --> 301 <feature> 302 <rects> 303 <_>8 0 5 28 -1.</_> 304 <_>8 14 5 14 2.</_></rects> 305 <tilted>0</tilted></feature> 306 <threshold>-0.1389341056346893</threshold> 307 <left_val>-0.6790050268173218</left_val> 308 <right_val>0.1128031015396118</right_val></_></_> 309 <_> 310 <!-- tree 4 --> 311 <_> 312 <!-- root node --> 313 <feature> 314 <rects> 315 <_>2 24 10 4 -1.</_> 316 <_>7 24 5 4 2.</_></rects> 317 <tilted>0</tilted></feature> 318 <threshold>0.0264658294618130</threshold> 319 <left_val>0.1247496977448463</left_val> 320 <right_val>-0.8285233974456787</right_val></_></_> 321 <_> 322 <!-- tree 5 --> 323 <_> 324 <!-- root node --> 325 <feature> 326 <rects> 327 <_>3 15 8 11 -1.</_> 328 <_>5 15 4 11 2.</_></rects> 329 <tilted>0</tilted></feature> 330 <threshold>-0.0893868431448936</threshold> 331 <left_val>0.7427176237106323</left_val> 332 <right_val>-0.1701931953430176</right_val></_></_> 333 <_> 334 <!-- tree 6 --> 335 <_> 336 <!-- root node --> 337 <feature> 338 <rects> 339 <_>0 25 14 3 -1.</_> 340 <_>7 25 7 3 2.</_></rects> 341 <tilted>0</tilted></feature> 342 <threshold>-0.0213354192674160</threshold> 343 <left_val>-0.7175018787384033</left_val> 344 <right_val>0.1556618064641953</right_val></_></_> 345 <_> 346 <!-- tree 7 --> 347 <_> 348 <!-- root node --> 349 <feature> 350 <rects> 351 <_>1 11 12 13 -1.</_> 352 <_>5 11 4 13 3.</_></rects> 353 <tilted>0</tilted></feature> 354 <threshold>0.0557091012597084</threshold> 355 <left_val>-0.1531004011631012</left_val> 356 <right_val>0.7180476784706116</right_val></_></_> 357 <_> 358 <!-- tree 8 --> 359 <_> 360 <!-- root node --> 361 <feature> 362 <rects> 363 <_>1 2 12 21 -1.</_> 364 <_>5 9 4 7 9.</_></rects> 365 <tilted>0</tilted></feature> 366 <threshold>-0.6970995068550110</threshold> 367 <left_val>0.8115419149398804</left_val> 368 <right_val>-0.1088638976216316</right_val></_></_> 369 <_> 370 <!-- tree 9 --> 371 <_> 372 <!-- root node --> 373 <feature> 374 <rects> 375 <_>10 0 3 28 -1.</_> 376 <_>10 14 3 14 2.</_></rects> 377 <tilted>0</tilted></feature> 378 <threshold>0.2020599991083145</threshold> 379 <left_val>0.0763984173536301</left_val> 380 <right_val>-0.7301151156425476</right_val></_></_> 381 <_> 382 <!-- tree 10 --> 383 <_> 384 <!-- root node --> 385 <feature> 386 <rects> 387 <_>1 0 3 28 -1.</_> 388 <_>1 14 3 14 2.</_></rects> 389 <tilted>0</tilted></feature> 390 <threshold>-0.0718826577067375</threshold> 391 <left_val>-0.7148858904838562</left_val> 392 <right_val>0.1651764959096909</right_val></_></_> 393 <_> 394 <!-- tree 11 --> 395 <_> 396 <!-- root node --> 397 <feature> 398 <rects> 399 <_>5 5 6 8 -1.</_> 400 <_>8 5 3 4 2.</_> 401 <_>5 9 3 4 2.</_></rects> 402 <tilted>0</tilted></feature> 403 <threshold>-0.0192287601530552</threshold> 404 <left_val>-0.3986836969852448</left_val> 405 <right_val>0.0405572392046452</right_val></_></_> 406 <_> 407 <!-- tree 12 --> 408 <_> 409 <!-- root node --> 410 <feature> 411 <rects> 412 <_>3 5 6 8 -1.</_> 413 <_>3 5 3 4 2.</_> 414 <_>6 9 3 4 2.</_></rects> 415 <tilted>0</tilted></feature> 416 <threshold>1.1500229593366385e-003</threshold> 417 <left_val>-0.3826077878475189</left_val> 418 <right_val>0.3185507953166962</right_val></_></_> 419 <_> 420 <!-- tree 13 --> 421 <_> 422 <!-- root node --> 423 <feature> 424 <rects> 425 <_>10 16 4 12 -1.</_> 426 <_>12 16 2 6 2.</_> 427 <_>10 22 2 6 2.</_></rects> 428 <tilted>0</tilted></feature> 429 <threshold>0.0232527796179056</threshold> 430 <left_val>0.0543904006481171</left_val> 431 <right_val>-0.7066999077796936</right_val></_></_> 432 <_> 433 <!-- tree 14 --> 434 <_> 435 <!-- root node --> 436 <feature> 437 <rects> 438 <_>4 8 6 4 -1.</_> 439 <_>4 10 6 2 2.</_></rects> 440 <tilted>0</tilted></feature> 441 <threshold>-3.2618120894767344e-004</threshold> 442 <left_val>0.2261060029268265</left_val> 443 <right_val>-0.4070987999439240</right_val></_></_></trees> 444 <stage_threshold>-1.0969949960708618</stage_threshold> 445 <parent>0</parent> 446 <next>-1</next></_> 447 <_> 448 <!-- stage 2 --> 449 <trees> 450 <_> 451 <!-- tree 0 --> 452 <_> 453 <!-- root node --> 454 <feature> 455 <rects> 456 <_>3 5 8 21 -1.</_> 457 <_>5 5 4 21 2.</_></rects> 458 <tilted>0</tilted></feature> 459 <threshold>-0.1291020065546036</threshold> 460 <left_val>0.7600312829017639</left_val> 461 <right_val>-0.2340579032897949</right_val></_></_> 462 <_> 463 <!-- tree 1 --> 464 <_> 465 <!-- root node --> 466 <feature> 467 <rects> 468 <_>1 15 12 12 -1.</_> 469 <_>7 15 6 6 2.</_> 470 <_>1 21 6 6 2.</_></rects> 471 <tilted>0</tilted></feature> 472 <threshold>0.0674492567777634</threshold> 473 <left_val>0.1717952936887741</left_val> 474 <right_val>-0.8436477780342102</right_val></_></_> 475 <_> 476 <!-- tree 2 --> 477 <_> 478 <!-- root node --> 479 <feature> 480 <rects> 481 <_>0 25 12 3 -1.</_> 482 <_>6 25 6 3 2.</_></rects> 483 <tilted>0</tilted></feature> 484 <threshold>0.0126632703468204</threshold> 485 <left_val>0.2291321009397507</left_val> 486 <right_val>-0.7307245731353760</right_val></_></_> 487 <_> 488 <!-- tree 3 --> 489 <_> 490 <!-- root node --> 491 <feature> 492 <rects> 493 <_>8 14 3 8 -1.</_> 494 <_>8 14 3 4 2.</_></rects> 495 <tilted>1</tilted></feature> 496 <threshold>-4.2741331271827221e-003</threshold> 497 <left_val>0.0624204799532890</left_val> 498 <right_val>-0.4098593890666962</right_val></_></_> 499 <_> 500 <!-- tree 4 --> 501 <_> 502 <!-- root node --> 503 <feature> 504 <rects> 505 <_>0 25 8 3 -1.</_> 506 <_>4 25 4 3 2.</_></rects> 507 <tilted>0</tilted></feature> 508 <threshold>-0.0231439508497715</threshold> 509 <left_val>-0.8397182822227478</left_val> 510 <right_val>0.2011574953794479</right_val></_></_> 511 <_> 512 <!-- tree 5 --> 513 <_> 514 <!-- root node --> 515 <feature> 516 <rects> 517 <_>2 24 12 4 -1.</_> 518 <_>5 24 6 4 2.</_></rects> 519 <tilted>0</tilted></feature> 520 <threshold>-5.5371038615703583e-004</threshold> 521 <left_val>0.1536941975355148</left_val> 522 <right_val>-0.4403811097145081</right_val></_></_> 523 <_> 524 <!-- tree 6 --> 525 <_> 526 <!-- root node --> 527 <feature> 528 <rects> 529 <_>1 18 4 6 -1.</_> 530 <_>3 18 2 6 2.</_></rects> 531 <tilted>0</tilted></feature> 532 <threshold>-9.5239803194999695e-003</threshold> 533 <left_val>-0.6318680047988892</left_val> 534 <right_val>0.1625023037195206</right_val></_></_> 535 <_> 536 <!-- tree 7 --> 537 <_> 538 <!-- root node --> 539 <feature> 540 <rects> 541 <_>8 8 4 7 -1.</_> 542 <_>8 8 2 7 2.</_></rects> 543 <tilted>0</tilted></feature> 544 <threshold>0.0283076707273722</threshold> 545 <left_val>-0.0725999698042870</left_val> 546 <right_val>0.3791998922824860</right_val></_></_> 547 <_> 548 <!-- tree 8 --> 549 <_> 550 <!-- root node --> 551 <feature> 552 <rects> 553 <_>2 8 4 7 -1.</_> 554 <_>4 8 2 7 2.</_></rects> 555 <tilted>0</tilted></feature> 556 <threshold>-0.0451480187475681</threshold> 557 <left_val>0.7449362874031067</left_val> 558 <right_val>-0.1558171063661575</right_val></_></_> 559 <_> 560 <!-- tree 9 --> 561 <_> 562 <!-- root node --> 563 <feature> 564 <rects> 565 <_>1 3 12 18 -1.</_> 566 <_>1 3 6 18 2.</_></rects> 567 <tilted>0</tilted></feature> 568 <threshold>0.1001473963260651</threshold> 569 <left_val>0.1794963926076889</left_val> 570 <right_val>-0.6464408040046692</right_val></_></_> 571 <_> 572 <!-- tree 10 --> 573 <_> 574 <!-- root node --> 575 <feature> 576 <rects> 577 <_>1 20 4 8 -1.</_> 578 <_>3 20 2 8 2.</_></rects> 579 <tilted>0</tilted></feature> 580 <threshold>7.3245721869170666e-003</threshold> 581 <left_val>0.1776389926671982</left_val> 582 <right_val>-0.5765405893325806</right_val></_></_> 583 <_> 584 <!-- tree 11 --> 585 <_> 586 <!-- root node --> 587 <feature> 588 <rects> 589 <_>6 10 7 18 -1.</_> 590 <_>6 19 7 9 2.</_></rects> 591 <tilted>0</tilted></feature> 592 <threshold>0.0118756704032421</threshold> 593 <left_val>-0.3112972080707550</left_val> 594 <right_val>0.1632139980792999</right_val></_></_> 595 <_> 596 <!-- tree 12 --> 597 <_> 598 <!-- root node --> 599 <feature> 600 <rects> 601 <_>4 8 3 13 -1.</_> 602 <_>5 8 1 13 3.</_></rects> 603 <tilted>0</tilted></feature> 604 <threshold>-0.0254790391772985</threshold> 605 <left_val>0.6269248127937317</left_val> 606 <right_val>-0.1133375018835068</right_val></_></_> 607 <_> 608 <!-- tree 13 --> 609 <_> 610 <!-- root node --> 611 <feature> 612 <rects> 613 <_>10 22 4 6 -1.</_> 614 <_>10 22 2 6 2.</_></rects> 615 <tilted>0</tilted></feature> 616 <threshold>-7.9196523874998093e-003</threshold> 617 <left_val>-0.7762442827224731</left_val> 618 <right_val>0.1542761027812958</right_val></_></_></trees> 619 <stage_threshold>-1.2285970449447632</stage_threshold> 620 <parent>1</parent> 621 <next>-1</next></_> 622 <_> 623 <!-- stage 3 --> 624 <trees> 625 <_> 626 <!-- tree 0 --> 627 <_> 628 <!-- root node --> 629 <feature> 630 <rects> 631 <_>1 0 12 27 -1.</_> 632 <_>5 9 4 9 9.</_></rects> 633 <tilted>0</tilted></feature> 634 <threshold>-0.8580927848815918</threshold> 635 <left_val>0.7879683971405029</left_val> 636 <right_val>-0.2213554978370667</right_val></_></_> 637 <_> 638 <!-- tree 1 --> 639 <_> 640 <!-- root node --> 641 <feature> 642 <rects> 643 <_>2 20 12 7 -1.</_> 644 <_>5 20 6 7 2.</_></rects> 645 <tilted>0</tilted></feature> 646 <threshold>-1.6491119749844074e-003</threshold> 647 <left_val>0.2567340135574341</left_val> 648 <right_val>-0.4319424033164978</right_val></_></_> 649 <_> 650 <!-- tree 2 --> 651 <_> 652 <!-- root node --> 653 <feature> 654 <rects> 655 <_>2 25 10 3 -1.</_> 656 <_>7 25 5 3 2.</_></rects> 657 <tilted>0</tilted></feature> 658 <threshold>-0.0258823093026876</threshold> 659 <left_val>-0.8755123019218445</left_val> 660 <right_val>0.0883856266736984</right_val></_></_> 661 <_> 662 <!-- tree 3 --> 663 <_> 664 <!-- root node --> 665 <feature> 666 <rects> 667 <_>0 26 14 2 -1.</_> 668 <_>0 26 7 2 2.</_></rects> 669 <tilted>0</tilted></feature> 670 <threshold>-4.7666151076555252e-003</threshold> 671 <left_val>-0.4702236950397492</left_val> 672 <right_val>0.2280080020427704</right_val></_></_> 673 <_> 674 <!-- tree 4 --> 675 <_> 676 <!-- root node --> 677 <feature> 678 <rects> 679 <_>3 15 8 9 -1.</_> 680 <_>5 15 4 9 2.</_></rects> 681 <tilted>0</tilted></feature> 682 <threshold>-0.0837296992540360</threshold> 683 <left_val>0.6338573098182678</left_val> 684 <right_val>-0.1488831937313080</right_val></_></_> 685 <_> 686 <!-- tree 5 --> 687 <_> 688 <!-- root node --> 689 <feature> 690 <rects> 691 <_>8 23 6 5 -1.</_> 692 <_>8 23 3 5 2.</_></rects> 693 <tilted>0</tilted></feature> 694 <threshold>-0.0406857393682003</threshold> 695 <left_val>-0.9393178820610046</left_val> 696 <right_val>0.0105989398434758</right_val></_></_> 697 <_> 698 <!-- tree 6 --> 699 <_> 700 <!-- root node --> 701 <feature> 702 <rects> 703 <_>0 26 14 2 -1.</_> 704 <_>7 26 7 2 2.</_></rects> 705 <tilted>0</tilted></feature> 706 <threshold>-5.0759920850396156e-003</threshold> 707 <left_val>-0.4555442035198212</left_val> 708 <right_val>0.1786437034606934</right_val></_></_> 709 <_> 710 <!-- tree 7 --> 711 <_> 712 <!-- root node --> 713 <feature> 714 <rects> 715 <_>8 10 2 18 -1.</_> 716 <_>8 19 2 9 2.</_></rects> 717 <tilted>0</tilted></feature> 718 <threshold>2.3427829146385193e-003</threshold> 719 <left_val>-0.2143428027629852</left_val> 720 <right_val>0.1553142070770264</right_val></_></_> 721 <_> 722 <!-- tree 8 --> 723 <_> 724 <!-- root node --> 725 <feature> 726 <rects> 727 <_>4 4 4 12 -1.</_> 728 <_>4 4 2 6 2.</_> 729 <_>6 10 2 6 2.</_></rects> 730 <tilted>0</tilted></feature> 731 <threshold>2.7649151161313057e-004</threshold> 732 <left_val>-0.3334816098213196</left_val> 733 <right_val>0.2278023958206177</right_val></_></_> 734 <_> 735 <!-- tree 9 --> 736 <_> 737 <!-- root node --> 738 <feature> 739 <rects> 740 <_>4 24 9 4 -1.</_> 741 <_>7 24 3 4 3.</_></rects> 742 <tilted>0</tilted></feature> 743 <threshold>0.0169418398290873</threshold> 744 <left_val>0.0741408169269562</left_val> 745 <right_val>-0.5626205205917358</right_val></_></_> 746 <_> 747 <!-- tree 10 --> 748 <_> 749 <!-- root node --> 750 <feature> 751 <rects> 752 <_>1 3 12 15 -1.</_> 753 <_>5 8 4 5 9.</_></rects> 754 <tilted>0</tilted></feature> 755 <threshold>0.4755898118019104</threshold> 756 <left_val>-0.1086113005876541</left_val> 757 <right_val>0.8298525810241699</right_val></_></_> 758 <_> 759 <!-- tree 11 --> 760 <_> 761 <!-- root node --> 762 <feature> 763 <rects> 764 <_>11 16 2 12 -1.</_> 765 <_>11 16 1 12 2.</_></rects> 766 <tilted>0</tilted></feature> 767 <threshold>5.8000627905130386e-003</threshold> 768 <left_val>0.1324903070926666</left_val> 769 <right_val>-0.5162039995193481</right_val></_></_> 770 <_> 771 <!-- tree 12 --> 772 <_> 773 <!-- root node --> 774 <feature> 775 <rects> 776 <_>2 4 7 16 -1.</_> 777 <_>2 12 7 8 2.</_></rects> 778 <tilted>0</tilted></feature> 779 <threshold>-0.0744775608181953</threshold> 780 <left_val>-0.5554556846618652</left_val> 781 <right_val>0.1234432011842728</right_val></_></_> 782 <_> 783 <!-- tree 13 --> 784 <_> 785 <!-- root node --> 786 <feature> 787 <rects> 788 <_>8 8 4 6 -1.</_> 789 <_>8 8 2 6 2.</_></rects> 790 <tilted>0</tilted></feature> 791 <threshold>-3.5143009154126048e-004</threshold> 792 <left_val>0.0681907534599304</left_val> 793 <right_val>-0.1361685991287231</right_val></_></_> 794 <_> 795 <!-- tree 14 --> 796 <_> 797 <!-- root node --> 798 <feature> 799 <rects> 800 <_>3 8 8 6 -1.</_> 801 <_>3 11 8 3 2.</_></rects> 802 <tilted>0</tilted></feature> 803 <threshold>7.3454021476209164e-003</threshold> 804 <left_val>0.1367851048707962</left_val> 805 <right_val>-0.5364512205123901</right_val></_></_> 806 <_> 807 <!-- tree 15 --> 808 <_> 809 <!-- root node --> 810 <feature> 811 <rects> 812 <_>8 8 6 8 -1.</_> 813 <_>10 8 2 8 3.</_></rects> 814 <tilted>0</tilted></feature> 815 <threshold>-0.0154712796211243</threshold> 816 <left_val>0.2618063986301422</left_val> 817 <right_val>-0.1054581031203270</right_val></_></_> 818 <_> 819 <!-- tree 16 --> 820 <_> 821 <!-- root node --> 822 <feature> 823 <rects> 824 <_>0 8 6 7 -1.</_> 825 <_>2 8 2 7 3.</_></rects> 826 <tilted>0</tilted></feature> 827 <threshold>5.6055500172078609e-003</threshold> 828 <left_val>-0.2574635148048401</left_val> 829 <right_val>0.2879593074321747</right_val></_></_> 830 <_> 831 <!-- tree 17 --> 832 <_> 833 <!-- root node --> 834 <feature> 835 <rects> 836 <_>2 25 12 3 -1.</_> 837 <_>6 25 4 3 3.</_></rects> 838 <tilted>0</tilted></feature> 839 <threshold>-2.4552858667448163e-004</threshold> 840 <left_val>0.1009993031620979</left_val> 841 <right_val>-0.2611967921257019</right_val></_></_> 842 <_> 843 <!-- tree 18 --> 844 <_> 845 <!-- root node --> 846 <feature> 847 <rects> 848 <_>0 25 12 3 -1.</_> 849 <_>4 25 4 3 3.</_></rects> 850 <tilted>0</tilted></feature> 851 <threshold>-0.0331389009952545</threshold> 852 <left_val>-0.8377956748008728</left_val> 853 <right_val>0.1132768988609314</right_val></_></_> 854 <_> 855 <!-- tree 19 --> 856 <_> 857 <!-- root node --> 858 <feature> 859 <rects> 860 <_>1 7 12 4 -1.</_> 861 <_>1 7 6 4 2.</_></rects> 862 <tilted>0</tilted></feature> 863 <threshold>0.0355918891727924</threshold> 864 <left_val>0.0823360905051231</left_val> 865 <right_val>-0.6250566244125366</right_val></_></_> 866 <_> 867 <!-- tree 20 --> 868 <_> 869 <!-- root node --> 870 <feature> 871 <rects> 872 <_>0 2 14 12 -1.</_> 873 <_>7 2 7 12 2.</_></rects> 874 <tilted>0</tilted></feature> 875 <threshold>0.2083403021097183</threshold> 876 <left_val>0.0695244371891022</left_val> 877 <right_val>-0.8688114881515503</right_val></_></_> 878 <_> 879 <!-- tree 21 --> 880 <_> 881 <!-- root node --> 882 <feature> 883 <rects> 884 <_>0 19 14 6 -1.</_> 885 <_>7 19 7 3 2.</_> 886 <_>0 22 7 3 2.</_></rects> 887 <tilted>0</tilted></feature> 888 <threshold>-0.0281654000282288</threshold> 889 <left_val>-0.5979984998703003</left_val> 890 <right_val>0.0803299024701118</right_val></_></_></trees> 891 <stage_threshold>-1.1200269460678101</stage_threshold> 892 <parent>2</parent> 893 <next>-1</next></_> 894 <_> 895 <!-- stage 4 --> 896 <trees> 897 <_> 898 <!-- tree 0 --> 899 <_> 900 <!-- root node --> 901 <feature> 902 <rects> 903 <_>1 14 12 6 -1.</_> 904 <_>5 14 4 6 3.</_></rects> 905 <tilted>0</tilted></feature> 906 <threshold>-0.0267407093197107</threshold> 907 <left_val>0.3891242146492004</left_val> 908 <right_val>-0.4982767999172211</right_val></_></_> 909 <_> 910 <!-- tree 1 --> 911 <_> 912 <!-- root node --> 913 <feature> 914 <rects> 915 <_>2 24 12 4 -1.</_> 916 <_>5 24 6 4 2.</_></rects> 917 <tilted>0</tilted></feature> 918 <threshold>-1.2516999850049615e-003</threshold> 919 <left_val>0.1312343031167984</left_val> 920 <right_val>-0.3636899888515472</right_val></_></_> 921 <_> 922 <!-- tree 2 --> 923 <_> 924 <!-- root node --> 925 <feature> 926 <rects> 927 <_>2 1 4 14 -1.</_> 928 <_>2 1 2 7 2.</_> 929 <_>4 8 2 7 2.</_></rects> 930 <tilted>0</tilted></feature> 931 <threshold>-0.0416345112025738</threshold> 932 <left_val>0.5744475126266480</left_val> 933 <right_val>-0.1393287926912308</right_val></_></_> 934 <_> 935 <!-- tree 3 --> 936 <_> 937 <!-- root node --> 938 <feature> 939 <rects> 940 <_>10 3 4 6 -1.</_> 941 <_>10 3 2 6 2.</_></rects> 942 <tilted>1</tilted></feature> 943 <threshold>0.0100965797901154</threshold> 944 <left_val>0.0990737974643707</left_val> 945 <right_val>-0.2295698970556259</right_val></_></_> 946 <_> 947 <!-- tree 4 --> 948 <_> 949 <!-- root node --> 950 <feature> 951 <rects> 952 <_>4 3 6 4 -1.</_> 953 <_>4 3 6 2 2.</_></rects> 954 <tilted>1</tilted></feature> 955 <threshold>-0.0190903991460800</threshold> 956 <left_val>-0.5515310764312744</left_val> 957 <right_val>0.1511006951332092</right_val></_></_> 958 <_> 959 <!-- tree 5 --> 960 <_> 961 <!-- root node --> 962 <feature> 963 <rects> 964 <_>0 16 14 8 -1.</_> 965 <_>0 16 7 8 2.</_></rects> 966 <tilted>0</tilted></feature> 967 <threshold>-0.0314810685813427</threshold> 968 <left_val>-0.4588426947593689</left_val> 969 <right_val>0.1757954955101013</right_val></_></_> 970 <_> 971 <!-- tree 6 --> 972 <_> 973 <!-- root node --> 974 <feature> 975 <rects> 976 <_>5 16 3 12 -1.</_> 977 <_>6 16 1 12 3.</_></rects> 978 <tilted>0</tilted></feature> 979 <threshold>-0.0176875498145819</threshold> 980 <left_val>0.4471183121204376</left_val> 981 <right_val>-0.1529293060302734</right_val></_></_> 982 <_> 983 <!-- tree 7 --> 984 <_> 985 <!-- root node --> 986 <feature> 987 <rects> 988 <_>7 15 4 7 -1.</_> 989 <_>7 15 2 7 2.</_></rects> 990 <tilted>0</tilted></feature> 991 <threshold>-4.3685659766197205e-003</threshold> 992 <left_val>0.1218549013137817</left_val> 993 <right_val>-0.1668857038021088</right_val></_></_> 994 <_> 995 <!-- tree 8 --> 996 <_> 997 <!-- root node --> 998 <feature> 999 <rects> 1000 <_>3 15 4 8 -1.</_> 1001 <_>5 15 2 8 2.</_></rects> 1002 <tilted>0</tilted></feature> 1003 <threshold>8.9326845481991768e-003</threshold> 1004 <left_val>-0.1333369016647339</left_val> 1005 <right_val>0.6375334262847900</right_val></_></_> 1006 <_> 1007 <!-- tree 9 --> 1008 <_> 1009 <!-- root node --> 1010 <feature> 1011 <rects> 1012 <_>9 17 4 8 -1.</_> 1013 <_>9 17 2 8 2.</_></rects> 1014 <tilted>0</tilted></feature> 1015 <threshold>-5.0706309266388416e-003</threshold> 1016 <left_val>-0.1122028976678848</left_val> 1017 <right_val>0.0698243528604507</right_val></_></_> 1018 <_> 1019 <!-- tree 10 --> 1020 <_> 1021 <!-- root node --> 1022 <feature> 1023 <rects> 1024 <_>1 17 4 8 -1.</_> 1025 <_>3 17 2 8 2.</_></rects> 1026 <tilted>0</tilted></feature> 1027 <threshold>-5.9803090989589691e-003</threshold> 1028 <left_val>-0.5184289813041687</left_val> 1029 <right_val>0.1609919965267181</right_val></_></_> 1030 <_> 1031 <!-- tree 11 --> 1032 <_> 1033 <!-- root node --> 1034 <feature> 1035 <rects> 1036 <_>9 18 4 7 -1.</_> 1037 <_>9 18 2 7 2.</_></rects> 1038 <tilted>0</tilted></feature> 1039 <threshold>2.9967839363962412e-003</threshold> 1040 <left_val>0.0410653389990330</left_val> 1041 <right_val>-0.1945585012435913</right_val></_></_> 1042 <_> 1043 <!-- tree 12 --> 1044 <_> 1045 <!-- root node --> 1046 <feature> 1047 <rects> 1048 <_>1 18 4 7 -1.</_> 1049 <_>3 18 2 7 2.</_></rects> 1050 <tilted>0</tilted></feature> 1051 <threshold>3.8641549181193113e-003</threshold> 1052 <left_val>0.1667324006557465</left_val> 1053 <right_val>-0.4356977939605713</right_val></_></_> 1054 <_> 1055 <!-- tree 13 --> 1056 <_> 1057 <!-- root node --> 1058 <feature> 1059 <rects> 1060 <_>7 5 4 6 -1.</_> 1061 <_>7 5 2 6 2.</_></rects> 1062 <tilted>1</tilted></feature> 1063 <threshold>6.8349428474903107e-003</threshold> 1064 <left_val>-0.1716264039278030</left_val> 1065 <right_val>0.1481806039810181</right_val></_></_> 1066 <_> 1067 <!-- tree 14 --> 1068 <_> 1069 <!-- root node --> 1070 <feature> 1071 <rects> 1072 <_>7 5 6 4 -1.</_> 1073 <_>7 5 6 2 2.</_></rects> 1074 <tilted>1</tilted></feature> 1075 <threshold>0.0431584902107716</threshold> 1076 <left_val>0.0832035094499588</left_val> 1077 <right_val>-0.7782185077667236</right_val></_></_> 1078 <_> 1079 <!-- tree 15 --> 1080 <_> 1081 <!-- root node --> 1082 <feature> 1083 <rects> 1084 <_>2 26 12 2 -1.</_> 1085 <_>2 26 6 2 2.</_></rects> 1086 <tilted>0</tilted></feature> 1087 <threshold>7.6560080051422119e-003</threshold> 1088 <left_val>0.0847408026456833</left_val> 1089 <right_val>-0.4973815083503723</right_val></_></_> 1090 <_> 1091 <!-- tree 16 --> 1092 <_> 1093 <!-- root node --> 1094 <feature> 1095 <rects> 1096 <_>4 7 3 12 -1.</_> 1097 <_>5 7 1 12 3.</_></rects> 1098 <tilted>0</tilted></feature> 1099 <threshold>-3.1110988929867744e-003</threshold> 1100 <left_val>0.2582714855670929</left_val> 1101 <right_val>-0.2555203139781952</right_val></_></_> 1102 <_> 1103 <!-- tree 17 --> 1104 <_> 1105 <!-- root node --> 1106 <feature> 1107 <rects> 1108 <_>1 7 12 11 -1.</_> 1109 <_>4 7 6 11 2.</_></rects> 1110 <tilted>0</tilted></feature> 1111 <threshold>0.1187030971050263</threshold> 1112 <left_val>-0.0909442380070686</left_val> 1113 <right_val>0.7228621244430542</right_val></_></_> 1114 <_> 1115 <!-- tree 18 --> 1116 <_> 1117 <!-- root node --> 1118 <feature> 1119 <rects> 1120 <_>6 13 8 4 -1.</_> 1121 <_>6 13 4 4 2.</_></rects> 1122 <tilted>1</tilted></feature> 1123 <threshold>0.0168759692460299</threshold> 1124 <left_val>0.1262917071580887</left_val> 1125 <right_val>-0.5520529747009277</right_val></_></_> 1126 <_> 1127 <!-- tree 19 --> 1128 <_> 1129 <!-- root node --> 1130 <feature> 1131 <rects> 1132 <_>5 22 6 4 -1.</_> 1133 <_>5 22 3 4 2.</_></rects> 1134 <tilted>0</tilted></feature> 1135 <threshold>-1.0887029930017889e-004</threshold> 1136 <left_val>0.0816487967967987</left_val> 1137 <right_val>-0.1693702042102814</right_val></_></_> 1138 <_> 1139 <!-- tree 20 --> 1140 <_> 1141 <!-- root node --> 1142 <feature> 1143 <rects> 1144 <_>0 26 14 2 -1.</_> 1145 <_>7 26 7 2 2.</_></rects> 1146 <tilted>0</tilted></feature> 1147 <threshold>2.8222990222275257e-003</threshold> 1148 <left_val>0.1641130000352860</left_val> 1149 <right_val>-0.3521826863288879</right_val></_></_> 1150 <_> 1151 <!-- tree 21 --> 1152 <_> 1153 <!-- root node --> 1154 <feature> 1155 <rects> 1156 <_>1 3 12 18 -1.</_> 1157 <_>5 9 4 6 9.</_></rects> 1158 <tilted>0</tilted></feature> 1159 <threshold>-0.5242584943771362</threshold> 1160 <left_val>0.4890617132186890</left_val> 1161 <right_val>-0.1267475932836533</right_val></_></_> 1162 <_> 1163 <!-- tree 22 --> 1164 <_> 1165 <!-- root node --> 1166 <feature> 1167 <rects> 1168 <_>0 6 9 22 -1.</_> 1169 <_>0 17 9 11 2.</_></rects> 1170 <tilted>0</tilted></feature> 1171 <threshold>0.3692750930786133</threshold> 1172 <left_val>0.0861159935593605</left_val> 1173 <right_val>-0.6718463897705078</right_val></_></_> 1174 <_> 1175 <!-- tree 23 --> 1176 <_> 1177 <!-- root node --> 1178 <feature> 1179 <rects> 1180 <_>1 1 12 24 -1.</_> 1181 <_>7 1 6 12 2.</_> 1182 <_>1 13 6 12 2.</_></rects> 1183 <tilted>0</tilted></feature> 1184 <threshold>-0.1688378006219864</threshold> 1185 <left_val>-0.8491569161415100</left_val> 1186 <right_val>0.0548333488404751</right_val></_></_> 1187 <_> 1188 <!-- tree 24 --> 1189 <_> 1190 <!-- root node --> 1191 <feature> 1192 <rects> 1193 <_>0 26 12 2 -1.</_> 1194 <_>6 26 6 2 2.</_></rects> 1195 <tilted>0</tilted></feature> 1196 <threshold>-0.0192792601883411</threshold> 1197 <left_val>-0.7801151275634766</left_val> 1198 <right_val>0.0622026808559895</right_val></_></_></trees> 1199 <stage_threshold>-1.0664960145950317</stage_threshold> 1200 <parent>3</parent> 1201 <next>-1</next></_> 1202 <_> 1203 <!-- stage 5 --> 1204 <trees> 1205 <_> 1206 <!-- tree 0 --> 1207 <_> 1208 <!-- root node --> 1209 <feature> 1210 <rects> 1211 <_>1 4 12 23 -1.</_> 1212 <_>5 4 4 23 3.</_></rects> 1213 <tilted>0</tilted></feature> 1214 <threshold>-0.2090135067701340</threshold> 1215 <left_val>0.6980816721916199</left_val> 1216 <right_val>-0.3457359075546265</right_val></_></_> 1217 <_> 1218 <!-- tree 1 --> 1219 <_> 1220 <!-- root node --> 1221 <feature> 1222 <rects> 1223 <_>5 22 6 5 -1.</_> 1224 <_>5 22 3 5 2.</_></rects> 1225 <tilted>0</tilted></feature> 1226 <threshold>-4.8061009147204459e-004</threshold> 1227 <left_val>0.2092390060424805</left_val> 1228 <right_val>-0.2414764016866684</right_val></_></_> 1229 <_> 1230 <!-- tree 2 --> 1231 <_> 1232 <!-- root node --> 1233 <feature> 1234 <rects> 1235 <_>3 22 6 5 -1.</_> 1236 <_>6 22 3 5 2.</_></rects> 1237 <tilted>0</tilted></feature> 1238 <threshold>-2.4844119325280190e-003</threshold> 1239 <left_val>0.2763600945472717</left_val> 1240 <right_val>-0.4199039936065674</right_val></_></_> 1241 <_> 1242 <!-- tree 3 --> 1243 <_> 1244 <!-- root node --> 1245 <feature> 1246 <rects> 1247 <_>5 1 4 6 -1.</_> 1248 <_>5 4 4 3 2.</_></rects> 1249 <tilted>0</tilted></feature> 1250 <threshold>-2.1536289714276791e-003</threshold> 1251 <left_val>0.2471046000719070</left_val> 1252 <right_val>-0.3067789971828461</right_val></_></_> 1253 <_> 1254 <!-- tree 4 --> 1255 <_> 1256 <!-- root node --> 1257 <feature> 1258 <rects> 1259 <_>1 8 12 8 -1.</_> 1260 <_>4 8 6 8 2.</_></rects> 1261 <tilted>0</tilted></feature> 1262 <threshold>0.0589119903743267</threshold> 1263 <left_val>-0.0708347633481026</left_val> 1264 <right_val>0.7113314270973206</right_val></_></_> 1265 <_> 1266 <!-- tree 5 --> 1267 <_> 1268 <!-- root node --> 1269 <feature> 1270 <rects> 1271 <_>6 8 5 12 -1.</_> 1272 <_>6 11 5 6 2.</_></rects> 1273 <tilted>0</tilted></feature> 1274 <threshold>-2.3095219512470067e-004</threshold> 1275 <left_val>0.1714860051870346</left_val> 1276 <right_val>-0.3616837859153748</right_val></_></_> 1277 <_> 1278 <!-- tree 6 --> 1279 <_> 1280 <!-- root node --> 1281 <feature> 1282 <rects> 1283 <_>0 20 14 6 -1.</_> 1284 <_>0 20 7 3 2.</_> 1285 <_>7 23 7 3 2.</_></rects> 1286 <tilted>0</tilted></feature> 1287 <threshold>-0.0313964001834393</threshold> 1288 <left_val>-0.8013188242912293</left_val> 1289 <right_val>0.1004256010055542</right_val></_></_> 1290 <_> 1291 <!-- tree 7 --> 1292 <_> 1293 <!-- root node --> 1294 <feature> 1295 <rects> 1296 <_>6 9 6 6 -1.</_> 1297 <_>8 9 2 6 3.</_></rects> 1298 <tilted>0</tilted></feature> 1299 <threshold>-3.5601970739662647e-003</threshold> 1300 <left_val>0.0994327664375305</left_val> 1301 <right_val>-0.1484826058149338</right_val></_></_> 1302 <_> 1303 <!-- tree 8 --> 1304 <_> 1305 <!-- root node --> 1306 <feature> 1307 <rects> 1308 <_>5 8 4 6 -1.</_> 1309 <_>7 8 2 6 2.</_></rects> 1310 <tilted>0</tilted></feature> 1311 <threshold>-4.3389322236180305e-003</threshold> 1312 <left_val>-0.5662124156951904</left_val> 1313 <right_val>0.1409679949283600</right_val></_></_> 1314 <_> 1315 <!-- tree 9 --> 1316 <_> 1317 <!-- root node --> 1318 <feature> 1319 <rects> 1320 <_>2 13 12 15 -1.</_> 1321 <_>2 18 12 5 3.</_></rects> 1322 <tilted>0</tilted></feature> 1323 <threshold>0.2132671028375626</threshold> 1324 <left_val>0.0481582097709179</left_val> 1325 <right_val>-0.7485890984535217</right_val></_></_> 1326 <_> 1327 <!-- tree 10 --> 1328 <_> 1329 <!-- root node --> 1330 <feature> 1331 <rects> 1332 <_>0 16 4 12 -1.</_> 1333 <_>0 16 2 6 2.</_> 1334 <_>2 22 2 6 2.</_></rects> 1335 <tilted>0</tilted></feature> 1336 <threshold>0.0100425295531750</threshold> 1337 <left_val>0.1042840033769608</left_val> 1338 <right_val>-0.5538737773895264</right_val></_></_> 1339 <_> 1340 <!-- tree 11 --> 1341 <_> 1342 <!-- root node --> 1343 <feature> 1344 <rects> 1345 <_>9 2 2 26 -1.</_> 1346 <_>10 2 1 13 2.</_> 1347 <_>9 15 1 13 2.</_></rects> 1348 <tilted>0</tilted></feature> 1349 <threshold>-0.0268252808600664</threshold> 1350 <left_val>0.5728160738945007</left_val> 1351 <right_val>-0.0825379788875580</right_val></_></_> 1352 <_> 1353 <!-- tree 12 --> 1354 <_> 1355 <!-- root node --> 1356 <feature> 1357 <rects> 1358 <_>3 2 2 26 -1.</_> 1359 <_>3 2 1 13 2.</_> 1360 <_>4 15 1 13 2.</_></rects> 1361 <tilted>0</tilted></feature> 1362 <threshold>8.3760882262140512e-004</threshold> 1363 <left_val>-0.2562690079212189</left_val> 1364 <right_val>0.2589842081069946</right_val></_></_> 1365 <_> 1366 <!-- tree 13 --> 1367 <_> 1368 <!-- root node --> 1369 <feature> 1370 <rects> 1371 <_>10 22 4 6 -1.</_> 1372 <_>10 22 2 6 2.</_></rects> 1373 <tilted>0</tilted></feature> 1374 <threshold>-7.6051978394389153e-003</threshold> 1375 <left_val>-0.5867735743522644</left_val> 1376 <right_val>0.0512107796967030</right_val></_></_> 1377 <_> 1378 <!-- tree 14 --> 1379 <_> 1380 <!-- root node --> 1381 <feature> 1382 <rects> 1383 <_>0 1 12 12 -1.</_> 1384 <_>4 5 4 4 9.</_></rects> 1385 <tilted>0</tilted></feature> 1386 <threshold>-0.1193564012646675</threshold> 1387 <left_val>-0.4553082883358002</left_val> 1388 <right_val>0.1257033050060272</right_val></_></_> 1389 <_> 1390 <!-- tree 15 --> 1391 <_> 1392 <!-- root node --> 1393 <feature> 1394 <rects> 1395 <_>6 15 3 12 -1.</_> 1396 <_>7 15 1 12 3.</_></rects> 1397 <tilted>0</tilted></feature> 1398 <threshold>6.6083478741347790e-003</threshold> 1399 <left_val>-0.1631637960672379</left_val> 1400 <right_val>0.4665954113006592</right_val></_></_> 1401 <_> 1402 <!-- tree 16 --> 1403 <_> 1404 <!-- root node --> 1405 <feature> 1406 <rects> 1407 <_>5 10 3 15 -1.</_> 1408 <_>6 10 1 15 3.</_></rects> 1409 <tilted>0</tilted></feature> 1410 <threshold>0.0173035096377134</threshold> 1411 <left_val>-0.1239140033721924</left_val> 1412 <right_val>0.5975540876388550</right_val></_></_> 1413 <_> 1414 <!-- tree 17 --> 1415 <_> 1416 <!-- root node --> 1417 <feature> 1418 <rects> 1419 <_>10 22 4 6 -1.</_> 1420 <_>10 22 2 6 2.</_></rects> 1421 <tilted>0</tilted></feature> 1422 <threshold>5.4382272064685822e-003</threshold> 1423 <left_val>0.1383872926235199</left_val> 1424 <right_val>-0.5506920218467712</right_val></_></_> 1425 <_> 1426 <!-- tree 18 --> 1427 <_> 1428 <!-- root node --> 1429 <feature> 1430 <rects> 1431 <_>0 10 8 18 -1.</_> 1432 <_>0 19 8 9 2.</_></rects> 1433 <tilted>0</tilted></feature> 1434 <threshold>2.4591449182480574e-003</threshold> 1435 <left_val>-0.3992733955383301</left_val> 1436 <right_val>0.1538708955049515</right_val></_></_> 1437 <_> 1438 <!-- tree 19 --> 1439 <_> 1440 <!-- root node --> 1441 <feature> 1442 <rects> 1443 <_>5 16 8 12 -1.</_> 1444 <_>9 16 4 6 2.</_> 1445 <_>5 22 4 6 2.</_></rects> 1446 <tilted>0</tilted></feature> 1447 <threshold>3.5056238994002342e-003</threshold> 1448 <left_val>-0.1614670008420944</left_val> 1449 <right_val>0.1608660072088242</right_val></_></_> 1450 <_> 1451 <!-- tree 20 --> 1452 <_> 1453 <!-- root node --> 1454 <feature> 1455 <rects> 1456 <_>0 25 8 3 -1.</_> 1457 <_>4 25 4 3 2.</_></rects> 1458 <tilted>0</tilted></feature> 1459 <threshold>-2.3172689543571323e-004</threshold> 1460 <left_val>0.1705936044454575</left_val> 1461 <right_val>-0.3540942072868347</right_val></_></_> 1462 <_> 1463 <!-- tree 21 --> 1464 <_> 1465 <!-- root node --> 1466 <feature> 1467 <rects> 1468 <_>0 17 14 8 -1.</_> 1469 <_>7 17 7 4 2.</_> 1470 <_>0 21 7 4 2.</_></rects> 1471 <tilted>0</tilted></feature> 1472 <threshold>0.0119145298376679</threshold> 1473 <left_val>0.1626563966274262</left_val> 1474 <right_val>-0.4146318137645721</right_val></_></_></trees> 1475 <stage_threshold>-1.2319500446319580</stage_threshold> 1476 <parent>4</parent> 1477 <next>-1</next></_> 1478 <_> 1479 <!-- stage 6 --> 1480 <trees> 1481 <_> 1482 <!-- tree 0 --> 1483 <_> 1484 <!-- root node --> 1485 <feature> 1486 <rects> 1487 <_>2 15 6 4 -1.</_> 1488 <_>5 15 3 4 2.</_></rects> 1489 <tilted>0</tilted></feature> 1490 <threshold>-4.5429700985550880e-003</threshold> 1491 <left_val>0.4296497106552124</left_val> 1492 <right_val>-0.5691584944725037</right_val></_></_> 1493 <_> 1494 <!-- tree 1 --> 1495 <_> 1496 <!-- root node --> 1497 <feature> 1498 <rects> 1499 <_>5 23 9 4 -1.</_> 1500 <_>8 23 3 4 3.</_></rects> 1501 <tilted>0</tilted></feature> 1502 <threshold>4.6804840676486492e-003</threshold> 1503 <left_val>-0.1038008034229279</left_val> 1504 <right_val>0.2545371949672699</right_val></_></_> 1505 <_> 1506 <!-- tree 2 --> 1507 <_> 1508 <!-- root node --> 1509 <feature> 1510 <rects> 1511 <_>0 23 9 5 -1.</_> 1512 <_>3 23 3 5 3.</_></rects> 1513 <tilted>0</tilted></feature> 1514 <threshold>3.5870380233973265e-003</threshold> 1515 <left_val>-0.3657707870006561</left_val> 1516 <right_val>0.3934333920478821</right_val></_></_> 1517 <_> 1518 <!-- tree 3 --> 1519 <_> 1520 <!-- root node --> 1521 <feature> 1522 <rects> 1523 <_>1 4 12 22 -1.</_> 1524 <_>5 4 4 22 3.</_></rects> 1525 <tilted>0</tilted></feature> 1526 <threshold>-0.3442833125591278</threshold> 1527 <left_val>0.7312576174736023</left_val> 1528 <right_val>-0.1506024003028870</right_val></_></_> 1529 <_> 1530 <!-- tree 4 --> 1531 <_> 1532 <!-- root node --> 1533 <feature> 1534 <rects> 1535 <_>1 4 5 24 -1.</_> 1536 <_>1 10 5 12 2.</_></rects> 1537 <tilted>0</tilted></feature> 1538 <threshold>0.0330544598400593</threshold> 1539 <left_val>0.1765758991241455</left_val> 1540 <right_val>-0.5106050968170166</right_val></_></_> 1541 <_> 1542 <!-- tree 5 --> 1543 <_> 1544 <!-- root node --> 1545 <feature> 1546 <rects> 1547 <_>2 23 12 4 -1.</_> 1548 <_>5 23 6 4 2.</_></rects> 1549 <tilted>0</tilted></feature> 1550 <threshold>-2.1190310362726450e-003</threshold> 1551 <left_val>0.0868593230843544</left_val> 1552 <right_val>-0.1773376017808914</right_val></_></_> 1553 <_> 1554 <!-- tree 6 --> 1555 <_> 1556 <!-- root node --> 1557 <feature> 1558 <rects> 1559 <_>3 16 4 12 -1.</_> 1560 <_>5 16 2 12 2.</_></rects> 1561 <tilted>0</tilted></feature> 1562 <threshold>0.0137807400897145</threshold> 1563 <left_val>-0.1224716976284981</left_val> 1564 <right_val>0.6647294163703919</right_val></_></_> 1565 <_> 1566 <!-- tree 7 --> 1567 <_> 1568 <!-- root node --> 1569 <feature> 1570 <rects> 1571 <_>1 17 12 11 -1.</_> 1572 <_>1 17 6 11 2.</_></rects> 1573 <tilted>0</tilted></feature> 1574 <threshold>0.0248479507863522</threshold> 1575 <left_val>0.2397679984569550</left_val> 1576 <right_val>-0.3245661854743958</right_val></_></_> 1577 <_> 1578 <!-- tree 8 --> 1579 <_> 1580 <!-- root node --> 1581 <feature> 1582 <rects> 1583 <_>5 16 3 12 -1.</_> 1584 <_>6 16 1 12 3.</_></rects> 1585 <tilted>0</tilted></feature> 1586 <threshold>-0.0131266303360462</threshold> 1587 <left_val>0.4946180880069733</left_val> 1588 <right_val>-0.2095437943935394</right_val></_></_> 1589 <_> 1590 <!-- tree 9 --> 1591 <_> 1592 <!-- root node --> 1593 <feature> 1594 <rects> 1595 <_>8 17 4 6 -1.</_> 1596 <_>8 17 4 3 2.</_></rects> 1597 <tilted>1</tilted></feature> 1598 <threshold>-0.0168861895799637</threshold> 1599 <left_val>-0.1397399008274078</left_val> 1600 <right_val>0.0750131607055664</right_val></_></_> 1601 <_> 1602 <!-- tree 10 --> 1603 <_> 1604 <!-- root node --> 1605 <feature> 1606 <rects> 1607 <_>7 16 4 6 -1.</_> 1608 <_>7 16 2 6 2.</_></rects> 1609 <tilted>1</tilted></feature> 1610 <threshold>-5.2776751108467579e-003</threshold> 1611 <left_val>-0.3891935944557190</left_val> 1612 <right_val>0.1892151981592178</right_val></_></_> 1613 <_> 1614 <!-- tree 11 --> 1615 <_> 1616 <!-- root node --> 1617 <feature> 1618 <rects> 1619 <_>6 2 4 6 -1.</_> 1620 <_>6 2 2 6 2.</_></rects> 1621 <tilted>0</tilted></feature> 1622 <threshold>-2.0325549412518740e-003</threshold> 1623 <left_val>0.2496545016765595</left_val> 1624 <right_val>-0.1796036064624786</right_val></_></_> 1625 <_> 1626 <!-- tree 12 --> 1627 <_> 1628 <!-- root node --> 1629 <feature> 1630 <rects> 1631 <_>2 12 5 16 -1.</_> 1632 <_>2 20 5 8 2.</_></rects> 1633 <tilted>0</tilted></feature> 1634 <threshold>-0.0180568005889654</threshold> 1635 <left_val>-0.5368307232856751</left_val> 1636 <right_val>0.1061547994613648</right_val></_></_> 1637 <_> 1638 <!-- tree 13 --> 1639 <_> 1640 <!-- root node --> 1641 <feature> 1642 <rects> 1643 <_>6 13 3 14 -1.</_> 1644 <_>7 13 1 14 3.</_></rects> 1645 <tilted>0</tilted></feature> 1646 <threshold>-0.0288151092827320</threshold> 1647 <left_val>0.5330320000648499</left_val> 1648 <right_val>-0.0787126868963242</right_val></_></_> 1649 <_> 1650 <!-- tree 14 --> 1651 <_> 1652 <!-- root node --> 1653 <feature> 1654 <rects> 1655 <_>6 6 8 3 -1.</_> 1656 <_>6 6 4 3 2.</_></rects> 1657 <tilted>1</tilted></feature> 1658 <threshold>-0.0609716586768627</threshold> 1659 <left_val>-0.8566309213638306</left_val> 1660 <right_val>0.0817214474081993</right_val></_></_> 1661 <_> 1662 <!-- tree 15 --> 1663 <_> 1664 <!-- root node --> 1665 <feature> 1666 <rects> 1667 <_>0 8 14 6 -1.</_> 1668 <_>0 11 14 3 2.</_></rects> 1669 <tilted>0</tilted></feature> 1670 <threshold>-0.0620221607387066</threshold> 1671 <left_val>-0.6722896099090576</left_val> 1672 <right_val>0.0823169872164726</right_val></_></_> 1673 <_> 1674 <!-- tree 16 --> 1675 <_> 1676 <!-- root node --> 1677 <feature> 1678 <rects> 1679 <_>2 7 4 7 -1.</_> 1680 <_>4 7 2 7 2.</_></rects> 1681 <tilted>0</tilted></feature> 1682 <threshold>-6.2961759977042675e-003</threshold> 1683 <left_val>0.2719230949878693</left_val> 1684 <right_val>-0.2371349036693573</right_val></_></_> 1685 <_> 1686 <!-- tree 17 --> 1687 <_> 1688 <!-- root node --> 1689 <feature> 1690 <rects> 1691 <_>8 8 4 6 -1.</_> 1692 <_>8 8 2 6 2.</_></rects> 1693 <tilted>0</tilted></feature> 1694 <threshold>4.9608140252530575e-003</threshold> 1695 <left_val>-0.1429551988840103</left_val> 1696 <right_val>0.2938036918640137</right_val></_></_></trees> 1697 <stage_threshold>-1.1912549734115601</stage_threshold> 1698 <parent>5</parent> 1699 <next>-1</next></_> 1700 <_> 1701 <!-- stage 7 --> 1702 <trees> 1703 <_> 1704 <!-- tree 0 --> 1705 <_> 1706 <!-- root node --> 1707 <feature> 1708 <rects> 1709 <_>3 13 8 13 -1.</_> 1710 <_>5 13 4 13 2.</_></rects> 1711 <tilted>0</tilted></feature> 1712 <threshold>-0.0870013535022736</threshold> 1713 <left_val>0.6308742761611939</left_val> 1714 <right_val>-0.2626413106918335</right_val></_></_> 1715 <_> 1716 <!-- tree 1 --> 1717 <_> 1718 <!-- root node --> 1719 <feature> 1720 <rects> 1721 <_>8 2 4 12 -1.</_> 1722 <_>10 2 2 6 2.</_> 1723 <_>8 8 2 6 2.</_></rects> 1724 <tilted>0</tilted></feature> 1725 <threshold>-4.5627020299434662e-003</threshold> 1726 <left_val>0.1464183926582336</left_val> 1727 <right_val>-0.0523218810558319</right_val></_></_> 1728 <_> 1729 <!-- tree 2 --> 1730 <_> 1731 <!-- root node --> 1732 <feature> 1733 <rects> 1734 <_>2 2 4 12 -1.</_> 1735 <_>2 2 2 6 2.</_> 1736 <_>4 8 2 6 2.</_></rects> 1737 <tilted>0</tilted></feature> 1738 <threshold>-4.1381991468369961e-003</threshold> 1739 <left_val>0.2174759954214096</left_val> 1740 <right_val>-0.3210794031620026</right_val></_></_> 1741 <_> 1742 <!-- tree 3 --> 1743 <_> 1744 <!-- root node --> 1745 <feature> 1746 <rects> 1747 <_>6 24 8 3 -1.</_> 1748 <_>6 24 4 3 2.</_></rects> 1749 <tilted>0</tilted></feature> 1750 <threshold>-1.9443330529611558e-004</threshold> 1751 <left_val>0.1430500000715256</left_val> 1752 <right_val>-0.4474846124649048</right_val></_></_> 1753 <_> 1754 <!-- tree 4 --> 1755 <_> 1756 <!-- root node --> 1757 <feature> 1758 <rects> 1759 <_>3 16 2 12 -1.</_> 1760 <_>4 16 1 12 2.</_></rects> 1761 <tilted>0</tilted></feature> 1762 <threshold>-2.6125069707632065e-003</threshold> 1763 <left_val>-0.3593623042106628</left_val> 1764 <right_val>0.2093449980020523</right_val></_></_> 1765 <_> 1766 <!-- tree 5 --> 1767 <_> 1768 <!-- root node --> 1769 <feature> 1770 <rects> 1771 <_>0 21 14 6 -1.</_> 1772 <_>0 21 7 6 2.</_></rects> 1773 <tilted>0</tilted></feature> 1774 <threshold>-0.0352383516728878</threshold> 1775 <left_val>-0.5587955713272095</left_val> 1776 <right_val>0.1181833967566490</right_val></_></_> 1777 <_> 1778 <!-- tree 6 --> 1779 <_> 1780 <!-- root node --> 1781 <feature> 1782 <rects> 1783 <_>0 11 8 4 -1.</_> 1784 <_>4 11 4 4 2.</_></rects> 1785 <tilted>0</tilted></feature> 1786 <threshold>0.0238805506378412</threshold> 1787 <left_val>-0.1234541982412338</left_val> 1788 <right_val>0.6450573801994324</right_val></_></_> 1789 <_> 1790 <!-- tree 7 --> 1791 <_> 1792 <!-- root node --> 1793 <feature> 1794 <rects> 1795 <_>1 2 12 5 -1.</_> 1796 <_>5 2 4 5 3.</_></rects> 1797 <tilted>0</tilted></feature> 1798 <threshold>-3.5878319758921862e-003</threshold> 1799 <left_val>0.2334091067314148</left_val> 1800 <right_val>-0.2990573048591614</right_val></_></_> 1801 <_> 1802 <!-- tree 8 --> 1803 <_> 1804 <!-- root node --> 1805 <feature> 1806 <rects> 1807 <_>2 1 6 21 -1.</_> 1808 <_>4 8 2 7 9.</_></rects> 1809 <tilted>0</tilted></feature> 1810 <threshold>-0.3438814878463745</threshold> 1811 <left_val>0.6333410739898682</left_val> 1812 <right_val>-0.0861014798283577</right_val></_></_> 1813 <_> 1814 <!-- tree 9 --> 1815 <_> 1816 <!-- root node --> 1817 <feature> 1818 <rects> 1819 <_>11 16 2 12 -1.</_> 1820 <_>11 16 1 12 2.</_></rects> 1821 <tilted>0</tilted></feature> 1822 <threshold>-2.5634190533310175e-003</threshold> 1823 <left_val>-0.3099200129508972</left_val> 1824 <right_val>0.0882134363055229</right_val></_></_> 1825 <_> 1826 <!-- tree 10 --> 1827 <_> 1828 <!-- root node --> 1829 <feature> 1830 <rects> 1831 <_>7 17 6 5 -1.</_> 1832 <_>7 17 3 5 2.</_></rects> 1833 <tilted>1</tilted></feature> 1834 <threshold>0.0470023490488529</threshold> 1835 <left_val>0.0735333934426308</left_val> 1836 <right_val>-0.7596526145935059</right_val></_></_> 1837 <_> 1838 <!-- tree 11 --> 1839 <_> 1840 <!-- root node --> 1841 <feature> 1842 <rects> 1843 <_>6 16 3 12 -1.</_> 1844 <_>7 16 1 12 3.</_></rects> 1845 <tilted>0</tilted></feature> 1846 <threshold>7.1428148075938225e-003</threshold> 1847 <left_val>-0.1698143035173416</left_val> 1848 <right_val>0.4198228120803833</right_val></_></_> 1849 <_> 1850 <!-- tree 12 --> 1851 <_> 1852 <!-- root node --> 1853 <feature> 1854 <rects> 1855 <_>1 16 2 12 -1.</_> 1856 <_>2 16 1 12 2.</_></rects> 1857 <tilted>0</tilted></feature> 1858 <threshold>-3.7736629601567984e-003</threshold> 1859 <left_val>-0.5566483736038208</left_val> 1860 <right_val>0.1006005033850670</right_val></_></_> 1861 <_> 1862 <!-- tree 13 --> 1863 <_> 1864 <!-- root node --> 1865 <feature> 1866 <rects> 1867 <_>7 13 3 12 -1.</_> 1868 <_>8 13 1 12 3.</_></rects> 1869 <tilted>0</tilted></feature> 1870 <threshold>0.0221798494458199</threshold> 1871 <left_val>-0.0760098993778229</left_val> 1872 <right_val>0.6371104121208191</right_val></_></_> 1873 <_> 1874 <!-- tree 14 --> 1875 <_> 1876 <!-- root node --> 1877 <feature> 1878 <rects> 1879 <_>6 17 4 6 -1.</_> 1880 <_>6 17 2 6 2.</_></rects> 1881 <tilted>1</tilted></feature> 1882 <threshold>2.9807379178237170e-005</threshold> 1883 <left_val>-0.2714306116104126</left_val> 1884 <right_val>0.2150378972291946</right_val></_></_> 1885 <_> 1886 <!-- tree 15 --> 1887 <_> 1888 <!-- root node --> 1889 <feature> 1890 <rects> 1891 <_>6 8 4 6 -1.</_> 1892 <_>6 11 4 3 2.</_></rects> 1893 <tilted>0</tilted></feature> 1894 <threshold>-1.4308329809864517e-005</threshold> 1895 <left_val>0.1309061050415039</left_val> 1896 <right_val>-0.2808949947357178</right_val></_></_> 1897 <_> 1898 <!-- tree 16 --> 1899 <_> 1900 <!-- root node --> 1901 <feature> 1902 <rects> 1903 <_>1 5 8 12 -1.</_> 1904 <_>1 11 8 6 2.</_></rects> 1905 <tilted>0</tilted></feature> 1906 <threshold>-0.1150026023387909</threshold> 1907 <left_val>-0.7198622226715088</left_val> 1908 <right_val>0.0768841728568077</right_val></_></_> 1909 <_> 1910 <!-- tree 17 --> 1911 <_> 1912 <!-- root node --> 1913 <feature> 1914 <rects> 1915 <_>7 13 3 12 -1.</_> 1916 <_>8 13 1 12 3.</_></rects> 1917 <tilted>0</tilted></feature> 1918 <threshold>-0.0253185909241438</threshold> 1919 <left_val>0.4525049924850464</left_val> 1920 <right_val>-0.0904816910624504</right_val></_></_> 1921 <_> 1922 <!-- tree 18 --> 1923 <_> 1924 <!-- root node --> 1925 <feature> 1926 <rects> 1927 <_>6 6 8 3 -1.</_> 1928 <_>6 6 4 3 2.</_></rects> 1929 <tilted>1</tilted></feature> 1930 <threshold>-0.0486983209848404</threshold> 1931 <left_val>-0.7417712807655335</left_val> 1932 <right_val>0.0676924064755440</right_val></_></_> 1933 <_> 1934 <!-- tree 19 --> 1935 <_> 1936 <!-- root node --> 1937 <feature> 1938 <rects> 1939 <_>7 14 3 12 -1.</_> 1940 <_>8 14 1 12 3.</_></rects> 1941 <tilted>0</tilted></feature> 1942 <threshold>-5.0045289099216461e-003</threshold> 1943 <left_val>0.1368017047643662</left_val> 1944 <right_val>-0.1186091974377632</right_val></_></_> 1945 <_> 1946 <!-- tree 20 --> 1947 <_> 1948 <!-- root node --> 1949 <feature> 1950 <rects> 1951 <_>0 25 12 3 -1.</_> 1952 <_>4 25 4 3 3.</_></rects> 1953 <tilted>0</tilted></feature> 1954 <threshold>7.5120502151548862e-003</threshold> 1955 <left_val>0.0912609919905663</left_val> 1956 <right_val>-0.5696067810058594</right_val></_></_> 1957 <_> 1958 <!-- tree 21 --> 1959 <_> 1960 <!-- root node --> 1961 <feature> 1962 <rects> 1963 <_>7 17 4 8 -1.</_> 1964 <_>7 17 2 8 2.</_></rects> 1965 <tilted>0</tilted></feature> 1966 <threshold>-5.4631778039038181e-003</threshold> 1967 <left_val>0.1170236021280289</left_val> 1968 <right_val>-0.1476123034954071</right_val></_></_> 1969 <_> 1970 <!-- tree 22 --> 1971 <_> 1972 <!-- root node --> 1973 <feature> 1974 <rects> 1975 <_>3 17 4 8 -1.</_> 1976 <_>5 17 2 8 2.</_></rects> 1977 <tilted>0</tilted></feature> 1978 <threshold>0.0152560099959373</threshold> 1979 <left_val>-0.1076835989952087</left_val> 1980 <right_val>0.6471626162528992</right_val></_></_> 1981 <_> 1982 <!-- tree 23 --> 1983 <_> 1984 <!-- root node --> 1985 <feature> 1986 <rects> 1987 <_>8 24 6 4 -1.</_> 1988 <_>8 24 3 4 2.</_></rects> 1989 <tilted>0</tilted></feature> 1990 <threshold>-0.0219006203114986</threshold> 1991 <left_val>-0.6077641844749451</left_val> 1992 <right_val>0.0644492134451866</right_val></_></_> 1993 <_> 1994 <!-- tree 24 --> 1995 <_> 1996 <!-- root node --> 1997 <feature> 1998 <rects> 1999 <_>2 22 6 6 -1.</_> 2000 <_>4 22 2 6 3.</_></rects> 2001 <tilted>0</tilted></feature> 2002 <threshold>2.1267218980938196e-003</threshold> 2003 <left_val>-0.2311546951532364</left_val> 2004 <right_val>0.2181330025196075</right_val></_></_> 2005 <_> 2006 <!-- tree 25 --> 2007 <_> 2008 <!-- root node --> 2009 <feature> 2010 <rects> 2011 <_>8 15 5 8 -1.</_> 2012 <_>8 15 5 4 2.</_></rects> 2013 <tilted>1</tilted></feature> 2014 <threshold>-0.0315019190311432</threshold> 2015 <left_val>-0.1367810964584351</left_val> 2016 <right_val>0.0660032704472542</right_val></_></_> 2017 <_> 2018 <!-- tree 26 --> 2019 <_> 2020 <!-- root node --> 2021 <feature> 2022 <rects> 2023 <_>6 15 8 5 -1.</_> 2024 <_>6 15 4 5 2.</_></rects> 2025 <tilted>1</tilted></feature> 2026 <threshold>0.0181079693138599</threshold> 2027 <left_val>0.1086572036147118</left_val> 2028 <right_val>-0.4467346072196960</right_val></_></_> 2029 <_> 2030 <!-- tree 27 --> 2031 <_> 2032 <!-- root node --> 2033 <feature> 2034 <rects> 2035 <_>1 8 12 7 -1.</_> 2036 <_>4 8 6 7 2.</_></rects> 2037 <tilted>0</tilted></feature> 2038 <threshold>-0.1105957031250000</threshold> 2039 <left_val>0.4695417881011963</left_val> 2040 <right_val>-0.1126838028430939</right_val></_></_> 2041 <_> 2042 <!-- tree 28 --> 2043 <_> 2044 <!-- root node --> 2045 <feature> 2046 <rects> 2047 <_>0 10 6 10 -1.</_> 2048 <_>0 15 6 5 2.</_></rects> 2049 <tilted>0</tilted></feature> 2050 <threshold>2.2349569480866194e-003</threshold> 2051 <left_val>-0.2988497018814087</left_val> 2052 <right_val>0.1814752966165543</right_val></_></_> 2053 <_> 2054 <!-- tree 29 --> 2055 <_> 2056 <!-- root node --> 2057 <feature> 2058 <rects> 2059 <_>7 4 4 22 -1.</_> 2060 <_>7 15 4 11 2.</_></rects> 2061 <tilted>0</tilted></feature> 2062 <threshold>0.0465041883289814</threshold> 2063 <left_val>0.1284676939249039</left_val> 2064 <right_val>-0.2660984992980957</right_val></_></_></trees> 2065 <stage_threshold>-1.1750839948654175</stage_threshold> 2066 <parent>6</parent> 2067 <next>-1</next></_> 2068 <_> 2069 <!-- stage 8 --> 2070 <trees> 2071 <_> 2072 <!-- tree 0 --> 2073 <_> 2074 <!-- root node --> 2075 <feature> 2076 <rects> 2077 <_>1 4 12 22 -1.</_> 2078 <_>4 4 6 22 2.</_></rects> 2079 <tilted>0</tilted></feature> 2080 <threshold>-0.0488205999135971</threshold> 2081 <left_val>0.4280799031257629</left_val> 2082 <right_val>-0.5515494942665100</right_val></_></_> 2083 <_> 2084 <!-- tree 1 --> 2085 <_> 2086 <!-- root node --> 2087 <feature> 2088 <rects> 2089 <_>6 3 4 12 -1.</_> 2090 <_>8 3 2 6 2.</_> 2091 <_>6 9 2 6 2.</_></rects> 2092 <tilted>0</tilted></feature> 2093 <threshold>1.4779040357097983e-003</threshold> 2094 <left_val>-0.1868806034326553</left_val> 2095 <right_val>0.1903828978538513</right_val></_></_> 2096 <_> 2097 <!-- tree 2 --> 2098 <_> 2099 <!-- root node --> 2100 <feature> 2101 <rects> 2102 <_>5 16 3 12 -1.</_> 2103 <_>6 16 1 12 3.</_></rects> 2104 <tilted>0</tilted></feature> 2105 <threshold>-0.0100122904404998</threshold> 2106 <left_val>0.3845142126083374</left_val> 2107 <right_val>-0.2172304987907410</right_val></_></_> 2108 <_> 2109 <!-- tree 3 --> 2110 <_> 2111 <!-- root node --> 2112 <feature> 2113 <rects> 2114 <_>5 5 6 8 -1.</_> 2115 <_>8 5 3 4 2.</_> 2116 <_>5 9 3 4 2.</_></rects> 2117 <tilted>0</tilted></feature> 2118 <threshold>-0.0510002784430981</threshold> 2119 <left_val>-0.7613695263862610</left_val> 2120 <right_val>0.0136259002611041</right_val></_></_> 2121 <_> 2122 <!-- tree 4 --> 2123 <_> 2124 <!-- root node --> 2125 <feature> 2126 <rects> 2127 <_>3 5 6 8 -1.</_> 2128 <_>3 5 3 4 2.</_> 2129 <_>6 9 3 4 2.</_></rects> 2130 <tilted>0</tilted></feature> 2131 <threshold>5.2959132008254528e-003</threshold> 2132 <left_val>-0.2302142977714539</left_val> 2133 <right_val>0.2853623926639557</right_val></_></_> 2134 <_> 2135 <!-- tree 5 --> 2136 <_> 2137 <!-- root node --> 2138 <feature> 2139 <rects> 2140 <_>8 4 6 4 -1.</_> 2141 <_>8 4 6 2 2.</_></rects> 2142 <tilted>1</tilted></feature> 2143 <threshold>-0.0486541390419006</threshold> 2144 <left_val>0.7099207043647766</left_val> 2145 <right_val>-0.0492031499743462</right_val></_></_> 2146 <_> 2147 <!-- tree 6 --> 2148 <_> 2149 <!-- root node --> 2150 <feature> 2151 <rects> 2152 <_>5 10 3 18 -1.</_> 2153 <_>5 19 3 9 2.</_></rects> 2154 <tilted>0</tilted></feature> 2155 <threshold>8.8448636233806610e-003</threshold> 2156 <left_val>-0.3150536119937897</left_val> 2157 <right_val>0.2089902013540268</right_val></_></_> 2158 <_> 2159 <!-- tree 7 --> 2160 <_> 2161 <!-- root node --> 2162 <feature> 2163 <rects> 2164 <_>7 6 4 6 -1.</_> 2165 <_>7 6 4 3 2.</_></rects> 2166 <tilted>1</tilted></feature> 2167 <threshold>0.1006280034780502</threshold> 2168 <left_val>6.6908989101648331e-003</left_val> 2169 <right_val>0.6701387166976929</right_val></_></_> 2170 <_> 2171 <!-- tree 8 --> 2172 <_> 2173 <!-- root node --> 2174 <feature> 2175 <rects> 2176 <_>7 6 6 4 -1.</_> 2177 <_>7 6 3 4 2.</_></rects> 2178 <tilted>1</tilted></feature> 2179 <threshold>-7.0256260223686695e-003</threshold> 2180 <left_val>-0.3940832912921906</left_val> 2181 <right_val>0.1743354946374893</right_val></_></_> 2182 <_> 2183 <!-- tree 9 --> 2184 <_> 2185 <!-- root node --> 2186 <feature> 2187 <rects> 2188 <_>6 24 8 3 -1.</_> 2189 <_>6 24 4 3 2.</_></rects> 2190 <tilted>0</tilted></feature> 2191 <threshold>-2.1224319934844971e-003</threshold> 2192 <left_val>0.1699631065130234</left_val> 2193 <right_val>-0.3023740947246552</right_val></_></_> 2194 <_> 2195 <!-- tree 10 --> 2196 <_> 2197 <!-- root node --> 2198 <feature> 2199 <rects> 2200 <_>1 11 12 5 -1.</_> 2201 <_>4 11 6 5 2.</_></rects> 2202 <tilted>0</tilted></feature> 2203 <threshold>9.9532064050436020e-003</threshold> 2204 <left_val>-0.1420284062623978</left_val> 2205 <right_val>0.4516746103763580</right_val></_></_> 2206 <_> 2207 <!-- tree 11 --> 2208 <_> 2209 <!-- root node --> 2210 <feature> 2211 <rects> 2212 <_>10 22 4 6 -1.</_> 2213 <_>10 22 2 6 2.</_></rects> 2214 <tilted>0</tilted></feature> 2215 <threshold>0.0125650698319077</threshold> 2216 <left_val>0.0731758773326874</left_val> 2217 <right_val>-0.6170042157173157</right_val></_></_> 2218 <_> 2219 <!-- tree 12 --> 2220 <_> 2221 <!-- root node --> 2222 <feature> 2223 <rects> 2224 <_>2 3 4 12 -1.</_> 2225 <_>2 3 2 6 2.</_> 2226 <_>4 9 2 6 2.</_></rects> 2227 <tilted>0</tilted></feature> 2228 <threshold>-1.7854310572147369e-003</threshold> 2229 <left_val>0.1490986049175263</left_val> 2230 <right_val>-0.3286524116992950</right_val></_></_> 2231 <_> 2232 <!-- tree 13 --> 2233 <_> 2234 <!-- root node --> 2235 <feature> 2236 <rects> 2237 <_>10 22 4 6 -1.</_> 2238 <_>10 22 2 6 2.</_></rects> 2239 <tilted>0</tilted></feature> 2240 <threshold>-4.0306518785655499e-003</threshold> 2241 <left_val>-0.4571371078491211</left_val> 2242 <right_val>0.1081572026014328</right_val></_></_> 2243 <_> 2244 <!-- tree 14 --> 2245 <_> 2246 <!-- root node --> 2247 <feature> 2248 <rects> 2249 <_>0 22 4 6 -1.</_> 2250 <_>2 22 2 6 2.</_></rects> 2251 <tilted>0</tilted></feature> 2252 <threshold>-7.3099560104310513e-003</threshold> 2253 <left_val>-0.6559277176856995</left_val> 2254 <right_val>0.0656157881021500</right_val></_></_> 2255 <_> 2256 <!-- tree 15 --> 2257 <_> 2258 <!-- root node --> 2259 <feature> 2260 <rects> 2261 <_>6 15 3 12 -1.</_> 2262 <_>7 15 1 12 3.</_></rects> 2263 <tilted>0</tilted></feature> 2264 <threshold>-0.0338434316217899</threshold> 2265 <left_val>0.5041236877441406</left_val> 2266 <right_val>-0.0616260692477226</right_val></_></_> 2267 <_> 2268 <!-- tree 16 --> 2269 <_> 2270 <!-- root node --> 2271 <feature> 2272 <rects> 2273 <_>7 16 4 6 -1.</_> 2274 <_>7 16 2 6 2.</_></rects> 2275 <tilted>1</tilted></feature> 2276 <threshold>3.8319290615618229e-004</threshold> 2277 <left_val>-0.2515347898006439</left_val> 2278 <right_val>0.2027134001255035</right_val></_></_> 2279 <_> 2280 <!-- tree 17 --> 2281 <_> 2282 <!-- root node --> 2283 <feature> 2284 <rects> 2285 <_>4 2 6 6 -1.</_> 2286 <_>4 4 6 2 3.</_></rects> 2287 <tilted>0</tilted></feature> 2288 <threshold>-2.6169361080974340e-003</threshold> 2289 <left_val>0.2249795943498612</left_val> 2290 <right_val>-0.2195861935615540</right_val></_></_> 2291 <_> 2292 <!-- tree 18 --> 2293 <_> 2294 <!-- root node --> 2295 <feature> 2296 <rects> 2297 <_>3 16 2 12 -1.</_> 2298 <_>4 16 1 12 2.</_></rects> 2299 <tilted>0</tilted></feature> 2300 <threshold>-4.5606079511344433e-003</threshold> 2301 <left_val>-0.4659804105758667</left_val> 2302 <right_val>0.1234800964593887</right_val></_></_> 2303 <_> 2304 <!-- tree 19 --> 2305 <_> 2306 <!-- root node --> 2307 <feature> 2308 <rects> 2309 <_>7 16 2 12 -1.</_> 2310 <_>7 16 1 12 2.</_></rects> 2311 <tilted>0</tilted></feature> 2312 <threshold>0.0108227897435427</threshold> 2313 <left_val>-0.0966189727187157</left_val> 2314 <right_val>0.4641242921352387</right_val></_></_> 2315 <_> 2316 <!-- tree 20 --> 2317 <_> 2318 <!-- root node --> 2319 <feature> 2320 <rects> 2321 <_>5 9 4 6 -1.</_> 2322 <_>7 9 2 6 2.</_></rects> 2323 <tilted>0</tilted></feature> 2324 <threshold>-5.3171347826719284e-003</threshold> 2325 <left_val>-0.5563424825668335</left_val> 2326 <right_val>0.0946232825517654</right_val></_></_> 2327 <_> 2328 <!-- tree 21 --> 2329 <_> 2330 <!-- root node --> 2331 <feature> 2332 <rects> 2333 <_>7 15 2 12 -1.</_> 2334 <_>7 15 1 12 2.</_></rects> 2335 <tilted>0</tilted></feature> 2336 <threshold>-9.3140971148386598e-004</threshold> 2337 <left_val>0.1014392971992493</left_val> 2338 <right_val>-0.1056424006819725</right_val></_></_> 2339 <_> 2340 <!-- tree 22 --> 2341 <_> 2342 <!-- root node --> 2343 <feature> 2344 <rects> 2345 <_>5 15 2 12 -1.</_> 2346 <_>6 15 1 12 2.</_></rects> 2347 <tilted>0</tilted></feature> 2348 <threshold>8.4296840941533446e-004</threshold> 2349 <left_val>-0.1324310004711151</left_val> 2350 <right_val>0.3535107970237732</right_val></_></_> 2351 <_> 2352 <!-- tree 23 --> 2353 <_> 2354 <!-- root node --> 2355 <feature> 2356 <rects> 2357 <_>2 25 12 2 -1.</_> 2358 <_>2 25 6 2 2.</_></rects> 2359 <tilted>0</tilted></feature> 2360 <threshold>-0.0278069600462914</threshold> 2361 <left_val>-0.6505060195922852</left_val> 2362 <right_val>0.0331535898149014</right_val></_></_> 2363 <_> 2364 <!-- tree 24 --> 2365 <_> 2366 <!-- root node --> 2367 <feature> 2368 <rects> 2369 <_>3 16 4 12 -1.</_> 2370 <_>3 16 2 6 2.</_> 2371 <_>5 22 2 6 2.</_></rects> 2372 <tilted>0</tilted></feature> 2373 <threshold>6.9245469057932496e-004</threshold> 2374 <left_val>-0.2670288085937500</left_val> 2375 <right_val>0.2112963050603867</right_val></_></_> 2376 <_> 2377 <!-- tree 25 --> 2378 <_> 2379 <!-- root node --> 2380 <feature> 2381 <rects> 2382 <_>6 24 8 3 -1.</_> 2383 <_>6 24 4 3 2.</_></rects> 2384 <tilted>0</tilted></feature> 2385 <threshold>-0.0127872303128242</threshold> 2386 <left_val>0.2159364074468613</left_val> 2387 <right_val>-0.0867670774459839</right_val></_></_> 2388 <_> 2389 <!-- tree 26 --> 2390 <_> 2391 <!-- root node --> 2392 <feature> 2393 <rects> 2394 <_>0 25 12 2 -1.</_> 2395 <_>6 25 6 2 2.</_></rects> 2396 <tilted>0</tilted></feature> 2397 <threshold>-6.1678601196035743e-004</threshold> 2398 <left_val>0.1695998013019562</left_val> 2399 <right_val>-0.2924894094467163</right_val></_></_></trees> 2400 <stage_threshold>-1.1861419677734375</stage_threshold> 2401 <parent>7</parent> 2402 <next>-1</next></_> 2403 <_> 2404 <!-- stage 9 --> 2405 <trees> 2406 <_> 2407 <!-- tree 0 --> 2408 <_> 2409 <!-- root node --> 2410 <feature> 2411 <rects> 2412 <_>4 1 6 27 -1.</_> 2413 <_>4 10 6 9 3.</_></rects> 2414 <tilted>0</tilted></feature> 2415 <threshold>-0.0517069287598133</threshold> 2416 <left_val>0.4694269895553589</left_val> 2417 <right_val>-0.5128067135810852</right_val></_></_> 2418 <_> 2419 <!-- tree 1 --> 2420 <_> 2421 <!-- root node --> 2422 <feature> 2423 <rects> 2424 <_>6 16 3 12 -1.</_> 2425 <_>7 16 1 12 3.</_></rects> 2426 <tilted>0</tilted></feature> 2427 <threshold>5.5232150480151176e-003</threshold> 2428 <left_val>-0.2498238980770111</left_val> 2429 <right_val>0.6300581097602844</right_val></_></_> 2430 <_> 2431 <!-- tree 2 --> 2432 <_> 2433 <!-- root node --> 2434 <feature> 2435 <rects> 2436 <_>3 21 6 4 -1.</_> 2437 <_>6 21 3 4 2.</_></rects> 2438 <tilted>0</tilted></feature> 2439 <threshold>-9.2110745608806610e-003</threshold> 2440 <left_val>0.3753066956996918</left_val> 2441 <right_val>-0.2291038036346436</right_val></_></_> 2442 <_> 2443 <!-- tree 3 --> 2444 <_> 2445 <!-- root node --> 2446 <feature> 2447 <rects> 2448 <_>4 2 6 12 -1.</_> 2449 <_>4 8 6 6 2.</_></rects> 2450 <tilted>0</tilted></feature> 2451 <threshold>0.0417299605906010</threshold> 2452 <left_val>-0.1126201003789902</left_val> 2453 <right_val>0.6750869750976563</right_val></_></_> 2454 <_> 2455 <!-- tree 4 --> 2456 <_> 2457 <!-- root node --> 2458 <feature> 2459 <rects> 2460 <_>6 0 6 4 -1.</_> 2461 <_>6 0 3 4 2.</_></rects> 2462 <tilted>1</tilted></feature> 2463 <threshold>4.5255841687321663e-003</threshold> 2464 <left_val>-0.2693972885608673</left_val> 2465 <right_val>0.2488950937986374</right_val></_></_> 2466 <_> 2467 <!-- tree 5 --> 2468 <_> 2469 <!-- root node --> 2470 <feature> 2471 <rects> 2472 <_>6 4 3 14 -1.</_> 2473 <_>7 4 1 14 3.</_></rects> 2474 <tilted>0</tilted></feature> 2475 <threshold>-8.5208792006596923e-004</threshold> 2476 <left_val>0.2009855061769486</left_val> 2477 <right_val>-0.2300173044204712</right_val></_></_> 2478 <_> 2479 <!-- tree 6 --> 2480 <_> 2481 <!-- root node --> 2482 <feature> 2483 <rects> 2484 <_>4 8 6 6 -1.</_> 2485 <_>6 8 2 6 3.</_></rects> 2486 <tilted>0</tilted></feature> 2487 <threshold>-3.4569639246910810e-003</threshold> 2488 <left_val>-0.3637234866619110</left_val> 2489 <right_val>0.2714250087738037</right_val></_></_> 2490 <_> 2491 <!-- tree 7 --> 2492 <_> 2493 <!-- root node --> 2494 <feature> 2495 <rects> 2496 <_>2 24 12 4 -1.</_> 2497 <_>6 24 4 4 3.</_></rects> 2498 <tilted>0</tilted></feature> 2499 <threshold>-0.0882003605365753</threshold> 2500 <left_val>-0.7595195770263672</left_val> 2501 <right_val>-7.2166309691965580e-003</right_val></_></_> 2502 <_> 2503 <!-- tree 8 --> 2504 <_> 2505 <!-- root node --> 2506 <feature> 2507 <rects> 2508 <_>0 24 12 4 -1.</_> 2509 <_>4 24 4 4 3.</_></rects> 2510 <tilted>0</tilted></feature> 2511 <threshold>-2.3253160179592669e-004</threshold> 2512 <left_val>0.1473821997642517</left_val> 2513 <right_val>-0.4254870116710663</right_val></_></_> 2514 <_> 2515 <!-- tree 9 --> 2516 <_> 2517 <!-- root node --> 2518 <feature> 2519 <rects> 2520 <_>8 13 3 12 -1.</_> 2521 <_>9 13 1 12 3.</_></rects> 2522 <tilted>0</tilted></feature> 2523 <threshold>0.0192584004253149</threshold> 2524 <left_val>-0.0848308727145195</left_val> 2525 <right_val>0.5948777198791504</right_val></_></_> 2526 <_> 2527 <!-- tree 10 --> 2528 <_> 2529 <!-- root node --> 2530 <feature> 2531 <rects> 2532 <_>1 22 4 6 -1.</_> 2533 <_>3 22 2 6 2.</_></rects> 2534 <tilted>0</tilted></feature> 2535 <threshold>-3.1915740109980106e-003</threshold> 2536 <left_val>-0.4263828098773956</left_val> 2537 <right_val>0.1335715949535370</right_val></_></_> 2538 <_> 2539 <!-- tree 11 --> 2540 <_> 2541 <!-- root node --> 2542 <feature> 2543 <rects> 2544 <_>7 7 3 12 -1.</_> 2545 <_>8 7 1 12 3.</_></rects> 2546 <tilted>0</tilted></feature> 2547 <threshold>-0.0222290400415659</threshold> 2548 <left_val>-0.4229826927185059</left_val> 2549 <right_val>0.0361279584467411</right_val></_></_> 2550 <_> 2551 <!-- tree 12 --> 2552 <_> 2553 <!-- root node --> 2554 <feature> 2555 <rects> 2556 <_>4 7 3 12 -1.</_> 2557 <_>5 7 1 12 3.</_></rects> 2558 <tilted>0</tilted></feature> 2559 <threshold>-5.3123440593481064e-003</threshold> 2560 <left_val>0.2934978008270264</left_val> 2561 <right_val>-0.2219786942005158</right_val></_></_> 2562 <_> 2563 <!-- tree 13 --> 2564 <_> 2565 <!-- root node --> 2566 <feature> 2567 <rects> 2568 <_>4 1 8 3 -1.</_> 2569 <_>4 1 4 3 2.</_></rects> 2570 <tilted>0</tilted></feature> 2571 <threshold>5.6796981953084469e-003</threshold> 2572 <left_val>0.0804127901792526</left_val> 2573 <right_val>-0.1972528994083405</right_val></_></_> 2574 <_> 2575 <!-- tree 14 --> 2576 <_> 2577 <!-- root node --> 2578 <feature> 2579 <rects> 2580 <_>4 4 3 23 -1.</_> 2581 <_>5 4 1 23 3.</_></rects> 2582 <tilted>0</tilted></feature> 2583 <threshold>3.2511178869754076e-003</threshold> 2584 <left_val>-0.1662839055061340</left_val> 2585 <right_val>0.3310728073120117</right_val></_></_> 2586 <_> 2587 <!-- tree 15 --> 2588 <_> 2589 <!-- root node --> 2590 <feature> 2591 <rects> 2592 <_>9 21 4 7 -1.</_> 2593 <_>9 21 2 7 2.</_></rects> 2594 <tilted>0</tilted></feature> 2595 <threshold>2.5559039786458015e-003</threshold> 2596 <left_val>0.0673501715064049</left_val> 2597 <right_val>-0.2464237064123154</right_val></_></_> 2598 <_> 2599 <!-- tree 16 --> 2600 <_> 2601 <!-- root node --> 2602 <feature> 2603 <rects> 2604 <_>5 14 3 12 -1.</_> 2605 <_>6 14 1 12 3.</_></rects> 2606 <tilted>0</tilted></feature> 2607 <threshold>0.0312399994581938</threshold> 2608 <left_val>-0.0673935115337372</left_val> 2609 <right_val>0.8285176753997803</right_val></_></_> 2610 <_> 2611 <!-- tree 17 --> 2612 <_> 2613 <!-- root node --> 2614 <feature> 2615 <rects> 2616 <_>2 26 12 2 -1.</_> 2617 <_>2 26 6 2 2.</_></rects> 2618 <tilted>0</tilted></feature> 2619 <threshold>-4.4333371333777905e-003</threshold> 2620 <left_val>-0.3804832100868225</left_val> 2621 <right_val>0.1424861997365952</right_val></_></_> 2622 <_> 2623 <!-- tree 18 --> 2624 <_> 2625 <!-- root node --> 2626 <feature> 2627 <rects> 2628 <_>0 26 12 2 -1.</_> 2629 <_>6 26 6 2 2.</_></rects> 2630 <tilted>0</tilted></feature> 2631 <threshold>-3.9497618563473225e-003</threshold> 2632 <left_val>-0.3566044867038727</left_val> 2633 <right_val>0.1868544071912766</right_val></_></_> 2634 <_> 2635 <!-- tree 19 --> 2636 <_> 2637 <!-- root node --> 2638 <feature> 2639 <rects> 2640 <_>8 13 3 12 -1.</_> 2641 <_>9 13 1 12 3.</_></rects> 2642 <tilted>0</tilted></feature> 2643 <threshold>-0.0140432901680470</threshold> 2644 <left_val>0.5322288870811462</left_val> 2645 <right_val>-0.0789808034896851</right_val></_></_> 2646 <_> 2647 <!-- tree 20 --> 2648 <_> 2649 <!-- root node --> 2650 <feature> 2651 <rects> 2652 <_>3 13 3 12 -1.</_> 2653 <_>4 13 1 12 3.</_></rects> 2654 <tilted>0</tilted></feature> 2655 <threshold>4.2212791740894318e-003</threshold> 2656 <left_val>-0.1984183043241501</left_val> 2657 <right_val>0.3136729896068573</right_val></_></_></trees> 2658 <stage_threshold>-1.0550270080566406</stage_threshold> 2659 <parent>8</parent> 2660 <next>-1</next></_> 2661 <_> 2662 <!-- stage 10 --> 2663 <trees> 2664 <_> 2665 <!-- tree 0 --> 2666 <_> 2667 <!-- root node --> 2668 <feature> 2669 <rects> 2670 <_>3 2 8 20 -1.</_> 2671 <_>3 7 8 10 2.</_></rects> 2672 <tilted>0</tilted></feature> 2673 <threshold>-0.1527878940105438</threshold> 2674 <left_val>0.5414003729820252</left_val> 2675 <right_val>-0.1875697970390320</right_val></_></_> 2676 <_> 2677 <!-- tree 1 --> 2678 <_> 2679 <!-- root node --> 2680 <feature> 2681 <rects> 2682 <_>2 18 12 8 -1.</_> 2683 <_>5 18 6 8 2.</_></rects> 2684 <tilted>0</tilted></feature> 2685 <threshold>-0.0706556364893913</threshold> 2686 <left_val>0.3400335013866425</left_val> 2687 <right_val>-0.1445966958999634</right_val></_></_> 2688 <_> 2689 <!-- tree 2 --> 2690 <_> 2691 <!-- root node --> 2692 <feature> 2693 <rects> 2694 <_>4 9 6 6 -1.</_> 2695 <_>6 9 2 6 3.</_></rects> 2696 <tilted>0</tilted></feature> 2697 <threshold>-0.0210332293063402</threshold> 2698 <left_val>-0.5587847232818604</left_val> 2699 <right_val>0.1159814968705177</right_val></_></_> 2700 <_> 2701 <!-- tree 3 --> 2702 <_> 2703 <!-- root node --> 2704 <feature> 2705 <rects> 2706 <_>2 18 12 8 -1.</_> 2707 <_>5 18 6 8 2.</_></rects> 2708 <tilted>0</tilted></feature> 2709 <threshold>-9.5666358247399330e-003</threshold> 2710 <left_val>0.1089008003473282</left_val> 2711 <right_val>-0.2036568969488144</right_val></_></_> 2712 <_> 2713 <!-- tree 4 --> 2714 <_> 2715 <!-- root node --> 2716 <feature> 2717 <rects> 2718 <_>0 24 8 4 -1.</_> 2719 <_>4 24 4 4 2.</_></rects> 2720 <tilted>0</tilted></feature> 2721 <threshold>-0.0427205413579941</threshold> 2722 <left_val>-0.9403002262115479</left_val> 2723 <right_val>0.0636063218116760</right_val></_></_> 2724 <_> 2725 <!-- tree 5 --> 2726 <_> 2727 <!-- root node --> 2728 <feature> 2729 <rects> 2730 <_>6 2 2 24 -1.</_> 2731 <_>7 2 1 12 2.</_> 2732 <_>6 14 1 12 2.</_></rects> 2733 <tilted>0</tilted></feature> 2734 <threshold>-4.5477859675884247e-003</threshold> 2735 <left_val>0.3422701954841614</left_val> 2736 <right_val>-0.1705372035503388</right_val></_></_> 2737 <_> 2738 <!-- tree 6 --> 2739 <_> 2740 <!-- root node --> 2741 <feature> 2742 <rects> 2743 <_>5 8 4 12 -1.</_> 2744 <_>5 8 2 6 2.</_> 2745 <_>7 14 2 6 2.</_></rects> 2746 <tilted>0</tilted></feature> 2747 <threshold>3.7029080558568239e-003</threshold> 2748 <left_val>0.0837208926677704</left_val> 2749 <right_val>-0.4613954126834869</right_val></_></_> 2750 <_> 2751 <!-- tree 7 --> 2752 <_> 2753 <!-- root node --> 2754 <feature> 2755 <rects> 2756 <_>7 3 6 6 -1.</_> 2757 <_>7 3 3 6 2.</_></rects> 2758 <tilted>1</tilted></feature> 2759 <threshold>-0.1145887002348900</threshold> 2760 <left_val>0.6002784967422485</left_val> 2761 <right_val>-0.0177644807845354</right_val></_></_> 2762 <_> 2763 <!-- tree 8 --> 2764 <_> 2765 <!-- root node --> 2766 <feature> 2767 <rects> 2768 <_>0 8 6 7 -1.</_> 2769 <_>2 8 2 7 3.</_></rects> 2770 <tilted>0</tilted></feature> 2771 <threshold>5.7319342158734798e-003</threshold> 2772 <left_val>-0.2559010982513428</left_val> 2773 <right_val>0.2006231993436813</right_val></_></_> 2774 <_> 2775 <!-- tree 9 --> 2776 <_> 2777 <!-- root node --> 2778 <feature> 2779 <rects> 2780 <_>7 3 6 6 -1.</_> 2781 <_>7 3 3 6 2.</_></rects> 2782 <tilted>1</tilted></feature> 2783 <threshold>-0.0702377930283546</threshold> 2784 <left_val>0.2535978853702545</left_val> 2785 <right_val>-0.0295036192983389</right_val></_></_> 2786 <_> 2787 <!-- tree 10 --> 2788 <_> 2789 <!-- root node --> 2790 <feature> 2791 <rects> 2792 <_>4 8 6 4 -1.</_> 2793 <_>7 8 3 4 2.</_></rects> 2794 <tilted>0</tilted></feature> 2795 <threshold>0.0139831798151135</threshold> 2796 <left_val>0.1145640015602112</left_val> 2797 <right_val>-0.3968353867530823</right_val></_></_> 2798 <_> 2799 <!-- tree 11 --> 2800 <_> 2801 <!-- root node --> 2802 <feature> 2803 <rects> 2804 <_>2 7 10 19 -1.</_> 2805 <_>2 7 5 19 2.</_></rects> 2806 <tilted>0</tilted></feature> 2807 <threshold>0.1817575991153717</threshold> 2808 <left_val>0.0507499501109123</left_val> 2809 <right_val>-0.8306192755699158</right_val></_></_> 2810 <_> 2811 <!-- tree 12 --> 2812 <_> 2813 <!-- root node --> 2814 <feature> 2815 <rects> 2816 <_>0 4 11 24 -1.</_> 2817 <_>0 16 11 12 2.</_></rects> 2818 <tilted>0</tilted></feature> 2819 <threshold>0.0301854908466339</threshold> 2820 <left_val>-0.2668361067771912</left_val> 2821 <right_val>0.1407079994678497</right_val></_></_> 2822 <_> 2823 <!-- tree 13 --> 2824 <_> 2825 <!-- root node --> 2826 <feature> 2827 <rects> 2828 <_>1 1 12 21 -1.</_> 2829 <_>5 8 4 7 9.</_></rects> 2830 <tilted>0</tilted></feature> 2831 <threshold>0.7563328742980957</threshold> 2832 <left_val>-0.0414166189730167</left_val> 2833 <right_val>0.9095727801322937</right_val></_></_> 2834 <_> 2835 <!-- tree 14 --> 2836 <_> 2837 <!-- root node --> 2838 <feature> 2839 <rects> 2840 <_>0 18 12 8 -1.</_> 2841 <_>3 18 6 8 2.</_></rects> 2842 <tilted>0</tilted></feature> 2843 <threshold>-8.5228988900780678e-003</threshold> 2844 <left_val>0.1614249944686890</left_val> 2845 <right_val>-0.2754909992218018</right_val></_></_> 2846 <_> 2847 <!-- tree 15 --> 2848 <_> 2849 <!-- root node --> 2850 <feature> 2851 <rects> 2852 <_>9 17 4 8 -1.</_> 2853 <_>9 17 2 8 2.</_></rects> 2854 <tilted>0</tilted></feature> 2855 <threshold>-4.9996669404208660e-003</threshold> 2856 <left_val>-0.1166673004627228</left_val> 2857 <right_val>0.0602988190948963</right_val></_></_> 2858 <_> 2859 <!-- tree 16 --> 2860 <_> 2861 <!-- root node --> 2862 <feature> 2863 <rects> 2864 <_>4 7 4 6 -1.</_> 2865 <_>4 10 4 3 2.</_></rects> 2866 <tilted>0</tilted></feature> 2867 <threshold>-5.9932802105322480e-004</threshold> 2868 <left_val>0.1301555037498474</left_val> 2869 <right_val>-0.3107284009456635</right_val></_></_> 2870 <_> 2871 <!-- tree 17 --> 2872 <_> 2873 <!-- root node --> 2874 <feature> 2875 <rects> 2876 <_>7 7 5 9 -1.</_> 2877 <_>7 10 5 3 3.</_></rects> 2878 <tilted>0</tilted></feature> 2879 <threshold>-0.0960636734962463</threshold> 2880 <left_val>-0.8525934815406799</left_val> 2881 <right_val>0.0159707907587290</right_val></_></_> 2882 <_> 2883 <!-- tree 18 --> 2884 <_> 2885 <!-- root node --> 2886 <feature> 2887 <rects> 2888 <_>1 17 4 8 -1.</_> 2889 <_>3 17 2 8 2.</_></rects> 2890 <tilted>0</tilted></feature> 2891 <threshold>-7.0154820568859577e-003</threshold> 2892 <left_val>-0.4549050927162170</left_val> 2893 <right_val>0.0771780908107758</right_val></_></_> 2894 <_> 2895 <!-- tree 19 --> 2896 <_> 2897 <!-- root node --> 2898 <feature> 2899 <rects> 2900 <_>9 15 3 13 -1.</_> 2901 <_>10 15 1 13 3.</_></rects> 2902 <tilted>0</tilted></feature> 2903 <threshold>-8.7620541453361511e-003</threshold> 2904 <left_val>0.4803450107574463</left_val> 2905 <right_val>-0.0813068374991417</right_val></_></_> 2906 <_> 2907 <!-- tree 20 --> 2908 <_> 2909 <!-- root node --> 2910 <feature> 2911 <rects> 2912 <_>3 0 6 8 -1.</_> 2913 <_>3 0 3 4 2.</_> 2914 <_>6 4 3 4 2.</_></rects> 2915 <tilted>0</tilted></feature> 2916 <threshold>-3.9868508465588093e-003</threshold> 2917 <left_val>0.2249560058116913</left_val> 2918 <right_val>-0.2044728994369507</right_val></_></_> 2919 <_> 2920 <!-- tree 21 --> 2921 <_> 2922 <!-- root node --> 2923 <feature> 2924 <rects> 2925 <_>9 18 4 10 -1.</_> 2926 <_>9 18 2 10 2.</_></rects> 2927 <tilted>0</tilted></feature> 2928 <threshold>-0.0573353096842766</threshold> 2929 <left_val>-0.5685973763465881</left_val> 2930 <right_val>5.2798101678490639e-003</right_val></_></_> 2931 <_> 2932 <!-- tree 22 --> 2933 <_> 2934 <!-- root node --> 2935 <feature> 2936 <rects> 2937 <_>1 18 4 10 -1.</_> 2938 <_>3 18 2 10 2.</_></rects> 2939 <tilted>0</tilted></feature> 2940 <threshold>1.9260890549048781e-003</threshold> 2941 <left_val>0.1492034047842026</left_val> 2942 <right_val>-0.3105990886688232</right_val></_></_> 2943 <_> 2944 <!-- tree 23 --> 2945 <_> 2946 <!-- root node --> 2947 <feature> 2948 <rects> 2949 <_>7 22 2 4 -1.</_> 2950 <_>7 22 1 4 2.</_></rects> 2951 <tilted>1</tilted></feature> 2952 <threshold>0.0211180709302425</threshold> 2953 <left_val>4.1174301877617836e-003</left_val> 2954 <right_val>-0.5240138173103333</right_val></_></_> 2955 <_> 2956 <!-- tree 24 --> 2957 <_> 2958 <!-- root node --> 2959 <feature> 2960 <rects> 2961 <_>7 22 4 2 -1.</_> 2962 <_>7 22 4 1 2.</_></rects> 2963 <tilted>1</tilted></feature> 2964 <threshold>-1.1973599903285503e-003</threshold> 2965 <left_val>0.2335339933633804</left_val> 2966 <right_val>-0.2019366025924683</right_val></_></_> 2967 <_> 2968 <!-- tree 25 --> 2969 <_> 2970 <!-- root node --> 2971 <feature> 2972 <rects> 2973 <_>7 7 5 9 -1.</_> 2974 <_>7 10 5 3 3.</_></rects> 2975 <tilted>0</tilted></feature> 2976 <threshold>4.5973812229931355e-003</threshold> 2977 <left_val>0.0599170103669167</left_val> 2978 <right_val>-0.1187831014394760</right_val></_></_> 2979 <_> 2980 <!-- tree 26 --> 2981 <_> 2982 <!-- root node --> 2983 <feature> 2984 <rects> 2985 <_>1 7 12 11 -1.</_> 2986 <_>4 7 6 11 2.</_></rects> 2987 <tilted>0</tilted></feature> 2988 <threshold>0.0288696605712175</threshold> 2989 <left_val>-0.0941107794642448</left_val> 2990 <right_val>0.4596694111824036</right_val></_></_> 2991 <_> 2992 <!-- tree 27 --> 2993 <_> 2994 <!-- root node --> 2995 <feature> 2996 <rects> 2997 <_>8 6 3 8 -1.</_> 2998 <_>8 6 3 4 2.</_></rects> 2999 <tilted>1</tilted></feature> 3000 <threshold>-3.7549799308180809e-003</threshold> 3001 <left_val>0.1216117963194847</left_val> 3002 <right_val>-0.1481101959943771</right_val></_></_> 3003 <_> 3004 <!-- tree 28 --> 3005 <_> 3006 <!-- root node --> 3007 <feature> 3008 <rects> 3009 <_>5 8 3 16 -1.</_> 3010 <_>5 12 3 8 2.</_></rects> 3011 <tilted>0</tilted></feature> 3012 <threshold>4.2033549398183823e-003</threshold> 3013 <left_val>0.1090307012200356</left_val> 3014 <right_val>-0.3870052099227905</right_val></_></_> 3015 <_> 3016 <!-- tree 29 --> 3017 <_> 3018 <!-- root node --> 3019 <feature> 3020 <rects> 3021 <_>8 6 3 8 -1.</_> 3022 <_>8 6 3 4 2.</_></rects> 3023 <tilted>1</tilted></feature> 3024 <threshold>0.0729940682649612</threshold> 3025 <left_val>-0.0340467989444733</left_val> 3026 <right_val>0.3061003983020783</right_val></_></_> 3027 <_> 3028 <!-- tree 30 --> 3029 <_> 3030 <!-- root node --> 3031 <feature> 3032 <rects> 3033 <_>6 6 8 3 -1.</_> 3034 <_>6 6 4 3 2.</_></rects> 3035 <tilted>1</tilted></feature> 3036 <threshold>0.0166671797633171</threshold> 3037 <left_val>0.1316858977079392</left_val> 3038 <right_val>-0.3848586082458496</right_val></_></_> 3039 <_> 3040 <!-- tree 31 --> 3041 <_> 3042 <!-- root node --> 3043 <feature> 3044 <rects> 3045 <_>2 24 12 3 -1.</_> 3046 <_>6 24 4 3 3.</_></rects> 3047 <tilted>0</tilted></feature> 3048 <threshold>-2.8268690221011639e-003</threshold> 3049 <left_val>0.0647821575403214</left_val> 3050 <right_val>-0.2237170934677124</right_val></_></_> 3051 <_> 3052 <!-- tree 32 --> 3053 <_> 3054 <!-- root node --> 3055 <feature> 3056 <rects> 3057 <_>3 5 6 4 -1.</_> 3058 <_>3 7 6 2 2.</_></rects> 3059 <tilted>0</tilted></feature> 3060 <threshold>3.7736070808023214e-003</threshold> 3061 <left_val>-0.1559296995401382</left_val> 3062 <right_val>0.2541306912899017</right_val></_></_> 3063 <_> 3064 <!-- tree 33 --> 3065 <_> 3066 <!-- root node --> 3067 <feature> 3068 <rects> 3069 <_>4 5 6 4 -1.</_> 3070 <_>4 7 6 2 2.</_></rects> 3071 <tilted>0</tilted></feature> 3072 <threshold>-3.6936940159648657e-003</threshold> 3073 <left_val>0.2557652890682221</left_val> 3074 <right_val>-0.1576806008815765</right_val></_></_> 3075 <_> 3076 <!-- tree 34 --> 3077 <_> 3078 <!-- root node --> 3079 <feature> 3080 <rects> 3081 <_>4 14 6 6 -1.</_> 3082 <_>6 14 2 6 3.</_></rects> 3083 <tilted>0</tilted></feature> 3084 <threshold>-0.0668010637164116</threshold> 3085 <left_val>-0.7434608936309815</left_val> 3086 <right_val>0.0549156405031681</right_val></_></_> 3087 <_> 3088 <!-- tree 35 --> 3089 <_> 3090 <!-- root node --> 3091 <feature> 3092 <rects> 3093 <_>6 11 3 13 -1.</_> 3094 <_>7 11 1 13 3.</_></rects> 3095 <tilted>0</tilted></feature> 3096 <threshold>0.0157527904957533</threshold> 3097 <left_val>-0.0986381024122238</left_val> 3098 <right_val>0.4311982095241547</right_val></_></_> 3099 <_> 3100 <!-- tree 36 --> 3101 <_> 3102 <!-- root node --> 3103 <feature> 3104 <rects> 3105 <_>0 24 12 3 -1.</_> 3106 <_>4 24 4 3 3.</_></rects> 3107 <tilted>0</tilted></feature> 3108 <threshold>9.0647127944976091e-004</threshold> 3109 <left_val>0.1133923977613449</left_val> 3110 <right_val>-0.4157446026802063</right_val></_></_> 3111 <_> 3112 <!-- tree 37 --> 3113 <_> 3114 <!-- root node --> 3115 <feature> 3116 <rects> 3117 <_>9 16 2 12 -1.</_> 3118 <_>9 16 1 12 2.</_></rects> 3119 <tilted>0</tilted></feature> 3120 <threshold>-0.0216956995427608</threshold> 3121 <left_val>0.4694924056529999</left_val> 3122 <right_val>-0.0557326115667820</right_val></_></_> 3123 <_> 3124 <!-- tree 38 --> 3125 <_> 3126 <!-- root node --> 3127 <feature> 3128 <rects> 3129 <_>3 16 2 12 -1.</_> 3130 <_>4 16 1 12 2.</_></rects> 3131 <tilted>0</tilted></feature> 3132 <threshold>-1.4639029977843165e-003</threshold> 3133 <left_val>-0.3061788082122803</left_val> 3134 <right_val>0.1439816951751709</right_val></_></_> 3135 <_> 3136 <!-- tree 39 --> 3137 <_> 3138 <!-- root node --> 3139 <feature> 3140 <rects> 3141 <_>7 16 2 12 -1.</_> 3142 <_>7 16 1 12 2.</_></rects> 3143 <tilted>0</tilted></feature> 3144 <threshold>-0.0178105607628822</threshold> 3145 <left_val>0.3041172921657562</left_val> 3146 <right_val>-0.0467588007450104</right_val></_></_> 3147 <_> 3148 <!-- tree 40 --> 3149 <_> 3150 <!-- root node --> 3151 <feature> 3152 <rects> 3153 <_>0 21 4 6 -1.</_> 3154 <_>2 21 2 6 2.</_></rects> 3155 <tilted>0</tilted></feature> 3156 <threshold>-5.6027648970484734e-003</threshold> 3157 <left_val>-0.5294290184974670</left_val> 3158 <right_val>0.0782871171832085</right_val></_></_> 3159 <_> 3160 <!-- tree 41 --> 3161 <_> 3162 <!-- root node --> 3163 <feature> 3164 <rects> 3165 <_>7 16 2 12 -1.</_> 3166 <_>7 16 1 12 2.</_></rects> 3167 <tilted>0</tilted></feature> 3168 <threshold>1.9500569906085730e-003</threshold> 3169 <left_val>-0.0959494486451149</left_val> 3170 <right_val>0.1903167068958283</right_val></_></_> 3171 <_> 3172 <!-- tree 42 --> 3173 <_> 3174 <!-- root node --> 3175 <feature> 3176 <rects> 3177 <_>2 3 10 16 -1.</_> 3178 <_>2 3 5 8 2.</_> 3179 <_>7 11 5 8 2.</_></rects> 3180 <tilted>0</tilted></feature> 3181 <threshold>0.1064156964421272</threshold> 3182 <left_val>0.0472884401679039</left_val> 3183 <right_val>-0.8652535080909729</right_val></_></_></trees> 3184 <stage_threshold>-1.1214250326156616</stage_threshold> 3185 <parent>9</parent> 3186 <next>-1</next></_> 3187 <_> 3188 <!-- stage 11 --> 3189 <trees> 3190 <_> 3191 <!-- tree 0 --> 3192 <_> 3193 <!-- root node --> 3194 <feature> 3195 <rects> 3196 <_>4 12 6 16 -1.</_> 3197 <_>4 20 6 8 2.</_></rects> 3198 <tilted>0</tilted></feature> 3199 <threshold>0.0182569902390242</threshold> 3200 <left_val>-0.5556493997573853</left_val> 3201 <right_val>0.4354656040668488</right_val></_></_> 3202 <_> 3203 <!-- tree 1 --> 3204 <_> 3205 <!-- root node --> 3206 <feature> 3207 <rects> 3208 <_>1 15 12 11 -1.</_> 3209 <_>4 15 6 11 2.</_></rects> 3210 <tilted>0</tilted></feature> 3211 <threshold>-0.1124944016337395</threshold> 3212 <left_val>0.6180027723312378</left_val> 3213 <right_val>-0.2164181023836136</right_val></_></_> 3214 <_> 3215 <!-- tree 2 --> 3216 <_> 3217 <!-- root node --> 3218 <feature> 3219 <rects> 3220 <_>3 4 6 10 -1.</_> 3221 <_>3 4 3 5 2.</_> 3222 <_>6 9 3 5 2.</_></rects> 3223 <tilted>0</tilted></feature> 3224 <threshold>2.0443440880626440e-003</threshold> 3225 <left_val>-0.3137955963611603</left_val> 3226 <right_val>0.2642489075660706</right_val></_></_> 3227 <_> 3228 <!-- tree 3 --> 3229 <_> 3230 <!-- root node --> 3231 <feature> 3232 <rects> 3233 <_>2 24 12 4 -1.</_> 3234 <_>8 24 6 2 2.</_> 3235 <_>2 26 6 2 2.</_></rects> 3236 <tilted>0</tilted></feature> 3237 <threshold>6.2505697133019567e-004</threshold> 3238 <left_val>-0.2365960031747818</left_val> 3239 <right_val>0.2116999030113220</right_val></_></_> 3240 <_> 3241 <!-- tree 4 --> 3242 <_> 3243 <!-- root node --> 3244 <feature> 3245 <rects> 3246 <_>0 24 12 4 -1.</_> 3247 <_>0 24 6 2 2.</_> 3248 <_>6 26 6 2 2.</_></rects> 3249 <tilted>0</tilted></feature> 3250 <threshold>1.3297300320118666e-003</threshold> 3251 <left_val>-0.3133944869041443</left_val> 3252 <right_val>0.3044906854629517</right_val></_></_> 3253 <_> 3254 <!-- tree 5 --> 3255 <_> 3256 <!-- root node --> 3257 <feature> 3258 <rects> 3259 <_>8 4 6 4 -1.</_> 3260 <_>8 4 6 2 2.</_></rects> 3261 <tilted>1</tilted></feature> 3262 <threshold>-0.0468403697013855</threshold> 3263 <left_val>0.5375909209251404</left_val> 3264 <right_val>-0.0180811397731304</right_val></_></_> 3265 <_> 3266 <!-- tree 6 --> 3267 <_> 3268 <!-- root node --> 3269 <feature> 3270 <rects> 3271 <_>1 2 12 18 -1.</_> 3272 <_>5 8 4 6 9.</_></rects> 3273 <tilted>0</tilted></feature> 3274 <threshold>-0.6487429141998291</threshold> 3275 <left_val>0.6676843762397766</left_val> 3276 <right_val>-0.0912478491663933</right_val></_></_> 3277 <_> 3278 <!-- tree 7 --> 3279 <_> 3280 <!-- root node --> 3281 <feature> 3282 <rects> 3283 <_>2 22 10 6 -1.</_> 3284 <_>2 22 5 6 2.</_></rects> 3285 <tilted>0</tilted></feature> 3286 <threshold>9.6183530986309052e-003</threshold> 3287 <left_val>0.1473377943038940</left_val> 3288 <right_val>-0.3219302892684937</right_val></_></_> 3289 <_> 3290 <!-- tree 8 --> 3291 <_> 3292 <!-- root node --> 3293 <feature> 3294 <rects> 3295 <_>1 26 12 2 -1.</_> 3296 <_>7 26 6 2 2.</_></rects> 3297 <tilted>0</tilted></feature> 3298 <threshold>2.2117879707366228e-003</threshold> 3299 <left_val>0.1575541943311691</left_val> 3300 <right_val>-0.3679918050765991</right_val></_></_> 3301 <_> 3302 <!-- tree 9 --> 3303 <_> 3304 <!-- root node --> 3305 <feature> 3306 <rects> 3307 <_>8 4 6 4 -1.</_> 3308 <_>8 4 6 2 2.</_></rects> 3309 <tilted>1</tilted></feature> 3310 <threshold>4.9280291423201561e-003</threshold> 3311 <left_val>-0.0834057405591011</left_val> 3312 <right_val>0.0682601779699326</right_val></_></_> 3313 <_> 3314 <!-- tree 10 --> 3315 <_> 3316 <!-- root node --> 3317 <feature> 3318 <rects> 3319 <_>0 12 10 4 -1.</_> 3320 <_>5 12 5 4 2.</_></rects> 3321 <tilted>0</tilted></feature> 3322 <threshold>0.0139770796522498</threshold> 3323 <left_val>-0.1070206016302109</left_val> 3324 <right_val>0.4832653105258942</right_val></_></_> 3325 <_> 3326 <!-- tree 11 --> 3327 <_> 3328 <!-- root node --> 3329 <feature> 3330 <rects> 3331 <_>4 8 6 4 -1.</_> 3332 <_>4 10 6 2 2.</_></rects> 3333 <tilted>0</tilted></feature> 3334 <threshold>-1.0333389946026728e-004</threshold> 3335 <left_val>0.1364544928073883</left_val> 3336 <right_val>-0.3177702128887177</right_val></_></_> 3337 <_> 3338 <!-- tree 12 --> 3339 <_> 3340 <!-- root node --> 3341 <feature> 3342 <rects> 3343 <_>5 1 4 12 -1.</_> 3344 <_>5 4 4 6 2.</_></rects> 3345 <tilted>0</tilted></feature> 3346 <threshold>-2.2287340834736824e-003</threshold> 3347 <left_val>0.2179117947816849</left_val> 3348 <right_val>-0.1992329955101013</right_val></_></_> 3349 <_> 3350 <!-- tree 13 --> 3351 <_> 3352 <!-- root node --> 3353 <feature> 3354 <rects> 3355 <_>7 4 6 8 -1.</_> 3356 <_>10 4 3 4 2.</_> 3357 <_>7 8 3 4 2.</_></rects> 3358 <tilted>0</tilted></feature> 3359 <threshold>-0.0323015116155148</threshold> 3360 <left_val>0.3313513100147247</left_val> 3361 <right_val>-0.0206170398741961</right_val></_></_> 3362 <_> 3363 <!-- tree 14 --> 3364 <_> 3365 <!-- root node --> 3366 <feature> 3367 <rects> 3368 <_>0 18 14 4 -1.</_> 3369 <_>0 18 7 2 2.</_> 3370 <_>7 20 7 2 2.</_></rects> 3371 <tilted>0</tilted></feature> 3372 <threshold>0.0232400391250849</threshold> 3373 <left_val>0.0596725717186928</left_val> 3374 <right_val>-0.6499395966529846</right_val></_></_> 3375 <_> 3376 <!-- tree 15 --> 3377 <_> 3378 <!-- root node --> 3379 <feature> 3380 <rects> 3381 <_>7 16 2 12 -1.</_> 3382 <_>7 16 1 12 2.</_></rects> 3383 <tilted>0</tilted></feature> 3384 <threshold>3.5599120892584324e-003</threshold> 3385 <left_val>-0.1481892019510269</left_val> 3386 <right_val>0.2989333868026733</right_val></_></_> 3387 <_> 3388 <!-- tree 16 --> 3389 <_> 3390 <!-- root node --> 3391 <feature> 3392 <rects> 3393 <_>4 15 3 12 -1.</_> 3394 <_>5 15 1 12 3.</_></rects> 3395 <tilted>0</tilted></feature> 3396 <threshold>0.0154697597026825</threshold> 3397 <left_val>-0.0755695998668671</left_val> 3398 <right_val>0.5231468081474304</right_val></_></_> 3399 <_> 3400 <!-- tree 17 --> 3401 <_> 3402 <!-- root node --> 3403 <feature> 3404 <rects> 3405 <_>8 9 2 13 -1.</_> 3406 <_>8 9 1 13 2.</_></rects> 3407 <tilted>0</tilted></feature> 3408 <threshold>-1.6372289974242449e-004</threshold> 3409 <left_val>0.1044673025608063</left_val> 3410 <right_val>-0.2094334065914154</right_val></_></_> 3411 <_> 3412 <!-- tree 18 --> 3413 <_> 3414 <!-- root node --> 3415 <feature> 3416 <rects> 3417 <_>5 10 4 6 -1.</_> 3418 <_>7 10 2 6 2.</_></rects> 3419 <tilted>0</tilted></feature> 3420 <threshold>-2.9369019903242588e-003</threshold> 3421 <left_val>-0.4319773912429810</left_val> 3422 <right_val>0.1076581031084061</right_val></_></_> 3423 <_> 3424 <!-- tree 19 --> 3425 <_> 3426 <!-- root node --> 3427 <feature> 3428 <rects> 3429 <_>3 11 8 5 -1.</_> 3430 <_>3 11 4 5 2.</_></rects> 3431 <tilted>0</tilted></feature> 3432 <threshold>-7.8579207183793187e-004</threshold> 3433 <left_val>-0.2461477965116501</left_val> 3434 <right_val>0.2155473977327347</right_val></_></_> 3435 <_> 3436 <!-- tree 20 --> 3437 <_> 3438 <!-- root node --> 3439 <feature> 3440 <rects> 3441 <_>5 16 2 12 -1.</_> 3442 <_>6 16 1 12 2.</_></rects> 3443 <tilted>0</tilted></feature> 3444 <threshold>0.0111566996201873</threshold> 3445 <left_val>-0.0818208828568459</left_val> 3446 <right_val>0.6733806729316711</right_val></_></_></trees> 3447 <stage_threshold>-1.1566660404205322</stage_threshold> 3448 <parent>10</parent> 3449 <next>-1</next></_> 3450 <_> 3451 <!-- stage 12 --> 3452 <trees> 3453 <_> 3454 <!-- tree 0 --> 3455 <_> 3456 <!-- root node --> 3457 <feature> 3458 <rects> 3459 <_>0 7 10 17 -1.</_> 3460 <_>5 7 5 17 2.</_></rects> 3461 <tilted>0</tilted></feature> 3462 <threshold>-0.1847351938486099</threshold> 3463 <left_val>0.5475882887840271</left_val> 3464 <right_val>-0.2231906950473785</right_val></_></_> 3465 <_> 3466 <!-- tree 1 --> 3467 <_> 3468 <!-- root node --> 3469 <feature> 3470 <rects> 3471 <_>3 7 8 4 -1.</_> 3472 <_>3 9 8 2 2.</_></rects> 3473 <tilted>0</tilted></feature> 3474 <threshold>-2.8615030460059643e-003</threshold> 3475 <left_val>0.1926427930593491</left_val> 3476 <right_val>-0.2298910021781921</right_val></_></_> 3477 <_> 3478 <!-- tree 2 --> 3479 <_> 3480 <!-- root node --> 3481 <feature> 3482 <rects> 3483 <_>5 0 4 24 -1.</_> 3484 <_>5 8 4 8 3.</_></rects> 3485 <tilted>0</tilted></feature> 3486 <threshold>0.1797018945217133</threshold> 3487 <left_val>-0.0645736828446388</left_val> 3488 <right_val>0.8032200932502747</right_val></_></_> 3489 <_> 3490 <!-- tree 3 --> 3491 <_> 3492 <!-- root node --> 3493 <feature> 3494 <rects> 3495 <_>3 16 9 4 -1.</_> 3496 <_>6 16 3 4 3.</_></rects> 3497 <tilted>0</tilted></feature> 3498 <threshold>-0.0528127290308475</threshold> 3499 <left_val>0.2878498136997223</left_val> 3500 <right_val>-0.0882893875241280</right_val></_></_> 3501 <_> 3502 <!-- tree 4 --> 3503 <_> 3504 <!-- root node --> 3505 <feature> 3506 <rects> 3507 <_>7 14 6 4 -1.</_> 3508 <_>7 14 3 4 2.</_></rects> 3509 <tilted>1</tilted></feature> 3510 <threshold>6.9000339135527611e-003</threshold> 3511 <left_val>0.1097920984029770</left_val> 3512 <right_val>-0.4888688921928406</right_val></_></_> 3513 <_> 3514 <!-- tree 5 --> 3515 <_> 3516 <!-- root node --> 3517 <feature> 3518 <rects> 3519 <_>5 23 9 4 -1.</_> 3520 <_>8 23 3 4 3.</_></rects> 3521 <tilted>0</tilted></feature> 3522 <threshold>0.0404695309698582</threshold> 3523 <left_val>0.0616974681615829</left_val> 3524 <right_val>-0.7290781736373901</right_val></_></_> 3525 <_> 3526 <!-- tree 6 --> 3527 <_> 3528 <!-- root node --> 3529 <feature> 3530 <rects> 3531 <_>0 22 9 4 -1.</_> 3532 <_>3 22 3 4 3.</_></rects> 3533 <tilted>0</tilted></feature> 3534 <threshold>4.5191249810159206e-003</threshold> 3535 <left_val>-0.2797237932682037</left_val> 3536 <right_val>0.1706515997648239</right_val></_></_> 3537 <_> 3538 <!-- tree 7 --> 3539 <_> 3540 <!-- root node --> 3541 <feature> 3542 <rects> 3543 <_>9 22 4 6 -1.</_> 3544 <_>9 22 2 6 2.</_></rects> 3545 <tilted>0</tilted></feature> 3546 <threshold>-3.8400939665734768e-003</threshold> 3547 <left_val>-0.2832930088043213</left_val> 3548 <right_val>0.1161170974373817</right_val></_></_> 3549 <_> 3550 <!-- tree 8 --> 3551 <_> 3552 <!-- root node --> 3553 <feature> 3554 <rects> 3555 <_>1 24 6 4 -1.</_> 3556 <_>4 24 3 4 2.</_></rects> 3557 <tilted>0</tilted></feature> 3558 <threshold>-7.1505218511447310e-004</threshold> 3559 <left_val>0.1587048023939133</left_val> 3560 <right_val>-0.2825342118740082</right_val></_></_> 3561 <_> 3562 <!-- tree 9 --> 3563 <_> 3564 <!-- root node --> 3565 <feature> 3566 <rects> 3567 <_>4 19 8 9 -1.</_> 3568 <_>6 19 4 9 2.</_></rects> 3569 <tilted>0</tilted></feature> 3570 <threshold>0.0301278997212648</threshold> 3571 <left_val>-0.0362363383173943</left_val> 3572 <right_val>0.5336939096450806</right_val></_></_> 3573 <_> 3574 <!-- tree 10 --> 3575 <_> 3576 <!-- root node --> 3577 <feature> 3578 <rects> 3579 <_>2 19 8 9 -1.</_> 3580 <_>4 19 4 9 2.</_></rects> 3581 <tilted>0</tilted></feature> 3582 <threshold>-0.0199076402932405</threshold> 3583 <left_val>-0.3222998976707459</left_val> 3584 <right_val>0.1493317037820816</right_val></_></_> 3585 <_> 3586 <!-- tree 11 --> 3587 <_> 3588 <!-- root node --> 3589 <feature> 3590 <rects> 3591 <_>2 22 12 4 -1.</_> 3592 <_>5 22 6 4 2.</_></rects> 3593 <tilted>0</tilted></feature> 3594 <threshold>-0.0314356684684753</threshold> 3595 <left_val>0.2081288993358612</left_val> 3596 <right_val>-0.0967622101306915</right_val></_></_> 3597 <_> 3598 <!-- tree 12 --> 3599 <_> 3600 <!-- root node --> 3601 <feature> 3602 <rects> 3603 <_>0 19 14 7 -1.</_> 3604 <_>7 19 7 7 2.</_></rects> 3605 <tilted>0</tilted></feature> 3606 <threshold>-0.0199126806110144</threshold> 3607 <left_val>-0.3292892873287201</left_val> 3608 <right_val>0.1273272931575775</right_val></_></_> 3609 <_> 3610 <!-- tree 13 --> 3611 <_> 3612 <!-- root node --> 3613 <feature> 3614 <rects> 3615 <_>5 20 6 8 -1.</_> 3616 <_>8 20 3 4 2.</_> 3617 <_>5 24 3 4 2.</_></rects> 3618 <tilted>0</tilted></feature> 3619 <threshold>0.0406267493963242</threshold> 3620 <left_val>0.0169857200235128</left_val> 3621 <right_val>-0.5222617983818054</right_val></_></_> 3622 <_> 3623 <!-- tree 14 --> 3624 <_> 3625 <!-- root node --> 3626 <feature> 3627 <rects> 3628 <_>3 20 6 8 -1.</_> 3629 <_>3 20 3 4 2.</_> 3630 <_>6 24 3 4 2.</_></rects> 3631 <tilted>0</tilted></feature> 3632 <threshold>1.6589110018685460e-003</threshold> 3633 <left_val>-0.2379567027091980</left_val> 3634 <right_val>0.2077559977769852</right_val></_></_> 3635 <_> 3636 <!-- tree 15 --> 3637 <_> 3638 <!-- root node --> 3639 <feature> 3640 <rects> 3641 <_>6 1 4 14 -1.</_> 3642 <_>8 1 2 7 2.</_> 3643 <_>6 8 2 7 2.</_></rects> 3644 <tilted>0</tilted></feature> 3645 <threshold>1.9869199022650719e-003</threshold> 3646 <left_val>-0.1349375993013382</left_val> 3647 <right_val>0.1205085963010788</right_val></_></_> 3648 <_> 3649 <!-- tree 16 --> 3650 <_> 3651 <!-- root node --> 3652 <feature> 3653 <rects> 3654 <_>2 2 4 12 -1.</_> 3655 <_>2 2 2 6 2.</_> 3656 <_>4 8 2 6 2.</_></rects> 3657 <tilted>0</tilted></feature> 3658 <threshold>-0.0419858209788799</threshold> 3659 <left_val>0.4460113048553467</left_val> 3660 <right_val>-0.0761459693312645</right_val></_></_> 3661 <_> 3662 <!-- tree 17 --> 3663 <_> 3664 <!-- root node --> 3665 <feature> 3666 <rects> 3667 <_>7 4 6 4 -1.</_> 3668 <_>7 4 3 4 2.</_></rects> 3669 <tilted>1</tilted></feature> 3670 <threshold>0.0702601820230484</threshold> 3671 <left_val>0.0158335696905851</left_val> 3672 <right_val>-0.3818230032920837</right_val></_></_> 3673 <_> 3674 <!-- tree 18 --> 3675 <_> 3676 <!-- root node --> 3677 <feature> 3678 <rects> 3679 <_>7 4 4 6 -1.</_> 3680 <_>7 4 4 3 2.</_></rects> 3681 <tilted>1</tilted></feature> 3682 <threshold>-0.0179928001016378</threshold> 3683 <left_val>-0.3697398006916046</left_val> 3684 <right_val>0.1045159995555878</right_val></_></_> 3685 <_> 3686 <!-- tree 19 --> 3687 <_> 3688 <!-- root node --> 3689 <feature> 3690 <rects> 3691 <_>7 3 6 5 -1.</_> 3692 <_>7 3 3 5 2.</_></rects> 3693 <tilted>1</tilted></feature> 3694 <threshold>-0.1042096987366676</threshold> 3695 <left_val>0.5183687806129456</left_val> 3696 <right_val>-0.0223724003881216</right_val></_></_> 3697 <_> 3698 <!-- tree 20 --> 3699 <_> 3700 <!-- root node --> 3701 <feature> 3702 <rects> 3703 <_>7 3 5 6 -1.</_> 3704 <_>7 3 5 3 2.</_></rects> 3705 <tilted>1</tilted></feature> 3706 <threshold>0.0532773695886135</threshold> 3707 <left_val>0.0747159272432327</left_val> 3708 <right_val>-0.5848941206932068</right_val></_></_> 3709 <_> 3710 <!-- tree 21 --> 3711 <_> 3712 <!-- root node --> 3713 <feature> 3714 <rects> 3715 <_>7 3 6 4 -1.</_> 3716 <_>7 3 6 2 2.</_></rects> 3717 <tilted>1</tilted></feature> 3718 <threshold>0.0968191623687744</threshold> 3719 <left_val>-7.8130746260285378e-003</left_val> 3720 <right_val>-0.9053189754486084</right_val></_></_> 3721 <_> 3722 <!-- tree 22 --> 3723 <_> 3724 <!-- root node --> 3725 <feature> 3726 <rects> 3727 <_>3 2 8 18 -1.</_> 3728 <_>3 8 8 6 3.</_></rects> 3729 <tilted>0</tilted></feature> 3730 <threshold>-0.2231761068105698</threshold> 3731 <left_val>0.4784899950027466</left_val> 3732 <right_val>-0.0895702466368675</right_val></_></_> 3733 <_> 3734 <!-- tree 23 --> 3735 <_> 3736 <!-- root node --> 3737 <feature> 3738 <rects> 3739 <_>4 15 9 12 -1.</_> 3740 <_>7 19 3 4 9.</_></rects> 3741 <tilted>0</tilted></feature> 3742 <threshold>0.0135237602517009</threshold> 3743 <left_val>0.0651585832238197</left_val> 3744 <right_val>-0.1403055936098099</right_val></_></_> 3745 <_> 3746 <!-- tree 24 --> 3747 <_> 3748 <!-- root node --> 3749 <feature> 3750 <rects> 3751 <_>1 21 12 6 -1.</_> 3752 <_>7 21 6 6 2.</_></rects> 3753 <tilted>0</tilted></feature> 3754 <threshold>-0.0714653432369232</threshold> 3755 <left_val>-0.8899757266044617</left_val> 3756 <right_val>0.0381110087037086</right_val></_></_> 3757 <_> 3758 <!-- tree 25 --> 3759 <_> 3760 <!-- root node --> 3761 <feature> 3762 <rects> 3763 <_>9 18 4 8 -1.</_> 3764 <_>9 18 2 8 2.</_></rects> 3765 <tilted>0</tilted></feature> 3766 <threshold>0.0247345604002476</threshold> 3767 <left_val>-0.0328582599759102</left_val> 3768 <right_val>0.3536860048770905</right_val></_></_> 3769 <_> 3770 <!-- tree 26 --> 3771 <_> 3772 <!-- root node --> 3773 <feature> 3774 <rects> 3775 <_>2 16 9 4 -1.</_> 3776 <_>5 16 3 4 3.</_></rects> 3777 <tilted>0</tilted></feature> 3778 <threshold>-4.2641810141503811e-003</threshold> 3779 <left_val>0.1288572996854782</left_val> 3780 <right_val>-0.2778818011283875</right_val></_></_> 3781 <_> 3782 <!-- tree 27 --> 3783 <_> 3784 <!-- root node --> 3785 <feature> 3786 <rects> 3787 <_>4 17 10 6 -1.</_> 3788 <_>4 17 5 6 2.</_></rects> 3789 <tilted>0</tilted></feature> 3790 <threshold>0.0432465411722660</threshold> 3791 <left_val>-0.0263446196913719</left_val> 3792 <right_val>0.3333376049995422</right_val></_></_> 3793 <_> 3794 <!-- tree 28 --> 3795 <_> 3796 <!-- root node --> 3797 <feature> 3798 <rects> 3799 <_>1 18 4 8 -1.</_> 3800 <_>3 18 2 8 2.</_></rects> 3801 <tilted>0</tilted></feature> 3802 <threshold>5.2720978856086731e-003</threshold> 3803 <left_val>0.0961221083998680</left_val> 3804 <right_val>-0.3820368945598602</right_val></_></_> 3805 <_> 3806 <!-- tree 29 --> 3807 <_> 3808 <!-- root node --> 3809 <feature> 3810 <rects> 3811 <_>9 3 5 6 -1.</_> 3812 <_>9 3 5 3 2.</_></rects> 3813 <tilted>1</tilted></feature> 3814 <threshold>-6.4102048054337502e-003</threshold> 3815 <left_val>0.1692444980144501</left_val> 3816 <right_val>-0.0752360522747040</right_val></_></_> 3817 <_> 3818 <!-- tree 30 --> 3819 <_> 3820 <!-- root node --> 3821 <feature> 3822 <rects> 3823 <_>1 17 8 6 -1.</_> 3824 <_>5 17 4 6 2.</_></rects> 3825 <tilted>0</tilted></feature> 3826 <threshold>0.0177471004426479</threshold> 3827 <left_val>-0.0651267394423485</left_val> 3828 <right_val>0.5372086763381958</right_val></_></_> 3829 <_> 3830 <!-- tree 31 --> 3831 <_> 3832 <!-- root node --> 3833 <feature> 3834 <rects> 3835 <_>2 19 12 9 -1.</_> 3836 <_>6 22 4 3 9.</_></rects> 3837 <tilted>0</tilted></feature> 3838 <threshold>0.1646672934293747</threshold> 3839 <left_val>0.0267640296369791</left_val> 3840 <right_val>-0.6950613260269165</right_val></_></_> 3841 <_> 3842 <!-- tree 32 --> 3843 <_> 3844 <!-- root node --> 3845 <feature> 3846 <rects> 3847 <_>2 0 4 14 -1.</_> 3848 <_>2 0 2 7 2.</_> 3849 <_>4 7 2 7 2.</_></rects> 3850 <tilted>0</tilted></feature> 3851 <threshold>-7.6354909688234329e-003</threshold> 3852 <left_val>0.1726163029670715</left_val> 3853 <right_val>-0.2024289071559906</right_val></_></_> 3854 <_> 3855 <!-- tree 33 --> 3856 <_> 3857 <!-- root node --> 3858 <feature> 3859 <rects> 3860 <_>4 9 10 14 -1.</_> 3861 <_>9 9 5 7 2.</_> 3862 <_>4 16 5 7 2.</_></rects> 3863 <tilted>0</tilted></feature> 3864 <threshold>-0.0766481682658196</threshold> 3865 <left_val>0.2256714999675751</left_val> 3866 <right_val>-0.0350441411137581</right_val></_></_> 3867 <_> 3868 <!-- tree 34 --> 3869 <_> 3870 <!-- root node --> 3871 <feature> 3872 <rects> 3873 <_>0 16 4 12 -1.</_> 3874 <_>0 16 2 6 2.</_> 3875 <_>2 22 2 6 2.</_></rects> 3876 <tilted>0</tilted></feature> 3877 <threshold>2.9634330421686172e-003</threshold> 3878 <left_val>0.1067982017993927</left_val> 3879 <right_val>-0.3070451915264130</right_val></_></_> 3880 <_> 3881 <!-- tree 35 --> 3882 <_> 3883 <!-- root node --> 3884 <feature> 3885 <rects> 3886 <_>3 24 8 4 -1.</_> 3887 <_>3 24 4 4 2.</_></rects> 3888 <tilted>0</tilted></feature> 3889 <threshold>-0.0189680401235819</threshold> 3890 <left_val>-0.6534953117370606</left_val> 3891 <right_val>0.0453284494578838</right_val></_></_> 3892 <_> 3893 <!-- tree 36 --> 3894 <_> 3895 <!-- root node --> 3896 <feature> 3897 <rects> 3898 <_>0 5 14 22 -1.</_> 3899 <_>0 16 14 11 2.</_></rects> 3900 <tilted>0</tilted></feature> 3901 <threshold>0.6227293014526367</threshold> 3902 <left_val>0.0294184703379869</left_val> 3903 <right_val>-0.7741603255271912</right_val></_></_> 3904 <_> 3905 <!-- tree 37 --> 3906 <_> 3907 <!-- root node --> 3908 <feature> 3909 <rects> 3910 <_>6 13 6 8 -1.</_> 3911 <_>6 17 6 4 2.</_></rects> 3912 <tilted>0</tilted></feature> 3913 <threshold>3.1170540023595095e-003</threshold> 3914 <left_val>-0.1926358044147492</left_val> 3915 <right_val>0.1008249968290329</right_val></_></_> 3916 <_> 3917 <!-- tree 38 --> 3918 <_> 3919 <!-- root node --> 3920 <feature> 3921 <rects> 3922 <_>0 9 10 14 -1.</_> 3923 <_>0 9 5 7 2.</_> 3924 <_>5 16 5 7 2.</_></rects> 3925 <tilted>0</tilted></feature> 3926 <threshold>-0.1017974019050598</threshold> 3927 <left_val>0.5066729187965393</left_val> 3928 <right_val>-0.0758455321192741</right_val></_></_> 3929 <_> 3930 <!-- tree 39 --> 3931 <_> 3932 <!-- root node --> 3933 <feature> 3934 <rects> 3935 <_>3 3 9 9 -1.</_> 3936 <_>3 6 9 3 3.</_></rects> 3937 <tilted>0</tilted></feature> 3938 <threshold>-0.0875393673777580</threshold> 3939 <left_val>-0.8012782931327820</left_val> 3940 <right_val>0.0397419817745686</right_val></_></_> 3941 <_> 3942 <!-- tree 40 --> 3943 <_> 3944 <!-- root node --> 3945 <feature> 3946 <rects> 3947 <_>5 1 4 6 -1.</_> 3948 <_>5 4 4 3 2.</_></rects> 3949 <tilted>0</tilted></feature> 3950 <threshold>-4.0089199319481850e-003</threshold> 3951 <left_val>0.1586735993623734</left_val> 3952 <right_val>-0.2039071023464203</right_val></_></_> 3953 <_> 3954 <!-- tree 41 --> 3955 <_> 3956 <!-- root node --> 3957 <feature> 3958 <rects> 3959 <_>1 0 12 9 -1.</_> 3960 <_>5 3 4 3 9.</_></rects> 3961 <tilted>0</tilted></feature> 3962 <threshold>-0.1725274026393890</threshold> 3963 <left_val>-0.4855650961399078</left_val> 3964 <right_val>0.0661624372005463</right_val></_></_> 3965 <_> 3966 <!-- tree 42 --> 3967 <_> 3968 <!-- root node --> 3969 <feature> 3970 <rects> 3971 <_>4 7 6 12 -1.</_> 3972 <_>4 7 3 6 2.</_> 3973 <_>7 13 3 6 2.</_></rects> 3974 <tilted>0</tilted></feature> 3975 <threshold>2.2747491020709276e-003</threshold> 3976 <left_val>0.1083929017186165</left_val> 3977 <right_val>-0.2612051069736481</right_val></_></_> 3978 <_> 3979 <!-- tree 43 --> 3980 <_> 3981 <!-- root node --> 3982 <feature> 3983 <rects> 3984 <_>6 7 6 18 -1.</_> 3985 <_>8 13 2 6 9.</_></rects> 3986 <tilted>0</tilted></feature> 3987 <threshold>0.0870257318019867</threshold> 3988 <left_val>-0.0456128492951393</left_val> 3989 <right_val>0.3064231872558594</right_val></_></_> 3990 <_> 3991 <!-- tree 44 --> 3992 <_> 3993 <!-- root node --> 3994 <feature> 3995 <rects> 3996 <_>2 7 6 18 -1.</_> 3997 <_>4 13 2 6 9.</_></rects> 3998 <tilted>0</tilted></feature> 3999 <threshold>0.0333020910620689</threshold> 4000 <left_val>0.0985119566321373</left_val> 4001 <right_val>-0.4032101035118103</right_val></_></_> 4002 <_> 4003 <!-- tree 45 --> 4004 <_> 4005 <!-- root node --> 4006 <feature> 4007 <rects> 4008 <_>2 22 12 4 -1.</_> 4009 <_>6 22 4 4 3.</_></rects> 4010 <tilted>0</tilted></feature> 4011 <threshold>-5.5495370179414749e-003</threshold> 4012 <left_val>0.0678094699978828</left_val> 4013 <right_val>-0.1944850981235504</right_val></_></_> 4014 <_> 4015 <!-- tree 46 --> 4016 <_> 4017 <!-- root node --> 4018 <feature> 4019 <rects> 4020 <_>3 16 8 8 -1.</_> 4021 <_>3 16 4 4 2.</_> 4022 <_>7 20 4 4 2.</_></rects> 4023 <tilted>0</tilted></feature> 4024 <threshold>-7.5916801579296589e-003</threshold> 4025 <left_val>-0.3322997987270355</left_val> 4026 <right_val>0.1055229976773262</right_val></_></_> 4027 <_> 4028 <!-- tree 47 --> 4029 <_> 4030 <!-- root node --> 4031 <feature> 4032 <rects> 4033 <_>7 7 6 10 -1.</_> 4034 <_>7 7 3 10 2.</_></rects> 4035 <tilted>0</tilted></feature> 4036 <threshold>-0.0547769404947758</threshold> 4037 <left_val>0.3134475052356720</left_val> 4038 <right_val>-0.0925614312291145</right_val></_></_> 4039 <_> 4040 <!-- tree 48 --> 4041 <_> 4042 <!-- root node --> 4043 <feature> 4044 <rects> 4045 <_>1 8 12 10 -1.</_> 4046 <_>4 8 6 10 2.</_></rects> 4047 <tilted>0</tilted></feature> 4048 <threshold>0.0172933097928762</threshold> 4049 <left_val>-0.1036652028560638</left_val> 4050 <right_val>0.4573282003402710</right_val></_></_></trees> 4051 <stage_threshold>-1.0953630208969116</stage_threshold> 4052 <parent>11</parent> 4053 <next>-1</next></_> 4054 <_> 4055 <!-- stage 13 --> 4056 <trees> 4057 <_> 4058 <!-- tree 0 --> 4059 <_> 4060 <!-- root node --> 4061 <feature> 4062 <rects> 4063 <_>5 16 3 12 -1.</_> 4064 <_>6 16 1 12 3.</_></rects> 4065 <tilted>0</tilted></feature> 4066 <threshold>-0.0225016307085752</threshold> 4067 <left_val>0.5229359269142151</left_val> 4068 <right_val>-0.1796838045120239</right_val></_></_> 4069 <_> 4070 <!-- tree 1 --> 4071 <_> 4072 <!-- root node --> 4073 <feature> 4074 <rects> 4075 <_>4 5 10 17 -1.</_> 4076 <_>4 5 5 17 2.</_></rects> 4077 <tilted>0</tilted></feature> 4078 <threshold>-0.0181667208671570</threshold> 4079 <left_val>0.1428108960390091</left_val> 4080 <right_val>-0.3026844859123230</right_val></_></_> 4081 <_> 4082 <!-- tree 2 --> 4083 <_> 4084 <!-- root node --> 4085 <feature> 4086 <rects> 4087 <_>0 4 14 24 -1.</_> 4088 <_>7 4 7 24 2.</_></rects> 4089 <tilted>0</tilted></feature> 4090 <threshold>0.0316802598536015</threshold> 4091 <left_val>0.1570882052183151</left_val> 4092 <right_val>-0.3230336904525757</right_val></_></_> 4093 <_> 4094 <!-- tree 3 --> 4095 <_> 4096 <!-- root node --> 4097 <feature> 4098 <rects> 4099 <_>4 9 6 7 -1.</_> 4100 <_>6 9 2 7 3.</_></rects> 4101 <tilted>0</tilted></feature> 4102 <threshold>-0.0234762504696846</threshold> 4103 <left_val>-0.4557600021362305</left_val> 4104 <right_val>0.1030009016394615</right_val></_></_> 4105 <_> 4106 <!-- tree 4 --> 4107 <_> 4108 <!-- root node --> 4109 <feature> 4110 <rects> 4111 <_>2 20 10 8 -1.</_> 4112 <_>2 20 5 4 2.</_> 4113 <_>7 24 5 4 2.</_></rects> 4114 <tilted>0</tilted></feature> 4115 <threshold>0.0456882789731026</threshold> 4116 <left_val>0.0678735375404358</left_val> 4117 <right_val>-0.7462332844734192</right_val></_></_> 4118 <_> 4119 <!-- tree 5 --> 4120 <_> 4121 <!-- root node --> 4122 <feature> 4123 <rects> 4124 <_>8 5 6 8 -1.</_> 4125 <_>6 7 6 4 2.</_></rects> 4126 <tilted>1</tilted></feature> 4127 <threshold>-0.0746098831295967</threshold> 4128 <left_val>0.2054854035377502</left_val> 4129 <right_val>-0.1009785979986191</right_val></_></_> 4130 <_> 4131 <!-- tree 6 --> 4132 <_> 4133 <!-- root node --> 4134 <feature> 4135 <rects> 4136 <_>6 4 4 6 -1.</_> 4137 <_>6 4 2 6 2.</_></rects> 4138 <tilted>1</tilted></feature> 4139 <threshold>-0.0459031015634537</threshold> 4140 <left_val>0.6666275858879089</left_val> 4141 <right_val>-0.0690716579556465</right_val></_></_> 4142 <_> 4143 <!-- tree 7 --> 4144 <_> 4145 <!-- root node --> 4146 <feature> 4147 <rects> 4148 <_>6 3 4 6 -1.</_> 4149 <_>6 3 2 6 2.</_></rects> 4150 <tilted>0</tilted></feature> 4151 <threshold>-5.7763070799410343e-004</threshold> 4152 <left_val>0.1138644963502884</left_val> 4153 <right_val>-0.1227831989526749</right_val></_></_> 4154 <_> 4155 <!-- tree 8 --> 4156 <_> 4157 <!-- root node --> 4158 <feature> 4159 <rects> 4160 <_>5 4 4 6 -1.</_> 4161 <_>7 4 2 6 2.</_></rects> 4162 <tilted>0</tilted></feature> 4163 <threshold>-4.1800830513238907e-004</threshold> 4164 <left_val>0.1999998986721039</left_val> 4165 <right_val>-0.2237267047166824</right_val></_></_> 4166 <_> 4167 <!-- tree 9 --> 4168 <_> 4169 <!-- root node --> 4170 <feature> 4171 <rects> 4172 <_>5 8 4 6 -1.</_> 4173 <_>5 8 2 6 2.</_></rects> 4174 <tilted>0</tilted></feature> 4175 <threshold>2.4581039324402809e-003</threshold> 4176 <left_val>0.1007374972105026</left_val> 4177 <right_val>-0.3632315993309021</right_val></_></_> 4178 <_> 4179 <!-- tree 10 --> 4180 <_> 4181 <!-- root node --> 4182 <feature> 4183 <rects> 4184 <_>7 3 6 6 -1.</_> 4185 <_>7 3 6 3 2.</_></rects> 4186 <tilted>1</tilted></feature> 4187 <threshold>0.0674670487642288</threshold> 4188 <left_val>0.0542006902396679</left_val> 4189 <right_val>-0.6034706830978394</right_val></_></_> 4190 <_> 4191 <!-- tree 11 --> 4192 <_> 4193 <!-- root node --> 4194 <feature> 4195 <rects> 4196 <_>4 5 6 6 -1.</_> 4197 <_>4 8 6 3 2.</_></rects> 4198 <tilted>0</tilted></feature> 4199 <threshold>-0.0389718599617481</threshold> 4200 <left_val>0.4027759134769440</left_val> 4201 <right_val>-0.1129947006702423</right_val></_></_> 4202 <_> 4203 <!-- tree 12 --> 4204 <_> 4205 <!-- root node --> 4206 <feature> 4207 <rects> 4208 <_>3 12 6 14 -1.</_> 4209 <_>3 19 6 7 2.</_></rects> 4210 <tilted>0</tilted></feature> 4211 <threshold>0.1662815958261490</threshold> 4212 <left_val>0.0482903085649014</left_val> 4213 <right_val>-0.8126922249794006</right_val></_></_> 4214 <_> 4215 <!-- tree 13 --> 4216 <_> 4217 <!-- root node --> 4218 <feature> 4219 <rects> 4220 <_>11 16 2 12 -1.</_> 4221 <_>11 16 1 12 2.</_></rects> 4222 <tilted>0</tilted></feature> 4223 <threshold>5.5140322074294090e-003</threshold> 4224 <left_val>0.0604846104979515</left_val> 4225 <right_val>-0.5457589030265808</right_val></_></_> 4226 <_> 4227 <!-- tree 14 --> 4228 <_> 4229 <!-- root node --> 4230 <feature> 4231 <rects> 4232 <_>1 22 6 6 -1.</_> 4233 <_>3 22 2 6 3.</_></rects> 4234 <tilted>0</tilted></feature> 4235 <threshold>1.2837080284953117e-003</threshold> 4236 <left_val>-0.2815071046352387</left_val> 4237 <right_val>0.1278554946184158</right_val></_></_> 4238 <_> 4239 <!-- tree 15 --> 4240 <_> 4241 <!-- root node --> 4242 <feature> 4243 <rects> 4244 <_>6 16 3 12 -1.</_> 4245 <_>7 16 1 12 3.</_></rects> 4246 <tilted>0</tilted></feature> 4247 <threshold>0.0338401608169079</threshold> 4248 <left_val>-0.0619250908493996</left_val> 4249 <right_val>0.5446158051490784</right_val></_></_> 4250 <_> 4251 <!-- tree 16 --> 4252 <_> 4253 <!-- root node --> 4254 <feature> 4255 <rects> 4256 <_>5 16 3 12 -1.</_> 4257 <_>6 16 1 12 3.</_></rects> 4258 <tilted>0</tilted></feature> 4259 <threshold>0.0142245600000024</threshold> 4260 <left_val>-0.0837020725011826</left_val> 4261 <right_val>0.5540488958358765</right_val></_></_> 4262 <_> 4263 <!-- tree 17 --> 4264 <_> 4265 <!-- root node --> 4266 <feature> 4267 <rects> 4268 <_>3 9 8 4 -1.</_> 4269 <_>3 11 8 2 2.</_></rects> 4270 <tilted>0</tilted></feature> 4271 <threshold>-1.4315280714072287e-004</threshold> 4272 <left_val>0.1531862020492554</left_val> 4273 <right_val>-0.2831287086009979</right_val></_></_> 4274 <_> 4275 <!-- tree 18 --> 4276 <_> 4277 <!-- root node --> 4278 <feature> 4279 <rects> 4280 <_>3 16 2 12 -1.</_> 4281 <_>4 16 1 12 2.</_></rects> 4282 <tilted>0</tilted></feature> 4283 <threshold>-0.0136043904349208</threshold> 4284 <left_val>-0.6322932839393616</left_val> 4285 <right_val>0.0567920282483101</right_val></_></_> 4286 <_> 4287 <!-- tree 19 --> 4288 <_> 4289 <!-- root node --> 4290 <feature> 4291 <rects> 4292 <_>2 20 12 8 -1.</_> 4293 <_>5 20 6 8 2.</_></rects> 4294 <tilted>0</tilted></feature> 4295 <threshold>-0.1795231997966766</threshold> 4296 <left_val>-0.7747110128402710</left_val> 4297 <right_val>-1.2696949997916818e-003</right_val></_></_> 4298 <_> 4299 <!-- tree 20 --> 4300 <_> 4301 <!-- root node --> 4302 <feature> 4303 <rects> 4304 <_>0 20 12 8 -1.</_> 4305 <_>3 20 6 8 2.</_></rects> 4306 <tilted>0</tilted></feature> 4307 <threshold>-6.3834888860583305e-003</threshold> 4308 <left_val>0.1286493986845017</left_val> 4309 <right_val>-0.3115915954113007</right_val></_></_> 4310 <_> 4311 <!-- tree 21 --> 4312 <_> 4313 <!-- root node --> 4314 <feature> 4315 <rects> 4316 <_>5 4 9 12 -1.</_> 4317 <_>5 10 9 6 2.</_></rects> 4318 <tilted>0</tilted></feature> 4319 <threshold>-0.1814050972461700</threshold> 4320 <left_val>-0.7070493102073669</left_val> 4321 <right_val>0.0309925191104412</right_val></_></_> 4322 <_> 4323 <!-- tree 22 --> 4324 <_> 4325 <!-- root node --> 4326 <feature> 4327 <rects> 4328 <_>4 12 10 4 -1.</_> 4329 <_>4 12 10 2 2.</_></rects> 4330 <tilted>1</tilted></feature> 4331 <threshold>3.4940429031848907e-003</threshold> 4332 <left_val>0.1019228994846344</left_val> 4333 <right_val>-0.3339323103427887</right_val></_></_> 4334 <_> 4335 <!-- tree 23 --> 4336 <_> 4337 <!-- root node --> 4338 <feature> 4339 <rects> 4340 <_>4 2 10 4 -1.</_> 4341 <_>4 2 5 4 2.</_></rects> 4342 <tilted>0</tilted></feature> 4343 <threshold>0.0408617407083511</threshold> 4344 <left_val>0.0312678888440132</left_val> 4345 <right_val>-0.4373905062675476</right_val></_></_> 4346 <_> 4347 <!-- tree 24 --> 4348 <_> 4349 <!-- root node --> 4350 <feature> 4351 <rects> 4352 <_>1 15 12 13 -1.</_> 4353 <_>4 15 6 13 2.</_></rects> 4354 <tilted>0</tilted></feature> 4355 <threshold>0.0369939990341663</threshold> 4356 <left_val>-0.0624536089599133</left_val> 4357 <right_val>0.5760527849197388</right_val></_></_> 4358 <_> 4359 <!-- tree 25 --> 4360 <_> 4361 <!-- root node --> 4362 <feature> 4363 <rects> 4364 <_>11 16 2 12 -1.</_> 4365 <_>11 16 1 12 2.</_></rects> 4366 <tilted>0</tilted></feature> 4367 <threshold>-7.7690118923783302e-003</threshold> 4368 <left_val>-0.6073737144470215</left_val> 4369 <right_val>0.0697584524750710</right_val></_></_> 4370 <_> 4371 <!-- tree 26 --> 4372 <_> 4373 <!-- root node --> 4374 <feature> 4375 <rects> 4376 <_>2 3 3 12 -1.</_> 4377 <_>3 3 1 12 3.</_></rects> 4378 <tilted>0</tilted></feature> 4379 <threshold>7.1885702200233936e-003</threshold> 4380 <left_val>-0.1403401046991348</left_val> 4381 <right_val>0.2450957000255585</right_val></_></_> 4382 <_> 4383 <!-- tree 27 --> 4384 <_> 4385 <!-- root node --> 4386 <feature> 4387 <rects> 4388 <_>8 2 4 6 -1.</_> 4389 <_>8 2 2 6 2.</_></rects> 4390 <tilted>0</tilted></feature> 4391 <threshold>-0.0305586792528629</threshold> 4392 <left_val>-0.2610909938812256</left_val> 4393 <right_val>0.0208937600255013</right_val></_></_> 4394 <_> 4395 <!-- tree 28 --> 4396 <_> 4397 <!-- root node --> 4398 <feature> 4399 <rects> 4400 <_>2 2 4 6 -1.</_> 4401 <_>4 2 2 6 2.</_></rects> 4402 <tilted>0</tilted></feature> 4403 <threshold>-0.0139495003968477</threshold> 4404 <left_val>-0.4598451852798462</left_val> 4405 <right_val>0.0729969888925552</right_val></_></_> 4406 <_> 4407 <!-- tree 29 --> 4408 <_> 4409 <!-- root node --> 4410 <feature> 4411 <rects> 4412 <_>2 13 12 14 -1.</_> 4413 <_>5 13 6 14 2.</_></rects> 4414 <tilted>0</tilted></feature> 4415 <threshold>-0.1743914932012558</threshold> 4416 <left_val>0.2791750133037567</left_val> 4417 <right_val>-0.0703096911311150</right_val></_></_> 4418 <_> 4419 <!-- tree 30 --> 4420 <_> 4421 <!-- root node --> 4422 <feature> 4423 <rects> 4424 <_>1 16 2 12 -1.</_> 4425 <_>2 16 1 12 2.</_></rects> 4426 <tilted>0</tilted></feature> 4427 <threshold>-5.6514460593461990e-003</threshold> 4428 <left_val>-0.5833538770675659</left_val> 4429 <right_val>0.0485431700944901</right_val></_></_> 4430 <_> 4431 <!-- tree 31 --> 4432 <_> 4433 <!-- root node --> 4434 <feature> 4435 <rects> 4436 <_>9 21 4 6 -1.</_> 4437 <_>9 21 2 6 2.</_></rects> 4438 <tilted>0</tilted></feature> 4439 <threshold>-5.6718150153756142e-003</threshold> 4440 <left_val>-0.2064559012651444</left_val> 4441 <right_val>0.0599499903619289</right_val></_></_> 4442 <_> 4443 <!-- tree 32 --> 4444 <_> 4445 <!-- root node --> 4446 <feature> 4447 <rects> 4448 <_>1 21 4 6 -1.</_> 4449 <_>3 21 2 6 2.</_></rects> 4450 <tilted>0</tilted></feature> 4451 <threshold>-2.9772339985356666e-005</threshold> 4452 <left_val>0.1662708073854446</left_val> 4453 <right_val>-0.1814447045326233</right_val></_></_> 4454 <_> 4455 <!-- tree 33 --> 4456 <_> 4457 <!-- root node --> 4458 <feature> 4459 <rects> 4460 <_>9 0 3 15 -1.</_> 4461 <_>10 0 1 15 3.</_></rects> 4462 <tilted>0</tilted></feature> 4463 <threshold>-6.2705092132091522e-003</threshold> 4464 <left_val>0.2582921087741852</left_val> 4465 <right_val>-0.1354808062314987</right_val></_></_> 4466 <_> 4467 <!-- tree 34 --> 4468 <_> 4469 <!-- root node --> 4470 <feature> 4471 <rects> 4472 <_>2 22 4 6 -1.</_> 4473 <_>4 22 2 6 2.</_></rects> 4474 <tilted>0</tilted></feature> 4475 <threshold>-5.2028051577508450e-003</threshold> 4476 <left_val>-0.2958551943302155</left_val> 4477 <right_val>0.1022360026836395</right_val></_></_> 4478 <_> 4479 <!-- tree 35 --> 4480 <_> 4481 <!-- root node --> 4482 <feature> 4483 <rects> 4484 <_>2 13 12 14 -1.</_> 4485 <_>5 13 6 14 2.</_></rects> 4486 <tilted>0</tilted></feature> 4487 <threshold>-0.0367218405008316</threshold> 4488 <left_val>0.1144345998764038</left_val> 4489 <right_val>-0.1567068994045258</right_val></_></_> 4490 <_> 4491 <!-- tree 36 --> 4492 <_> 4493 <!-- root node --> 4494 <feature> 4495 <rects> 4496 <_>6 3 4 6 -1.</_> 4497 <_>6 3 4 3 2.</_></rects> 4498 <tilted>1</tilted></feature> 4499 <threshold>0.0787174329161644</threshold> 4500 <left_val>0.0294073894619942</left_val> 4501 <right_val>-0.8965392708778381</right_val></_></_> 4502 <_> 4503 <!-- tree 37 --> 4504 <_> 4505 <!-- root node --> 4506 <feature> 4507 <rects> 4508 <_>1 0 12 24 -1.</_> 4509 <_>5 8 4 8 9.</_></rects> 4510 <tilted>0</tilted></feature> 4511 <threshold>0.9085621237754822</threshold> 4512 <left_val>-0.0564002692699432</left_val> 4513 <right_val>0.6954352855682373</right_val></_></_> 4514 <_> 4515 <!-- tree 38 --> 4516 <_> 4517 <!-- root node --> 4518 <feature> 4519 <rects> 4520 <_>4 2 6 8 -1.</_> 4521 <_>4 6 6 4 2.</_></rects> 4522 <tilted>0</tilted></feature> 4523 <threshold>-5.2952598780393600e-003</threshold> 4524 <left_val>0.1828244030475617</left_val> 4525 <right_val>-0.2051848024129868</right_val></_></_> 4526 <_> 4527 <!-- tree 39 --> 4528 <_> 4529 <!-- root node --> 4530 <feature> 4531 <rects> 4532 <_>2 4 12 8 -1.</_> 4533 <_>2 6 12 4 2.</_></rects> 4534 <tilted>0</tilted></feature> 4535 <threshold>-0.0526723414659500</threshold> 4536 <left_val>-0.6813353896141052</left_val> 4537 <right_val>0.0360460691154003</right_val></_></_></trees> 4538 <stage_threshold>-1.0216970443725586</stage_threshold> 4539 <parent>12</parent> 4540 <next>-1</next></_> 4541 <_> 4542 <!-- stage 14 --> 4543 <trees> 4544 <_> 4545 <!-- tree 0 --> 4546 <_> 4547 <!-- root node --> 4548 <feature> 4549 <rects> 4550 <_>1 8 12 18 -1.</_> 4551 <_>4 8 6 18 2.</_></rects> 4552 <tilted>0</tilted></feature> 4553 <threshold>-0.2173130959272385</threshold> 4554 <left_val>0.5971680879592896</left_val> 4555 <right_val>-0.2243269979953766</right_val></_></_> 4556 <_> 4557 <!-- tree 1 --> 4558 <_> 4559 <!-- root node --> 4560 <feature> 4561 <rects> 4562 <_>3 0 8 24 -1.</_> 4563 <_>3 8 8 8 3.</_></rects> 4564 <tilted>0</tilted></feature> 4565 <threshold>-0.3462795913219452</threshold> 4566 <left_val>0.5374193787574768</left_val> 4567 <right_val>-0.0877821892499924</right_val></_></_> 4568 <_> 4569 <!-- tree 2 --> 4570 <_> 4571 <!-- root node --> 4572 <feature> 4573 <rects> 4574 <_>1 21 6 6 -1.</_> 4575 <_>3 21 2 6 3.</_></rects> 4576 <tilted>0</tilted></feature> 4577 <threshold>1.0713579831644893e-003</threshold> 4578 <left_val>-0.3592022955417633</left_val> 4579 <right_val>0.1568592935800552</right_val></_></_> 4580 <_> 4581 <!-- tree 3 --> 4582 <_> 4583 <!-- root node --> 4584 <feature> 4585 <rects> 4586 <_>5 7 8 3 -1.</_> 4587 <_>5 7 4 3 2.</_></rects> 4588 <tilted>0</tilted></feature> 4589 <threshold>-0.0612671412527561</threshold> 4590 <left_val>-0.7100325226783752</left_val> 4591 <right_val>0.0205278992652893</right_val></_></_> 4592 <_> 4593 <!-- tree 4 --> 4594 <_> 4595 <!-- root node --> 4596 <feature> 4597 <rects> 4598 <_>1 7 8 3 -1.</_> 4599 <_>5 7 4 3 2.</_></rects> 4600 <tilted>0</tilted></feature> 4601 <threshold>0.0312818400561810</threshold> 4602 <left_val>-0.0746467635035515</left_val> 4603 <right_val>0.5968912243843079</right_val></_></_> 4604 <_> 4605 <!-- tree 5 --> 4606 <_> 4607 <!-- root node --> 4608 <feature> 4609 <rects> 4610 <_>5 1 4 6 -1.</_> 4611 <_>5 4 4 3 2.</_></rects> 4612 <tilted>0</tilted></feature> 4613 <threshold>-1.2337400112301111e-003</threshold> 4614 <left_val>0.1594983041286469</left_val> 4615 <right_val>-0.2718119919300079</right_val></_></_> 4616 <_> 4617 <!-- tree 6 --> 4618 <_> 4619 <!-- root node --> 4620 <feature> 4621 <rects> 4622 <_>4 6 4 6 -1.</_> 4623 <_>4 9 4 3 2.</_></rects> 4624 <tilted>0</tilted></feature> 4625 <threshold>-3.4508139360696077e-003</threshold> 4626 <left_val>0.2025516033172607</left_val> 4627 <right_val>-0.1939913928508759</right_val></_></_> 4628 <_> 4629 <!-- tree 7 --> 4630 <_> 4631 <!-- root node --> 4632 <feature> 4633 <rects> 4634 <_>10 20 4 6 -1.</_> 4635 <_>10 20 2 6 2.</_></rects> 4636 <tilted>0</tilted></feature> 4637 <threshold>-7.0481761358678341e-003</threshold> 4638 <left_val>-0.5510008931159973</left_val> 4639 <right_val>0.0707383230328560</right_val></_></_> 4640 <_> 4641 <!-- tree 8 --> 4642 <_> 4643 <!-- root node --> 4644 <feature> 4645 <rects> 4646 <_>3 1 8 21 -1.</_> 4647 <_>3 8 8 7 3.</_></rects> 4648 <tilted>0</tilted></feature> 4649 <threshold>0.2295020073652268</threshold> 4650 <left_val>-0.0875734165310860</left_val> 4651 <right_val>0.6044626832008362</right_val></_></_> 4652 <_> 4653 <!-- tree 9 --> 4654 <_> 4655 <!-- root node --> 4656 <feature> 4657 <rects> 4658 <_>7 16 4 12 -1.</_> 4659 <_>9 16 2 6 2.</_> 4660 <_>7 22 2 6 2.</_></rects> 4661 <tilted>0</tilted></feature> 4662 <threshold>-2.2578560747206211e-003</threshold> 4663 <left_val>-0.0853065028786659</left_val> 4664 <right_val>0.1099772974848747</right_val></_></_> 4665 <_> 4666 <!-- tree 10 --> 4667 <_> 4668 <!-- root node --> 4669 <feature> 4670 <rects> 4671 <_>1 25 12 3 -1.</_> 4672 <_>5 25 4 3 3.</_></rects> 4673 <tilted>0</tilted></feature> 4674 <threshold>-9.7562908194959164e-004</threshold> 4675 <left_val>0.0974123030900955</left_val> 4676 <right_val>-0.3625175952911377</right_val></_></_> 4677 <_> 4678 <!-- tree 11 --> 4679 <_> 4680 <!-- root node --> 4681 <feature> 4682 <rects> 4683 <_>7 16 4 12 -1.</_> 4684 <_>9 16 2 6 2.</_> 4685 <_>7 22 2 6 2.</_></rects> 4686 <tilted>0</tilted></feature> 4687 <threshold>0.0530881099402905</threshold> 4688 <left_val>-3.5328660160303116e-003</left_val> 4689 <right_val>-0.6069478988647461</right_val></_></_> 4690 <_> 4691 <!-- tree 12 --> 4692 <_> 4693 <!-- root node --> 4694 <feature> 4695 <rects> 4696 <_>3 16 4 12 -1.</_> 4697 <_>3 16 2 6 2.</_> 4698 <_>5 22 2 6 2.</_></rects> 4699 <tilted>0</tilted></feature> 4700 <threshold>1.5448880149051547e-003</threshold> 4701 <left_val>-0.2241913974285126</left_val> 4702 <right_val>0.1783272027969360</right_val></_></_> 4703 <_> 4704 <!-- tree 13 --> 4705 <_> 4706 <!-- root node --> 4707 <feature> 4708 <rects> 4709 <_>7 17 4 7 -1.</_> 4710 <_>7 17 2 7 2.</_></rects> 4711 <tilted>0</tilted></feature> 4712 <threshold>0.0123757002875209</threshold> 4713 <left_val>-0.0357789508998394</left_val> 4714 <right_val>0.2955793142318726</right_val></_></_> 4715 <_> 4716 <!-- tree 14 --> 4717 <_> 4718 <!-- root node --> 4719 <feature> 4720 <rects> 4721 <_>3 17 4 7 -1.</_> 4722 <_>5 17 2 7 2.</_></rects> 4723 <tilted>0</tilted></feature> 4724 <threshold>5.9611927717924118e-003</threshold> 4725 <left_val>-0.0736030265688896</left_val> 4726 <right_val>0.4869956970214844</right_val></_></_> 4727 <_> 4728 <!-- tree 15 --> 4729 <_> 4730 <!-- root node --> 4731 <feature> 4732 <rects> 4733 <_>4 12 6 6 -1.</_> 4734 <_>6 12 2 6 3.</_></rects> 4735 <tilted>0</tilted></feature> 4736 <threshold>8.3732418715953827e-003</threshold> 4737 <left_val>0.0957865566015244</left_val> 4738 <right_val>-0.3922258019447327</right_val></_></_> 4739 <_> 4740 <!-- tree 16 --> 4741 <_> 4742 <!-- root node --> 4743 <feature> 4744 <rects> 4745 <_>5 8 4 15 -1.</_> 4746 <_>6 8 2 15 2.</_></rects> 4747 <tilted>0</tilted></feature> 4748 <threshold>-7.9954452812671661e-003</threshold> 4749 <left_val>-0.2959701120853424</left_val> 4750 <right_val>0.1324651986360550</right_val></_></_> 4751 <_> 4752 <!-- tree 17 --> 4753 <_> 4754 <!-- root node --> 4755 <feature> 4756 <rects> 4757 <_>7 22 2 4 -1.</_> 4758 <_>7 22 1 4 2.</_></rects> 4759 <tilted>1</tilted></feature> 4760 <threshold>0.0176241490989923</threshold> 4761 <left_val>0.0116297602653503</left_val> 4762 <right_val>-0.3759419023990631</right_val></_></_> 4763 <_> 4764 <!-- tree 18 --> 4765 <_> 4766 <!-- root node --> 4767 <feature> 4768 <rects> 4769 <_>7 22 4 2 -1.</_> 4770 <_>7 22 4 1 2.</_></rects> 4771 <tilted>1</tilted></feature> 4772 <threshold>-8.1538967788219452e-004</threshold> 4773 <left_val>0.1840317994356155</left_val> 4774 <right_val>-0.2110694944858551</right_val></_></_> 4775 <_> 4776 <!-- tree 19 --> 4777 <_> 4778 <!-- root node --> 4779 <feature> 4780 <rects> 4781 <_>1 15 12 3 -1.</_> 4782 <_>1 15 6 3 2.</_></rects> 4783 <tilted>0</tilted></feature> 4784 <threshold>0.0659108385443687</threshold> 4785 <left_val>0.0380509383976460</left_val> 4786 <right_val>-0.8735622167587280</right_val></_></_> 4787 <_> 4788 <!-- tree 20 --> 4789 <_> 4790 <!-- root node --> 4791 <feature> 4792 <rects> 4793 <_>4 15 6 12 -1.</_> 4794 <_>4 15 3 6 2.</_> 4795 <_>7 21 3 6 2.</_></rects> 4796 <tilted>0</tilted></feature> 4797 <threshold>-8.1749828532338142e-003</threshold> 4798 <left_val>-0.3011561930179596</left_val> 4799 <right_val>0.0813454464077950</right_val></_></_> 4800 <_> 4801 <!-- tree 21 --> 4802 <_> 4803 <!-- root node --> 4804 <feature> 4805 <rects> 4806 <_>7 16 3 12 -1.</_> 4807 <_>8 16 1 12 3.</_></rects> 4808 <tilted>0</tilted></feature> 4809 <threshold>-0.0382750108838081</threshold> 4810 <left_val>0.3823896050453186</left_val> 4811 <right_val>-0.0559699796140194</right_val></_></_> 4812 <_> 4813 <!-- tree 22 --> 4814 <_> 4815 <!-- root node --> 4816 <feature> 4817 <rects> 4818 <_>2 9 4 18 -1.</_> 4819 <_>2 9 2 9 2.</_> 4820 <_>4 18 2 9 2.</_></rects> 4821 <tilted>0</tilted></feature> 4822 <threshold>3.2501420937478542e-003</threshold> 4823 <left_val>-0.2152089029550552</left_val> 4824 <right_val>0.1341784000396729</right_val></_></_> 4825 <_> 4826 <!-- tree 23 --> 4827 <_> 4828 <!-- root node --> 4829 <feature> 4830 <rects> 4831 <_>8 10 4 6 -1.</_> 4832 <_>8 10 2 6 2.</_></rects> 4833 <tilted>0</tilted></feature> 4834 <threshold>5.6356219574809074e-003</threshold> 4835 <left_val>-0.0915983468294144</left_val> 4836 <right_val>0.2693023085594177</right_val></_></_> 4837 <_> 4838 <!-- tree 24 --> 4839 <_> 4840 <!-- root node --> 4841 <feature> 4842 <rects> 4843 <_>0 16 4 12 -1.</_> 4844 <_>0 16 2 6 2.</_> 4845 <_>2 22 2 6 2.</_></rects> 4846 <tilted>0</tilted></feature> 4847 <threshold>-5.1177428103983402e-003</threshold> 4848 <left_val>-0.3009229898452759</left_val> 4849 <right_val>0.1044047027826309</right_val></_></_> 4850 <_> 4851 <!-- tree 25 --> 4852 <_> 4853 <!-- root node --> 4854 <feature> 4855 <rects> 4856 <_>2 22 12 4 -1.</_> 4857 <_>6 22 4 4 3.</_></rects> 4858 <tilted>0</tilted></feature> 4859 <threshold>-0.0601951293647289</threshold> 4860 <left_val>0.1851283013820648</left_val> 4861 <right_val>-0.0630041509866714</right_val></_></_> 4862 <_> 4863 <!-- tree 26 --> 4864 <_> 4865 <!-- root node --> 4866 <feature> 4867 <rects> 4868 <_>0 24 9 4 -1.</_> 4869 <_>3 24 3 4 3.</_></rects> 4870 <tilted>0</tilted></feature> 4871 <threshold>0.0464735589921474</threshold> 4872 <left_val>0.0375593788921833</left_val> 4873 <right_val>-0.8111779093742371</right_val></_></_> 4874 <_> 4875 <!-- tree 27 --> 4876 <_> 4877 <!-- root node --> 4878 <feature> 4879 <rects> 4880 <_>9 13 4 12 -1.</_> 4881 <_>9 17 4 4 3.</_></rects> 4882 <tilted>0</tilted></feature> 4883 <threshold>2.2262150887399912e-003</threshold> 4884 <left_val>-0.1226280033588409</left_val> 4885 <right_val>0.0832881927490234</right_val></_></_> 4886 <_> 4887 <!-- tree 28 --> 4888 <_> 4889 <!-- root node --> 4890 <feature> 4891 <rects> 4892 <_>2 10 4 6 -1.</_> 4893 <_>4 10 2 6 2.</_></rects> 4894 <tilted>0</tilted></feature> 4895 <threshold>0.0166707802563906</threshold> 4896 <left_val>-0.0527744293212891</left_val> 4897 <right_val>0.5488799810409546</right_val></_></_> 4898 <_> 4899 <!-- tree 29 --> 4900 <_> 4901 <!-- root node --> 4902 <feature> 4903 <rects> 4904 <_>4 8 8 6 -1.</_> 4905 <_>4 10 8 2 3.</_></rects> 4906 <tilted>0</tilted></feature> 4907 <threshold>-0.0630935281515121</threshold> 4908 <left_val>-0.7470207214355469</left_val> 4909 <right_val>0.0270495098084211</right_val></_></_> 4910 <_> 4911 <!-- tree 30 --> 4912 <_> 4913 <!-- root node --> 4914 <feature> 4915 <rects> 4916 <_>0 22 12 4 -1.</_> 4917 <_>4 22 4 4 3.</_></rects> 4918 <tilted>0</tilted></feature> 4919 <threshold>-7.7139958739280701e-004</threshold> 4920 <left_val>0.0921770632266998</left_val> 4921 <right_val>-0.2999443113803864</right_val></_></_> 4922 <_> 4923 <!-- tree 31 --> 4924 <_> 4925 <!-- root node --> 4926 <feature> 4927 <rects> 4928 <_>4 21 9 7 -1.</_> 4929 <_>7 21 3 7 3.</_></rects> 4930 <tilted>0</tilted></feature> 4931 <threshold>-0.0891078934073448</threshold> 4932 <left_val>-0.3893744051456451</left_val> 4933 <right_val>0.0298317596316338</right_val></_></_> 4934 <_> 4935 <!-- tree 32 --> 4936 <_> 4937 <!-- root node --> 4938 <feature> 4939 <rects> 4940 <_>5 22 4 6 -1.</_> 4941 <_>7 22 2 6 2.</_></rects> 4942 <tilted>0</tilted></feature> 4943 <threshold>-1.7469590238761157e-004</threshold> 4944 <left_val>0.1611765027046204</left_val> 4945 <right_val>-0.2063910067081451</right_val></_></_> 4946 <_> 4947 <!-- tree 33 --> 4948 <_> 4949 <!-- root node --> 4950 <feature> 4951 <rects> 4952 <_>9 2 3 12 -1.</_> 4953 <_>10 2 1 12 3.</_></rects> 4954 <tilted>0</tilted></feature> 4955 <threshold>-2.1986931096762419e-003</threshold> 4956 <left_val>0.1428606957197189</left_val> 4957 <right_val>-0.1236654967069626</right_val></_></_> 4958 <_> 4959 <!-- tree 34 --> 4960 <_> 4961 <!-- root node --> 4962 <feature> 4963 <rects> 4964 <_>2 3 3 12 -1.</_> 4965 <_>3 3 1 12 3.</_></rects> 4966 <tilted>0</tilted></feature> 4967 <threshold>2.1864708978682756e-003</threshold> 4968 <left_val>-0.1743519008159638</left_val> 4969 <right_val>0.1658601015806198</right_val></_></_> 4970 <_> 4971 <!-- tree 35 --> 4972 <_> 4973 <!-- root node --> 4974 <feature> 4975 <rects> 4976 <_>8 4 4 6 -1.</_> 4977 <_>8 4 2 6 2.</_></rects> 4978 <tilted>1</tilted></feature> 4979 <threshold>0.0127384504303336</threshold> 4980 <left_val>0.0483400784432888</left_val> 4981 <right_val>-0.0812979266047478</right_val></_></_> 4982 <_> 4983 <!-- tree 36 --> 4984 <_> 4985 <!-- root node --> 4986 <feature> 4987 <rects> 4988 <_>6 4 6 4 -1.</_> 4989 <_>6 4 6 2 2.</_></rects> 4990 <tilted>1</tilted></feature> 4991 <threshold>-0.0123834004625678</threshold> 4992 <left_val>-0.3746446073055267</left_val> 4993 <right_val>0.0812059789896011</right_val></_></_> 4994 <_> 4995 <!-- tree 37 --> 4996 <_> 4997 <!-- root node --> 4998 <feature> 4999 <rects> 5000 <_>4 6 8 16 -1.</_> 5001 <_>8 6 4 8 2.</_> 5002 <_>4 14 4 8 2.</_></rects> 5003 <tilted>0</tilted></feature> 5004 <threshold>-0.1209435015916824</threshold> 5005 <left_val>-0.9190897941589356</left_val> 5006 <right_val>0.0170078407973051</right_val></_></_> 5007 <_> 5008 <!-- tree 38 --> 5009 <_> 5010 <!-- root node --> 5011 <feature> 5012 <rects> 5013 <_>2 6 8 16 -1.</_> 5014 <_>2 6 4 8 2.</_> 5015 <_>6 14 4 8 2.</_></rects> 5016 <tilted>0</tilted></feature> 5017 <threshold>0.0489029809832573</threshold> 5018 <left_val>-0.0706190690398216</left_val> 5019 <right_val>0.5136343836784363</right_val></_></_> 5020 <_> 5021 <!-- tree 39 --> 5022 <_> 5023 <!-- root node --> 5024 <feature> 5025 <rects> 5026 <_>4 8 8 8 -1.</_> 5027 <_>6 8 4 8 2.</_></rects> 5028 <tilted>0</tilted></feature> 5029 <threshold>-1.9585320260375738e-003</threshold> 5030 <left_val>0.0998083725571632</left_val> 5031 <right_val>-0.1068151965737343</right_val></_></_> 5032 <_> 5033 <!-- tree 40 --> 5034 <_> 5035 <!-- root node --> 5036 <feature> 5037 <rects> 5038 <_>0 6 12 10 -1.</_> 5039 <_>4 6 4 10 3.</_></rects> 5040 <tilted>0</tilted></feature> 5041 <threshold>-0.2964532077312470</threshold> 5042 <left_val>-0.9121376276016235</left_val> 5043 <right_val>0.0322923585772514</right_val></_></_> 5044 <_> 5045 <!-- tree 41 --> 5046 <_> 5047 <!-- root node --> 5048 <feature> 5049 <rects> 5050 <_>8 10 6 7 -1.</_> 5051 <_>10 12 2 7 3.</_></rects> 5052 <tilted>1</tilted></feature> 5053 <threshold>0.1074197962880135</threshold> 5054 <left_val>-2.3814958985894918e-003</left_val> 5055 <right_val>-0.7183641791343689</right_val></_></_> 5056 <_> 5057 <!-- tree 42 --> 5058 <_> 5059 <!-- root node --> 5060 <feature> 5061 <rects> 5062 <_>6 10 7 6 -1.</_> 5063 <_>4 12 7 2 3.</_></rects> 5064 <tilted>1</tilted></feature> 5065 <threshold>-0.0420404411852360</threshold> 5066 <left_val>0.3084833920001984</left_val> 5067 <right_val>-0.0996473729610443</right_val></_></_> 5068 <_> 5069 <!-- tree 43 --> 5070 <_> 5071 <!-- root node --> 5072 <feature> 5073 <rects> 5074 <_>5 11 4 7 -1.</_> 5075 <_>5 11 2 7 2.</_></rects> 5076 <tilted>0</tilted></feature> 5077 <threshold>6.8270778283476830e-003</threshold> 5078 <left_val>0.0833021327853203</left_val> 5079 <right_val>-0.3643383979797363</right_val></_></_> 5080 <_> 5081 <!-- tree 44 --> 5082 <_> 5083 <!-- root node --> 5084 <feature> 5085 <rects> 5086 <_>1 11 12 16 -1.</_> 5087 <_>1 11 6 8 2.</_> 5088 <_>7 19 6 8 2.</_></rects> 5089 <tilted>0</tilted></feature> 5090 <threshold>-0.0110720898956060</threshold> 5091 <left_val>-0.2588649988174439</left_val> 5092 <right_val>0.1257940977811813</right_val></_></_> 5093 <_> 5094 <!-- tree 45 --> 5095 <_> 5096 <!-- root node --> 5097 <feature> 5098 <rects> 5099 <_>6 9 3 13 -1.</_> 5100 <_>7 9 1 13 3.</_></rects> 5101 <tilted>0</tilted></feature> 5102 <threshold>-0.0163990296423435</threshold> 5103 <left_val>0.3019199073314667</left_val> 5104 <right_val>-0.0493520908057690</right_val></_></_> 5105 <_> 5106 <!-- tree 46 --> 5107 <_> 5108 <!-- root node --> 5109 <feature> 5110 <rects> 5111 <_>3 9 6 4 -1.</_> 5112 <_>3 11 6 2 2.</_></rects> 5113 <tilted>0</tilted></feature> 5114 <threshold>-2.0852450688835233e-004</threshold> 5115 <left_val>0.1250873059034348</left_val> 5116 <right_val>-0.2199361026287079</right_val></_></_> 5117 <_> 5118 <!-- tree 47 --> 5119 <_> 5120 <!-- root node --> 5121 <feature> 5122 <rects> 5123 <_>9 22 4 6 -1.</_> 5124 <_>9 22 2 6 2.</_></rects> 5125 <tilted>0</tilted></feature> 5126 <threshold>-0.0301748607307673</threshold> 5127 <left_val>-0.6535304784774780</left_val> 5128 <right_val>0.0101856999099255</right_val></_></_> 5129 <_> 5130 <!-- tree 48 --> 5131 <_> 5132 <!-- root node --> 5133 <feature> 5134 <rects> 5135 <_>2 9 7 4 -1.</_> 5136 <_>2 11 7 2 2.</_></rects> 5137 <tilted>0</tilted></feature> 5138 <threshold>-3.9148568175733089e-003</threshold> 5139 <left_val>-0.2078171968460083</left_val> 5140 <right_val>0.1246095001697540</right_val></_></_> 5141 <_> 5142 <!-- tree 49 --> 5143 <_> 5144 <!-- root node --> 5145 <feature> 5146 <rects> 5147 <_>7 15 3 12 -1.</_> 5148 <_>8 15 1 12 3.</_></rects> 5149 <tilted>0</tilted></feature> 5150 <threshold>-2.7260989882051945e-003</threshold> 5151 <left_val>0.1244395002722740</left_val> 5152 <right_val>-0.1554064005613327</right_val></_></_> 5153 <_> 5154 <!-- tree 50 --> 5155 <_> 5156 <!-- root node --> 5157 <feature> 5158 <rects> 5159 <_>2 15 8 3 -1.</_> 5160 <_>6 15 4 3 2.</_></rects> 5161 <tilted>0</tilted></feature> 5162 <threshold>0.0174329001456499</threshold> 5163 <left_val>-0.0597618892788887</left_val> 5164 <right_val>0.4943063855171204</right_val></_></_></trees> 5165 <stage_threshold>-1.0450960397720337</stage_threshold> 5166 <parent>13</parent> 5167 <next>-1</next></_> 5168 <_> 5169 <!-- stage 15 --> 5170 <trees> 5171 <_> 5172 <!-- tree 0 --> 5173 <_> 5174 <!-- root node --> 5175 <feature> 5176 <rects> 5177 <_>1 7 12 19 -1.</_> 5178 <_>4 7 6 19 2.</_></rects> 5179 <tilted>0</tilted></feature> 5180 <threshold>-0.2145441025495529</threshold> 5181 <left_val>0.5164629817008972</left_val> 5182 <right_val>-0.2201218008995056</right_val></_></_> 5183 <_> 5184 <!-- tree 1 --> 5185 <_> 5186 <!-- root node --> 5187 <feature> 5188 <rects> 5189 <_>6 9 4 12 -1.</_> 5190 <_>8 9 2 6 2.</_> 5191 <_>6 15 2 6 2.</_></rects> 5192 <tilted>0</tilted></feature> 5193 <threshold>0.0137962102890015</threshold> 5194 <left_val>0.0505414195358753</left_val> 5195 <right_val>-0.2330507040023804</right_val></_></_> 5196 <_> 5197 <!-- tree 2 --> 5198 <_> 5199 <!-- root node --> 5200 <feature> 5201 <rects> 5202 <_>1 12 4 6 -1.</_> 5203 <_>1 15 4 3 2.</_></rects> 5204 <tilted>0</tilted></feature> 5205 <threshold>9.6883601509034634e-004</threshold> 5206 <left_val>-0.2479321062564850</left_val> 5207 <right_val>0.2053676992654800</right_val></_></_> 5208 <_> 5209 <!-- tree 3 --> 5210 <_> 5211 <!-- root node --> 5212 <feature> 5213 <rects> 5214 <_>4 22 8 6 -1.</_> 5215 <_>8 22 4 3 2.</_> 5216 <_>4 25 4 3 2.</_></rects> 5217 <tilted>0</tilted></feature> 5218 <threshold>-6.6670728847384453e-003</threshold> 5219 <left_val>-0.2254648953676224</left_val> 5220 <right_val>6.4493361860513687e-003</right_val></_></_> 5221 <_> 5222 <!-- tree 4 --> 5223 <_> 5224 <!-- root node --> 5225 <feature> 5226 <rects> 5227 <_>2 22 8 6 -1.</_> 5228 <_>2 22 4 3 2.</_> 5229 <_>6 25 4 3 2.</_></rects> 5230 <tilted>0</tilted></feature> 5231 <threshold>2.1733778994530439e-003</threshold> 5232 <left_val>-0.2116402983665466</left_val> 5233 <right_val>0.2181985974311829</right_val></_></_> 5234 <_> 5235 <!-- tree 5 --> 5236 <_> 5237 <!-- root node --> 5238 <feature> 5239 <rects> 5240 <_>9 17 4 6 -1.</_> 5241 <_>9 17 2 6 2.</_></rects> 5242 <tilted>0</tilted></feature> 5243 <threshold>-1.2321940157562494e-003</threshold> 5244 <left_val>0.0677922964096069</left_val> 5245 <right_val>-0.1166194006800652</right_val></_></_> 5246 <_> 5247 <!-- tree 6 --> 5248 <_> 5249 <!-- root node --> 5250 <feature> 5251 <rects> 5252 <_>1 17 4 6 -1.</_> 5253 <_>3 17 2 6 2.</_></rects> 5254 <tilted>0</tilted></feature> 5255 <threshold>-5.9950752183794975e-003</threshold> 5256 <left_val>-0.4238491058349609</left_val> 5257 <right_val>0.1320454031229019</right_val></_></_> 5258 <_> 5259 <!-- tree 7 --> 5260 <_> 5261 <!-- root node --> 5262 <feature> 5263 <rects> 5264 <_>4 5 6 4 -1.</_> 5265 <_>4 7 6 2 2.</_></rects> 5266 <tilted>0</tilted></feature> 5267 <threshold>0.0269428305327892</threshold> 5268 <left_val>-0.1016191020607948</left_val> 5269 <right_val>0.4809207916259766</right_val></_></_> 5270 <_> 5271 <!-- tree 8 --> 5272 <_> 5273 <!-- root node --> 5274 <feature> 5275 <rects> 5276 <_>7 3 4 6 -1.</_> 5277 <_>7 3 2 6 2.</_></rects> 5278 <tilted>1</tilted></feature> 5279 <threshold>0.0669070035219193</threshold> 5280 <left_val>-0.0845523476600647</left_val> 5281 <right_val>0.4927454888820648</right_val></_></_> 5282 <_> 5283 <!-- tree 9 --> 5284 <_> 5285 <!-- root node --> 5286 <feature> 5287 <rects> 5288 <_>6 24 6 4 -1.</_> 5289 <_>6 24 3 4 2.</_></rects> 5290 <tilted>0</tilted></feature> 5291 <threshold>-1.6729519702494144e-003</threshold> 5292 <left_val>0.0921978726983070</left_val> 5293 <right_val>-0.2295431047677994</right_val></_></_> 5294 <_> 5295 <!-- tree 10 --> 5296 <_> 5297 <!-- root node --> 5298 <feature> 5299 <rects> 5300 <_>1 21 12 3 -1.</_> 5301 <_>5 21 4 3 3.</_></rects> 5302 <tilted>0</tilted></feature> 5303 <threshold>0.0138087300583720</threshold> 5304 <left_val>-0.0609050989151001</left_val> 5305 <right_val>0.5849006175994873</right_val></_></_> 5306 <_> 5307 <!-- tree 11 --> 5308 <_> 5309 <!-- root node --> 5310 <feature> 5311 <rects> 5312 <_>7 17 2 7 -1.</_> 5313 <_>7 17 1 7 2.</_></rects> 5314 <tilted>1</tilted></feature> 5315 <threshold>-0.0236271601170301</threshold> 5316 <left_val>-0.8834797739982605</left_val> 5317 <right_val>9.7397705540060997e-003</right_val></_></_> 5318 <_> 5319 <!-- tree 12 --> 5320 <_> 5321 <!-- root node --> 5322 <feature> 5323 <rects> 5324 <_>7 17 7 2 -1.</_> 5325 <_>7 17 7 1 2.</_></rects> 5326 <tilted>1</tilted></feature> 5327 <threshold>-0.0139276403933764</threshold> 5328 <left_val>-0.6530944108963013</left_val> 5329 <right_val>0.0528865084052086</right_val></_></_> 5330 <_> 5331 <!-- tree 13 --> 5332 <_> 5333 <!-- root node --> 5334 <feature> 5335 <rects> 5336 <_>6 12 3 16 -1.</_> 5337 <_>6 20 3 8 2.</_></rects> 5338 <tilted>0</tilted></feature> 5339 <threshold>3.6122989840805531e-003</threshold> 5340 <left_val>-0.2636939883232117</left_val> 5341 <right_val>0.1059527993202210</right_val></_></_> 5342 <_> 5343 <!-- tree 14 --> 5344 <_> 5345 <!-- root node --> 5346 <feature> 5347 <rects> 5348 <_>2 24 9 4 -1.</_> 5349 <_>5 24 3 4 3.</_></rects> 5350 <tilted>0</tilted></feature> 5351 <threshold>-0.0529494509100914</threshold> 5352 <left_val>-0.7340934276580811</left_val> 5353 <right_val>0.0470140390098095</right_val></_></_> 5354 <_> 5355 <!-- tree 15 --> 5356 <_> 5357 <!-- root node --> 5358 <feature> 5359 <rects> 5360 <_>2 25 12 2 -1.</_> 5361 <_>2 25 6 2 2.</_></rects> 5362 <tilted>0</tilted></feature> 5363 <threshold>0.0174148194491863</threshold> 5364 <left_val>0.0176837407052517</left_val> 5365 <right_val>-0.5878229737281799</right_val></_></_> 5366 <_> 5367 <!-- tree 16 --> 5368 <_> 5369 <!-- root node --> 5370 <feature> 5371 <rects> 5372 <_>0 25 12 2 -1.</_> 5373 <_>6 25 6 2 2.</_></rects> 5374 <tilted>0</tilted></feature> 5375 <threshold>-3.2427799305878580e-004</threshold> 5376 <left_val>0.1388638019561768</left_val> 5377 <right_val>-0.3060975074768066</right_val></_></_> 5378 <_> 5379 <!-- tree 17 --> 5380 <_> 5381 <!-- root node --> 5382 <feature> 5383 <rects> 5384 <_>4 11 6 8 -1.</_> 5385 <_>4 15 6 4 2.</_></rects> 5386 <tilted>0</tilted></feature> 5387 <threshold>-0.0436137914657593</threshold> 5388 <left_val>0.5485711097717285</left_val> 5389 <right_val>-0.0673488527536392</right_val></_></_> 5390 <_> 5391 <!-- tree 18 --> 5392 <_> 5393 <!-- root node --> 5394 <feature> 5395 <rects> 5396 <_>5 0 4 6 -1.</_> 5397 <_>7 0 2 6 2.</_></rects> 5398 <tilted>0</tilted></feature> 5399 <threshold>-9.3427510000765324e-004</threshold> 5400 <left_val>0.1839264035224915</left_val> 5401 <right_val>-0.1749247014522553</right_val></_></_> 5402 <_> 5403 <!-- tree 19 --> 5404 <_> 5405 <!-- root node --> 5406 <feature> 5407 <rects> 5408 <_>2 2 10 7 -1.</_> 5409 <_>2 2 5 7 2.</_></rects> 5410 <tilted>0</tilted></feature> 5411 <threshold>0.0796064212918282</threshold> 5412 <left_val>0.0456521511077881</left_val> 5413 <right_val>-0.6391065716743469</right_val></_></_> 5414 <_> 5415 <!-- tree 20 --> 5416 <_> 5417 <!-- root node --> 5418 <feature> 5419 <rects> 5420 <_>0 1 12 25 -1.</_> 5421 <_>3 1 6 25 2.</_></rects> 5422 <tilted>0</tilted></feature> 5423 <threshold>-0.0251207500696182</threshold> 5424 <left_val>0.1004699021577835</left_val> 5425 <right_val>-0.2782456874847412</right_val></_></_> 5426 <_> 5427 <!-- tree 21 --> 5428 <_> 5429 <!-- root node --> 5430 <feature> 5431 <rects> 5432 <_>1 14 12 6 -1.</_> 5433 <_>4 14 6 6 2.</_></rects> 5434 <tilted>0</tilted></feature> 5435 <threshold>0.0329769104719162</threshold> 5436 <left_val>-0.0593111999332905</left_val> 5437 <right_val>0.6532837748527527</right_val></_></_> 5438 <_> 5439 <!-- tree 22 --> 5440 <_> 5441 <!-- root node --> 5442 <feature> 5443 <rects> 5444 <_>0 26 12 2 -1.</_> 5445 <_>6 26 6 2 2.</_></rects> 5446 <tilted>0</tilted></feature> 5447 <threshold>-3.7845480255782604e-003</threshold> 5448 <left_val>-0.2419032007455826</left_val> 5449 <right_val>0.1309728026390076</right_val></_></_> 5450 <_> 5451 <!-- tree 23 --> 5452 <_> 5453 <!-- root node --> 5454 <feature> 5455 <rects> 5456 <_>6 15 3 12 -1.</_> 5457 <_>7 15 1 12 3.</_></rects> 5458 <tilted>0</tilted></feature> 5459 <threshold>9.4495685771107674e-003</threshold> 5460 <left_val>-0.0931000337004662</left_val> 5461 <right_val>0.2378582060337067</right_val></_></_> 5462 <_> 5463 <!-- tree 24 --> 5464 <_> 5465 <!-- root node --> 5466 <feature> 5467 <rects> 5468 <_>6 7 2 12 -1.</_> 5469 <_>7 7 1 12 2.</_></rects> 5470 <tilted>0</tilted></feature> 5471 <threshold>2.5168890133500099e-003</threshold> 5472 <left_val>0.1360431015491486</left_val> 5473 <right_val>-0.2815954089164734</right_val></_></_> 5474 <_> 5475 <!-- tree 25 --> 5476 <_> 5477 <!-- root node --> 5478 <feature> 5479 <rects> 5480 <_>5 9 4 6 -1.</_> 5481 <_>5 9 2 6 2.</_></rects> 5482 <tilted>0</tilted></feature> 5483 <threshold>2.6242460589855909e-003</threshold> 5484 <left_val>0.0898342728614807</left_val> 5485 <right_val>-0.3772903978824616</right_val></_></_> 5486 <_> 5487 <!-- tree 26 --> 5488 <_> 5489 <!-- root node --> 5490 <feature> 5491 <rects> 5492 <_>3 20 6 6 -1.</_> 5493 <_>6 20 3 6 2.</_></rects> 5494 <tilted>0</tilted></feature> 5495 <threshold>-0.0446261987090111</threshold> 5496 <left_val>0.3832083940505981</left_val> 5497 <right_val>-0.0962854698300362</right_val></_></_> 5498 <_> 5499 <!-- tree 27 --> 5500 <_> 5501 <!-- root node --> 5502 <feature> 5503 <rects> 5504 <_>3 10 8 4 -1.</_> 5505 <_>3 10 4 4 2.</_></rects> 5506 <tilted>0</tilted></feature> 5507 <threshold>1.4027470024302602e-004</threshold> 5508 <left_val>-0.1726175993680954</left_val> 5509 <right_val>0.1657430976629257</right_val></_></_> 5510 <_> 5511 <!-- tree 28 --> 5512 <_> 5513 <!-- root node --> 5514 <feature> 5515 <rects> 5516 <_>0 5 9 18 -1.</_> 5517 <_>3 11 3 6 9.</_></rects> 5518 <tilted>0</tilted></feature> 5519 <threshold>0.0391159094870090</threshold> 5520 <left_val>0.0786521136760712</left_val> 5521 <right_val>-0.3568983972072601</right_val></_></_> 5522 <_> 5523 <!-- tree 29 --> 5524 <_> 5525 <!-- root node --> 5526 <feature> 5527 <rects> 5528 <_>8 8 4 6 -1.</_> 5529 <_>8 8 2 6 2.</_></rects> 5530 <tilted>0</tilted></feature> 5531 <threshold>-0.0666820034384727</threshold> 5532 <left_val>-0.8800150752067566</left_val> 5533 <right_val>9.0465601533651352e-003</right_val></_></_> 5534 <_> 5535 <!-- tree 30 --> 5536 <_> 5537 <!-- root node --> 5538 <feature> 5539 <rects> 5540 <_>2 8 4 6 -1.</_> 5541 <_>4 8 2 6 2.</_></rects> 5542 <tilted>0</tilted></feature> 5543 <threshold>6.3860351219773293e-003</threshold> 5544 <left_val>-0.0759362131357193</left_val> 5545 <right_val>0.3862276971340179</right_val></_></_> 5546 <_> 5547 <!-- tree 31 --> 5548 <_> 5549 <!-- root node --> 5550 <feature> 5551 <rects> 5552 <_>8 8 4 12 -1.</_> 5553 <_>10 8 2 6 2.</_> 5554 <_>8 14 2 6 2.</_></rects> 5555 <tilted>0</tilted></feature> 5556 <threshold>0.0435498990118504</threshold> 5557 <left_val>-0.0256800092756748</left_val> 5558 <right_val>0.7408592104911804</right_val></_></_> 5559 <_> 5560 <!-- tree 32 --> 5561 <_> 5562 <!-- root node --> 5563 <feature> 5564 <rects> 5565 <_>4 10 6 8 -1.</_> 5566 <_>4 10 3 4 2.</_> 5567 <_>7 14 3 4 2.</_></rects> 5568 <tilted>0</tilted></feature> 5569 <threshold>1.8360930262133479e-003</threshold> 5570 <left_val>0.1118386983871460</left_val> 5571 <right_val>-0.3336220085620880</right_val></_></_> 5572 <_> 5573 <!-- tree 33 --> 5574 <_> 5575 <!-- root node --> 5576 <feature> 5577 <rects> 5578 <_>7 15 4 6 -1.</_> 5579 <_>7 15 4 3 2.</_></rects> 5580 <tilted>1</tilted></feature> 5581 <threshold>1.6189280431717634e-003</threshold> 5582 <left_val>0.0189690608531237</left_val> 5583 <right_val>-0.1513012945652008</right_val></_></_> 5584 <_> 5585 <!-- tree 34 --> 5586 <_> 5587 <!-- root node --> 5588 <feature> 5589 <rects> 5590 <_>7 15 6 4 -1.</_> 5591 <_>7 15 3 4 2.</_></rects> 5592 <tilted>1</tilted></feature> 5593 <threshold>2.8807038906961679e-003</threshold> 5594 <left_val>0.0942855924367905</left_val> 5595 <right_val>-0.3110074996948242</right_val></_></_> 5596 <_> 5597 <!-- tree 35 --> 5598 <_> 5599 <!-- root node --> 5600 <feature> 5601 <rects> 5602 <_>1 9 13 15 -1.</_> 5603 <_>1 14 13 5 3.</_></rects> 5604 <tilted>0</tilted></feature> 5605 <threshold>-0.0324896499514580</threshold> 5606 <left_val>-0.2190852016210556</left_val> 5607 <right_val>0.1137090027332306</right_val></_></_> 5608 <_> 5609 <!-- tree 36 --> 5610 <_> 5611 <!-- root node --> 5612 <feature> 5613 <rects> 5614 <_>5 1 3 25 -1.</_> 5615 <_>6 1 1 25 3.</_></rects> 5616 <tilted>0</tilted></feature> 5617 <threshold>-0.0382537096738815</threshold> 5618 <left_val>0.3790800869464874</left_val> 5619 <right_val>-0.0682981386780739</right_val></_></_> 5620 <_> 5621 <!-- tree 37 --> 5622 <_> 5623 <!-- root node --> 5624 <feature> 5625 <rects> 5626 <_>6 15 3 12 -1.</_> 5627 <_>7 15 1 12 3.</_></rects> 5628 <tilted>0</tilted></feature> 5629 <threshold>-0.0184787698090076</threshold> 5630 <left_val>0.2962324917316437</left_val> 5631 <right_val>-0.0606829114258289</right_val></_></_> 5632 <_> 5633 <!-- tree 38 --> 5634 <_> 5635 <!-- root node --> 5636 <feature> 5637 <rects> 5638 <_>0 7 4 16 -1.</_> 5639 <_>0 7 2 8 2.</_> 5640 <_>2 15 2 8 2.</_></rects> 5641 <tilted>0</tilted></feature> 5642 <threshold>0.0155697502195835</threshold> 5643 <left_val>0.0857312902808189</left_val> 5644 <right_val>-0.3317534029483795</right_val></_></_> 5645 <_> 5646 <!-- tree 39 --> 5647 <_> 5648 <!-- root node --> 5649 <feature> 5650 <rects> 5651 <_>4 2 6 4 -1.</_> 5652 <_>4 4 6 2 2.</_></rects> 5653 <tilted>0</tilted></feature> 5654 <threshold>-1.7486449796706438e-003</threshold> 5655 <left_val>0.1255429983139038</left_val> 5656 <right_val>-0.1979753971099854</right_val></_></_> 5657 <_> 5658 <!-- tree 40 --> 5659 <_> 5660 <!-- root node --> 5661 <feature> 5662 <rects> 5663 <_>0 0 10 10 -1.</_> 5664 <_>0 5 10 5 2.</_></rects> 5665 <tilted>0</tilted></feature> 5666 <threshold>0.0909955576062202</threshold> 5667 <left_val>-0.0675900131464005</left_val> 5668 <right_val>0.5267614722251892</right_val></_></_> 5669 <_> 5670 <!-- tree 41 --> 5671 <_> 5672 <!-- root node --> 5673 <feature> 5674 <rects> 5675 <_>8 5 6 8 -1.</_> 5676 <_>11 5 3 4 2.</_> 5677 <_>8 9 3 4 2.</_></rects> 5678 <tilted>0</tilted></feature> 5679 <threshold>-6.0815969482064247e-003</threshold> 5680 <left_val>0.2188315987586975</left_val> 5681 <right_val>-0.1579461991786957</right_val></_></_> 5682 <_> 5683 <!-- tree 42 --> 5684 <_> 5685 <!-- root node --> 5686 <feature> 5687 <rects> 5688 <_>1 14 12 14 -1.</_> 5689 <_>1 14 6 7 2.</_> 5690 <_>7 21 6 7 2.</_></rects> 5691 <tilted>0</tilted></feature> 5692 <threshold>0.0136338500306010</threshold> 5693 <left_val>0.1246353015303612</left_val> 5694 <right_val>-0.2339652925729752</right_val></_></_> 5695 <_> 5696 <!-- tree 43 --> 5697 <_> 5698 <!-- root node --> 5699 <feature> 5700 <rects> 5701 <_>7 1 6 18 -1.</_> 5702 <_>9 7 2 6 9.</_></rects> 5703 <tilted>0</tilted></feature> 5704 <threshold>-0.3204661905765533</threshold> 5705 <left_val>0.4580850899219513</left_val> 5706 <right_val>-0.0275732595473528</right_val></_></_> 5707 <_> 5708 <!-- tree 44 --> 5709 <_> 5710 <!-- root node --> 5711 <feature> 5712 <rects> 5713 <_>0 18 14 8 -1.</_> 5714 <_>0 18 7 4 2.</_> 5715 <_>7 22 7 4 2.</_></rects> 5716 <tilted>0</tilted></feature> 5717 <threshold>-3.6630940157920122e-003</threshold> 5718 <left_val>-0.2400335073471069</left_val> 5719 <right_val>0.1225626021623612</right_val></_></_></trees> 5720 <stage_threshold>-0.9280924201011658</stage_threshold> 5721 <parent>14</parent> 5722 <next>-1</next></_> 5723 <_> 5724 <!-- stage 16 --> 5725 <trees> 5726 <_> 5727 <!-- tree 0 --> 5728 <_> 5729 <!-- root node --> 5730 <feature> 5731 <rects> 5732 <_>2 3 8 23 -1.</_> 5733 <_>6 3 4 23 2.</_></rects> 5734 <tilted>0</tilted></feature> 5735 <threshold>-0.1590135991573334</threshold> 5736 <left_val>0.4353503882884979</left_val> 5737 <right_val>-0.1706434935331345</right_val></_></_> 5738 <_> 5739 <!-- tree 1 --> 5740 <_> 5741 <!-- root node --> 5742 <feature> 5743 <rects> 5744 <_>10 18 4 9 -1.</_> 5745 <_>10 18 2 9 2.</_></rects> 5746 <tilted>0</tilted></feature> 5747 <threshold>-8.1815905869007111e-003</threshold> 5748 <left_val>-0.4628070890903473</left_val> 5749 <right_val>0.0885146036744118</right_val></_></_> 5750 <_> 5751 <!-- tree 2 --> 5752 <_> 5753 <!-- root node --> 5754 <feature> 5755 <rects> 5756 <_>0 25 8 3 -1.</_> 5757 <_>4 25 4 3 2.</_></rects> 5758 <tilted>0</tilted></feature> 5759 <threshold>-7.1978997766564135e-006</threshold> 5760 <left_val>0.1624667048454285</left_val> 5761 <right_val>-0.3189904093742371</right_val></_></_> 5762 <_> 5763 <!-- tree 3 --> 5764 <_> 5765 <!-- root node --> 5766 <feature> 5767 <rects> 5768 <_>2 26 12 2 -1.</_> 5769 <_>2 26 6 2 2.</_></rects> 5770 <tilted>0</tilted></feature> 5771 <threshold>0.0141281802207232</threshold> 5772 <left_val>0.0432598814368248</left_val> 5773 <right_val>-0.5932887792587280</right_val></_></_> 5774 <_> 5775 <!-- tree 4 --> 5776 <_> 5777 <!-- root node --> 5778 <feature> 5779 <rects> 5780 <_>1 22 4 6 -1.</_> 5781 <_>3 22 2 6 2.</_></rects> 5782 <tilted>0</tilted></feature> 5783 <threshold>-9.5496661961078644e-003</threshold> 5784 <left_val>-0.6398767232894898</left_val> 5785 <right_val>0.0462039299309254</right_val></_></_> 5786 <_> 5787 <!-- tree 5 --> 5788 <_> 5789 <!-- root node --> 5790 <feature> 5791 <rects> 5792 <_>6 16 2 12 -1.</_> 5793 <_>6 16 1 12 2.</_></rects> 5794 <tilted>0</tilted></feature> 5795 <threshold>-2.4156800936907530e-003</threshold> 5796 <left_val>0.2600989937782288</left_val> 5797 <right_val>-0.1709903031587601</right_val></_></_> 5798 <_> 5799 <!-- tree 6 --> 5800 <_> 5801 <!-- root node --> 5802 <feature> 5803 <rects> 5804 <_>2 14 6 14 -1.</_> 5805 <_>2 14 3 7 2.</_> 5806 <_>5 21 3 7 2.</_></rects> 5807 <tilted>0</tilted></feature> 5808 <threshold>4.4057718478143215e-003</threshold> 5809 <left_val>-0.2267919927835465</left_val> 5810 <right_val>0.1639396995306015</right_val></_></_> 5811 <_> 5812 <!-- tree 7 --> 5813 <_> 5814 <!-- root node --> 5815 <feature> 5816 <rects> 5817 <_>4 8 6 6 -1.</_> 5818 <_>6 8 2 6 3.</_></rects> 5819 <tilted>0</tilted></feature> 5820 <threshold>-0.0338254384696484</threshold> 5821 <left_val>-0.7283406257629395</left_val> 5822 <right_val>0.0516999587416649</right_val></_></_> 5823 <_> 5824 <!-- tree 8 --> 5825 <_> 5826 <!-- root node --> 5827 <feature> 5828 <rects> 5829 <_>0 18 8 6 -1.</_> 5830 <_>0 18 4 3 2.</_> 5831 <_>4 21 4 3 2.</_></rects> 5832 <tilted>0</tilted></feature> 5833 <threshold>0.0296280104666948</threshold> 5834 <left_val>0.0343999303877354</left_val> 5835 <right_val>-0.6940060853958130</right_val></_></_> 5836 <_> 5837 <!-- tree 9 --> 5838 <_> 5839 <!-- root node --> 5840 <feature> 5841 <rects> 5842 <_>7 13 6 11 -1.</_> 5843 <_>9 13 2 11 3.</_></rects> 5844 <tilted>0</tilted></feature> 5845 <threshold>0.1229469031095505</threshold> 5846 <left_val>3.3281920477747917e-003</left_val> 5847 <right_val>-0.7660214900970459</right_val></_></_> 5848 <_> 5849 <!-- tree 10 --> 5850 <_> 5851 <!-- root node --> 5852 <feature> 5853 <rects> 5854 <_>1 16 12 7 -1.</_> 5855 <_>4 16 6 7 2.</_></rects> 5856 <tilted>0</tilted></feature> 5857 <threshold>-0.0988161712884903</threshold> 5858 <left_val>0.3143998086452484</left_val> 5859 <right_val>-0.1013118028640747</right_val></_></_> 5860 <_> 5861 <!-- tree 11 --> 5862 <_> 5863 <!-- root node --> 5864 <feature> 5865 <rects> 5866 <_>7 15 4 9 -1.</_> 5867 <_>7 15 2 9 2.</_></rects> 5868 <tilted>0</tilted></feature> 5869 <threshold>-3.3952430821955204e-003</threshold> 5870 <left_val>0.0333622097969055</left_val> 5871 <right_val>-0.1316892951726914</right_val></_></_> 5872 <_> 5873 <!-- tree 12 --> 5874 <_> 5875 <!-- root node --> 5876 <feature> 5877 <rects> 5878 <_>3 15 4 9 -1.</_> 5879 <_>5 15 2 9 2.</_></rects> 5880 <tilted>0</tilted></feature> 5881 <threshold>0.0245866999030113</threshold> 5882 <left_val>-0.0652275532484055</left_val> 5883 <right_val>0.6816970109939575</right_val></_></_> 5884 <_> 5885 <!-- tree 13 --> 5886 <_> 5887 <!-- root node --> 5888 <feature> 5889 <rects> 5890 <_>10 18 4 8 -1.</_> 5891 <_>10 18 2 8 2.</_></rects> 5892 <tilted>0</tilted></feature> 5893 <threshold>7.8804800286889076e-003</threshold> 5894 <left_val>0.1292610019445419</left_val> 5895 <right_val>-0.4378339052200317</right_val></_></_> 5896 <_> 5897 <!-- tree 14 --> 5898 <_> 5899 <!-- root node --> 5900 <feature> 5901 <rects> 5902 <_>2 7 9 6 -1.</_> 5903 <_>2 9 9 2 3.</_></rects> 5904 <tilted>0</tilted></feature> 5905 <threshold>-9.1016880469396710e-004</threshold> 5906 <left_val>0.1369279026985169</left_val> 5907 <right_val>-0.1982776969671249</right_val></_></_> 5908 <_> 5909 <!-- tree 15 --> 5910 <_> 5911 <!-- root node --> 5912 <feature> 5913 <rects> 5914 <_>1 9 12 6 -1.</_> 5915 <_>1 12 12 3 2.</_></rects> 5916 <tilted>0</tilted></feature> 5917 <threshold>0.0161782596260309</threshold> 5918 <left_val>0.0992875024676323</left_val> 5919 <right_val>-0.3409053981304169</right_val></_></_> 5920 <_> 5921 <!-- tree 16 --> 5922 <_> 5923 <!-- root node --> 5924 <feature> 5925 <rects> 5926 <_>3 5 5 12 -1.</_> 5927 <_>3 11 5 6 2.</_></rects> 5928 <tilted>0</tilted></feature> 5929 <threshold>-0.1052768006920815</threshold> 5930 <left_val>-0.9173877239227295</left_val> 5931 <right_val>0.0326749682426453</right_val></_></_> 5932 <_> 5933 <!-- tree 17 --> 5934 <_> 5935 <!-- root node --> 5936 <feature> 5937 <rects> 5938 <_>3 6 8 4 -1.</_> 5939 <_>3 8 8 2 2.</_></rects> 5940 <tilted>0</tilted></feature> 5941 <threshold>-0.0370904989540577</threshold> 5942 <left_val>0.4204797148704529</left_val> 5943 <right_val>-0.0710027664899826</right_val></_></_> 5944 <_> 5945 <!-- tree 18 --> 5946 <_> 5947 <!-- root node --> 5948 <feature> 5949 <rects> 5950 <_>4 6 6 6 -1.</_> 5951 <_>4 8 6 2 3.</_></rects> 5952 <tilted>0</tilted></feature> 5953 <threshold>0.0387211404740810</threshold> 5954 <left_val>-0.0732844322919846</left_val> 5955 <right_val>0.4820480942726135</right_val></_></_> 5956 <_> 5957 <!-- tree 19 --> 5958 <_> 5959 <!-- root node --> 5960 <feature> 5961 <rects> 5962 <_>1 26 12 2 -1.</_> 5963 <_>1 26 6 2 2.</_></rects> 5964 <tilted>0</tilted></feature> 5965 <threshold>-3.4923329949378967e-003</threshold> 5966 <left_val>-0.2871321141719818</left_val> 5967 <right_val>0.1039713025093079</right_val></_></_> 5968 <_> 5969 <!-- tree 20 --> 5970 <_> 5971 <!-- root node --> 5972 <feature> 5973 <rects> 5974 <_>5 7 4 6 -1.</_> 5975 <_>7 7 2 6 2.</_></rects> 5976 <tilted>0</tilted></feature> 5977 <threshold>-0.0112144602462649</threshold> 5978 <left_val>-0.5163223147392273</left_val> 5979 <right_val>0.0543844103813171</right_val></_></_> 5980 <_> 5981 <!-- tree 21 --> 5982 <_> 5983 <!-- root node --> 5984 <feature> 5985 <rects> 5986 <_>7 5 6 5 -1.</_> 5987 <_>7 5 3 5 2.</_></rects> 5988 <tilted>1</tilted></feature> 5989 <threshold>-2.2951549908611923e-004</threshold> 5990 <left_val>-0.1635524034500122</left_val> 5991 <right_val>0.0772165581583977</right_val></_></_> 5992 <_> 5993 <!-- tree 22 --> 5994 <_> 5995 <!-- root node --> 5996 <feature> 5997 <rects> 5998 <_>5 9 3 13 -1.</_> 5999 <_>6 9 1 13 3.</_></rects> 6000 <tilted>0</tilted></feature> 6001 <threshold>0.0257446095347404</threshold> 6002 <left_val>-0.0573031008243561</left_val> 6003 <right_val>0.4952527880668640</right_val></_></_> 6004 <_> 6005 <!-- tree 23 --> 6006 <_> 6007 <!-- root node --> 6008 <feature> 6009 <rects> 6010 <_>5 18 6 10 -1.</_> 6011 <_>8 18 3 5 2.</_> 6012 <_>5 23 3 5 2.</_></rects> 6013 <tilted>0</tilted></feature> 6014 <threshold>0.0379986204206944</threshold> 6015 <left_val>0.0276545807719231</left_val> 6016 <right_val>-0.4847078919410706</right_val></_></_> 6017 <_> 6018 <!-- tree 24 --> 6019 <_> 6020 <!-- root node --> 6021 <feature> 6022 <rects> 6023 <_>3 18 6 10 -1.</_> 6024 <_>3 18 3 5 2.</_> 6025 <_>6 23 3 5 2.</_></rects> 6026 <tilted>0</tilted></feature> 6027 <threshold>2.3906941059976816e-003</threshold> 6028 <left_val>-0.2010668069124222</left_val> 6029 <right_val>0.1620907932519913</right_val></_></_> 6030 <_> 6031 <!-- tree 25 --> 6032 <_> 6033 <!-- root node --> 6034 <feature> 6035 <rects> 6036 <_>7 15 7 6 -1.</_> 6037 <_>7 15 7 3 2.</_></rects> 6038 <tilted>1</tilted></feature> 6039 <threshold>-0.1289131939411163</threshold> 6040 <left_val>-0.6972699761390686</left_val> 6041 <right_val>0.0172267593443394</right_val></_></_> 6042 <_> 6043 <!-- tree 26 --> 6044 <_> 6045 <!-- root node --> 6046 <feature> 6047 <rects> 6048 <_>0 23 9 5 -1.</_> 6049 <_>3 23 3 5 3.</_></rects> 6050 <tilted>0</tilted></feature> 6051 <threshold>9.4630720559507608e-004</threshold> 6052 <left_val>-0.2710422873497009</left_val> 6053 <right_val>0.1089453995227814</right_val></_></_> 6054 <_> 6055 <!-- tree 27 --> 6056 <_> 6057 <!-- root node --> 6058 <feature> 6059 <rects> 6060 <_>7 15 7 6 -1.</_> 6061 <_>7 15 7 3 2.</_></rects> 6062 <tilted>1</tilted></feature> 6063 <threshold>3.2807278912514448e-003</threshold> 6064 <left_val>-0.0419495105743408</left_val> 6065 <right_val>0.0821790024638176</right_val></_></_> 6066 <_> 6067 <!-- tree 28 --> 6068 <_> 6069 <!-- root node --> 6070 <feature> 6071 <rects> 6072 <_>7 15 6 7 -1.</_> 6073 <_>7 15 3 7 2.</_></rects> 6074 <tilted>1</tilted></feature> 6075 <threshold>0.0512044988572598</threshold> 6076 <left_val>0.0481804087758064</left_val> 6077 <right_val>-0.6634492278099060</right_val></_></_> 6078 <_> 6079 <!-- tree 29 --> 6080 <_> 6081 <!-- root node --> 6082 <feature> 6083 <rects> 6084 <_>7 2 6 12 -1.</_> 6085 <_>10 2 3 6 2.</_> 6086 <_>7 8 3 6 2.</_></rects> 6087 <tilted>0</tilted></feature> 6088 <threshold>-0.0457515083253384</threshold> 6089 <left_val>0.1935078948736191</left_val> 6090 <right_val>-0.0372233018279076</right_val></_></_> 6091 <_> 6092 <!-- tree 30 --> 6093 <_> 6094 <!-- root node --> 6095 <feature> 6096 <rects> 6097 <_>7 5 6 4 -1.</_> 6098 <_>7 5 6 2 2.</_></rects> 6099 <tilted>1</tilted></feature> 6100 <threshold>0.0143915796652436</threshold> 6101 <left_val>0.1082883030176163</left_val> 6102 <right_val>-0.2352464050054550</right_val></_></_> 6103 <_> 6104 <!-- tree 31 --> 6105 <_> 6106 <!-- root node --> 6107 <feature> 6108 <rects> 6109 <_>7 3 6 10 -1.</_> 6110 <_>10 3 3 5 2.</_> 6111 <_>7 8 3 5 2.</_></rects> 6112 <tilted>0</tilted></feature> 6113 <threshold>-7.6694227755069733e-003</threshold> 6114 <left_val>0.0774298831820488</left_val> 6115 <right_val>-0.0466584414243698</right_val></_></_> 6116 <_> 6117 <!-- tree 32 --> 6118 <_> 6119 <!-- root node --> 6120 <feature> 6121 <rects> 6122 <_>1 3 6 10 -1.</_> 6123 <_>1 3 3 5 2.</_> 6124 <_>4 8 3 5 2.</_></rects> 6125 <tilted>0</tilted></feature> 6126 <threshold>-0.0493752099573612</threshold> 6127 <left_val>0.3560423851013184</left_val> 6128 <right_val>-0.0817319303750992</right_val></_></_> 6129 <_> 6130 <!-- tree 33 --> 6131 <_> 6132 <!-- root node --> 6133 <feature> 6134 <rects> 6135 <_>1 7 12 4 -1.</_> 6136 <_>1 7 6 4 2.</_></rects> 6137 <tilted>0</tilted></feature> 6138 <threshold>0.0493589788675308</threshold> 6139 <left_val>0.0501068383455276</left_val> 6140 <right_val>-0.5927317142486572</right_val></_></_> 6141 <_> 6142 <!-- tree 34 --> 6143 <_> 6144 <!-- root node --> 6145 <feature> 6146 <rects> 6147 <_>5 1 6 4 -1.</_> 6148 <_>5 1 6 2 2.</_></rects> 6149 <tilted>1</tilted></feature> 6150 <threshold>0.0530142895877361</threshold> 6151 <left_val>0.0331554301083088</left_val> 6152 <right_val>-0.7078366875648499</right_val></_></_> 6153 <_> 6154 <!-- tree 35 --> 6155 <_> 6156 <!-- root node --> 6157 <feature> 6158 <rects> 6159 <_>0 0 14 10 -1.</_> 6160 <_>0 5 14 5 2.</_></rects> 6161 <tilted>0</tilted></feature> 6162 <threshold>-0.0120867397636175</threshold> 6163 <left_val>0.1494368016719818</left_val> 6164 <right_val>-0.1897324025630951</right_val></_></_> 6165 <_> 6166 <!-- tree 36 --> 6167 <_> 6168 <!-- root node --> 6169 <feature> 6170 <rects> 6171 <_>0 8 10 18 -1.</_> 6172 <_>0 8 5 9 2.</_> 6173 <_>5 17 5 9 2.</_></rects> 6174 <tilted>0</tilted></feature> 6175 <threshold>-0.1357958018779755</threshold> 6176 <left_val>0.4586344063282013</left_val> 6177 <right_val>-0.0719983428716660</right_val></_></_> 6178 <_> 6179 <!-- tree 37 --> 6180 <_> 6181 <!-- root node --> 6182 <feature> 6183 <rects> 6184 <_>7 16 2 12 -1.</_> 6185 <_>7 16 1 12 2.</_></rects> 6186 <tilted>0</tilted></feature> 6187 <threshold>1.9633909687399864e-003</threshold> 6188 <left_val>-0.1042060032486916</left_val> 6189 <right_val>0.1846560984849930</right_val></_></_> 6190 <_> 6191 <!-- tree 38 --> 6192 <_> 6193 <!-- root node --> 6194 <feature> 6195 <rects> 6196 <_>2 21 8 7 -1.</_> 6197 <_>4 21 4 7 2.</_></rects> 6198 <tilted>0</tilted></feature> 6199 <threshold>9.3589266762137413e-003</threshold> 6200 <left_val>0.0539574585855007</left_val> 6201 <right_val>-0.4733794033527374</right_val></_></_> 6202 <_> 6203 <!-- tree 39 --> 6204 <_> 6205 <!-- root node --> 6206 <feature> 6207 <rects> 6208 <_>3 21 8 6 -1.</_> 6209 <_>5 21 4 6 2.</_></rects> 6210 <tilted>0</tilted></feature> 6211 <threshold>4.3361759744584560e-003</threshold> 6212 <left_val>-0.0571734011173248</left_val> 6213 <right_val>0.5095887184143066</right_val></_></_> 6214 <_> 6215 <!-- tree 40 --> 6216 <_> 6217 <!-- root node --> 6218 <feature> 6219 <rects> 6220 <_>4 10 6 8 -1.</_> 6221 <_>6 10 2 8 3.</_></rects> 6222 <tilted>0</tilted></feature> 6223 <threshold>8.5009206086397171e-003</threshold> 6224 <left_val>0.0940768197178841</left_val> 6225 <right_val>-0.2926596999168396</right_val></_></_> 6226 <_> 6227 <!-- tree 41 --> 6228 <_> 6229 <!-- root node --> 6230 <feature> 6231 <rects> 6232 <_>8 2 3 12 -1.</_> 6233 <_>9 2 1 12 3.</_></rects> 6234 <tilted>0</tilted></feature> 6235 <threshold>-0.0190899204462767</threshold> 6236 <left_val>0.3542652130126953</left_val> 6237 <right_val>-0.0558761097490788</right_val></_></_> 6238 <_> 6239 <!-- tree 42 --> 6240 <_> 6241 <!-- root node --> 6242 <feature> 6243 <rects> 6244 <_>3 2 3 12 -1.</_> 6245 <_>4 2 1 12 3.</_></rects> 6246 <tilted>0</tilted></feature> 6247 <threshold>-1.6061830101534724e-003</threshold> 6248 <left_val>0.1663406044244766</left_val> 6249 <right_val>-0.1593942940235138</right_val></_></_> 6250 <_> 6251 <!-- tree 43 --> 6252 <_> 6253 <!-- root node --> 6254 <feature> 6255 <rects> 6256 <_>2 26 12 2 -1.</_> 6257 <_>2 26 6 2 2.</_></rects> 6258 <tilted>0</tilted></feature> 6259 <threshold>-7.8830653801560402e-003</threshold> 6260 <left_val>-0.2606467008590698</left_val> 6261 <right_val>0.0552368983626366</right_val></_></_> 6262 <_> 6263 <!-- tree 44 --> 6264 <_> 6265 <!-- root node --> 6266 <feature> 6267 <rects> 6268 <_>1 25 12 3 -1.</_> 6269 <_>7 25 6 3 2.</_></rects> 6270 <tilted>0</tilted></feature> 6271 <threshold>-3.2838371116667986e-003</threshold> 6272 <left_val>-0.2492434978485107</left_val> 6273 <right_val>0.1428827941417694</right_val></_></_> 6274 <_> 6275 <!-- tree 45 --> 6276 <_> 6277 <!-- root node --> 6278 <feature> 6279 <rects> 6280 <_>7 20 3 5 -1.</_> 6281 <_>8 21 1 5 3.</_></rects> 6282 <tilted>1</tilted></feature> 6283 <threshold>0.0192042198032141</threshold> 6284 <left_val>-0.0261326599866152</left_val> 6285 <right_val>0.3293955028057098</right_val></_></_></trees> 6286 <stage_threshold>-0.8597478270530701</stage_threshold> 6287 <parent>15</parent> 6288 <next>-1</next></_> 6289 <_> 6290 <!-- stage 17 --> 6291 <trees> 6292 <_> 6293 <!-- tree 0 --> 6294 <_> 6295 <!-- root node --> 6296 <feature> 6297 <rects> 6298 <_>3 15 8 11 -1.</_> 6299 <_>5 15 4 11 2.</_></rects> 6300 <tilted>0</tilted></feature> 6301 <threshold>-0.1014143005013466</threshold> 6302 <left_val>0.4719781875610352</left_val> 6303 <right_val>-0.1812396049499512</right_val></_></_> 6304 <_> 6305 <!-- tree 1 --> 6306 <_> 6307 <!-- root node --> 6308 <feature> 6309 <rects> 6310 <_>1 1 12 21 -1.</_> 6311 <_>5 8 4 7 9.</_></rects> 6312 <tilted>0</tilted></feature> 6313 <threshold>-0.7670872211456299</threshold> 6314 <left_val>0.4321441948413849</left_val> 6315 <right_val>-0.1070564016699791</right_val></_></_> 6316 <_> 6317 <!-- tree 2 --> 6318 <_> 6319 <!-- root node --> 6320 <feature> 6321 <rects> 6322 <_>0 22 4 6 -1.</_> 6323 <_>2 22 2 6 2.</_></rects> 6324 <tilted>0</tilted></feature> 6325 <threshold>8.0198869109153748e-003</threshold> 6326 <left_val>0.0848589166998863</left_val> 6327 <right_val>-0.5016363263130188</right_val></_></_> 6328 <_> 6329 <!-- tree 3 --> 6330 <_> 6331 <!-- root node --> 6332 <feature> 6333 <rects> 6334 <_>5 23 9 4 -1.</_> 6335 <_>8 23 3 4 3.</_></rects> 6336 <tilted>0</tilted></feature> 6337 <threshold>0.0421738885343075</threshold> 6338 <left_val>0.0436127297580242</left_val> 6339 <right_val>-0.6513525247573853</right_val></_></_> 6340 <_> 6341 <!-- tree 4 --> 6342 <_> 6343 <!-- root node --> 6344 <feature> 6345 <rects> 6346 <_>0 23 9 4 -1.</_> 6347 <_>3 23 3 4 3.</_></rects> 6348 <tilted>0</tilted></feature> 6349 <threshold>4.0101539343595505e-003</threshold> 6350 <left_val>-0.2415114045143127</left_val> 6351 <right_val>0.1702917963266373</right_val></_></_> 6352 <_> 6353 <!-- tree 5 --> 6354 <_> 6355 <!-- root node --> 6356 <feature> 6357 <rects> 6358 <_>6 3 4 12 -1.</_> 6359 <_>8 3 2 6 2.</_> 6360 <_>6 9 2 6 2.</_></rects> 6361 <tilted>0</tilted></feature> 6362 <threshold>-1.3389269588515162e-003</threshold> 6363 <left_val>-0.1842131018638611</left_val> 6364 <right_val>0.0922170132398605</right_val></_></_> 6365 <_> 6366 <!-- tree 6 --> 6367 <_> 6368 <!-- root node --> 6369 <feature> 6370 <rects> 6371 <_>6 4 2 24 -1.</_> 6372 <_>6 4 1 12 2.</_> 6373 <_>7 16 1 12 2.</_></rects> 6374 <tilted>0</tilted></feature> 6375 <threshold>3.3321550581604242e-003</threshold> 6376 <left_val>-0.1670908927917481</left_val> 6377 <right_val>0.1923999935388565</right_val></_></_> 6378 <_> 6379 <!-- tree 7 --> 6380 <_> 6381 <!-- root node --> 6382 <feature> 6383 <rects> 6384 <_>5 9 4 6 -1.</_> 6385 <_>5 9 2 6 2.</_></rects> 6386 <tilted>0</tilted></feature> 6387 <threshold>1.5524900518357754e-003</threshold> 6388 <left_val>0.1111333966255188</left_val> 6389 <right_val>-0.3120034933090210</right_val></_></_> 6390 <_> 6391 <!-- tree 8 --> 6392 <_> 6393 <!-- root node --> 6394 <feature> 6395 <rects> 6396 <_>2 7 4 6 -1.</_> 6397 <_>4 7 2 6 2.</_></rects> 6398 <tilted>0</tilted></feature> 6399 <threshold>0.0238092597573996</threshold> 6400 <left_val>-0.0640965998172760</left_val> 6401 <right_val>0.5616208910942078</right_val></_></_> 6402 <_> 6403 <!-- tree 9 --> 6404 <_> 6405 <!-- root node --> 6406 <feature> 6407 <rects> 6408 <_>4 8 6 20 -1.</_> 6409 <_>4 18 6 10 2.</_></rects> 6410 <tilted>0</tilted></feature> 6411 <threshold>0.0280854292213917</threshold> 6412 <left_val>-0.2239045947790146</left_val> 6413 <right_val>0.1683211028575897</right_val></_></_> 6414 <_> 6415 <!-- tree 10 --> 6416 <_> 6417 <!-- root node --> 6418 <feature> 6419 <rects> 6420 <_>1 16 3 12 -1.</_> 6421 <_>2 16 1 12 3.</_></rects> 6422 <tilted>0</tilted></feature> 6423 <threshold>-4.7726151533424854e-003</threshold> 6424 <left_val>-0.4615002870559692</left_val> 6425 <right_val>0.0494330003857613</right_val></_></_> 6426 <_> 6427 <!-- tree 11 --> 6428 <_> 6429 <!-- root node --> 6430 <feature> 6431 <rects> 6432 <_>8 12 6 16 -1.</_> 6433 <_>8 16 6 8 2.</_></rects> 6434 <tilted>0</tilted></feature> 6435 <threshold>0.1053185015916824</threshold> 6436 <left_val>0.0346832908689976</left_val> 6437 <right_val>-0.6428365111351013</right_val></_></_> 6438 <_> 6439 <!-- tree 12 --> 6440 <_> 6441 <!-- root node --> 6442 <feature> 6443 <rects> 6444 <_>1 17 4 6 -1.</_> 6445 <_>3 17 2 6 2.</_></rects> 6446 <tilted>0</tilted></feature> 6447 <threshold>-7.2594000957906246e-003</threshold> 6448 <left_val>-0.4041875898838043</left_val> 6449 <right_val>0.0609010681509972</right_val></_></_> 6450 <_> 6451 <!-- tree 13 --> 6452 <_> 6453 <!-- root node --> 6454 <feature> 6455 <rects> 6456 <_>7 14 6 9 -1.</_> 6457 <_>9 14 2 9 3.</_></rects> 6458 <tilted>0</tilted></feature> 6459 <threshold>8.7005542591214180e-003</threshold> 6460 <left_val>-0.0758324787020683</left_val> 6461 <right_val>0.0894848927855492</right_val></_></_> 6462 <_> 6463 <!-- tree 14 --> 6464 <_> 6465 <!-- root node --> 6466 <feature> 6467 <rects> 6468 <_>1 14 6 9 -1.</_> 6469 <_>3 14 2 9 3.</_></rects> 6470 <tilted>0</tilted></feature> 6471 <threshold>-0.0536715202033520</threshold> 6472 <left_val>0.7371097207069397</left_val> 6473 <right_val>-0.0409931503236294</right_val></_></_> 6474 <_> 6475 <!-- tree 15 --> 6476 <_> 6477 <!-- root node --> 6478 <feature> 6479 <rects> 6480 <_>8 0 4 18 -1.</_> 6481 <_>10 0 2 9 2.</_> 6482 <_>8 9 2 9 2.</_></rects> 6483 <tilted>0</tilted></feature> 6484 <threshold>0.0345212109386921</threshold> 6485 <left_val>-0.0137315401807427</left_val> 6486 <right_val>0.2729964852333069</right_val></_></_> 6487 <_> 6488 <!-- tree 16 --> 6489 <_> 6490 <!-- root node --> 6491 <feature> 6492 <rects> 6493 <_>2 0 4 18 -1.</_> 6494 <_>2 0 2 9 2.</_> 6495 <_>4 9 2 9 2.</_></rects> 6496 <tilted>0</tilted></feature> 6497 <threshold>-7.2156880050897598e-003</threshold> 6498 <left_val>0.1272314935922623</left_val> 6499 <right_val>-0.2332960963249207</right_val></_></_> 6500 <_> 6501 <!-- tree 17 --> 6502 <_> 6503 <!-- root node --> 6504 <feature> 6505 <rects> 6506 <_>11 14 2 12 -1.</_> 6507 <_>11 14 1 12 2.</_></rects> 6508 <tilted>0</tilted></feature> 6509 <threshold>1.7666360363364220e-003</threshold> 6510 <left_val>0.0579776912927628</left_val> 6511 <right_val>-0.2003654986619949</right_val></_></_> 6512 <_> 6513 <!-- tree 18 --> 6514 <_> 6515 <!-- root node --> 6516 <feature> 6517 <rects> 6518 <_>1 14 2 12 -1.</_> 6519 <_>2 14 1 12 2.</_></rects> 6520 <tilted>0</tilted></feature> 6521 <threshold>3.8101759273558855e-003</threshold> 6522 <left_val>0.0738669112324715</left_val> 6523 <right_val>-0.3078007102012634</right_val></_></_> 6524 <_> 6525 <!-- tree 19 --> 6526 <_> 6527 <!-- root node --> 6528 <feature> 6529 <rects> 6530 <_>8 11 3 12 -1.</_> 6531 <_>9 11 1 12 3.</_></rects> 6532 <tilted>0</tilted></feature> 6533 <threshold>-0.0250196307897568</threshold> 6534 <left_val>0.4350267052650452</left_val> 6535 <right_val>-0.0482944287359715</right_val></_></_> 6536 <_> 6537 <!-- tree 20 --> 6538 <_> 6539 <!-- root node --> 6540 <feature> 6541 <rects> 6542 <_>1 7 12 6 -1.</_> 6543 <_>4 7 6 6 2.</_></rects> 6544 <tilted>0</tilted></feature> 6545 <threshold>9.7328815609216690e-003</threshold> 6546 <left_val>-0.0830639526247978</left_val> 6547 <right_val>0.3000870048999786</right_val></_></_> 6548 <_> 6549 <!-- tree 21 --> 6550 <_> 6551 <!-- root node --> 6552 <feature> 6553 <rects> 6554 <_>1 1 12 9 -1.</_> 6555 <_>4 1 6 9 2.</_></rects> 6556 <tilted>0</tilted></feature> 6557 <threshold>-3.3074519596993923e-003</threshold> 6558 <left_val>0.1359129995107651</left_val> 6559 <right_val>-0.2247667014598846</right_val></_></_> 6560 <_> 6561 <!-- tree 22 --> 6562 <_> 6563 <!-- root node --> 6564 <feature> 6565 <rects> 6566 <_>1 3 12 20 -1.</_> 6567 <_>1 3 6 10 2.</_> 6568 <_>7 13 6 10 2.</_></rects> 6569 <tilted>0</tilted></feature> 6570 <threshold>-0.1917860954999924</threshold> 6571 <left_val>-0.8793690204620361</left_val> 6572 <right_val>0.0279150791466236</right_val></_></_> 6573 <_> 6574 <!-- tree 23 --> 6575 <_> 6576 <!-- root node --> 6577 <feature> 6578 <rects> 6579 <_>4 8 6 10 -1.</_> 6580 <_>7 8 3 5 2.</_> 6581 <_>4 13 3 5 2.</_></rects> 6582 <tilted>0</tilted></feature> 6583 <threshold>6.0892169130966067e-004</threshold> 6584 <left_val>-0.2289137989282608</left_val> 6585 <right_val>0.1023617014288902</right_val></_></_> 6586 <_> 6587 <!-- tree 24 --> 6588 <_> 6589 <!-- root node --> 6590 <feature> 6591 <rects> 6592 <_>6 5 8 3 -1.</_> 6593 <_>6 5 4 3 2.</_></rects> 6594 <tilted>1</tilted></feature> 6595 <threshold>-7.7072591520845890e-003</threshold> 6596 <left_val>-0.2491775006055832</left_val> 6597 <right_val>0.0943151563405991</right_val></_></_> 6598 <_> 6599 <!-- tree 25 --> 6600 <_> 6601 <!-- root node --> 6602 <feature> 6603 <rects> 6604 <_>3 15 8 7 -1.</_> 6605 <_>5 15 4 7 2.</_></rects> 6606 <tilted>0</tilted></feature> 6607 <threshold>-0.1091611012816429</threshold> 6608 <left_val>0.5566406846046448</left_val> 6609 <right_val>-0.0474190413951874</right_val></_></_> 6610 <_> 6611 <!-- tree 26 --> 6612 <_> 6613 <!-- root node --> 6614 <feature> 6615 <rects> 6616 <_>0 14 12 12 -1.</_> 6617 <_>4 18 4 4 9.</_></rects> 6618 <tilted>0</tilted></feature> 6619 <threshold>-0.0637037828564644</threshold> 6620 <left_val>-0.2150306999683380</left_val> 6621 <right_val>0.1065587997436523</right_val></_></_> 6622 <_> 6623 <!-- tree 27 --> 6624 <_> 6625 <!-- root node --> 6626 <feature> 6627 <rects> 6628 <_>5 12 4 16 -1.</_> 6629 <_>5 16 4 8 2.</_></rects> 6630 <tilted>0</tilted></feature> 6631 <threshold>-0.0267041604965925</threshold> 6632 <left_val>0.3301782011985779</left_val> 6633 <right_val>-0.0935690328478813</right_val></_></_> 6634 <_> 6635 <!-- tree 28 --> 6636 <_> 6637 <!-- root node --> 6638 <feature> 6639 <rects> 6640 <_>0 21 12 6 -1.</_> 6641 <_>4 21 4 6 3.</_></rects> 6642 <tilted>0</tilted></feature> 6643 <threshold>-2.7289129793643951e-003</threshold> 6644 <left_val>0.0865313410758972</left_val> 6645 <right_val>-0.2662309110164642</right_val></_></_> 6646 <_> 6647 <!-- tree 29 --> 6648 <_> 6649 <!-- root node --> 6650 <feature> 6651 <rects> 6652 <_>4 17 8 7 -1.</_> 6653 <_>4 17 4 7 2.</_></rects> 6654 <tilted>0</tilted></feature> 6655 <threshold>-0.1057505011558533</threshold> 6656 <left_val>-1.</left_val> 6657 <right_val>5.9039499610662460e-003</right_val></_></_> 6658 <_> 6659 <!-- tree 30 --> 6660 <_> 6661 <!-- root node --> 6662 <feature> 6663 <rects> 6664 <_>2 17 8 7 -1.</_> 6665 <_>6 17 4 7 2.</_></rects> 6666 <tilted>0</tilted></feature> 6667 <threshold>0.0189048293977976</threshold> 6668 <left_val>-0.0620773099362850</left_val> 6669 <right_val>0.4779633879661560</right_val></_></_> 6670 <_> 6671 <!-- tree 31 --> 6672 <_> 6673 <!-- root node --> 6674 <feature> 6675 <rects> 6676 <_>7 4 6 5 -1.</_> 6677 <_>7 4 3 5 2.</_></rects> 6678 <tilted>1</tilted></feature> 6679 <threshold>-0.1639672070741653</threshold> 6680 <left_val>-1.</left_val> 6681 <right_val>0.0104935104027390</right_val></_></_> 6682 <_> 6683 <!-- tree 32 --> 6684 <_> 6685 <!-- root node --> 6686 <feature> 6687 <rects> 6688 <_>7 4 5 6 -1.</_> 6689 <_>7 4 5 3 2.</_></rects> 6690 <tilted>1</tilted></feature> 6691 <threshold>0.0104537103325129</threshold> 6692 <left_val>0.1268896013498306</left_val> 6693 <right_val>-0.2035153061151505</right_val></_></_> 6694 <_> 6695 <!-- tree 33 --> 6696 <_> 6697 <!-- root node --> 6698 <feature> 6699 <rects> 6700 <_>8 3 6 7 -1.</_> 6701 <_>8 3 3 7 2.</_></rects> 6702 <tilted>1</tilted></feature> 6703 <threshold>0.1372427046298981</threshold> 6704 <left_val>9.6491426229476929e-003</left_val> 6705 <right_val>-0.3790872991085053</right_val></_></_> 6706 <_> 6707 <!-- tree 34 --> 6708 <_> 6709 <!-- root node --> 6710 <feature> 6711 <rects> 6712 <_>6 3 7 6 -1.</_> 6713 <_>6 3 7 3 2.</_></rects> 6714 <tilted>1</tilted></feature> 6715 <threshold>-5.0359591841697693e-003</threshold> 6716 <left_val>-0.2593623101711273</left_val> 6717 <right_val>0.1174589022994041</right_val></_></_> 6718 <_> 6719 <!-- tree 35 --> 6720 <_> 6721 <!-- root node --> 6722 <feature> 6723 <rects> 6724 <_>7 4 2 22 -1.</_> 6725 <_>7 4 1 22 2.</_></rects> 6726 <tilted>0</tilted></feature> 6727 <threshold>6.5677291713654995e-003</threshold> 6728 <left_val>-0.0604652911424637</left_val> 6729 <right_val>0.1563781946897507</right_val></_></_> 6730 <_> 6731 <!-- tree 36 --> 6732 <_> 6733 <!-- root node --> 6734 <feature> 6735 <rects> 6736 <_>5 4 2 22 -1.</_> 6737 <_>6 4 1 22 2.</_></rects> 6738 <tilted>0</tilted></feature> 6739 <threshold>-0.0303469896316528</threshold> 6740 <left_val>0.3840340077877045</left_val> 6741 <right_val>-0.0614773593842983</right_val></_></_> 6742 <_> 6743 <!-- tree 37 --> 6744 <_> 6745 <!-- root node --> 6746 <feature> 6747 <rects> 6748 <_>7 8 2 12 -1.</_> 6749 <_>7 8 1 12 2.</_></rects> 6750 <tilted>0</tilted></feature> 6751 <threshold>0.0175463296473026</threshold> 6752 <left_val>0.0286432299762964</left_val> 6753 <right_val>-0.4767946898937225</right_val></_></_> 6754 <_> 6755 <!-- tree 38 --> 6756 <_> 6757 <!-- root node --> 6758 <feature> 6759 <rects> 6760 <_>5 8 2 12 -1.</_> 6761 <_>6 8 1 12 2.</_></rects> 6762 <tilted>0</tilted></feature> 6763 <threshold>-4.5566740445792675e-003</threshold> 6764 <left_val>-0.3126108944416046</left_val> 6765 <right_val>0.1088562980294228</right_val></_></_> 6766 <_> 6767 <!-- tree 39 --> 6768 <_> 6769 <!-- root node --> 6770 <feature> 6771 <rects> 6772 <_>3 8 10 5 -1.</_> 6773 <_>3 8 5 5 2.</_></rects> 6774 <tilted>0</tilted></feature> 6775 <threshold>-0.0698510929942131</threshold> 6776 <left_val>-0.7099410295486450</left_val> 6777 <right_val>0.0185367707163095</right_val></_></_> 6778 <_> 6779 <!-- tree 40 --> 6780 <_> 6781 <!-- root node --> 6782 <feature> 6783 <rects> 6784 <_>4 12 6 6 -1.</_> 6785 <_>6 12 2 6 3.</_></rects> 6786 <tilted>0</tilted></feature> 6787 <threshold>-1.4962710338295437e-005</threshold> 6788 <left_val>0.1028714030981064</left_val> 6789 <right_val>-0.2292115986347199</right_val></_></_> 6790 <_> 6791 <!-- tree 41 --> 6792 <_> 6793 <!-- root node --> 6794 <feature> 6795 <rects> 6796 <_>8 8 4 16 -1.</_> 6797 <_>10 8 2 8 2.</_> 6798 <_>8 16 2 8 2.</_></rects> 6799 <tilted>0</tilted></feature> 6800 <threshold>-0.0727050006389618</threshold> 6801 <left_val>0.4252012073993683</left_val> 6802 <right_val>-0.0282363407313824</right_val></_></_> 6803 <_> 6804 <!-- tree 42 --> 6805 <_> 6806 <!-- root node --> 6807 <feature> 6808 <rects> 6809 <_>2 8 4 16 -1.</_> 6810 <_>2 8 2 8 2.</_> 6811 <_>4 16 2 8 2.</_></rects> 6812 <tilted>0</tilted></feature> 6813 <threshold>0.0373382903635502</threshold> 6814 <left_val>-0.0766300335526466</left_val> 6815 <right_val>0.3237414956092835</right_val></_></_> 6816 <_> 6817 <!-- tree 43 --> 6818 <_> 6819 <!-- root node --> 6820 <feature> 6821 <rects> 6822 <_>1 21 12 4 -1.</_> 6823 <_>7 21 6 2 2.</_> 6824 <_>1 23 6 2 2.</_></rects> 6825 <tilted>0</tilted></feature> 6826 <threshold>0.0286909602582455</threshold> 6827 <left_val>0.0300294999033213</left_val> 6828 <right_val>-0.8400797843933106</right_val></_></_> 6829 <_> 6830 <!-- tree 44 --> 6831 <_> 6832 <!-- root node --> 6833 <feature> 6834 <rects> 6835 <_>4 2 2 12 -1.</_> 6836 <_>4 8 2 6 2.</_></rects> 6837 <tilted>0</tilted></feature> 6838 <threshold>0.0100197698920965</threshold> 6839 <left_val>-0.0790718570351601</left_val> 6840 <right_val>0.3401907086372376</right_val></_></_> 6841 <_> 6842 <!-- tree 45 --> 6843 <_> 6844 <!-- root node --> 6845 <feature> 6846 <rects> 6847 <_>4 10 6 4 -1.</_> 6848 <_>4 12 6 2 2.</_></rects> 6849 <tilted>0</tilted></feature> 6850 <threshold>-3.9540659636259079e-003</threshold> 6851 <left_val>-0.2444967925548554</left_val> 6852 <right_val>0.1184566020965576</right_val></_></_> 6853 <_> 6854 <!-- tree 46 --> 6855 <_> 6856 <!-- root node --> 6857 <feature> 6858 <rects> 6859 <_>2 8 10 12 -1.</_> 6860 <_>2 12 10 4 3.</_></rects> 6861 <tilted>0</tilted></feature> 6862 <threshold>-8.2879550755023956e-003</threshold> 6863 <left_val>0.1062875017523766</left_val> 6864 <right_val>-0.2204415053129196</right_val></_></_> 6865 <_> 6866 <!-- tree 47 --> 6867 <_> 6868 <!-- root node --> 6869 <feature> 6870 <rects> 6871 <_>4 17 6 8 -1.</_> 6872 <_>7 17 3 4 2.</_> 6873 <_>4 21 3 4 2.</_></rects> 6874 <tilted>0</tilted></feature> 6875 <threshold>-0.0345824807882309</threshold> 6876 <left_val>-0.7133362889289856</left_val> 6877 <right_val>0.0297279208898544</right_val></_></_> 6878 <_> 6879 <!-- tree 48 --> 6880 <_> 6881 <!-- root node --> 6882 <feature> 6883 <rects> 6884 <_>7 15 4 3 -1.</_> 6885 <_>6 16 4 1 3.</_></rects> 6886 <tilted>1</tilted></feature> 6887 <threshold>-1.4701869804412127e-003</threshold> 6888 <left_val>0.1263066977262497</left_val> 6889 <right_val>-0.1826086044311523</right_val></_></_> 6890 <_> 6891 <!-- tree 49 --> 6892 <_> 6893 <!-- root node --> 6894 <feature> 6895 <rects> 6896 <_>9 20 3 5 -1.</_> 6897 <_>10 21 1 5 3.</_></rects> 6898 <tilted>1</tilted></feature> 6899 <threshold>-0.0187925603240728</threshold> 6900 <left_val>0.4415951073169708</left_val> 6901 <right_val>-0.0629801005125046</right_val></_></_> 6902 <_> 6903 <!-- tree 50 --> 6904 <_> 6905 <!-- root node --> 6906 <feature> 6907 <rects> 6908 <_>0 18 14 6 -1.</_> 6909 <_>7 18 7 6 2.</_></rects> 6910 <tilted>0</tilted></feature> 6911 <threshold>-0.0198302809149027</threshold> 6912 <left_val>-0.2830869853496552</left_val> 6913 <right_val>0.0921800285577774</right_val></_></_> 6914 <_> 6915 <!-- tree 51 --> 6916 <_> 6917 <!-- root node --> 6918 <feature> 6919 <rects> 6920 <_>9 0 3 24 -1.</_> 6921 <_>9 6 3 12 2.</_></rects> 6922 <tilted>0</tilted></feature> 6923 <threshold>-0.1632145941257477</threshold> 6924 <left_val>-0.4135583043098450</left_val> 6925 <right_val>0.0115620503202081</right_val></_></_> 6926 <_> 6927 <!-- tree 52 --> 6928 <_> 6929 <!-- root node --> 6930 <feature> 6931 <rects> 6932 <_>2 0 3 24 -1.</_> 6933 <_>2 6 3 12 2.</_></rects> 6934 <tilted>0</tilted></feature> 6935 <threshold>0.0756249874830246</threshold> 6936 <left_val>0.0221054404973984</left_val> 6937 <right_val>-0.9143025279045105</right_val></_></_> 6938 <_> 6939 <!-- tree 53 --> 6940 <_> 6941 <!-- root node --> 6942 <feature> 6943 <rects> 6944 <_>6 2 4 6 -1.</_> 6945 <_>6 2 2 6 2.</_></rects> 6946 <tilted>0</tilted></feature> 6947 <threshold>-2.2491789422929287e-003</threshold> 6948 <left_val>0.0919266864657402</left_val> 6949 <right_val>-0.1063376963138580</right_val></_></_> 6950 <_> 6951 <!-- tree 54 --> 6952 <_> 6953 <!-- root node --> 6954 <feature> 6955 <rects> 6956 <_>1 25 12 3 -1.</_> 6957 <_>5 25 4 3 3.</_></rects> 6958 <tilted>0</tilted></feature> 6959 <threshold>-0.0633106380701065</threshold> 6960 <left_val>-0.7710062861442566</left_val> 6961 <right_val>0.0270474795252085</right_val></_></_></trees> 6962 <stage_threshold>-0.8670626282691956</stage_threshold> 6963 <parent>16</parent> 6964 <next>-1</next></_> 6965 <_> 6966 <!-- stage 18 --> 6967 <trees> 6968 <_> 6969 <!-- tree 0 --> 6970 <_> 6971 <!-- root node --> 6972 <feature> 6973 <rects> 6974 <_>1 4 12 14 -1.</_> 6975 <_>4 4 6 14 2.</_></rects> 6976 <tilted>0</tilted></feature> 6977 <threshold>-0.1704327017068863</threshold> 6978 <left_val>0.4742506146430969</left_val> 6979 <right_val>-0.1858147978782654</right_val></_></_> 6980 <_> 6981 <!-- tree 1 --> 6982 <_> 6983 <!-- root node --> 6984 <feature> 6985 <rects> 6986 <_>6 16 3 12 -1.</_> 6987 <_>7 16 1 12 3.</_></rects> 6988 <tilted>0</tilted></feature> 6989 <threshold>0.0279671307653189</threshold> 6990 <left_val>-0.0862911790609360</left_val> 6991 <right_val>0.5325798988342285</right_val></_></_> 6992 <_> 6993 <!-- tree 2 --> 6994 <_> 6995 <!-- root node --> 6996 <feature> 6997 <rects> 6998 <_>7 18 4 6 -1.</_> 6999 <_>7 18 2 6 2.</_></rects> 7000 <tilted>1</tilted></feature> 7001 <threshold>2.0941249385941774e-004</threshold> 7002 <left_val>-0.2719970047473908</left_val> 7003 <right_val>0.1361507028341293</right_val></_></_> 7004 <_> 7005 <!-- tree 3 --> 7006 <_> 7007 <!-- root node --> 7008 <feature> 7009 <rects> 7010 <_>6 16 3 12 -1.</_> 7011 <_>7 16 1 12 3.</_></rects> 7012 <tilted>0</tilted></feature> 7013 <threshold>-0.0336372405290604</threshold> 7014 <left_val>0.2829976081848145</left_val> 7015 <right_val>-0.0223564691841602</right_val></_></_> 7016 <_> 7017 <!-- tree 4 --> 7018 <_> 7019 <!-- root node --> 7020 <feature> 7021 <rects> 7022 <_>5 16 3 12 -1.</_> 7023 <_>6 16 1 12 3.</_></rects> 7024 <tilted>0</tilted></feature> 7025 <threshold>-4.5356429181993008e-003</threshold> 7026 <left_val>0.1613575965166092</left_val> 7027 <right_val>-0.2016250044107437</right_val></_></_> 7028 <_> 7029 <!-- tree 5 --> 7030 <_> 7031 <!-- root node --> 7032 <feature> 7033 <rects> 7034 <_>7 4 6 4 -1.</_> 7035 <_>7 4 3 4 2.</_></rects> 7036 <tilted>1</tilted></feature> 7037 <threshold>3.3124668989330530e-003</threshold> 7038 <left_val>-0.0796776190400124</left_val> 7039 <right_val>0.1437523961067200</right_val></_></_> 7040 <_> 7041 <!-- tree 6 --> 7042 <_> 7043 <!-- root node --> 7044 <feature> 7045 <rects> 7046 <_>7 1 7 4 -1.</_> 7047 <_>7 1 7 2 2.</_></rects> 7048 <tilted>1</tilted></feature> 7049 <threshold>-0.0548887401819229</threshold> 7050 <left_val>0.6656386256217957</left_val> 7051 <right_val>-0.0535266697406769</right_val></_></_> 7052 <_> 7053 <!-- tree 7 --> 7054 <_> 7055 <!-- root node --> 7056 <feature> 7057 <rects> 7058 <_>7 2 6 4 -1.</_> 7059 <_>7 2 3 4 2.</_></rects> 7060 <tilted>1</tilted></feature> 7061 <threshold>5.3796600550413132e-003</threshold> 7062 <left_val>-0.0964008867740631</left_val> 7063 <right_val>0.0932230502367020</right_val></_></_> 7064 <_> 7065 <!-- tree 8 --> 7066 <_> 7067 <!-- root node --> 7068 <feature> 7069 <rects> 7070 <_>3 10 8 6 -1.</_> 7071 <_>5 10 4 6 2.</_></rects> 7072 <tilted>0</tilted></feature> 7073 <threshold>-0.0602832399308681</threshold> 7074 <left_val>-0.5432562232017517</left_val> 7075 <right_val>0.0545159690082073</right_val></_></_> 7076 <_> 7077 <!-- tree 9 --> 7078 <_> 7079 <!-- root node --> 7080 <feature> 7081 <rects> 7082 <_>5 20 8 8 -1.</_> 7083 <_>7 20 4 8 2.</_></rects> 7084 <tilted>0</tilted></feature> 7085 <threshold>8.4590855985879898e-003</threshold> 7086 <left_val>0.0501895211637020</left_val> 7087 <right_val>-0.3763839900493622</right_val></_></_> 7088 <_> 7089 <!-- tree 10 --> 7090 <_> 7091 <!-- root node --> 7092 <feature> 7093 <rects> 7094 <_>6 15 8 5 -1.</_> 7095 <_>6 15 4 5 2.</_></rects> 7096 <tilted>1</tilted></feature> 7097 <threshold>2.8549430426210165e-003</threshold> 7098 <left_val>0.1310580968856812</left_val> 7099 <right_val>-0.2490307986736298</right_val></_></_> 7100 <_> 7101 <!-- tree 11 --> 7102 <_> 7103 <!-- root node --> 7104 <feature> 7105 <rects> 7106 <_>2 7 10 6 -1.</_> 7107 <_>7 7 5 3 2.</_> 7108 <_>2 10 5 3 2.</_></rects> 7109 <tilted>0</tilted></feature> 7110 <threshold>-0.0206082500517368</threshold> 7111 <left_val>-0.4339326024055481</left_val> 7112 <right_val>0.0609189309179783</right_val></_></_> 7113 <_> 7114 <!-- tree 12 --> 7115 <_> 7116 <!-- root node --> 7117 <feature> 7118 <rects> 7119 <_>7 20 4 4 -1.</_> 7120 <_>6 21 4 2 2.</_></rects> 7121 <tilted>1</tilted></feature> 7122 <threshold>-0.0100884195417166</threshold> 7123 <left_val>0.2943368852138519</left_val> 7124 <right_val>-0.1009266003966332</right_val></_></_> 7125 <_> 7126 <!-- tree 13 --> 7127 <_> 7128 <!-- root node --> 7129 <feature> 7130 <rects> 7131 <_>1 24 12 4 -1.</_> 7132 <_>4 24 6 4 2.</_></rects> 7133 <tilted>0</tilted></feature> 7134 <threshold>-0.0594313405454159</threshold> 7135 <left_val>-0.9010205268859863</left_val> 7136 <right_val>0.0273306891322136</right_val></_></_> 7137 <_> 7138 <!-- tree 14 --> 7139 <_> 7140 <!-- root node --> 7141 <feature> 7142 <rects> 7143 <_>4 4 6 6 -1.</_> 7144 <_>6 4 2 6 3.</_></rects> 7145 <tilted>0</tilted></feature> 7146 <threshold>-2.4024050217121840e-003</threshold> 7147 <left_val>0.1275802999734879</left_val> 7148 <right_val>-0.1913405954837799</right_val></_></_> 7149 <_> 7150 <!-- tree 15 --> 7151 <_> 7152 <!-- root node --> 7153 <feature> 7154 <rects> 7155 <_>1 4 12 24 -1.</_> 7156 <_>7 4 6 12 2.</_> 7157 <_>1 16 6 12 2.</_></rects> 7158 <tilted>0</tilted></feature> 7159 <threshold>-0.0273728203028440</threshold> 7160 <left_val>-0.2805157899856567</left_val> 7161 <right_val>0.1089297980070114</right_val></_></_> 7162 <_> 7163 <!-- tree 16 --> 7164 <_> 7165 <!-- root node --> 7166 <feature> 7167 <rects> 7168 <_>4 4 3 15 -1.</_> 7169 <_>4 9 3 5 3.</_></rects> 7170 <tilted>0</tilted></feature> 7171 <threshold>-0.0738175511360168</threshold> 7172 <left_val>0.3663662075996399</left_val> 7173 <right_val>-0.0712614730000496</right_val></_></_> 7174 <_> 7175 <!-- tree 17 --> 7176 <_> 7177 <!-- root node --> 7178 <feature> 7179 <rects> 7180 <_>11 3 3 8 -1.</_> 7181 <_>11 3 3 4 2.</_></rects> 7182 <tilted>1</tilted></feature> 7183 <threshold>-0.0693658664822578</threshold> 7184 <left_val>0.4475974142551422</left_val> 7185 <right_val>-0.0351121984422207</right_val></_></_> 7186 <_> 7187 <!-- tree 18 --> 7188 <_> 7189 <!-- root node --> 7190 <feature> 7191 <rects> 7192 <_>4 9 2 13 -1.</_> 7193 <_>5 9 1 13 2.</_></rects> 7194 <tilted>0</tilted></feature> 7195 <threshold>-1.2530760141089559e-003</threshold> 7196 <left_val>0.1048106998205185</left_val> 7197 <right_val>-0.2533156871795654</right_val></_></_> 7198 <_> 7199 <!-- tree 19 --> 7200 <_> 7201 <!-- root node --> 7202 <feature> 7203 <rects> 7204 <_>6 9 4 6 -1.</_> 7205 <_>6 9 2 6 2.</_></rects> 7206 <tilted>0</tilted></feature> 7207 <threshold>-3.2429681159555912e-003</threshold> 7208 <left_val>-0.2108380943536758</left_val> 7209 <right_val>0.0897550135850906</right_val></_></_> 7210 <_> 7211 <!-- tree 20 --> 7212 <_> 7213 <!-- root node --> 7214 <feature> 7215 <rects> 7216 <_>2 17 8 3 -1.</_> 7217 <_>6 17 4 3 2.</_></rects> 7218 <tilted>0</tilted></feature> 7219 <threshold>0.0161152593791485</threshold> 7220 <left_val>-0.0580191612243652</left_val> 7221 <right_val>0.5575944185256958</right_val></_></_> 7222 <_> 7223 <!-- tree 21 --> 7224 <_> 7225 <!-- root node --> 7226 <feature> 7227 <rects> 7228 <_>4 11 6 8 -1.</_> 7229 <_>7 11 3 4 2.</_> 7230 <_>4 15 3 4 2.</_></rects> 7231 <tilted>0</tilted></feature> 7232 <threshold>6.2562932725995779e-004</threshold> 7233 <left_val>-0.2161120027303696</left_val> 7234 <right_val>0.1221512034535408</right_val></_></_> 7235 <_> 7236 <!-- tree 22 --> 7237 <_> 7238 <!-- root node --> 7239 <feature> 7240 <rects> 7241 <_>0 0 14 27 -1.</_> 7242 <_>0 9 14 9 3.</_></rects> 7243 <tilted>0</tilted></feature> 7244 <threshold>-0.7664182782173157</threshold> 7245 <left_val>-0.6364763975143433</left_val> 7246 <right_val>0.0339151211082935</right_val></_></_> 7247 <_> 7248 <!-- tree 23 --> 7249 <_> 7250 <!-- root node --> 7251 <feature> 7252 <rects> 7253 <_>5 8 4 6 -1.</_> 7254 <_>5 11 4 3 2.</_></rects> 7255 <tilted>0</tilted></feature> 7256 <threshold>-7.4419458542251959e-006</threshold> 7257 <left_val>0.0953467115759850</left_val> 7258 <right_val>-0.2395074069499970</right_val></_></_> 7259 <_> 7260 <!-- tree 24 --> 7261 <_> 7262 <!-- root node --> 7263 <feature> 7264 <rects> 7265 <_>5 2 4 12 -1.</_> 7266 <_>5 5 4 6 2.</_></rects> 7267 <tilted>0</tilted></feature> 7268 <threshold>-3.7739300751127303e-004</threshold> 7269 <left_val>0.1448128074407578</left_val> 7270 <right_val>-0.1847649067640305</right_val></_></_> 7271 <_> 7272 <!-- tree 25 --> 7273 <_> 7274 <!-- root node --> 7275 <feature> 7276 <rects> 7277 <_>6 3 4 9 -1.</_> 7278 <_>6 6 4 3 3.</_></rects> 7279 <tilted>0</tilted></feature> 7280 <threshold>0.0767296031117439</threshold> 7281 <left_val>0.0117427203804255</left_val> 7282 <right_val>-0.9621391892433167</right_val></_></_> 7283 <_> 7284 <!-- tree 26 --> 7285 <_> 7286 <!-- root node --> 7287 <feature> 7288 <rects> 7289 <_>4 3 4 9 -1.</_> 7290 <_>4 6 4 3 3.</_></rects> 7291 <tilted>0</tilted></feature> 7292 <threshold>-4.4697099365293980e-003</threshold> 7293 <left_val>-0.2338539063930512</left_val> 7294 <right_val>0.1046433970332146</right_val></_></_> 7295 <_> 7296 <!-- tree 27 --> 7297 <_> 7298 <!-- root node --> 7299 <feature> 7300 <rects> 7301 <_>9 5 4 6 -1.</_> 7302 <_>9 5 4 3 2.</_></rects> 7303 <tilted>1</tilted></feature> 7304 <threshold>0.0759118124842644</threshold> 7305 <left_val>6.7219119518995285e-003</left_val> 7306 <right_val>-0.4231118857860565</right_val></_></_> 7307 <_> 7308 <!-- tree 28 --> 7309 <_> 7310 <!-- root node --> 7311 <feature> 7312 <rects> 7313 <_>5 5 6 4 -1.</_> 7314 <_>5 5 3 4 2.</_></rects> 7315 <tilted>1</tilted></feature> 7316 <threshold>-8.3202589303255081e-003</threshold> 7317 <left_val>0.3212206065654755</left_val> 7318 <right_val>-0.0836618393659592</right_val></_></_> 7319 <_> 7320 <!-- tree 29 --> 7321 <_> 7322 <!-- root node --> 7323 <feature> 7324 <rects> 7325 <_>1 1 12 21 -1.</_> 7326 <_>4 1 6 21 2.</_></rects> 7327 <tilted>0</tilted></feature> 7328 <threshold>-0.0372338183224201</threshold> 7329 <left_val>0.1166239008307457</left_val> 7330 <right_val>-0.2397601008415222</right_val></_></_> 7331 <_> 7332 <!-- tree 30 --> 7333 <_> 7334 <!-- root node --> 7335 <feature> 7336 <rects> 7337 <_>1 25 12 3 -1.</_> 7338 <_>5 25 4 3 3.</_></rects> 7339 <tilted>0</tilted></feature> 7340 <threshold>-2.1381198894232512e-003</threshold> 7341 <left_val>0.0847558081150055</left_val> 7342 <right_val>-0.2514953017234802</right_val></_></_> 7343 <_> 7344 <!-- tree 31 --> 7345 <_> 7346 <!-- root node --> 7347 <feature> 7348 <rects> 7349 <_>9 18 4 10 -1.</_> 7350 <_>9 18 2 10 2.</_></rects> 7351 <tilted>0</tilted></feature> 7352 <threshold>-4.4315438717603683e-003</threshold> 7353 <left_val>-0.1099039986729622</left_val> 7354 <right_val>0.0667133629322052</right_val></_></_> 7355 <_> 7356 <!-- tree 32 --> 7357 <_> 7358 <!-- root node --> 7359 <feature> 7360 <rects> 7361 <_>4 16 9 3 -1.</_> 7362 <_>3 17 9 1 3.</_></rects> 7363 <tilted>1</tilted></feature> 7364 <threshold>-0.0109596000984311</threshold> 7365 <left_val>0.2881847023963928</left_val> 7366 <right_val>-0.0776968672871590</right_val></_></_> 7367 <_> 7368 <!-- tree 33 --> 7369 <_> 7370 <!-- root node --> 7371 <feature> 7372 <rects> 7373 <_>9 18 4 10 -1.</_> 7374 <_>9 18 2 10 2.</_></rects> 7375 <tilted>0</tilted></feature> 7376 <threshold>0.0349071696400642</threshold> 7377 <left_val>-0.0117123397067189</left_val> 7378 <right_val>0.3996582031250000</right_val></_></_> 7379 <_> 7380 <!-- tree 34 --> 7381 <_> 7382 <!-- root node --> 7383 <feature> 7384 <rects> 7385 <_>1 18 4 10 -1.</_> 7386 <_>3 18 2 10 2.</_></rects> 7387 <tilted>0</tilted></feature> 7388 <threshold>-0.0133350798860192</threshold> 7389 <left_val>-0.4989624917507172</left_val> 7390 <right_val>0.0531930401921272</right_val></_></_> 7391 <_> 7392 <!-- tree 35 --> 7393 <_> 7394 <!-- root node --> 7395 <feature> 7396 <rects> 7397 <_>4 10 9 4 -1.</_> 7398 <_>4 12 9 2 2.</_></rects> 7399 <tilted>0</tilted></feature> 7400 <threshold>-0.0370701104402542</threshold> 7401 <left_val>-0.5934662818908691</left_val> 7402 <right_val>0.0125023899599910</right_val></_></_> 7403 <_> 7404 <!-- tree 36 --> 7405 <_> 7406 <!-- root node --> 7407 <feature> 7408 <rects> 7409 <_>1 0 12 5 -1.</_> 7410 <_>5 0 4 5 3.</_></rects> 7411 <tilted>0</tilted></feature> 7412 <threshold>-0.0911188572645187</threshold> 7413 <left_val>-0.6066418886184692</left_val> 7414 <right_val>0.0302236396819353</right_val></_></_> 7415 <_> 7416 <!-- tree 37 --> 7417 <_> 7418 <!-- root node --> 7419 <feature> 7420 <rects> 7421 <_>7 9 2 18 -1.</_> 7422 <_>7 15 2 6 3.</_></rects> 7423 <tilted>0</tilted></feature> 7424 <threshold>-0.0675279572606087</threshold> 7425 <left_val>0.3259307146072388</left_val> 7426 <right_val>-0.0328103601932526</right_val></_></_> 7427 <_> 7428 <!-- tree 38 --> 7429 <_> 7430 <!-- root node --> 7431 <feature> 7432 <rects> 7433 <_>0 22 6 6 -1.</_> 7434 <_>2 22 2 6 3.</_></rects> 7435 <tilted>0</tilted></feature> 7436 <threshold>-0.0263177193701267</threshold> 7437 <left_val>-0.7659987807273865</left_val> 7438 <right_val>0.0252636894583702</right_val></_></_> 7439 <_> 7440 <!-- tree 39 --> 7441 <_> 7442 <!-- root node --> 7443 <feature> 7444 <rects> 7445 <_>5 21 6 5 -1.</_> 7446 <_>5 21 3 5 2.</_></rects> 7447 <tilted>0</tilted></feature> 7448 <threshold>0.0378778390586376</threshold> 7449 <left_val>1.7415969632565975e-003</left_val> 7450 <right_val>-0.9109066724777222</right_val></_></_> 7451 <_> 7452 <!-- tree 40 --> 7453 <_> 7454 <!-- root node --> 7455 <feature> 7456 <rects> 7457 <_>3 21 6 5 -1.</_> 7458 <_>6 21 3 5 2.</_></rects> 7459 <tilted>0</tilted></feature> 7460 <threshold>1.6833839472383261e-003</threshold> 7461 <left_val>-0.0647690072655678</left_val> 7462 <right_val>0.3594624996185303</right_val></_></_> 7463 <_> 7464 <!-- tree 41 --> 7465 <_> 7466 <!-- root node --> 7467 <feature> 7468 <rects> 7469 <_>9 21 2 5 -1.</_> 7470 <_>9 21 1 5 2.</_></rects> 7471 <tilted>1</tilted></feature> 7472 <threshold>-4.2451170884305611e-005</threshold> 7473 <left_val>0.0622288994491100</left_val> 7474 <right_val>-0.0850693508982658</right_val></_></_> 7475 <_> 7476 <!-- tree 42 --> 7477 <_> 7478 <!-- root node --> 7479 <feature> 7480 <rects> 7481 <_>0 17 6 8 -1.</_> 7482 <_>0 17 3 4 2.</_> 7483 <_>3 21 3 4 2.</_></rects> 7484 <tilted>0</tilted></feature> 7485 <threshold>2.7713281451724470e-004</threshold> 7486 <left_val>-0.1725254952907562</left_val> 7487 <right_val>0.1251116991043091</right_val></_></_> 7488 <_> 7489 <!-- tree 43 --> 7490 <_> 7491 <!-- root node --> 7492 <feature> 7493 <rects> 7494 <_>4 0 6 6 -1.</_> 7495 <_>6 0 2 6 3.</_></rects> 7496 <tilted>0</tilted></feature> 7497 <threshold>-3.0400960240513086e-003</threshold> 7498 <left_val>0.1503273993730545</left_val> 7499 <right_val>-0.1442324966192246</right_val></_></_> 7500 <_> 7501 <!-- tree 44 --> 7502 <_> 7503 <!-- root node --> 7504 <feature> 7505 <rects> 7506 <_>2 1 6 14 -1.</_> 7507 <_>2 1 3 7 2.</_> 7508 <_>5 8 3 7 2.</_></rects> 7509 <tilted>0</tilted></feature> 7510 <threshold>-0.0548231489956379</threshold> 7511 <left_val>0.3471147119998932</left_val> 7512 <right_val>-0.0632942169904709</right_val></_></_> 7513 <_> 7514 <!-- tree 45 --> 7515 <_> 7516 <!-- root node --> 7517 <feature> 7518 <rects> 7519 <_>6 8 5 6 -1.</_> 7520 <_>6 11 5 3 2.</_></rects> 7521 <tilted>0</tilted></feature> 7522 <threshold>1.4232549583539367e-003</threshold> 7523 <left_val>0.0737556889653206</left_val> 7524 <right_val>-0.2708419859409332</right_val></_></_> 7525 <_> 7526 <!-- tree 46 --> 7527 <_> 7528 <!-- root node --> 7529 <feature> 7530 <rects> 7531 <_>4 8 4 6 -1.</_> 7532 <_>6 8 2 6 2.</_></rects> 7533 <tilted>0</tilted></feature> 7534 <threshold>-3.3660030458122492e-003</threshold> 7535 <left_val>-0.2314403057098389</left_val> 7536 <right_val>0.0882168710231781</right_val></_></_> 7537 <_> 7538 <!-- tree 47 --> 7539 <_> 7540 <!-- root node --> 7541 <feature> 7542 <rects> 7543 <_>4 6 6 6 -1.</_> 7544 <_>4 8 6 2 3.</_></rects> 7545 <tilted>0</tilted></feature> 7546 <threshold>-1.1405759723857045e-003</threshold> 7547 <left_val>0.1568742990493774</left_val> 7548 <right_val>-0.1337956041097641</right_val></_></_> 7549 <_> 7550 <!-- tree 48 --> 7551 <_> 7552 <!-- root node --> 7553 <feature> 7554 <rects> 7555 <_>3 5 6 4 -1.</_> 7556 <_>3 7 6 2 2.</_></rects> 7557 <tilted>0</tilted></feature> 7558 <threshold>3.7445020861923695e-003</threshold> 7559 <left_val>-0.1213240027427673</left_val> 7560 <right_val>0.2272326946258545</right_val></_></_> 7561 <_> 7562 <!-- tree 49 --> 7563 <_> 7564 <!-- root node --> 7565 <feature> 7566 <rects> 7567 <_>7 6 4 6 -1.</_> 7568 <_>7 6 2 6 2.</_></rects> 7569 <tilted>1</tilted></feature> 7570 <threshold>0.0165855102241039</threshold> 7571 <left_val>0.0546315796673298</left_val> 7572 <right_val>-0.1011700034141541</right_val></_></_> 7573 <_> 7574 <!-- tree 50 --> 7575 <_> 7576 <!-- root node --> 7577 <feature> 7578 <rects> 7579 <_>4 5 6 4 -1.</_> 7580 <_>4 7 6 2 2.</_></rects> 7581 <tilted>0</tilted></feature> 7582 <threshold>-2.9970710165798664e-003</threshold> 7583 <left_val>0.1725863069295883</left_val> 7584 <right_val>-0.1428837031126022</right_val></_></_> 7585 <_> 7586 <!-- tree 51 --> 7587 <_> 7588 <!-- root node --> 7589 <feature> 7590 <rects> 7591 <_>7 1 4 21 -1.</_> 7592 <_>8 1 2 21 2.</_></rects> 7593 <tilted>0</tilted></feature> 7594 <threshold>-3.0509869102388620e-003</threshold> 7595 <left_val>0.1088953018188477</left_val> 7596 <right_val>-0.1286545991897583</right_val></_></_> 7597 <_> 7598 <!-- tree 52 --> 7599 <_> 7600 <!-- root node --> 7601 <feature> 7602 <rects> 7603 <_>2 2 6 20 -1.</_> 7604 <_>4 2 2 20 3.</_></rects> 7605 <tilted>0</tilted></feature> 7606 <threshold>-0.0270371790975332</threshold> 7607 <left_val>-0.2180904000997543</left_val> 7608 <right_val>0.1033558025956154</right_val></_></_> 7609 <_> 7610 <!-- tree 53 --> 7611 <_> 7612 <!-- root node --> 7613 <feature> 7614 <rects> 7615 <_>9 20 3 5 -1.</_> 7616 <_>10 21 1 5 3.</_></rects> 7617 <tilted>1</tilted></feature> 7618 <threshold>-0.0140204904600978</threshold> 7619 <left_val>0.1701382994651794</left_val> 7620 <right_val>-0.0464837998151779</right_val></_></_> 7621 <_> 7622 <!-- tree 54 --> 7623 <_> 7624 <!-- root node --> 7625 <feature> 7626 <rects> 7627 <_>0 24 6 4 -1.</_> 7628 <_>3 24 3 4 2.</_></rects> 7629 <tilted>0</tilted></feature> 7630 <threshold>4.0001110173761845e-003</threshold> 7631 <left_val>0.0614529401063919</left_val> 7632 <right_val>-0.3510772883892059</right_val></_></_> 7633 <_> 7634 <!-- tree 55 --> 7635 <_> 7636 <!-- root node --> 7637 <feature> 7638 <rects> 7639 <_>4 2 6 6 -1.</_> 7640 <_>6 2 2 6 3.</_></rects> 7641 <tilted>0</tilted></feature> 7642 <threshold>0.0118885701522231</threshold> 7643 <left_val>-0.0656594932079315</left_val> 7644 <right_val>0.3412817120552063</right_val></_></_> 7645 <_> 7646 <!-- tree 56 --> 7647 <_> 7648 <!-- root node --> 7649 <feature> 7650 <rects> 7651 <_>6 2 4 6 -1.</_> 7652 <_>6 2 4 3 2.</_></rects> 7653 <tilted>1</tilted></feature> 7654 <threshold>0.0100419102236629</threshold> 7655 <left_val>0.1064506992697716</left_val> 7656 <right_val>-0.2390539944171906</right_val></_></_> 7657 <_> 7658 <!-- tree 57 --> 7659 <_> 7660 <!-- root node --> 7661 <feature> 7662 <rects> 7663 <_>1 4 13 2 -1.</_> 7664 <_>1 5 13 1 2.</_></rects> 7665 <tilted>0</tilted></feature> 7666 <threshold>-8.3469128003343940e-004</threshold> 7667 <left_val>0.1135992035269737</left_val> 7668 <right_val>-0.1245623007416725</right_val></_></_> 7669 <_> 7670 <!-- tree 58 --> 7671 <_> 7672 <!-- root node --> 7673 <feature> 7674 <rects> 7675 <_>7 11 6 7 -1.</_> 7676 <_>7 11 3 7 2.</_></rects> 7677 <tilted>1</tilted></feature> 7678 <threshold>-0.0842861980199814</threshold> 7679 <left_val>0.4447234869003296</left_val> 7680 <right_val>-0.0466776899993420</right_val></_></_> 7681 <_> 7682 <!-- tree 59 --> 7683 <_> 7684 <!-- root node --> 7685 <feature> 7686 <rects> 7687 <_>8 16 6 4 -1.</_> 7688 <_>8 16 6 2 2.</_></rects> 7689 <tilted>1</tilted></feature> 7690 <threshold>-0.0120847001671791</threshold> 7691 <left_val>-0.3138999938964844</left_val> 7692 <right_val>0.0818648189306259</right_val></_></_></trees> 7693 <stage_threshold>-0.8954405188560486</stage_threshold> 7694 <parent>17</parent> 7695 <next>-1</next></_> 7696 <_> 7697 <!-- stage 19 --> 7698 <trees> 7699 <_> 7700 <!-- tree 0 --> 7701 <_> 7702 <!-- root node --> 7703 <feature> 7704 <rects> 7705 <_>1 3 12 24 -1.</_> 7706 <_>5 11 4 8 9.</_></rects> 7707 <tilted>0</tilted></feature> 7708 <threshold>-0.6687834262847900</threshold> 7709 <left_val>0.4141151010990143</left_val> 7710 <right_val>-0.1881030052900314</right_val></_></_> 7711 <_> 7712 <!-- tree 1 --> 7713 <_> 7714 <!-- root node --> 7715 <feature> 7716 <rects> 7717 <_>2 24 12 4 -1.</_> 7718 <_>8 24 6 2 2.</_> 7719 <_>2 26 6 2 2.</_></rects> 7720 <tilted>0</tilted></feature> 7721 <threshold>3.4350738860666752e-004</threshold> 7722 <left_val>-0.1568018049001694</left_val> 7723 <right_val>0.1078224033117294</right_val></_></_> 7724 <_> 7725 <!-- tree 2 --> 7726 <_> 7727 <!-- root node --> 7728 <feature> 7729 <rects> 7730 <_>0 24 12 4 -1.</_> 7731 <_>0 24 6 2 2.</_> 7732 <_>6 26 6 2 2.</_></rects> 7733 <tilted>0</tilted></feature> 7734 <threshold>2.6565280277282000e-003</threshold> 7735 <left_val>-0.2203073054552078</left_val> 7736 <right_val>0.2143961042165756</right_val></_></_> 7737 <_> 7738 <!-- tree 3 --> 7739 <_> 7740 <!-- root node --> 7741 <feature> 7742 <rects> 7743 <_>6 4 2 24 -1.</_> 7744 <_>7 4 1 12 2.</_> 7745 <_>6 16 1 12 2.</_></rects> 7746 <tilted>0</tilted></feature> 7747 <threshold>-0.0192963592708111</threshold> 7748 <left_val>0.4202668070793152</left_val> 7749 <right_val>-0.0686715468764305</right_val></_></_> 7750 <_> 7751 <!-- tree 4 --> 7752 <_> 7753 <!-- root node --> 7754 <feature> 7755 <rects> 7756 <_>4 8 6 6 -1.</_> 7757 <_>6 8 2 6 3.</_></rects> 7758 <tilted>0</tilted></feature> 7759 <threshold>-6.6540208645164967e-003</threshold> 7760 <left_val>-0.2348881959915161</left_val> 7761 <right_val>0.1674998998641968</right_val></_></_> 7762 <_> 7763 <!-- tree 5 --> 7764 <_> 7765 <!-- root node --> 7766 <feature> 7767 <rects> 7768 <_>6 6 4 9 -1.</_> 7769 <_>6 6 2 9 2.</_></rects> 7770 <tilted>0</tilted></feature> 7771 <threshold>0.0155219901353121</threshold> 7772 <left_val>0.0197856705635786</left_val> 7773 <right_val>-0.3918034136295319</right_val></_></_> 7774 <_> 7775 <!-- tree 6 --> 7776 <_> 7777 <!-- root node --> 7778 <feature> 7779 <rects> 7780 <_>2 8 8 7 -1.</_> 7781 <_>6 8 4 7 2.</_></rects> 7782 <tilted>0</tilted></feature> 7783 <threshold>0.0803179070353508</threshold> 7784 <left_val>-0.0192786995321512</left_val> 7785 <right_val>0.5852081775665283</right_val></_></_> 7786 <_> 7787 <!-- tree 7 --> 7788 <_> 7789 <!-- root node --> 7790 <feature> 7791 <rects> 7792 <_>3 7 10 7 -1.</_> 7793 <_>3 7 5 7 2.</_></rects> 7794 <tilted>0</tilted></feature> 7795 <threshold>-0.1022005975246429</threshold> 7796 <left_val>-0.8146116733551025</left_val> 7797 <right_val>8.9545976370573044e-003</right_val></_></_> 7798 <_> 7799 <!-- tree 8 --> 7800 <_> 7801 <!-- root node --> 7802 <feature> 7803 <rects> 7804 <_>1 7 10 7 -1.</_> 7805 <_>6 7 5 7 2.</_></rects> 7806 <tilted>0</tilted></feature> 7807 <threshold>-0.0106188701465726</threshold> 7808 <left_val>0.1804476976394653</left_val> 7809 <right_val>-0.2112286984920502</right_val></_></_> 7810 <_> 7811 <!-- tree 9 --> 7812 <_> 7813 <!-- root node --> 7814 <feature> 7815 <rects> 7816 <_>4 1 9 12 -1.</_> 7817 <_>7 5 3 4 9.</_></rects> 7818 <tilted>0</tilted></feature> 7819 <threshold>0.0986580699682236</threshold> 7820 <left_val>-0.0491793490946293</left_val> 7821 <right_val>0.2187125980854034</right_val></_></_> 7822 <_> 7823 <!-- tree 10 --> 7824 <_> 7825 <!-- root node --> 7826 <feature> 7827 <rects> 7828 <_>1 1 9 12 -1.</_> 7829 <_>4 5 3 4 9.</_></rects> 7830 <tilted>0</tilted></feature> 7831 <threshold>-0.0667582228779793</threshold> 7832 <left_val>-0.2664954066276550</left_val> 7833 <right_val>0.1070794016122818</right_val></_></_> 7834 <_> 7835 <!-- tree 11 --> 7836 <_> 7837 <!-- root node --> 7838 <feature> 7839 <rects> 7840 <_>4 25 8 3 -1.</_> 7841 <_>4 25 4 3 2.</_></rects> 7842 <tilted>0</tilted></feature> 7843 <threshold>-0.0292564593255520</threshold> 7844 <left_val>-0.7880920767784119</left_val> 7845 <right_val>5.6176739744842052e-003</right_val></_></_> 7846 <_> 7847 <!-- tree 12 --> 7848 <_> 7849 <!-- root node --> 7850 <feature> 7851 <rects> 7852 <_>0 16 12 7 -1.</_> 7853 <_>3 16 6 7 2.</_></rects> 7854 <tilted>0</tilted></feature> 7855 <threshold>-0.0121261896565557</threshold> 7856 <left_val>0.1021850034594536</left_val> 7857 <right_val>-0.2289942950010300</right_val></_></_> 7858 <_> 7859 <!-- tree 13 --> 7860 <_> 7861 <!-- root node --> 7862 <feature> 7863 <rects> 7864 <_>9 17 4 7 -1.</_> 7865 <_>9 17 2 7 2.</_></rects> 7866 <tilted>0</tilted></feature> 7867 <threshold>-0.0549196191132069</threshold> 7868 <left_val>-0.5364720225334168</left_val> 7869 <right_val>0.0142133301123977</right_val></_></_> 7870 <_> 7871 <!-- tree 14 --> 7872 <_> 7873 <!-- root node --> 7874 <feature> 7875 <rects> 7876 <_>1 17 4 7 -1.</_> 7877 <_>3 17 2 7 2.</_></rects> 7878 <tilted>0</tilted></feature> 7879 <threshold>-4.0985811501741409e-003</threshold> 7880 <left_val>-0.3165036141872406</left_val> 7881 <right_val>0.0767941921949387</right_val></_></_> 7882 <_> 7883 <!-- tree 15 --> 7884 <_> 7885 <!-- root node --> 7886 <feature> 7887 <rects> 7888 <_>7 0 4 7 -1.</_> 7889 <_>7 0 2 7 2.</_></rects> 7890 <tilted>1</tilted></feature> 7891 <threshold>-0.0625810772180557</threshold> 7892 <left_val>-0.4872623980045319</left_val> 7893 <right_val>9.1610476374626160e-003</right_val></_></_> 7894 <_> 7895 <!-- tree 16 --> 7896 <_> 7897 <!-- root node --> 7898 <feature> 7899 <rects> 7900 <_>7 0 7 4 -1.</_> 7901 <_>7 0 7 2 2.</_></rects> 7902 <tilted>1</tilted></feature> 7903 <threshold>0.0498344711959362</threshold> 7904 <left_val>-0.0756874829530716</left_val> 7905 <right_val>0.2999810874462128</right_val></_></_> 7906 <_> 7907 <!-- tree 17 --> 7908 <_> 7909 <!-- root node --> 7910 <feature> 7911 <rects> 7912 <_>9 3 5 6 -1.</_> 7913 <_>9 3 5 3 2.</_></rects> 7914 <tilted>1</tilted></feature> 7915 <threshold>0.1033302992582321</threshold> 7916 <left_val>0.0333879999816418</left_val> 7917 <right_val>-0.5665271878242493</right_val></_></_> 7918 <_> 7919 <!-- tree 18 --> 7920 <_> 7921 <!-- root node --> 7922 <feature> 7923 <rects> 7924 <_>0 10 6 12 -1.</_> 7925 <_>0 10 3 6 2.</_> 7926 <_>3 16 3 6 2.</_></rects> 7927 <tilted>0</tilted></feature> 7928 <threshold>-0.0261539593338966</threshold> 7929 <left_val>0.4466365873813629</left_val> 7930 <right_val>-0.0571461506187916</right_val></_></_> 7931 <_> 7932 <!-- tree 19 --> 7933 <_> 7934 <!-- root node --> 7935 <feature> 7936 <rects> 7937 <_>9 3 4 12 -1.</_> 7938 <_>10 3 2 12 2.</_></rects> 7939 <tilted>0</tilted></feature> 7940 <threshold>0.0689492970705032</threshold> 7941 <left_val>6.6676470451056957e-003</left_val> 7942 <right_val>-0.9996885061264038</right_val></_></_> 7943 <_> 7944 <!-- tree 20 --> 7945 <_> 7946 <!-- root node --> 7947 <feature> 7948 <rects> 7949 <_>1 3 4 12 -1.</_> 7950 <_>2 3 2 12 2.</_></rects> 7951 <tilted>0</tilted></feature> 7952 <threshold>2.1299200598150492e-003</threshold> 7953 <left_val>-0.1825354993343353</left_val> 7954 <right_val>0.1254345029592514</right_val></_></_> 7955 <_> 7956 <!-- tree 21 --> 7957 <_> 7958 <!-- root node --> 7959 <feature> 7960 <rects> 7961 <_>2 7 10 10 -1.</_> 7962 <_>7 7 5 5 2.</_> 7963 <_>2 12 5 5 2.</_></rects> 7964 <tilted>0</tilted></feature> 7965 <threshold>-0.0449918396770954</threshold> 7966 <left_val>-0.5640115141868591</left_val> 7967 <right_val>0.0372867509722710</right_val></_></_> 7968 <_> 7969 <!-- tree 22 --> 7970 <_> 7971 <!-- root node --> 7972 <feature> 7973 <rects> 7974 <_>3 16 4 9 -1.</_> 7975 <_>5 16 2 9 2.</_></rects> 7976 <tilted>0</tilted></feature> 7977 <threshold>0.0225338600575924</threshold> 7978 <left_val>-0.0426485016942024</left_val> 7979 <right_val>0.5983905196189880</right_val></_></_> 7980 <_> 7981 <!-- tree 23 --> 7982 <_> 7983 <!-- root node --> 7984 <feature> 7985 <rects> 7986 <_>0 11 14 11 -1.</_> 7987 <_>0 11 7 11 2.</_></rects> 7988 <tilted>0</tilted></feature> 7989 <threshold>0.1927445977926254</threshold> 7990 <left_val>0.0304794907569885</left_val> 7991 <right_val>-0.8456454873085022</right_val></_></_> 7992 <_> 7993 <!-- tree 24 --> 7994 <_> 7995 <!-- root node --> 7996 <feature> 7997 <rects> 7998 <_>6 16 5 6 -1.</_> 7999 <_>4 18 5 2 3.</_></rects> 8000 <tilted>1</tilted></feature> 8001 <threshold>-9.2559499898925424e-004</threshold> 8002 <left_val>-0.2061451971530914</left_val> 8003 <right_val>0.1101664975285530</right_val></_></_> 8004 <_> 8005 <!-- tree 25 --> 8006 <_> 8007 <!-- root node --> 8008 <feature> 8009 <rects> 8010 <_>11 20 2 6 -1.</_> 8011 <_>11 20 1 6 2.</_></rects> 8012 <tilted>1</tilted></feature> 8013 <threshold>-3.6584408953785896e-003</threshold> 8014 <left_val>0.0914329364895821</left_val> 8015 <right_val>-0.0828882232308388</right_val></_></_> 8016 <_> 8017 <!-- tree 26 --> 8018 <_> 8019 <!-- root node --> 8020 <feature> 8021 <rects> 8022 <_>1 18 4 6 -1.</_> 8023 <_>3 18 2 6 2.</_></rects> 8024 <tilted>0</tilted></feature> 8025 <threshold>3.3741090446710587e-003</threshold> 8026 <left_val>0.0807349011301994</left_val> 8027 <right_val>-0.3049516081809998</right_val></_></_> 8028 <_> 8029 <!-- tree 27 --> 8030 <_> 8031 <!-- root node --> 8032 <feature> 8033 <rects> 8034 <_>10 14 3 6 -1.</_> 8035 <_>11 15 1 6 3.</_></rects> 8036 <tilted>1</tilted></feature> 8037 <threshold>-0.0517578013241291</threshold> 8038 <left_val>-0.8006712794303894</left_val> 8039 <right_val>2.8978339396417141e-003</right_val></_></_> 8040 <_> 8041 <!-- tree 28 --> 8042 <_> 8043 <!-- root node --> 8044 <feature> 8045 <rects> 8046 <_>4 14 6 3 -1.</_> 8047 <_>3 15 6 1 3.</_></rects> 8048 <tilted>1</tilted></feature> 8049 <threshold>1.0498389601707458e-003</threshold> 8050 <left_val>-0.1839697062969208</left_val> 8051 <right_val>0.1342992931604385</right_val></_></_> 8052 <_> 8053 <!-- tree 29 --> 8054 <_> 8055 <!-- root node --> 8056 <feature> 8057 <rects> 8058 <_>7 20 3 5 -1.</_> 8059 <_>8 21 1 5 3.</_></rects> 8060 <tilted>1</tilted></feature> 8061 <threshold>7.5232777744531631e-003</threshold> 8062 <left_val>-0.0312062408775091</left_val> 8063 <right_val>0.1212494000792503</right_val></_></_> 8064 <_> 8065 <!-- tree 30 --> 8066 <_> 8067 <!-- root node --> 8068 <feature> 8069 <rects> 8070 <_>2 25 8 3 -1.</_> 8071 <_>6 25 4 3 2.</_></rects> 8072 <tilted>0</tilted></feature> 8073 <threshold>-7.1075286541599780e-005</threshold> 8074 <left_val>0.0840176567435265</left_val> 8075 <right_val>-0.2504396140575409</right_val></_></_> 8076 <_> 8077 <!-- tree 31 --> 8078 <_> 8079 <!-- root node --> 8080 <feature> 8081 <rects> 8082 <_>9 15 3 12 -1.</_> 8083 <_>10 15 1 12 3.</_></rects> 8084 <tilted>0</tilted></feature> 8085 <threshold>0.0113628301769495</threshold> 8086 <left_val>-0.0762805193662643</left_val> 8087 <right_val>0.2055979073047638</right_val></_></_> 8088 <_> 8089 <!-- tree 32 --> 8090 <_> 8091 <!-- root node --> 8092 <feature> 8093 <rects> 8094 <_>5 15 6 2 -1.</_> 8095 <_>5 15 6 1 2.</_></rects> 8096 <tilted>1</tilted></feature> 8097 <threshold>-2.4097480345517397e-003</threshold> 8098 <left_val>-0.1504285037517548</left_val> 8099 <right_val>0.1649363934993744</right_val></_></_> 8100 <_> 8101 <!-- tree 33 --> 8102 <_> 8103 <!-- root node --> 8104 <feature> 8105 <rects> 8106 <_>7 18 2 7 -1.</_> 8107 <_>7 18 1 7 2.</_></rects> 8108 <tilted>1</tilted></feature> 8109 <threshold>0.0240569896996021</threshold> 8110 <left_val>0.0145665500313044</left_val> 8111 <right_val>-0.9088677167892456</right_val></_></_> 8112 <_> 8113 <!-- tree 34 --> 8114 <_> 8115 <!-- root node --> 8116 <feature> 8117 <rects> 8118 <_>7 20 5 3 -1.</_> 8119 <_>6 21 5 1 3.</_></rects> 8120 <tilted>1</tilted></feature> 8121 <threshold>-0.0239836201071739</threshold> 8122 <left_val>0.3910767138004303</left_val> 8123 <right_val>-0.0541782006621361</right_val></_></_> 8124 <_> 8125 <!-- tree 35 --> 8126 <_> 8127 <!-- root node --> 8128 <feature> 8129 <rects> 8130 <_>10 16 2 10 -1.</_> 8131 <_>10 16 1 10 2.</_></rects> 8132 <tilted>1</tilted></feature> 8133 <threshold>-0.0214383192360401</threshold> 8134 <left_val>-0.4854584038257599</left_val> 8135 <right_val>0.0404027514159679</right_val></_></_> 8136 <_> 8137 <!-- tree 36 --> 8138 <_> 8139 <!-- root node --> 8140 <feature> 8141 <rects> 8142 <_>4 16 10 2 -1.</_> 8143 <_>4 16 10 1 2.</_></rects> 8144 <tilted>1</tilted></feature> 8145 <threshold>0.0152107402682304</threshold> 8146 <left_val>0.0344815887510777</left_val> 8147 <right_val>-0.5440633296966553</right_val></_></_> 8148 <_> 8149 <!-- tree 37 --> 8150 <_> 8151 <!-- root node --> 8152 <feature> 8153 <rects> 8154 <_>1 17 12 6 -1.</_> 8155 <_>4 17 6 6 2.</_></rects> 8156 <tilted>0</tilted></feature> 8157 <threshold>0.0117129897698760</threshold> 8158 <left_val>-0.0652067512273788</left_val> 8159 <right_val>0.4100702106952667</right_val></_></_> 8160 <_> 8161 <!-- tree 38 --> 8162 <_> 8163 <!-- root node --> 8164 <feature> 8165 <rects> 8166 <_>4 15 6 8 -1.</_> 8167 <_>4 15 3 4 2.</_> 8168 <_>7 19 3 4 2.</_></rects> 8169 <tilted>0</tilted></feature> 8170 <threshold>6.3996820244938135e-004</threshold> 8171 <left_val>-0.1477289944887161</left_val> 8172 <right_val>0.1515424996614456</right_val></_></_> 8173 <_> 8174 <!-- tree 39 --> 8175 <_> 8176 <!-- root node --> 8177 <feature> 8178 <rects> 8179 <_>7 17 6 4 -1.</_> 8180 <_>9 19 2 4 3.</_></rects> 8181 <tilted>1</tilted></feature> 8182 <threshold>-3.4567480906844139e-003</threshold> 8183 <left_val>0.0633511170744896</left_val> 8184 <right_val>-0.1429782956838608</right_val></_></_> 8185 <_> 8186 <!-- tree 40 --> 8187 <_> 8188 <!-- root node --> 8189 <feature> 8190 <rects> 8191 <_>7 17 4 6 -1.</_> 8192 <_>5 19 4 2 3.</_></rects> 8193 <tilted>1</tilted></feature> 8194 <threshold>-1.2475489638745785e-003</threshold> 8195 <left_val>-0.1852106004953384</left_val> 8196 <right_val>0.1341083049774170</right_val></_></_> 8197 <_> 8198 <!-- tree 41 --> 8199 <_> 8200 <!-- root node --> 8201 <feature> 8202 <rects> 8203 <_>1 13 12 4 -1.</_> 8204 <_>1 13 6 4 2.</_></rects> 8205 <tilted>0</tilted></feature> 8206 <threshold>6.6904430277645588e-003</threshold> 8207 <left_val>0.1411253064870834</left_val> 8208 <right_val>-0.1877893954515457</right_val></_></_> 8209 <_> 8210 <!-- tree 42 --> 8211 <_> 8212 <!-- root node --> 8213 <feature> 8214 <rects> 8215 <_>0 2 8 12 -1.</_> 8216 <_>0 2 4 6 2.</_> 8217 <_>4 8 4 6 2.</_></rects> 8218 <tilted>0</tilted></feature> 8219 <threshold>-0.0691810324788094</threshold> 8220 <left_val>0.3445147871971130</left_val> 8221 <right_val>-0.0846552327275276</right_val></_></_> 8222 <_> 8223 <!-- tree 43 --> 8224 <_> 8225 <!-- root node --> 8226 <feature> 8227 <rects> 8228 <_>6 2 2 16 -1.</_> 8229 <_>6 10 2 8 2.</_></rects> 8230 <tilted>0</tilted></feature> 8231 <threshold>-0.0678932815790176</threshold> 8232 <left_val>-0.7007694244384766</left_val> 8233 <right_val>0.0233272593468428</right_val></_></_> 8234 <_> 8235 <!-- tree 44 --> 8236 <_> 8237 <!-- root node --> 8238 <feature> 8239 <rects> 8240 <_>2 8 8 4 -1.</_> 8241 <_>2 10 8 2 2.</_></rects> 8242 <tilted>0</tilted></feature> 8243 <threshold>-8.5538747953251004e-004</threshold> 8244 <left_val>0.0923932567238808</left_val> 8245 <right_val>-0.2141647040843964</right_val></_></_> 8246 <_> 8247 <!-- tree 45 --> 8248 <_> 8249 <!-- root node --> 8250 <feature> 8251 <rects> 8252 <_>5 10 4 18 -1.</_> 8253 <_>5 19 4 9 2.</_></rects> 8254 <tilted>0</tilted></feature> 8255 <threshold>0.1796776950359345</threshold> 8256 <left_val>0.0291036702692509</left_val> 8257 <right_val>-0.7869086265563965</right_val></_></_> 8258 <_> 8259 <!-- tree 46 --> 8260 <_> 8261 <!-- root node --> 8262 <feature> 8263 <rects> 8264 <_>0 3 3 12 -1.</_> 8265 <_>0 7 3 4 3.</_></rects> 8266 <tilted>0</tilted></feature> 8267 <threshold>-2.9843579977750778e-003</threshold> 8268 <left_val>0.1611738055944443</left_val> 8269 <right_val>-0.1286869943141937</right_val></_></_> 8270 <_> 8271 <!-- tree 47 --> 8272 <_> 8273 <!-- root node --> 8274 <feature> 8275 <rects> 8276 <_>1 22 12 4 -1.</_> 8277 <_>7 22 6 2 2.</_> 8278 <_>1 24 6 2 2.</_></rects> 8279 <tilted>0</tilted></feature> 8280 <threshold>0.0199734494090080</threshold> 8281 <left_val>0.0363502316176891</left_val> 8282 <right_val>-0.5940064191818237</right_val></_></_> 8283 <_> 8284 <!-- tree 48 --> 8285 <_> 8286 <!-- root node --> 8287 <feature> 8288 <rects> 8289 <_>2 19 7 2 -1.</_> 8290 <_>2 19 7 1 2.</_></rects> 8291 <tilted>1</tilted></feature> 8292 <threshold>-8.3998020272701979e-004</threshold> 8293 <left_val>0.1133214011788368</left_val> 8294 <right_val>-0.1917572021484375</right_val></_></_> 8295 <_> 8296 <!-- tree 49 --> 8297 <_> 8298 <!-- root node --> 8299 <feature> 8300 <rects> 8301 <_>2 26 12 2 -1.</_> 8302 <_>2 26 6 2 2.</_></rects> 8303 <tilted>0</tilted></feature> 8304 <threshold>5.0804121419787407e-003</threshold> 8305 <left_val>0.0536635592579842</left_val> 8306 <right_val>-0.2794001102447510</right_val></_></_> 8307 <_> 8308 <!-- tree 50 --> 8309 <_> 8310 <!-- root node --> 8311 <feature> 8312 <rects> 8313 <_>0 11 6 14 -1.</_> 8314 <_>0 11 3 7 2.</_> 8315 <_>3 18 3 7 2.</_></rects> 8316 <tilted>0</tilted></feature> 8317 <threshold>7.3341121897101402e-003</threshold> 8318 <left_val>-0.1679237931966782</left_val> 8319 <right_val>0.1211922019720078</right_val></_></_> 8320 <_> 8321 <!-- tree 51 --> 8322 <_> 8323 <!-- root node --> 8324 <feature> 8325 <rects> 8326 <_>7 3 3 10 -1.</_> 8327 <_>7 8 3 5 2.</_></rects> 8328 <tilted>0</tilted></feature> 8329 <threshold>7.6924441382288933e-003</threshold> 8330 <left_val>-0.0690761879086494</left_val> 8331 <right_val>0.1855034977197647</right_val></_></_> 8332 <_> 8333 <!-- tree 52 --> 8334 <_> 8335 <!-- root node --> 8336 <feature> 8337 <rects> 8338 <_>0 17 6 6 -1.</_> 8339 <_>2 17 2 6 3.</_></rects> 8340 <tilted>0</tilted></feature> 8341 <threshold>2.0062309340573847e-004</threshold> 8342 <left_val>-0.2065404951572418</left_val> 8343 <right_val>0.0973372533917427</right_val></_></_> 8344 <_> 8345 <!-- tree 53 --> 8346 <_> 8347 <!-- root node --> 8348 <feature> 8349 <rects> 8350 <_>9 16 2 12 -1.</_> 8351 <_>9 16 1 12 2.</_></rects> 8352 <tilted>0</tilted></feature> 8353 <threshold>0.0269195605069399</threshold> 8354 <left_val>-0.0236485991626978</left_val> 8355 <right_val>0.6487352848052979</right_val></_></_> 8356 <_> 8357 <!-- tree 54 --> 8358 <_> 8359 <!-- root node --> 8360 <feature> 8361 <rects> 8362 <_>6 16 6 3 -1.</_> 8363 <_>5 17 6 1 3.</_></rects> 8364 <tilted>1</tilted></feature> 8365 <threshold>-2.7951570227742195e-003</threshold> 8366 <left_val>-0.2072560042142868</left_val> 8367 <right_val>0.1018809005618095</right_val></_></_> 8368 <_> 8369 <!-- tree 55 --> 8370 <_> 8371 <!-- root node --> 8372 <feature> 8373 <rects> 8374 <_>8 0 6 8 -1.</_> 8375 <_>10 2 2 8 3.</_></rects> 8376 <tilted>1</tilted></feature> 8377 <threshold>0.0780266225337982</threshold> 8378 <left_val>8.9439805597066879e-003</left_val> 8379 <right_val>-0.3999060988426209</right_val></_></_> 8380 <_> 8381 <!-- tree 56 --> 8382 <_> 8383 <!-- root node --> 8384 <feature> 8385 <rects> 8386 <_>6 4 8 6 -1.</_> 8387 <_>8 6 4 6 2.</_></rects> 8388 <tilted>1</tilted></feature> 8389 <threshold>-0.1000045984983444</threshold> 8390 <left_val>0.3736175000667572</left_val> 8391 <right_val>-0.0558148212730885</right_val></_></_> 8392 <_> 8393 <!-- tree 57 --> 8394 <_> 8395 <!-- root node --> 8396 <feature> 8397 <rects> 8398 <_>4 7 6 21 -1.</_> 8399 <_>4 14 6 7 3.</_></rects> 8400 <tilted>0</tilted></feature> 8401 <threshold>-0.1497824043035507</threshold> 8402 <left_val>0.3867760896682739</left_val> 8403 <right_val>-0.0556414015591145</right_val></_></_> 8404 <_> 8405 <!-- tree 58 --> 8406 <_> 8407 <!-- root node --> 8408 <feature> 8409 <rects> 8410 <_>3 0 8 18 -1.</_> 8411 <_>3 0 4 9 2.</_> 8412 <_>7 9 4 9 2.</_></rects> 8413 <tilted>0</tilted></feature> 8414 <threshold>0.0335663482546806</threshold> 8415 <left_val>0.0753119364380836</left_val> 8416 <right_val>-0.3200739026069641</right_val></_></_> 8417 <_> 8418 <!-- tree 59 --> 8419 <_> 8420 <!-- root node --> 8421 <feature> 8422 <rects> 8423 <_>3 6 9 10 -1.</_> 8424 <_>6 6 3 10 3.</_></rects> 8425 <tilted>0</tilted></feature> 8426 <threshold>-0.2121389061212540</threshold> 8427 <left_val>-0.5927072167396545</left_val> 8428 <right_val>4.9450621008872986e-003</right_val></_></_> 8429 <_> 8430 <!-- tree 60 --> 8431 <_> 8432 <!-- root node --> 8433 <feature> 8434 <rects> 8435 <_>7 21 4 3 -1.</_> 8436 <_>6 22 4 1 3.</_></rects> 8437 <tilted>1</tilted></feature> 8438 <threshold>-0.0144028896465898</threshold> 8439 <left_val>0.3247106969356537</left_val> 8440 <right_val>-0.0584921687841415</right_val></_></_> 8441 <_> 8442 <!-- tree 61 --> 8443 <_> 8444 <!-- root node --> 8445 <feature> 8446 <rects> 8447 <_>2 23 12 5 -1.</_> 8448 <_>6 23 4 5 3.</_></rects> 8449 <tilted>0</tilted></feature> 8450 <threshold>-0.0184131693094969</threshold> 8451 <left_val>-0.0968017503619194</left_val> 8452 <right_val>0.1034365966916084</right_val></_></_> 8453 <_> 8454 <!-- tree 62 --> 8455 <_> 8456 <!-- root node --> 8457 <feature> 8458 <rects> 8459 <_>4 16 3 12 -1.</_> 8460 <_>5 16 1 12 3.</_></rects> 8461 <tilted>0</tilted></feature> 8462 <threshold>0.0162283498793840</threshold> 8463 <left_val>-0.0605776682496071</left_val> 8464 <right_val>0.3173801004886627</right_val></_></_> 8465 <_> 8466 <!-- tree 63 --> 8467 <_> 8468 <!-- root node --> 8469 <feature> 8470 <rects> 8471 <_>7 17 2 7 -1.</_> 8472 <_>7 17 1 7 2.</_></rects> 8473 <tilted>1</tilted></feature> 8474 <threshold>-6.7683439701795578e-003</threshold> 8475 <left_val>-0.1974215060472488</left_val> 8476 <right_val>0.0279964208602905</right_val></_></_> 8477 <_> 8478 <!-- tree 64 --> 8479 <_> 8480 <!-- root node --> 8481 <feature> 8482 <rects> 8483 <_>0 5 14 10 -1.</_> 8484 <_>0 5 7 5 2.</_> 8485 <_>7 10 7 5 2.</_></rects> 8486 <tilted>0</tilted></feature> 8487 <threshold>-0.0191653091460466</threshold> 8488 <left_val>-0.2568407058715820</left_val> 8489 <right_val>0.0834327489137650</right_val></_></_> 8490 <_> 8491 <!-- tree 65 --> 8492 <_> 8493 <!-- root node --> 8494 <feature> 8495 <rects> 8496 <_>3 10 8 4 -1.</_> 8497 <_>3 10 4 4 2.</_></rects> 8498 <tilted>0</tilted></feature> 8499 <threshold>2.8667549486272037e-004</threshold> 8500 <left_val>-0.1524108052253723</left_val> 8501 <right_val>0.1440477967262268</right_val></_></_> 8502 <_> 8503 <!-- tree 66 --> 8504 <_> 8505 <!-- root node --> 8506 <feature> 8507 <rects> 8508 <_>0 12 10 4 -1.</_> 8509 <_>5 12 5 4 2.</_></rects> 8510 <tilted>0</tilted></feature> 8511 <threshold>9.4157401472330093e-003</threshold> 8512 <left_val>-0.0732076391577721</left_val> 8513 <right_val>0.3365561068058014</right_val></_></_> 8514 <_> 8515 <!-- tree 67 --> 8516 <_> 8517 <!-- root node --> 8518 <feature> 8519 <rects> 8520 <_>7 0 6 6 -1.</_> 8521 <_>7 0 3 6 2.</_></rects> 8522 <tilted>1</tilted></feature> 8523 <threshold>0.0233219005167484</threshold> 8524 <left_val>-0.0618982687592506</left_val> 8525 <right_val>0.0834899097681046</right_val></_></_> 8526 <_> 8527 <!-- tree 68 --> 8528 <_> 8529 <!-- root node --> 8530 <feature> 8531 <rects> 8532 <_>2 3 10 7 -1.</_> 8533 <_>7 3 5 7 2.</_></rects> 8534 <tilted>0</tilted></feature> 8535 <threshold>-0.0119106704369187</threshold> 8536 <left_val>-0.1962853074073792</left_val> 8537 <right_val>0.0968073308467865</right_val></_></_></trees> 8538 <stage_threshold>-0.8581581711769104</stage_threshold> 8539 <parent>18</parent> 8540 <next>-1</next></_> 8541 <_> 8542 <!-- stage 20 --> 8543 <trees> 8544 <_> 8545 <!-- tree 0 --> 8546 <_> 8547 <!-- root node --> 8548 <feature> 8549 <rects> 8550 <_>3 7 4 21 -1.</_> 8551 <_>5 7 2 21 2.</_></rects> 8552 <tilted>0</tilted></feature> 8553 <threshold>-0.0941913127899170</threshold> 8554 <left_val>0.4702827930450440</left_val> 8555 <right_val>-0.1444950997829437</right_val></_></_> 8556 <_> 8557 <!-- tree 1 --> 8558 <_> 8559 <!-- root node --> 8560 <feature> 8561 <rects> 8562 <_>6 2 2 24 -1.</_> 8563 <_>7 2 1 12 2.</_> 8564 <_>6 14 1 12 2.</_></rects> 8565 <tilted>0</tilted></feature> 8566 <threshold>-6.9314462598413229e-004</threshold> 8567 <left_val>0.1774948984384537</left_val> 8568 <right_val>-0.1812798976898193</right_val></_></_> 8569 <_> 8570 <!-- tree 2 --> 8571 <_> 8572 <!-- root node --> 8573 <feature> 8574 <rects> 8575 <_>3 4 8 16 -1.</_> 8576 <_>3 8 8 8 2.</_></rects> 8577 <tilted>0</tilted></feature> 8578 <threshold>-0.1278239041566849</threshold> 8579 <left_val>0.2973394095897675</left_val> 8580 <right_val>-0.1009858027100563</right_val></_></_> 8581 <_> 8582 <!-- tree 3 --> 8583 <_> 8584 <!-- root node --> 8585 <feature> 8586 <rects> 8587 <_>9 16 2 12 -1.</_> 8588 <_>9 16 1 12 2.</_></rects> 8589 <tilted>0</tilted></feature> 8590 <threshold>-2.5297680404037237e-003</threshold> 8591 <left_val>0.1085487976670265</left_val> 8592 <right_val>-0.1347146928310394</right_val></_></_> 8593 <_> 8594 <!-- tree 4 --> 8595 <_> 8596 <!-- root node --> 8597 <feature> 8598 <rects> 8599 <_>3 16 2 12 -1.</_> 8600 <_>4 16 1 12 2.</_></rects> 8601 <tilted>0</tilted></feature> 8602 <threshold>-2.5406670756638050e-003</threshold> 8603 <left_val>-0.2702581882476807</left_val> 8604 <right_val>0.1028902977705002</right_val></_></_> 8605 <_> 8606 <!-- tree 5 --> 8607 <_> 8608 <!-- root node --> 8609 <feature> 8610 <rects> 8611 <_>5 2 6 6 -1.</_> 8612 <_>5 4 6 2 3.</_></rects> 8613 <tilted>0</tilted></feature> 8614 <threshold>-1.5717690112069249e-003</threshold> 8615 <left_val>0.1705846041440964</left_val> 8616 <right_val>-0.1092351973056793</right_val></_></_> 8617 <_> 8618 <!-- tree 6 --> 8619 <_> 8620 <!-- root node --> 8621 <feature> 8622 <rects> 8623 <_>1 19 4 9 -1.</_> 8624 <_>3 19 2 9 2.</_></rects> 8625 <tilted>0</tilted></feature> 8626 <threshold>0.0147901903837919</threshold> 8627 <left_val>0.0236906800419092</left_val> 8628 <right_val>-0.5141217708587647</right_val></_></_> 8629 <_> 8630 <!-- tree 7 --> 8631 <_> 8632 <!-- root node --> 8633 <feature> 8634 <rects> 8635 <_>9 10 4 16 -1.</_> 8636 <_>10 10 2 16 2.</_></rects> 8637 <tilted>0</tilted></feature> 8638 <threshold>-0.0118378400802612</threshold> 8639 <left_val>0.1575475037097931</left_val> 8640 <right_val>-0.0272523108869791</right_val></_></_> 8641 <_> 8642 <!-- tree 8 --> 8643 <_> 8644 <!-- root node --> 8645 <feature> 8646 <rects> 8647 <_>5 18 5 2 -1.</_> 8648 <_>5 18 5 1 2.</_></rects> 8649 <tilted>1</tilted></feature> 8650 <threshold>-3.8180808769538999e-004</threshold> 8651 <left_val>0.1027430966496468</left_val> 8652 <right_val>-0.2181538045406342</right_val></_></_> 8653 <_> 8654 <!-- tree 9 --> 8655 <_> 8656 <!-- root node --> 8657 <feature> 8658 <rects> 8659 <_>5 4 6 4 -1.</_> 8660 <_>5 4 3 4 2.</_></rects> 8661 <tilted>0</tilted></feature> 8662 <threshold>0.0507688894867897</threshold> 8663 <left_val>7.3335068300366402e-003</left_val> 8664 <right_val>-0.8505390286445618</right_val></_></_> 8665 <_> 8666 <!-- tree 10 --> 8667 <_> 8668 <!-- root node --> 8669 <feature> 8670 <rects> 8671 <_>3 4 6 4 -1.</_> 8672 <_>6 4 3 4 2.</_></rects> 8673 <tilted>0</tilted></feature> 8674 <threshold>0.0227386299520731</threshold> 8675 <left_val>-0.0439746491611004</left_val> 8676 <right_val>0.5016757249832153</right_val></_></_> 8677 <_> 8678 <!-- tree 11 --> 8679 <_> 8680 <!-- root node --> 8681 <feature> 8682 <rects> 8683 <_>5 5 6 8 -1.</_> 8684 <_>8 5 3 4 2.</_> 8685 <_>5 9 3 4 2.</_></rects> 8686 <tilted>0</tilted></feature> 8687 <threshold>7.3323072865605354e-004</threshold> 8688 <left_val>-0.0984317213296890</left_val> 8689 <right_val>0.1151536032557488</right_val></_></_> 8690 <_> 8691 <!-- tree 12 --> 8692 <_> 8693 <!-- root node --> 8694 <feature> 8695 <rects> 8696 <_>3 5 6 8 -1.</_> 8697 <_>3 5 3 4 2.</_> 8698 <_>6 9 3 4 2.</_></rects> 8699 <tilted>0</tilted></feature> 8700 <threshold>1.1889509623870254e-003</threshold> 8701 <left_val>-0.2244317978620529</left_val> 8702 <right_val>0.1081328988075256</right_val></_></_> 8703 <_> 8704 <!-- tree 13 --> 8705 <_> 8706 <!-- root node --> 8707 <feature> 8708 <rects> 8709 <_>6 3 8 12 -1.</_> 8710 <_>10 3 4 6 2.</_> 8711 <_>6 9 4 6 2.</_></rects> 8712 <tilted>0</tilted></feature> 8713 <threshold>-3.2934029586613178e-003</threshold> 8714 <left_val>0.0718408674001694</left_val> 8715 <right_val>-0.0808680206537247</right_val></_></_> 8716 <_> 8717 <!-- tree 14 --> 8718 <_> 8719 <!-- root node --> 8720 <feature> 8721 <rects> 8722 <_>1 10 2 12 -1.</_> 8723 <_>2 10 1 12 2.</_></rects> 8724 <tilted>0</tilted></feature> 8725 <threshold>-3.0113169923424721e-003</threshold> 8726 <left_val>-0.2969867885112763</left_val> 8727 <right_val>0.0797002688050270</right_val></_></_> 8728 <_> 8729 <!-- tree 15 --> 8730 <_> 8731 <!-- root node --> 8732 <feature> 8733 <rects> 8734 <_>1 0 13 3 -1.</_> 8735 <_>1 1 13 1 3.</_></rects> 8736 <tilted>0</tilted></feature> 8737 <threshold>-1.5521480236202478e-003</threshold> 8738 <left_val>0.1869418025016785</left_val> 8739 <right_val>-0.1146747022867203</right_val></_></_> 8740 <_> 8741 <!-- tree 16 --> 8742 <_> 8743 <!-- root node --> 8744 <feature> 8745 <rects> 8746 <_>2 1 4 7 -1.</_> 8747 <_>4 1 2 7 2.</_></rects> 8748 <tilted>0</tilted></feature> 8749 <threshold>-0.0103006800636649</threshold> 8750 <left_val>-0.2910937070846558</left_val> 8751 <right_val>0.0678363367915154</right_val></_></_> 8752 <_> 8753 <!-- tree 17 --> 8754 <_> 8755 <!-- root node --> 8756 <feature> 8757 <rects> 8758 <_>9 21 2 5 -1.</_> 8759 <_>9 21 1 5 2.</_></rects> 8760 <tilted>1</tilted></feature> 8761 <threshold>-2.6368349790573120e-003</threshold> 8762 <left_val>0.1128410995006561</left_val> 8763 <right_val>-0.0734685286879539</right_val></_></_> 8764 <_> 8765 <!-- tree 18 --> 8766 <_> 8767 <!-- root node --> 8768 <feature> 8769 <rects> 8770 <_>2 25 8 3 -1.</_> 8771 <_>6 25 4 3 2.</_></rects> 8772 <tilted>0</tilted></feature> 8773 <threshold>-3.2815459417179227e-004</threshold> 8774 <left_val>0.0819218903779984</left_val> 8775 <right_val>-0.2489335983991623</right_val></_></_> 8776 <_> 8777 <!-- tree 19 --> 8778 <_> 8779 <!-- root node --> 8780 <feature> 8781 <rects> 8782 <_>6 16 3 12 -1.</_> 8783 <_>7 16 1 12 3.</_></rects> 8784 <tilted>0</tilted></feature> 8785 <threshold>-0.0345145687460899</threshold> 8786 <left_val>0.4223099052906036</left_val> 8787 <right_val>-0.0346083901822567</right_val></_></_> 8788 <_> 8789 <!-- tree 20 --> 8790 <_> 8791 <!-- root node --> 8792 <feature> 8793 <rects> 8794 <_>0 15 8 6 -1.</_> 8795 <_>0 15 4 3 2.</_> 8796 <_>4 18 4 3 2.</_></rects> 8797 <tilted>0</tilted></feature> 8798 <threshold>2.1102999744471163e-004</threshold> 8799 <left_val>-0.1947975009679794</left_val> 8800 <right_val>0.1157203987240791</right_val></_></_> 8801 <_> 8802 <!-- tree 21 --> 8803 <_> 8804 <!-- root node --> 8805 <feature> 8806 <rects> 8807 <_>2 26 12 2 -1.</_> 8808 <_>2 26 6 2 2.</_></rects> 8809 <tilted>0</tilted></feature> 8810 <threshold>-4.4254157692193985e-003</threshold> 8811 <left_val>-0.1931612044572830</left_val> 8812 <right_val>0.0581374317407608</right_val></_></_> 8813 <_> 8814 <!-- tree 22 --> 8815 <_> 8816 <!-- root node --> 8817 <feature> 8818 <rects> 8819 <_>0 26 12 2 -1.</_> 8820 <_>6 26 6 2 2.</_></rects> 8821 <tilted>0</tilted></feature> 8822 <threshold>-1.7686230130493641e-003</threshold> 8823 <left_val>-0.1751880943775177</left_val> 8824 <right_val>0.1451503932476044</right_val></_></_> 8825 <_> 8826 <!-- tree 23 --> 8827 <_> 8828 <!-- root node --> 8829 <feature> 8830 <rects> 8831 <_>1 1 13 3 -1.</_> 8832 <_>1 2 13 1 3.</_></rects> 8833 <tilted>0</tilted></feature> 8834 <threshold>-3.3355921041220427e-003</threshold> 8835 <left_val>0.2262147068977356</left_val> 8836 <right_val>-0.1019549965858460</right_val></_></_> 8837 <_> 8838 <!-- tree 24 --> 8839 <_> 8840 <!-- root node --> 8841 <feature> 8842 <rects> 8843 <_>0 3 14 2 -1.</_> 8844 <_>7 3 7 2 2.</_></rects> 8845 <tilted>0</tilted></feature> 8846 <threshold>0.0452411212027073</threshold> 8847 <left_val>0.0335726402699947</left_val> 8848 <right_val>-0.6653599739074707</right_val></_></_> 8849 <_> 8850 <!-- tree 25 --> 8851 <_> 8852 <!-- root node --> 8853 <feature> 8854 <rects> 8855 <_>2 16 12 4 -1.</_> 8856 <_>8 16 6 2 2.</_> 8857 <_>2 18 6 2 2.</_></rects> 8858 <tilted>0</tilted></feature> 8859 <threshold>-0.0277080405503511</threshold> 8860 <left_val>-0.4751450121402741</left_val> 8861 <right_val>0.0166056193411350</right_val></_></_> 8862 <_> 8863 <!-- tree 26 --> 8864 <_> 8865 <!-- root node --> 8866 <feature> 8867 <rects> 8868 <_>0 20 12 6 -1.</_> 8869 <_>3 20 6 6 2.</_></rects> 8870 <tilted>0</tilted></feature> 8871 <threshold>-0.0600426308810711</threshold> 8872 <left_val>0.2700265944004059</left_val> 8873 <right_val>-0.0752836018800735</right_val></_></_> 8874 <_> 8875 <!-- tree 27 --> 8876 <_> 8877 <!-- root node --> 8878 <feature> 8879 <rects> 8880 <_>4 15 8 7 -1.</_> 8881 <_>6 15 4 7 2.</_></rects> 8882 <tilted>0</tilted></feature> 8883 <threshold>9.3657420948147774e-003</threshold> 8884 <left_val>-0.0520907603204250</left_val> 8885 <right_val>0.3435977101325989</right_val></_></_> 8886 <_> 8887 <!-- tree 28 --> 8888 <_> 8889 <!-- root node --> 8890 <feature> 8891 <rects> 8892 <_>4 10 6 12 -1.</_> 8893 <_>4 10 3 6 2.</_> 8894 <_>7 16 3 6 2.</_></rects> 8895 <tilted>0</tilted></feature> 8896 <threshold>0.0225451197475195</threshold> 8897 <left_val>0.0458237603306770</left_val> 8898 <right_val>-0.5311117768287659</right_val></_></_> 8899 <_> 8900 <!-- tree 29 --> 8901 <_> 8902 <!-- root node --> 8903 <feature> 8904 <rects> 8905 <_>7 0 4 6 -1.</_> 8906 <_>7 0 2 6 2.</_></rects> 8907 <tilted>1</tilted></feature> 8908 <threshold>-0.0667560994625092</threshold> 8909 <left_val>0.5186759233474731</left_val> 8910 <right_val>-0.0107660898938775</right_val></_></_> 8911 <_> 8912 <!-- tree 30 --> 8913 <_> 8914 <!-- root node --> 8915 <feature> 8916 <rects> 8917 <_>7 0 6 4 -1.</_> 8918 <_>7 0 6 2 2.</_></rects> 8919 <tilted>1</tilted></feature> 8920 <threshold>4.3578571639955044e-003</threshold> 8921 <left_val>-0.1668030023574829</left_val> 8922 <right_val>0.1341059058904648</right_val></_></_> 8923 <_> 8924 <!-- tree 31 --> 8925 <_> 8926 <!-- root node --> 8927 <feature> 8928 <rects> 8929 <_>6 18 8 6 -1.</_> 8930 <_>10 18 4 3 2.</_> 8931 <_>6 21 4 3 2.</_></rects> 8932 <tilted>0</tilted></feature> 8933 <threshold>-0.0363381803035736</threshold> 8934 <left_val>-0.5482519268989563</left_val> 8935 <right_val>0.0182916000485420</right_val></_></_> 8936 <_> 8937 <!-- tree 32 --> 8938 <_> 8939 <!-- root node --> 8940 <feature> 8941 <rects> 8942 <_>6 0 8 4 -1.</_> 8943 <_>6 0 8 2 2.</_></rects> 8944 <tilted>1</tilted></feature> 8945 <threshold>-0.0455095581710339</threshold> 8946 <left_val>0.3911918103694916</left_val> 8947 <right_val>-0.0543382689356804</right_val></_></_> 8948 <_> 8949 <!-- tree 33 --> 8950 <_> 8951 <!-- root node --> 8952 <feature> 8953 <rects> 8954 <_>2 15 10 6 -1.</_> 8955 <_>7 15 5 3 2.</_> 8956 <_>2 18 5 3 2.</_></rects> 8957 <tilted>0</tilted></feature> 8958 <threshold>6.2883161008358002e-003</threshold> 8959 <left_val>0.0954951867461205</left_val> 8960 <right_val>-0.2489372044801712</right_val></_></_> 8961 <_> 8962 <!-- tree 34 --> 8963 <_> 8964 <!-- root node --> 8965 <feature> 8966 <rects> 8967 <_>0 13 4 8 -1.</_> 8968 <_>0 17 4 4 2.</_></rects> 8969 <tilted>0</tilted></feature> 8970 <threshold>1.5809159958735108e-003</threshold> 8971 <left_val>-0.1679227054119110</left_val> 8972 <right_val>0.1155375987291336</right_val></_></_> 8973 <_> 8974 <!-- tree 35 --> 8975 <_> 8976 <!-- root node --> 8977 <feature> 8978 <rects> 8979 <_>0 9 14 9 -1.</_> 8980 <_>0 12 14 3 3.</_></rects> 8981 <tilted>0</tilted></feature> 8982 <threshold>-0.1578021049499512</threshold> 8983 <left_val>-0.6959874033927918</left_val> 8984 <right_val>0.0310152992606163</right_val></_></_> 8985 <_> 8986 <!-- tree 36 --> 8987 <_> 8988 <!-- root node --> 8989 <feature> 8990 <rects> 8991 <_>2 24 9 4 -1.</_> 8992 <_>5 24 3 4 3.</_></rects> 8993 <tilted>0</tilted></feature> 8994 <threshold>-0.0504007488489151</threshold> 8995 <left_val>-0.6101341843605042</left_val> 8996 <right_val>0.0256001893430948</right_val></_></_> 8997 <_> 8998 <!-- tree 37 --> 8999 <_> 9000 <!-- root node --> 9001 <feature> 9002 <rects> 9003 <_>1 24 12 4 -1.</_> 9004 <_>4 24 6 4 2.</_></rects> 9005 <tilted>0</tilted></feature> 9006 <threshold>-8.3708087913691998e-004</threshold> 9007 <left_val>0.0636897012591362</left_val> 9008 <right_val>-0.3257291018962860</right_val></_></_> 9009 <_> 9010 <!-- tree 38 --> 9011 <_> 9012 <!-- root node --> 9013 <feature> 9014 <rects> 9015 <_>0 11 10 8 -1.</_> 9016 <_>0 11 5 4 2.</_> 9017 <_>5 15 5 4 2.</_></rects> 9018 <tilted>0</tilted></feature> 9019 <threshold>0.0522598400712013</threshold> 9020 <left_val>-0.0526395291090012</left_val> 9021 <right_val>0.4301880002021790</right_val></_></_> 9022 <_> 9023 <!-- tree 39 --> 9024 <_> 9025 <!-- root node --> 9026 <feature> 9027 <rects> 9028 <_>5 9 6 4 -1.</_> 9029 <_>5 11 6 2 2.</_></rects> 9030 <tilted>0</tilted></feature> 9031 <threshold>6.6796218743547797e-004</threshold> 9032 <left_val>0.0807614400982857</left_val> 9033 <right_val>-0.2509211897850037</right_val></_></_> 9034 <_> 9035 <!-- tree 40 --> 9036 <_> 9037 <!-- root node --> 9038 <feature> 9039 <rects> 9040 <_>1 8 4 17 -1.</_> 9041 <_>2 8 2 17 2.</_></rects> 9042 <tilted>0</tilted></feature> 9043 <threshold>-0.0363063998520374</threshold> 9044 <left_val>0.7283785939216614</left_val> 9045 <right_val>-0.0287035498768091</right_val></_></_> 9046 <_> 9047 <!-- tree 41 --> 9048 <_> 9049 <!-- root node --> 9050 <feature> 9051 <rects> 9052 <_>8 2 4 12 -1.</_> 9053 <_>10 2 2 6 2.</_> 9054 <_>8 8 2 6 2.</_></rects> 9055 <tilted>0</tilted></feature> 9056 <threshold>-0.0758234113454819</threshold> 9057 <left_val>-0.7604526281356812</left_val> 9058 <right_val>0.0131663000211120</right_val></_></_> 9059 <_> 9060 <!-- tree 42 --> 9061 <_> 9062 <!-- root node --> 9063 <feature> 9064 <rects> 9065 <_>2 2 4 12 -1.</_> 9066 <_>2 2 2 6 2.</_> 9067 <_>4 8 2 6 2.</_></rects> 9068 <tilted>0</tilted></feature> 9069 <threshold>-5.5567082017660141e-003</threshold> 9070 <left_val>0.1125840991735458</left_val> 9071 <right_val>-0.1985097974538803</right_val></_></_> 9072 <_> 9073 <!-- tree 43 --> 9074 <_> 9075 <!-- root node --> 9076 <feature> 9077 <rects> 9078 <_>10 7 4 14 -1.</_> 9079 <_>12 7 2 7 2.</_> 9080 <_>10 14 2 7 2.</_></rects> 9081 <tilted>0</tilted></feature> 9082 <threshold>3.1275521032512188e-003</threshold> 9083 <left_val>-0.1043618991971016</left_val> 9084 <right_val>0.1028300002217293</right_val></_></_> 9085 <_> 9086 <!-- tree 44 --> 9087 <_> 9088 <!-- root node --> 9089 <feature> 9090 <rects> 9091 <_>0 7 4 14 -1.</_> 9092 <_>0 7 2 7 2.</_> 9093 <_>2 14 2 7 2.</_></rects> 9094 <tilted>0</tilted></feature> 9095 <threshold>0.0279313195496798</threshold> 9096 <left_val>0.0470235608518124</left_val> 9097 <right_val>-0.4772753119468689</right_val></_></_> 9098 <_> 9099 <!-- tree 45 --> 9100 <_> 9101 <!-- root node --> 9102 <feature> 9103 <rects> 9104 <_>4 8 10 6 -1.</_> 9105 <_>4 8 5 6 2.</_></rects> 9106 <tilted>0</tilted></feature> 9107 <threshold>0.0151569703593850</threshold> 9108 <left_val>-0.0499093793332577</left_val> 9109 <right_val>0.2170501053333283</right_val></_></_> 9110 <_> 9111 <!-- tree 46 --> 9112 <_> 9113 <!-- root node --> 9114 <feature> 9115 <rects> 9116 <_>6 6 8 3 -1.</_> 9117 <_>6 6 4 3 2.</_></rects> 9118 <tilted>1</tilted></feature> 9119 <threshold>6.8009081296622753e-003</threshold> 9120 <left_val>0.1171329021453857</left_val> 9121 <right_val>-0.2208292037248612</right_val></_></_> 9122 <_> 9123 <!-- tree 47 --> 9124 <_> 9125 <!-- root node --> 9126 <feature> 9127 <rects> 9128 <_>2 5 12 3 -1.</_> 9129 <_>2 6 12 1 3.</_></rects> 9130 <tilted>0</tilted></feature> 9131 <threshold>-4.3796948157250881e-003</threshold> 9132 <left_val>0.1719119995832443</left_val> 9133 <right_val>-0.0896688103675842</right_val></_></_> 9134 <_> 9135 <!-- tree 48 --> 9136 <_> 9137 <!-- root node --> 9138 <feature> 9139 <rects> 9140 <_>2 15 9 5 -1.</_> 9141 <_>5 15 3 5 3.</_></rects> 9142 <tilted>0</tilted></feature> 9143 <threshold>-6.9269728846848011e-003</threshold> 9144 <left_val>0.0882584825158119</left_val> 9145 <right_val>-0.2645480930805206</right_val></_></_> 9146 <_> 9147 <!-- tree 49 --> 9148 <_> 9149 <!-- root node --> 9150 <feature> 9151 <rects> 9152 <_>0 1 14 15 -1.</_> 9153 <_>0 6 14 5 3.</_></rects> 9154 <tilted>0</tilted></feature> 9155 <threshold>-0.2058625072240830</threshold> 9156 <left_val>-0.5026299953460693</left_val> 9157 <right_val>0.0408322513103485</right_val></_></_> 9158 <_> 9159 <!-- tree 50 --> 9160 <_> 9161 <!-- root node --> 9162 <feature> 9163 <rects> 9164 <_>1 1 6 18 -1.</_> 9165 <_>3 7 2 6 9.</_></rects> 9166 <tilted>0</tilted></feature> 9167 <threshold>-1.1398729839129373e-004</threshold> 9168 <left_val>0.1053517013788223</left_val> 9169 <right_val>-0.1948872059583664</right_val></_></_> 9170 <_> 9171 <!-- tree 51 --> 9172 <_> 9173 <!-- root node --> 9174 <feature> 9175 <rects> 9176 <_>4 2 9 10 -1.</_> 9177 <_>4 7 9 5 2.</_></rects> 9178 <tilted>0</tilted></feature> 9179 <threshold>0.0369937792420387</threshold> 9180 <left_val>-0.0547796301543713</left_val> 9181 <right_val>0.2293298989534378</right_val></_></_> 9182 <_> 9183 <!-- tree 52 --> 9184 <_> 9185 <!-- root node --> 9186 <feature> 9187 <rects> 9188 <_>5 12 4 6 -1.</_> 9189 <_>7 12 2 6 2.</_></rects> 9190 <tilted>0</tilted></feature> 9191 <threshold>4.7788480296730995e-003</threshold> 9192 <left_val>0.0912943333387375</left_val> 9193 <right_val>-0.2496895045042038</right_val></_></_> 9194 <_> 9195 <!-- tree 53 --> 9196 <_> 9197 <!-- root node --> 9198 <feature> 9199 <rects> 9200 <_>6 4 3 21 -1.</_> 9201 <_>7 4 1 21 3.</_></rects> 9202 <tilted>0</tilted></feature> 9203 <threshold>1.1999059934169054e-003</threshold> 9204 <left_val>-0.0926852896809578</left_val> 9205 <right_val>0.1105071008205414</right_val></_></_> 9206 <_> 9207 <!-- tree 54 --> 9208 <_> 9209 <!-- root node --> 9210 <feature> 9211 <rects> 9212 <_>6 17 6 3 -1.</_> 9213 <_>5 18 6 1 3.</_></rects> 9214 <tilted>1</tilted></feature> 9215 <threshold>2.0830740686506033e-003</threshold> 9216 <left_val>-0.1058308035135269</left_val> 9217 <right_val>0.1740527004003525</right_val></_></_> 9218 <_> 9219 <!-- tree 55 --> 9220 <_> 9221 <!-- root node --> 9222 <feature> 9223 <rects> 9224 <_>7 16 2 4 -1.</_> 9225 <_>7 16 1 4 2.</_></rects> 9226 <tilted>1</tilted></feature> 9227 <threshold>0.0271664895117283</threshold> 9228 <left_val>0.0115387802943587</left_val> 9229 <right_val>-1.0000569820404053</right_val></_></_> 9230 <_> 9231 <!-- tree 56 --> 9232 <_> 9233 <!-- root node --> 9234 <feature> 9235 <rects> 9236 <_>7 16 4 2 -1.</_> 9237 <_>7 16 4 1 2.</_></rects> 9238 <tilted>1</tilted></feature> 9239 <threshold>-4.3531907722353935e-003</threshold> 9240 <left_val>-0.2610597908496857</left_val> 9241 <right_val>0.0781094431877136</right_val></_></_> 9242 <_> 9243 <!-- tree 57 --> 9244 <_> 9245 <!-- root node --> 9246 <feature> 9247 <rects> 9248 <_>8 20 2 6 -1.</_> 9249 <_>8 20 1 6 2.</_></rects> 9250 <tilted>1</tilted></feature> 9251 <threshold>-0.0166761707514524</threshold> 9252 <left_val>-0.6376665830612183</left_val> 9253 <right_val>0.0128073198720813</right_val></_></_> 9254 <_> 9255 <!-- tree 58 --> 9256 <_> 9257 <!-- root node --> 9258 <feature> 9259 <rects> 9260 <_>6 20 6 2 -1.</_> 9261 <_>6 20 6 1 2.</_></rects> 9262 <tilted>1</tilted></feature> 9263 <threshold>-1.7588710179552436e-003</threshold> 9264 <left_val>0.1532872021198273</left_val> 9265 <right_val>-0.1483021974563599</right_val></_></_> 9266 <_> 9267 <!-- tree 59 --> 9268 <_> 9269 <!-- root node --> 9270 <feature> 9271 <rects> 9272 <_>6 4 6 6 -1.</_> 9273 <_>8 4 2 6 3.</_></rects> 9274 <tilted>0</tilted></feature> 9275 <threshold>-1.3470610138028860e-003</threshold> 9276 <left_val>0.1102273017168045</left_val> 9277 <right_val>-0.1116658002138138</right_val></_></_> 9278 <_> 9279 <!-- tree 60 --> 9280 <_> 9281 <!-- root node --> 9282 <feature> 9283 <rects> 9284 <_>1 1 3 16 -1.</_> 9285 <_>2 1 1 16 3.</_></rects> 9286 <tilted>0</tilted></feature> 9287 <threshold>-7.7226730063557625e-003</threshold> 9288 <left_val>0.2674975991249085</left_val> 9289 <right_val>-0.0843757018446922</right_val></_></_> 9290 <_> 9291 <!-- tree 61 --> 9292 <_> 9293 <!-- root node --> 9294 <feature> 9295 <rects> 9296 <_>12 14 2 10 -1.</_> 9297 <_>12 14 1 10 2.</_></rects> 9298 <tilted>1</tilted></feature> 9299 <threshold>0.0245579890906811</threshold> 9300 <left_val>0.0117052299901843</left_val> 9301 <right_val>-0.6993631124496460</right_val></_></_> 9302 <_> 9303 <!-- tree 62 --> 9304 <_> 9305 <!-- root node --> 9306 <feature> 9307 <rects> 9308 <_>2 14 10 2 -1.</_> 9309 <_>2 14 10 1 2.</_></rects> 9310 <tilted>1</tilted></feature> 9311 <threshold>-4.1882451623678207e-003</threshold> 9312 <left_val>-0.2084566056728363</left_val> 9313 <right_val>0.1107387021183968</right_val></_></_></trees> 9314 <stage_threshold>-0.7278770804405212</stage_threshold> 9315 <parent>19</parent> 9316 <next>-1</next></_> 9317 <_> 9318 <!-- stage 21 --> 9319 <trees> 9320 <_> 9321 <!-- tree 0 --> 9322 <_> 9323 <!-- root node --> 9324 <feature> 9325 <rects> 9326 <_>3 1 6 27 -1.</_> 9327 <_>5 10 2 9 9.</_></rects> 9328 <tilted>0</tilted></feature> 9329 <threshold>-0.3092521131038666</threshold> 9330 <left_val>0.3152084052562714</left_val> 9331 <right_val>-0.1662925034761429</right_val></_></_> 9332 <_> 9333 <!-- tree 1 --> 9334 <_> 9335 <!-- root node --> 9336 <feature> 9337 <rects> 9338 <_>6 16 3 12 -1.</_> 9339 <_>7 16 1 12 3.</_></rects> 9340 <tilted>0</tilted></feature> 9341 <threshold>0.0386602506041527</threshold> 9342 <left_val>-0.0579346008598804</left_val> 9343 <right_val>0.4527879059314728</right_val></_></_> 9344 <_> 9345 <!-- tree 2 --> 9346 <_> 9347 <!-- root node --> 9348 <feature> 9349 <rects> 9350 <_>2 6 8 22 -1.</_> 9351 <_>4 6 4 22 2.</_></rects> 9352 <tilted>0</tilted></feature> 9353 <threshold>-0.1885387003421783</threshold> 9354 <left_val>-0.8201392889022827</left_val> 9355 <right_val>0.0309413596987724</right_val></_></_> 9356 <_> 9357 <!-- tree 3 --> 9358 <_> 9359 <!-- root node --> 9360 <feature> 9361 <rects> 9362 <_>4 6 6 13 -1.</_> 9363 <_>6 6 2 13 3.</_></rects> 9364 <tilted>0</tilted></feature> 9365 <threshold>7.1423681220039725e-004</threshold> 9366 <left_val>0.1028093025088310</left_val> 9367 <right_val>-0.2490286976099014</right_val></_></_> 9368 <_> 9369 <!-- tree 4 --> 9370 <_> 9371 <!-- root node --> 9372 <feature> 9373 <rects> 9374 <_>7 11 6 6 -1.</_> 9375 <_>5 13 6 2 3.</_></rects> 9376 <tilted>1</tilted></feature> 9377 <threshold>-0.0720744431018829</threshold> 9378 <left_val>0.3317157924175263</left_val> 9379 <right_val>-0.0736855119466782</right_val></_></_> 9380 <_> 9381 <!-- tree 5 --> 9382 <_> 9383 <!-- root node --> 9384 <feature> 9385 <rects> 9386 <_>2 26 12 2 -1.</_> 9387 <_>2 26 6 2 2.</_></rects> 9388 <tilted>0</tilted></feature> 9389 <threshold>9.4616664573550224e-003</threshold> 9390 <left_val>0.0326477885246277</left_val> 9391 <right_val>-0.3611251115798950</right_val></_></_> 9392 <_> 9393 <!-- tree 6 --> 9394 <_> 9395 <!-- root node --> 9396 <feature> 9397 <rects> 9398 <_>4 8 6 9 -1.</_> 9399 <_>6 8 2 9 3.</_></rects> 9400 <tilted>0</tilted></feature> 9401 <threshold>-0.0465130805969238</threshold> 9402 <left_val>-0.4755085110664368</left_val> 9403 <right_val>0.0568774007260799</right_val></_></_> 9404 <_> 9405 <!-- tree 7 --> 9406 <_> 9407 <!-- root node --> 9408 <feature> 9409 <rects> 9410 <_>6 25 8 3 -1.</_> 9411 <_>6 25 4 3 2.</_></rects> 9412 <tilted>0</tilted></feature> 9413 <threshold>-0.0347774587571621</threshold> 9414 <left_val>-0.6351556777954102</left_val> 9415 <right_val>0.0313141196966171</right_val></_></_> 9416 <_> 9417 <!-- tree 8 --> 9418 <_> 9419 <!-- root node --> 9420 <feature> 9421 <rects> 9422 <_>3 24 6 4 -1.</_> 9423 <_>6 24 3 4 2.</_></rects> 9424 <tilted>0</tilted></feature> 9425 <threshold>-1.4840300427749753e-003</threshold> 9426 <left_val>0.0926282331347466</left_val> 9427 <right_val>-0.2528308033943176</right_val></_></_> 9428 <_> 9429 <!-- tree 9 --> 9430 <_> 9431 <!-- root node --> 9432 <feature> 9433 <rects> 9434 <_>4 16 8 9 -1.</_> 9435 <_>4 16 4 9 2.</_></rects> 9436 <tilted>0</tilted></feature> 9437 <threshold>8.3039281889796257e-003</threshold> 9438 <left_val>0.0339913889765739</left_val> 9439 <right_val>-0.1835747957229614</right_val></_></_> 9440 <_> 9441 <!-- tree 10 --> 9442 <_> 9443 <!-- root node --> 9444 <feature> 9445 <rects> 9446 <_>2 16 8 9 -1.</_> 9447 <_>6 16 4 9 2.</_></rects> 9448 <tilted>0</tilted></feature> 9449 <threshold>0.0273422095924616</threshold> 9450 <left_val>-0.0513939410448074</left_val> 9451 <right_val>0.5595899820327759</right_val></_></_> 9452 <_> 9453 <!-- tree 11 --> 9454 <_> 9455 <!-- root node --> 9456 <feature> 9457 <rects> 9458 <_>7 5 6 6 -1.</_> 9459 <_>7 5 3 6 2.</_></rects> 9460 <tilted>1</tilted></feature> 9461 <threshold>0.0586374215781689</threshold> 9462 <left_val>-0.0573506616055965</left_val> 9463 <right_val>0.1484225988388062</right_val></_></_> 9464 <_> 9465 <!-- tree 12 --> 9466 <_> 9467 <!-- root node --> 9468 <feature> 9469 <rects> 9470 <_>7 15 6 6 -1.</_> 9471 <_>7 15 3 6 2.</_></rects> 9472 <tilted>1</tilted></feature> 9473 <threshold>-0.0370325110852718</threshold> 9474 <left_val>-0.4060286879539490</left_val> 9475 <right_val>0.0667901337146759</right_val></_></_> 9476 <_> 9477 <!-- tree 13 --> 9478 <_> 9479 <!-- root node --> 9480 <feature> 9481 <rects> 9482 <_>3 13 10 12 -1.</_> 9483 <_>3 19 10 6 2.</_></rects> 9484 <tilted>0</tilted></feature> 9485 <threshold>8.9913606643676758e-003</threshold> 9486 <left_val>-0.1909431964159012</left_val> 9487 <right_val>0.0594380907714367</right_val></_></_> 9488 <_> 9489 <!-- tree 14 --> 9490 <_> 9491 <!-- root node --> 9492 <feature> 9493 <rects> 9494 <_>2 6 10 3 -1.</_> 9495 <_>7 6 5 3 2.</_></rects> 9496 <tilted>0</tilted></feature> 9497 <threshold>-0.0593511983752251</threshold> 9498 <left_val>-0.8709725737571716</left_val> 9499 <right_val>0.0214834492653608</right_val></_></_> 9500 <_> 9501 <!-- tree 15 --> 9502 <_> 9503 <!-- root node --> 9504 <feature> 9505 <rects> 9506 <_>3 1 8 21 -1.</_> 9507 <_>3 8 8 7 3.</_></rects> 9508 <tilted>0</tilted></feature> 9509 <threshold>0.3705554008483887</threshold> 9510 <left_val>-0.0403960905969143</left_val> 9511 <right_val>0.6063132286071777</right_val></_></_> 9512 <_> 9513 <!-- tree 16 --> 9514 <_> 9515 <!-- root node --> 9516 <feature> 9517 <rects> 9518 <_>4 7 6 6 -1.</_> 9519 <_>4 9 6 2 3.</_></rects> 9520 <tilted>0</tilted></feature> 9521 <threshold>-8.4517069626599550e-004</threshold> 9522 <left_val>0.1366071999073029</left_val> 9523 <right_val>-0.1554179042577744</right_val></_></_> 9524 <_> 9525 <!-- tree 17 --> 9526 <_> 9527 <!-- root node --> 9528 <feature> 9529 <rects> 9530 <_>4 10 8 4 -1.</_> 9531 <_>4 12 8 2 2.</_></rects> 9532 <tilted>0</tilted></feature> 9533 <threshold>0.0106644798070192</threshold> 9534 <left_val>0.0341297611594200</left_val> 9535 <right_val>-0.2350808978080750</right_val></_></_> 9536 <_> 9537 <!-- tree 18 --> 9538 <_> 9539 <!-- root node --> 9540 <feature> 9541 <rects> 9542 <_>7 5 6 6 -1.</_> 9543 <_>7 5 6 3 2.</_></rects> 9544 <tilted>1</tilted></feature> 9545 <threshold>3.7040449678897858e-003</threshold> 9546 <left_val>0.1129392012953758</left_val> 9547 <right_val>-0.1559647023677826</right_val></_></_> 9548 <_> 9549 <!-- tree 19 --> 9550 <_> 9551 <!-- root node --> 9552 <feature> 9553 <rects> 9554 <_>2 8 12 10 -1.</_> 9555 <_>2 8 6 10 2.</_></rects> 9556 <tilted>0</tilted></feature> 9557 <threshold>0.0233285501599312</threshold> 9558 <left_val>0.0367709808051586</left_val> 9559 <right_val>-0.1663112938404083</right_val></_></_> 9560 <_> 9561 <!-- tree 20 --> 9562 <_> 9563 <!-- root node --> 9564 <feature> 9565 <rects> 9566 <_>1 4 8 10 -1.</_> 9567 <_>5 4 4 10 2.</_></rects> 9568 <tilted>0</tilted></feature> 9569 <threshold>0.0209066402167082</threshold> 9570 <left_val>-0.0733919665217400</left_val> 9571 <right_val>0.3270866870880127</right_val></_></_> 9572 <_> 9573 <!-- tree 21 --> 9574 <_> 9575 <!-- root node --> 9576 <feature> 9577 <rects> 9578 <_>3 16 8 6 -1.</_> 9579 <_>7 16 4 3 2.</_> 9580 <_>3 19 4 3 2.</_></rects> 9581 <tilted>0</tilted></feature> 9582 <threshold>2.0865180995315313e-003</threshold> 9583 <left_val>0.0963757634162903</left_val> 9584 <right_val>-0.2163884043693543</right_val></_></_> 9585 <_> 9586 <!-- tree 22 --> 9587 <_> 9588 <!-- root node --> 9589 <feature> 9590 <rects> 9591 <_>3 3 2 24 -1.</_> 9592 <_>3 3 1 12 2.</_> 9593 <_>4 15 1 12 2.</_></rects> 9594 <tilted>0</tilted></feature> 9595 <threshold>1.2039430439472198e-003</threshold> 9596 <left_val>-0.1701869964599609</left_val> 9597 <right_val>0.1081503033638001</right_val></_></_> 9598 <_> 9599 <!-- tree 23 --> 9600 <_> 9601 <!-- root node --> 9602 <feature> 9603 <rects> 9604 <_>9 16 4 12 -1.</_> 9605 <_>10 16 2 12 2.</_></rects> 9606 <tilted>0</tilted></feature> 9607 <threshold>3.3848760649561882e-003</threshold> 9608 <left_val>-0.1082089021801949</left_val> 9609 <right_val>0.0907519534230232</right_val></_></_> 9610 <_> 9611 <!-- tree 24 --> 9612 <_> 9613 <!-- root node --> 9614 <feature> 9615 <rects> 9616 <_>1 16 4 12 -1.</_> 9617 <_>2 16 2 12 2.</_></rects> 9618 <tilted>0</tilted></feature> 9619 <threshold>-0.0153092797845602</threshold> 9620 <left_val>-0.6207144260406494</left_val> 9621 <right_val>0.0313537307083607</right_val></_></_> 9622 <_> 9623 <!-- tree 25 --> 9624 <_> 9625 <!-- root node --> 9626 <feature> 9627 <rects> 9628 <_>8 12 3 12 -1.</_> 9629 <_>9 12 1 12 3.</_></rects> 9630 <tilted>0</tilted></feature> 9631 <threshold>0.0218207202851772</threshold> 9632 <left_val>-0.0572322495281696</left_val> 9633 <right_val>0.2914176881313324</right_val></_></_> 9634 <_> 9635 <!-- tree 26 --> 9636 <_> 9637 <!-- root node --> 9638 <feature> 9639 <rects> 9640 <_>3 8 5 6 -1.</_> 9641 <_>3 11 5 3 2.</_></rects> 9642 <tilted>0</tilted></feature> 9643 <threshold>5.8554150164127350e-003</threshold> 9644 <left_val>0.0558107085525990</left_val> 9645 <right_val>-0.3455778956413269</right_val></_></_> 9646 <_> 9647 <!-- tree 27 --> 9648 <_> 9649 <!-- root node --> 9650 <feature> 9651 <rects> 9652 <_>2 7 10 8 -1.</_> 9653 <_>2 11 10 4 2.</_></rects> 9654 <tilted>0</tilted></feature> 9655 <threshold>-0.0883805900812149</threshold> 9656 <left_val>-0.5897160768508911</left_val> 9657 <right_val>0.0322578698396683</right_val></_></_> 9658 <_> 9659 <!-- tree 28 --> 9660 <_> 9661 <!-- root node --> 9662 <feature> 9663 <rects> 9664 <_>3 12 3 12 -1.</_> 9665 <_>4 12 1 12 3.</_></rects> 9666 <tilted>0</tilted></feature> 9667 <threshold>-0.0363035984337330</threshold> 9668 <left_val>0.6790629029273987</left_val> 9669 <right_val>-0.0312984399497509</right_val></_></_> 9670 <_> 9671 <!-- tree 29 --> 9672 <_> 9673 <!-- root node --> 9674 <feature> 9675 <rects> 9676 <_>5 16 4 12 -1.</_> 9677 <_>5 16 2 12 2.</_></rects> 9678 <tilted>0</tilted></feature> 9679 <threshold>0.0677144229412079</threshold> 9680 <left_val>0.0281518306583166</left_val> 9681 <right_val>-0.7596389055252075</right_val></_></_> 9682 <_> 9683 <!-- tree 30 --> 9684 <_> 9685 <!-- root node --> 9686 <feature> 9687 <rects> 9688 <_>7 22 4 2 -1.</_> 9689 <_>7 22 4 1 2.</_></rects> 9690 <tilted>1</tilted></feature> 9691 <threshold>-1.7487880541011691e-003</threshold> 9692 <left_val>0.1352127045392990</left_val> 9693 <right_val>-0.1493988037109375</right_val></_></_> 9694 <_> 9695 <!-- tree 31 --> 9696 <_> 9697 <!-- root node --> 9698 <feature> 9699 <rects> 9700 <_>6 22 8 6 -1.</_> 9701 <_>10 22 4 3 2.</_> 9702 <_>6 25 4 3 2.</_></rects> 9703 <tilted>0</tilted></feature> 9704 <threshold>0.0576274208724499</threshold> 9705 <left_val>0.0147167900577188</left_val> 9706 <right_val>-0.6408889889717102</right_val></_></_> 9707 <_> 9708 <!-- tree 32 --> 9709 <_> 9710 <!-- root node --> 9711 <feature> 9712 <rects> 9713 <_>1 14 2 14 -1.</_> 9714 <_>2 14 1 14 2.</_></rects> 9715 <tilted>0</tilted></feature> 9716 <threshold>4.8004398122429848e-003</threshold> 9717 <left_val>0.0575108602643013</left_val> 9718 <right_val>-0.3072834014892578</right_val></_></_> 9719 <_> 9720 <!-- tree 33 --> 9721 <_> 9722 <!-- root node --> 9723 <feature> 9724 <rects> 9725 <_>9 20 3 5 -1.</_> 9726 <_>10 21 1 5 3.</_></rects> 9727 <tilted>1</tilted></feature> 9728 <threshold>0.0155685897916555</threshold> 9729 <left_val>-0.0268608294427395</left_val> 9730 <right_val>0.3939082920551300</right_val></_></_> 9731 <_> 9732 <!-- tree 34 --> 9733 <_> 9734 <!-- root node --> 9735 <feature> 9736 <rects> 9737 <_>5 20 5 3 -1.</_> 9738 <_>4 21 5 1 3.</_></rects> 9739 <tilted>1</tilted></feature> 9740 <threshold>-9.9650640040636063e-003</threshold> 9741 <left_val>0.3209015130996704</left_val> 9742 <right_val>-0.0589744411408901</right_val></_></_> 9743 <_> 9744 <!-- tree 35 --> 9745 <_> 9746 <!-- root node --> 9747 <feature> 9748 <rects> 9749 <_>7 15 2 5 -1.</_> 9750 <_>7 15 1 5 2.</_></rects> 9751 <tilted>1</tilted></feature> 9752 <threshold>-9.1902203857898712e-003</threshold> 9753 <left_val>-0.3800691068172455</left_val> 9754 <right_val>0.0358071699738503</right_val></_></_> 9755 <_> 9756 <!-- tree 36 --> 9757 <_> 9758 <!-- root node --> 9759 <feature> 9760 <rects> 9761 <_>1 17 10 6 -1.</_> 9762 <_>1 17 5 3 2.</_> 9763 <_>6 20 5 3 2.</_></rects> 9764 <tilted>0</tilted></feature> 9765 <threshold>0.0308349393308163</threshold> 9766 <left_val>0.0403541214764118</left_val> 9767 <right_val>-0.5078290104866028</right_val></_></_> 9768 <_> 9769 <!-- tree 37 --> 9770 <_> 9771 <!-- root node --> 9772 <feature> 9773 <rects> 9774 <_>1 3 12 3 -1.</_> 9775 <_>5 3 4 3 3.</_></rects> 9776 <tilted>0</tilted></feature> 9777 <threshold>-6.4900278812274337e-004</threshold> 9778 <left_val>0.0955971330404282</left_val> 9779 <right_val>-0.1881285011768341</right_val></_></_> 9780 <_> 9781 <!-- tree 38 --> 9782 <_> 9783 <!-- root node --> 9784 <feature> 9785 <rects> 9786 <_>7 3 5 6 -1.</_> 9787 <_>7 3 5 3 2.</_></rects> 9788 <tilted>1</tilted></feature> 9789 <threshold>-3.9334357716143131e-003</threshold> 9790 <left_val>-0.2027994990348816</left_val> 9791 <right_val>0.1051485016942024</right_val></_></_> 9792 <_> 9793 <!-- tree 39 --> 9794 <_> 9795 <!-- root node --> 9796 <feature> 9797 <rects> 9798 <_>7 7 3 12 -1.</_> 9799 <_>8 7 1 12 3.</_></rects> 9800 <tilted>0</tilted></feature> 9801 <threshold>-0.0214776806533337</threshold> 9802 <left_val>-0.3298557102680206</left_val> 9803 <right_val>0.0352633781731129</right_val></_></_> 9804 <_> 9805 <!-- tree 40 --> 9806 <_> 9807 <!-- root node --> 9808 <feature> 9809 <rects> 9810 <_>4 7 3 12 -1.</_> 9811 <_>5 7 1 12 3.</_></rects> 9812 <tilted>0</tilted></feature> 9813 <threshold>-0.0275162495672703</threshold> 9814 <left_val>0.3455865085124970</left_val> 9815 <right_val>-0.0725449100136757</right_val></_></_> 9816 <_> 9817 <!-- tree 41 --> 9818 <_> 9819 <!-- root node --> 9820 <feature> 9821 <rects> 9822 <_>5 11 9 13 -1.</_> 9823 <_>8 11 3 13 3.</_></rects> 9824 <tilted>0</tilted></feature> 9825 <threshold>-7.2914459742605686e-003</threshold> 9826 <left_val>0.1005168035626411</left_val> 9827 <right_val>-0.1356077045202255</right_val></_></_> 9828 <_> 9829 <!-- tree 42 --> 9830 <_> 9831 <!-- root node --> 9832 <feature> 9833 <rects> 9834 <_>5 5 3 21 -1.</_> 9835 <_>6 5 1 21 3.</_></rects> 9836 <tilted>0</tilted></feature> 9837 <threshold>-0.0561357289552689</threshold> 9838 <left_val>0.4007847011089325</left_val> 9839 <right_val>-0.0519918389618397</right_val></_></_> 9840 <_> 9841 <!-- tree 43 --> 9842 <_> 9843 <!-- root node --> 9844 <feature> 9845 <rects> 9846 <_>4 13 9 11 -1.</_> 9847 <_>7 13 3 11 3.</_></rects> 9848 <tilted>0</tilted></feature> 9849 <threshold>0.1367962062358856</threshold> 9850 <left_val>-0.0164327807724476</left_val> 9851 <right_val>0.5610008835792542</right_val></_></_> 9852 <_> 9853 <!-- tree 44 --> 9854 <_> 9855 <!-- root node --> 9856 <feature> 9857 <rects> 9858 <_>1 13 9 11 -1.</_> 9859 <_>4 13 3 11 3.</_></rects> 9860 <tilted>0</tilted></feature> 9861 <threshold>-0.0245499201118946</threshold> 9862 <left_val>-0.1818747967481613</left_val> 9863 <right_val>0.1412536948919296</right_val></_></_> 9864 <_> 9865 <!-- tree 45 --> 9866 <_> 9867 <!-- root node --> 9868 <feature> 9869 <rects> 9870 <_>5 18 8 10 -1.</_> 9871 <_>9 18 4 5 2.</_> 9872 <_>5 23 4 5 2.</_></rects> 9873 <tilted>0</tilted></feature> 9874 <threshold>4.6405121684074402e-003</threshold> 9875 <left_val>-0.1650065928697586</left_val> 9876 <right_val>0.1491245031356812</right_val></_></_> 9877 <_> 9878 <!-- tree 46 --> 9879 <_> 9880 <!-- root node --> 9881 <feature> 9882 <rects> 9883 <_>0 5 14 14 -1.</_> 9884 <_>0 5 7 7 2.</_> 9885 <_>7 12 7 7 2.</_></rects> 9886 <tilted>0</tilted></feature> 9887 <threshold>-0.0210233591496944</threshold> 9888 <left_val>-0.1961192935705185</left_val> 9889 <right_val>0.0992269366979599</right_val></_></_> 9890 <_> 9891 <!-- tree 47 --> 9892 <_> 9893 <!-- root node --> 9894 <feature> 9895 <rects> 9896 <_>9 0 3 15 -1.</_> 9897 <_>10 0 1 15 3.</_></rects> 9898 <tilted>0</tilted></feature> 9899 <threshold>-4.8856949433684349e-003</threshold> 9900 <left_val>0.1133050993084908</left_val> 9901 <right_val>-0.0801724866032600</right_val></_></_> 9902 <_> 9903 <!-- tree 48 --> 9904 <_> 9905 <!-- root node --> 9906 <feature> 9907 <rects> 9908 <_>3 0 6 20 -1.</_> 9909 <_>5 0 2 20 3.</_></rects> 9910 <tilted>0</tilted></feature> 9911 <threshold>-0.1733780950307846</threshold> 9912 <left_val>-0.8345893025398254</left_val> 9913 <right_val>0.0236916691064835</right_val></_></_> 9914 <_> 9915 <!-- tree 49 --> 9916 <_> 9917 <!-- root node --> 9918 <feature> 9919 <rects> 9920 <_>2 4 12 2 -1.</_> 9921 <_>2 5 12 1 2.</_></rects> 9922 <tilted>0</tilted></feature> 9923 <threshold>-9.2903972836211324e-004</threshold> 9924 <left_val>0.0859042033553123</left_val> 9925 <right_val>-0.1058012023568153</right_val></_></_> 9926 <_> 9927 <!-- tree 50 --> 9928 <_> 9929 <!-- root node --> 9930 <feature> 9931 <rects> 9932 <_>0 3 12 3 -1.</_> 9933 <_>0 4 12 1 3.</_></rects> 9934 <tilted>0</tilted></feature> 9935 <threshold>-0.0105620902031660</threshold> 9936 <left_val>0.2698987126350403</left_val> 9937 <right_val>-0.0675421431660652</right_val></_></_> 9938 <_> 9939 <!-- tree 51 --> 9940 <_> 9941 <!-- root node --> 9942 <feature> 9943 <rects> 9944 <_>0 18 14 6 -1.</_> 9945 <_>7 18 7 3 2.</_> 9946 <_>0 21 7 3 2.</_></rects> 9947 <tilted>0</tilted></feature> 9948 <threshold>0.0150712598115206</threshold> 9949 <left_val>0.0586574897170067</left_val> 9950 <right_val>-0.3243629038333893</right_val></_></_> 9951 <_> 9952 <!-- tree 52 --> 9953 <_> 9954 <!-- root node --> 9955 <feature> 9956 <rects> 9957 <_>2 0 3 15 -1.</_> 9958 <_>3 0 1 15 3.</_></rects> 9959 <tilted>0</tilted></feature> 9960 <threshold>-0.0186164304614067</threshold> 9961 <left_val>0.3566071987152100</left_val> 9962 <right_val>-0.0530993789434433</right_val></_></_> 9963 <_> 9964 <!-- tree 53 --> 9965 <_> 9966 <!-- root node --> 9967 <feature> 9968 <rects> 9969 <_>8 1 6 4 -1.</_> 9970 <_>8 1 3 4 2.</_></rects> 9971 <tilted>1</tilted></feature> 9972 <threshold>0.0844124630093575</threshold> 9973 <left_val>0.0177159290760756</left_val> 9974 <right_val>-0.4580355882644653</right_val></_></_> 9975 <_> 9976 <!-- tree 54 --> 9977 <_> 9978 <!-- root node --> 9979 <feature> 9980 <rects> 9981 <_>2 7 6 6 -1.</_> 9982 <_>2 9 6 2 3.</_></rects> 9983 <tilted>0</tilted></feature> 9984 <threshold>0.0511387698352337</threshold> 9985 <left_val>0.0174076799303293</left_val> 9986 <right_val>-0.9411020278930664</right_val></_></_> 9987 <_> 9988 <!-- tree 55 --> 9989 <_> 9990 <!-- root node --> 9991 <feature> 9992 <rects> 9993 <_>10 22 4 6 -1.</_> 9994 <_>10 22 2 6 2.</_></rects> 9995 <tilted>0</tilted></feature> 9996 <threshold>-0.0106134600937366</threshold> 9997 <left_val>-0.6063237190246582</left_val> 9998 <right_val>0.0307936705648899</right_val></_></_> 9999 <_> 10000 <!-- tree 56 --> 10001 <_> 10002 <!-- root node --> 10003 <feature> 10004 <rects> 10005 <_>2 7 3 12 -1.</_> 10006 <_>3 7 1 12 3.</_></rects> 10007 <tilted>0</tilted></feature> 10008 <threshold>0.0183576196432114</threshold> 10009 <left_val>-0.0772681906819344</left_val> 10010 <right_val>0.2978057861328125</right_val></_></_> 10011 <_> 10012 <!-- tree 57 --> 10013 <_> 10014 <!-- root node --> 10015 <feature> 10016 <rects> 10017 <_>6 25 8 3 -1.</_> 10018 <_>6 25 4 3 2.</_></rects> 10019 <tilted>0</tilted></feature> 10020 <threshold>-8.4444461390376091e-004</threshold> 10021 <left_val>0.0780230090022087</left_val> 10022 <right_val>-0.2501764893531799</right_val></_></_> 10023 <_> 10024 <!-- tree 58 --> 10025 <_> 10026 <!-- root node --> 10027 <feature> 10028 <rects> 10029 <_>0 22 4 6 -1.</_> 10030 <_>2 22 2 6 2.</_></rects> 10031 <tilted>0</tilted></feature> 10032 <threshold>-6.2388968653976917e-003</threshold> 10033 <left_val>-0.4801769852638245</left_val> 10034 <right_val>0.0391856394708157</right_val></_></_> 10035 <_> 10036 <!-- tree 59 --> 10037 <_> 10038 <!-- root node --> 10039 <feature> 10040 <rects> 10041 <_>8 24 6 4 -1.</_> 10042 <_>8 24 3 4 2.</_></rects> 10043 <tilted>0</tilted></feature> 10044 <threshold>-0.0353631712496281</threshold> 10045 <left_val>-1.</left_val> 10046 <right_val>9.3268742784857750e-003</right_val></_></_> 10047 <_> 10048 <!-- tree 60 --> 10049 <_> 10050 <!-- root node --> 10051 <feature> 10052 <rects> 10053 <_>4 0 4 9 -1.</_> 10054 <_>4 3 4 3 3.</_></rects> 10055 <tilted>0</tilted></feature> 10056 <threshold>-0.0735581219196320</threshold> 10057 <left_val>-0.7789533734321594</left_val> 10058 <right_val>0.0184415001422167</right_val></_></_> 10059 <_> 10060 <!-- tree 61 --> 10061 <_> 10062 <!-- root node --> 10063 <feature> 10064 <rects> 10065 <_>8 3 6 4 -1.</_> 10066 <_>8 3 6 2 2.</_></rects> 10067 <tilted>1</tilted></feature> 10068 <threshold>-0.0870342031121254</threshold> 10069 <left_val>0.4362406134605408</left_val> 10070 <right_val>-0.0177165996283293</right_val></_></_> 10071 <_> 10072 <!-- tree 62 --> 10073 <_> 10074 <!-- root node --> 10075 <feature> 10076 <rects> 10077 <_>2 0 6 22 -1.</_> 10078 <_>2 0 3 11 2.</_> 10079 <_>5 11 3 11 2.</_></rects> 10080 <tilted>0</tilted></feature> 10081 <threshold>-0.0807216465473175</threshold> 10082 <left_val>0.2729671895503998</left_val> 10083 <right_val>-0.0663469582796097</right_val></_></_> 10084 <_> 10085 <!-- tree 63 --> 10086 <_> 10087 <!-- root node --> 10088 <feature> 10089 <rects> 10090 <_>6 18 8 10 -1.</_> 10091 <_>10 18 4 5 2.</_> 10092 <_>6 23 4 5 2.</_></rects> 10093 <tilted>0</tilted></feature> 10094 <threshold>0.1034459024667740</threshold> 10095 <left_val>9.0693607926368713e-003</left_val> 10096 <right_val>-0.6643865108489990</right_val></_></_> 10097 <_> 10098 <!-- tree 64 --> 10099 <_> 10100 <!-- root node --> 10101 <feature> 10102 <rects> 10103 <_>0 22 6 6 -1.</_> 10104 <_>2 22 2 6 3.</_></rects> 10105 <tilted>0</tilted></feature> 10106 <threshold>9.3807540833950043e-003</threshold> 10107 <left_val>0.0712427720427513</left_val> 10108 <right_val>-0.2738165855407715</right_val></_></_> 10109 <_> 10110 <!-- tree 65 --> 10111 <_> 10112 <!-- root node --> 10113 <feature> 10114 <rects> 10115 <_>8 13 6 6 -1.</_> 10116 <_>8 15 6 2 3.</_></rects> 10117 <tilted>0</tilted></feature> 10118 <threshold>-0.0718061476945877</threshold> 10119 <left_val>-0.9122204184532166</left_val> 10120 <right_val>8.0809993669390678e-003</right_val></_></_> 10121 <_> 10122 <!-- tree 66 --> 10123 <_> 10124 <!-- root node --> 10125 <feature> 10126 <rects> 10127 <_>0 13 6 6 -1.</_> 10128 <_>0 15 6 2 3.</_></rects> 10129 <tilted>0</tilted></feature> 10130 <threshold>-1.9418599549680948e-003</threshold> 10131 <left_val>0.1847234070301056</left_val> 10132 <right_val>-0.1134454980492592</right_val></_></_></trees> 10133 <stage_threshold>-0.7794421911239624</stage_threshold> 10134 <parent>20</parent> 10135 <next>-1</next></_> 10136 <_> 10137 <!-- stage 22 --> 10138 <trees> 10139 <_> 10140 <!-- tree 0 --> 10141 <_> 10142 <!-- root node --> 10143 <feature> 10144 <rects> 10145 <_>1 16 6 6 -1.</_> 10146 <_>3 16 2 6 3.</_></rects> 10147 <tilted>0</tilted></feature> 10148 <threshold>0.0303289592266083</threshold> 10149 <left_val>-0.1753951013088226</left_val> 10150 <right_val>0.3694534003734589</right_val></_></_> 10151 <_> 10152 <!-- tree 1 --> 10153 <_> 10154 <!-- root node --> 10155 <feature> 10156 <rects> 10157 <_>7 2 3 21 -1.</_> 10158 <_>7 9 3 7 3.</_></rects> 10159 <tilted>0</tilted></feature> 10160 <threshold>-0.0826317816972733</threshold> 10161 <left_val>0.2221647948026657</left_val> 10162 <right_val>-0.0875775516033173</right_val></_></_> 10163 <_> 10164 <!-- tree 2 --> 10165 <_> 10166 <!-- root node --> 10167 <feature> 10168 <rects> 10169 <_>4 14 6 3 -1.</_> 10170 <_>3 15 6 1 3.</_></rects> 10171 <tilted>1</tilted></feature> 10172 <threshold>2.5548380799591541e-003</threshold> 10173 <left_val>-0.1509108990430832</left_val> 10174 <right_val>0.1460877060890198</right_val></_></_> 10175 <_> 10176 <!-- tree 3 --> 10177 <_> 10178 <!-- root node --> 10179 <feature> 10180 <rects> 10181 <_>6 25 8 3 -1.</_> 10182 <_>6 25 4 3 2.</_></rects> 10183 <tilted>0</tilted></feature> 10184 <threshold>-1.4431839808821678e-003</threshold> 10185 <left_val>0.0624052509665489</left_val> 10186 <right_val>-0.1830209940671921</right_val></_></_> 10187 <_> 10188 <!-- tree 4 --> 10189 <_> 10190 <!-- root node --> 10191 <feature> 10192 <rects> 10193 <_>7 3 4 6 -1.</_> 10194 <_>7 3 4 3 2.</_></rects> 10195 <tilted>1</tilted></feature> 10196 <threshold>0.0430062897503376</threshold> 10197 <left_val>0.0857114866375923</left_val> 10198 <right_val>-0.4427877962589264</right_val></_></_> 10199 <_> 10200 <!-- tree 5 --> 10201 <_> 10202 <!-- root node --> 10203 <feature> 10204 <rects> 10205 <_>4 9 8 16 -1.</_> 10206 <_>4 9 4 16 2.</_></rects> 10207 <tilted>0</tilted></feature> 10208 <threshold>-0.1774813979864121</threshold> 10209 <left_val>-0.6730855107307434</left_val> 10210 <right_val>0.0216223802417517</right_val></_></_> 10211 <_> 10212 <!-- tree 6 --> 10213 <_> 10214 <!-- root node --> 10215 <feature> 10216 <rects> 10217 <_>2 9 8 16 -1.</_> 10218 <_>6 9 4 16 2.</_></rects> 10219 <tilted>0</tilted></feature> 10220 <threshold>0.0997236967086792</threshold> 10221 <left_val>-0.0427756607532501</left_val> 10222 <right_val>0.6908894181251526</right_val></_></_> 10223 <_> 10224 <!-- tree 7 --> 10225 <_> 10226 <!-- root node --> 10227 <feature> 10228 <rects> 10229 <_>4 3 7 24 -1.</_> 10230 <_>4 9 7 12 2.</_></rects> 10231 <tilted>0</tilted></feature> 10232 <threshold>-0.0179571993649006</threshold> 10233 <left_val>0.0887849330902100</left_val> 10234 <right_val>-0.2935299873352051</right_val></_></_> 10235 <_> 10236 <!-- tree 8 --> 10237 <_> 10238 <!-- root node --> 10239 <feature> 10240 <rects> 10241 <_>1 17 4 6 -1.</_> 10242 <_>3 17 2 6 2.</_></rects> 10243 <tilted>0</tilted></feature> 10244 <threshold>5.8914110995829105e-003</threshold> 10245 <left_val>0.0268841795623302</left_val> 10246 <right_val>-0.3925782144069672</right_val></_></_> 10247 <_> 10248 <!-- tree 9 --> 10249 <_> 10250 <!-- root node --> 10251 <feature> 10252 <rects> 10253 <_>5 2 6 4 -1.</_> 10254 <_>5 4 6 2 2.</_></rects> 10255 <tilted>0</tilted></feature> 10256 <threshold>-1.2439199490472674e-003</threshold> 10257 <left_val>0.0836953297257423</left_val> 10258 <right_val>-0.1352465003728867</right_val></_></_> 10259 <_> 10260 <!-- tree 10 --> 10261 <_> 10262 <!-- root node --> 10263 <feature> 10264 <rects> 10265 <_>7 2 4 6 -1.</_> 10266 <_>7 2 2 6 2.</_></rects> 10267 <tilted>1</tilted></feature> 10268 <threshold>-0.0631099566817284</threshold> 10269 <left_val>0.6836500167846680</left_val> 10270 <right_val>-0.0111745800822973</right_val></_></_> 10271 <_> 10272 <!-- tree 11 --> 10273 <_> 10274 <!-- root node --> 10275 <feature> 10276 <rects> 10277 <_>4 9 6 4 -1.</_> 10278 <_>4 9 3 4 2.</_></rects> 10279 <tilted>0</tilted></feature> 10280 <threshold>5.3107268176972866e-003</threshold> 10281 <left_val>0.0730957910418510</left_val> 10282 <right_val>-0.3322851955890656</right_val></_></_> 10283 <_> 10284 <!-- tree 12 --> 10285 <_> 10286 <!-- root node --> 10287 <feature> 10288 <rects> 10289 <_>1 24 6 4 -1.</_> 10290 <_>4 24 3 4 2.</_></rects> 10291 <tilted>0</tilted></feature> 10292 <threshold>-9.6346868667751551e-004</threshold> 10293 <left_val>0.0939234569668770</left_val> 10294 <right_val>-0.2601422071456909</right_val></_></_> 10295 <_> 10296 <!-- tree 13 --> 10297 <_> 10298 <!-- root node --> 10299 <feature> 10300 <rects> 10301 <_>5 0 6 8 -1.</_> 10302 <_>8 0 3 4 2.</_> 10303 <_>5 4 3 4 2.</_></rects> 10304 <tilted>0</tilted></feature> 10305 <threshold>-0.0203776806592941</threshold> 10306 <left_val>0.2368240952491760</left_val> 10307 <right_val>-0.0518113411962986</right_val></_></_> 10308 <_> 10309 <!-- tree 14 --> 10310 <_> 10311 <!-- root node --> 10312 <feature> 10313 <rects> 10314 <_>0 26 12 2 -1.</_> 10315 <_>6 26 6 2 2.</_></rects> 10316 <tilted>0</tilted></feature> 10317 <threshold>-0.0156107498332858</threshold> 10318 <left_val>-0.4846526980400085</left_val> 10319 <right_val>0.0421287305653095</right_val></_></_> 10320 <_> 10321 <!-- tree 15 --> 10322 <_> 10323 <!-- root node --> 10324 <feature> 10325 <rects> 10326 <_>5 0 6 8 -1.</_> 10327 <_>8 0 3 4 2.</_> 10328 <_>5 4 3 4 2.</_></rects> 10329 <tilted>0</tilted></feature> 10330 <threshold>0.0454972907900810</threshold> 10331 <left_val>5.7874252088367939e-003</left_val> 10332 <right_val>-0.5263736844062805</right_val></_></_> 10333 <_> 10334 <!-- tree 16 --> 10335 <_> 10336 <!-- root node --> 10337 <feature> 10338 <rects> 10339 <_>5 4 4 6 -1.</_> 10340 <_>7 4 2 6 2.</_></rects> 10341 <tilted>0</tilted></feature> 10342 <threshold>-0.0122448699548841</threshold> 10343 <left_val>0.3052304089069367</left_val> 10344 <right_val>-0.0793112665414810</right_val></_></_> 10345 <_> 10346 <!-- tree 17 --> 10347 <_> 10348 <!-- root node --> 10349 <feature> 10350 <rects> 10351 <_>8 0 6 8 -1.</_> 10352 <_>6 2 6 4 2.</_></rects> 10353 <tilted>1</tilted></feature> 10354 <threshold>-5.5875871330499649e-003</threshold> 10355 <left_val>0.0725049003958702</left_val> 10356 <right_val>-0.1030094027519226</right_val></_></_> 10357 <_> 10358 <!-- tree 18 --> 10359 <_> 10360 <!-- root node --> 10361 <feature> 10362 <rects> 10363 <_>6 0 8 6 -1.</_> 10364 <_>8 2 4 6 2.</_></rects> 10365 <tilted>1</tilted></feature> 10366 <threshold>-0.0132377101108432</threshold> 10367 <left_val>-0.2125997990369797</left_val> 10368 <right_val>0.1411207020282745</right_val></_></_> 10369 <_> 10370 <!-- tree 19 --> 10371 <_> 10372 <!-- root node --> 10373 <feature> 10374 <rects> 10375 <_>7 17 3 4 -1.</_> 10376 <_>8 18 1 4 3.</_></rects> 10377 <tilted>1</tilted></feature> 10378 <threshold>-0.0162360705435276</threshold> 10379 <left_val>-0.3682213127613068</left_val> 10380 <right_val>0.0169044993817806</right_val></_></_> 10381 <_> 10382 <!-- tree 20 --> 10383 <_> 10384 <!-- root node --> 10385 <feature> 10386 <rects> 10387 <_>1 20 6 8 -1.</_> 10388 <_>1 20 3 4 2.</_> 10389 <_>4 24 3 4 2.</_></rects> 10390 <tilted>0</tilted></feature> 10391 <threshold>8.7341741891577840e-004</threshold> 10392 <left_val>-0.1751320958137512</left_val> 10393 <right_val>0.1171779036521912</right_val></_></_> 10394 <_> 10395 <!-- tree 21 --> 10396 <_> 10397 <!-- root node --> 10398 <feature> 10399 <rects> 10400 <_>9 15 2 12 -1.</_> 10401 <_>9 15 1 12 2.</_></rects> 10402 <tilted>0</tilted></feature> 10403 <threshold>7.8164516016840935e-003</threshold> 10404 <left_val>-0.0409356690943241</left_val> 10405 <right_val>0.3813630938529968</right_val></_></_> 10406 <_> 10407 <!-- tree 22 --> 10408 <_> 10409 <!-- root node --> 10410 <feature> 10411 <rects> 10412 <_>3 15 2 12 -1.</_> 10413 <_>4 15 1 12 2.</_></rects> 10414 <tilted>0</tilted></feature> 10415 <threshold>1.4803799786022864e-005</threshold> 10416 <left_val>-0.1158130019903183</left_val> 10417 <right_val>0.1805412024259567</right_val></_></_> 10418 <_> 10419 <!-- tree 23 --> 10420 <_> 10421 <!-- root node --> 10422 <feature> 10423 <rects> 10424 <_>5 2 6 4 -1.</_> 10425 <_>5 2 3 4 2.</_></rects> 10426 <tilted>0</tilted></feature> 10427 <threshold>0.0362725406885147</threshold> 10428 <left_val>0.0151967499405146</left_val> 10429 <right_val>-0.4603796005249023</right_val></_></_> 10430 <_> 10431 <!-- tree 24 --> 10432 <_> 10433 <!-- root node --> 10434 <feature> 10435 <rects> 10436 <_>3 3 6 4 -1.</_> 10437 <_>6 3 3 4 2.</_></rects> 10438 <tilted>0</tilted></feature> 10439 <threshold>-3.8026720285415649e-003</threshold> 10440 <left_val>0.1344036012887955</left_val> 10441 <right_val>-0.1612498015165329</right_val></_></_> 10442 <_> 10443 <!-- tree 25 --> 10444 <_> 10445 <!-- root node --> 10446 <feature> 10447 <rects> 10448 <_>4 4 6 24 -1.</_> 10449 <_>7 4 3 12 2.</_> 10450 <_>4 16 3 12 2.</_></rects> 10451 <tilted>0</tilted></feature> 10452 <threshold>-0.0145857501775026</threshold> 10453 <left_val>-0.2833149135112763</left_val> 10454 <right_val>0.0746821165084839</right_val></_></_> 10455 <_> 10456 <!-- tree 26 --> 10457 <_> 10458 <!-- root node --> 10459 <feature> 10460 <rects> 10461 <_>6 13 2 12 -1.</_> 10462 <_>7 13 1 12 2.</_></rects> 10463 <tilted>0</tilted></feature> 10464 <threshold>1.4677370199933648e-003</threshold> 10465 <left_val>-0.1349322050809860</left_val> 10466 <right_val>0.1424490958452225</right_val></_></_> 10467 <_> 10468 <!-- tree 27 --> 10469 <_> 10470 <!-- root node --> 10471 <feature> 10472 <rects> 10473 <_>6 16 3 12 -1.</_> 10474 <_>7 16 1 12 3.</_></rects> 10475 <tilted>0</tilted></feature> 10476 <threshold>-0.0139815695583820</threshold> 10477 <left_val>0.2173554003238678</left_val> 10478 <right_val>-0.0528866797685623</right_val></_></_> 10479 <_> 10480 <!-- tree 28 --> 10481 <_> 10482 <!-- root node --> 10483 <feature> 10484 <rects> 10485 <_>6 4 2 14 -1.</_> 10486 <_>7 4 1 14 2.</_></rects> 10487 <tilted>0</tilted></feature> 10488 <threshold>-6.3076039077714086e-004</threshold> 10489 <left_val>0.1490194946527481</left_val> 10490 <right_val>-0.1362009942531586</right_val></_></_> 10491 <_> 10492 <!-- tree 29 --> 10493 <_> 10494 <!-- root node --> 10495 <feature> 10496 <rects> 10497 <_>5 3 4 25 -1.</_> 10498 <_>6 3 2 25 2.</_></rects> 10499 <tilted>0</tilted></feature> 10500 <threshold>-0.0144755402579904</threshold> 10501 <left_val>-0.1918009966611862</left_val> 10502 <right_val>0.1060713008046150</right_val></_></_> 10503 <_> 10504 <!-- tree 30 --> 10505 <_> 10506 <!-- root node --> 10507 <feature> 10508 <rects> 10509 <_>5 4 3 21 -1.</_> 10510 <_>6 4 1 21 3.</_></rects> 10511 <tilted>0</tilted></feature> 10512 <threshold>-0.0322175808250904</threshold> 10513 <left_val>0.2809166908264160</left_val> 10514 <right_val>-0.0850462913513184</right_val></_></_> 10515 <_> 10516 <!-- tree 31 --> 10517 <_> 10518 <!-- root node --> 10519 <feature> 10520 <rects> 10521 <_>7 6 2 12 -1.</_> 10522 <_>7 6 1 12 2.</_></rects> 10523 <tilted>0</tilted></feature> 10524 <threshold>3.4460560418665409e-003</threshold> 10525 <left_val>0.0745718702673912</left_val> 10526 <right_val>-0.2710860967636108</right_val></_></_> 10527 <_> 10528 <!-- tree 32 --> 10529 <_> 10530 <!-- root node --> 10531 <feature> 10532 <rects> 10533 <_>5 4 4 20 -1.</_> 10534 <_>5 4 2 10 2.</_> 10535 <_>7 14 2 10 2.</_></rects> 10536 <tilted>0</tilted></feature> 10537 <threshold>-0.0439498908817768</threshold> 10538 <left_val>0.4400210082530975</left_val> 10539 <right_val>-0.0455091297626495</right_val></_></_> 10540 <_> 10541 <!-- tree 33 --> 10542 <_> 10543 <!-- root node --> 10544 <feature> 10545 <rects> 10546 <_>6 4 6 24 -1.</_> 10547 <_>8 12 2 8 9.</_></rects> 10548 <tilted>0</tilted></feature> 10549 <threshold>-0.0119662703946233</threshold> 10550 <left_val>0.0632868707180023</left_val> 10551 <right_val>-0.1980538070201874</right_val></_></_> 10552 <_> 10553 <!-- tree 34 --> 10554 <_> 10555 <!-- root node --> 10556 <feature> 10557 <rects> 10558 <_>0 1 12 24 -1.</_> 10559 <_>6 1 6 24 2.</_></rects> 10560 <tilted>0</tilted></feature> 10561 <threshold>-0.4348602890968323</threshold> 10562 <left_val>-0.7620549798011780</left_val> 10563 <right_val>0.0215081293135881</right_val></_></_> 10564 <_> 10565 <!-- tree 35 --> 10566 <_> 10567 <!-- root node --> 10568 <feature> 10569 <rects> 10570 <_>7 6 7 22 -1.</_> 10571 <_>7 17 7 11 2.</_></rects> 10572 <tilted>0</tilted></feature> 10573 <threshold>0.3988755047321320</threshold> 10574 <left_val>8.0703729763627052e-003</left_val> 10575 <right_val>-0.8428487777709961</right_val></_></_> 10576 <_> 10577 <!-- tree 36 --> 10578 <_> 10579 <!-- root node --> 10580 <feature> 10581 <rects> 10582 <_>4 3 4 9 -1.</_> 10583 <_>4 6 4 3 3.</_></rects> 10584 <tilted>0</tilted></feature> 10585 <threshold>-0.0448023788630962</threshold> 10586 <left_val>-0.6841738224029541</left_val> 10587 <right_val>0.0224749799817801</right_val></_></_> 10588 <_> 10589 <!-- tree 37 --> 10590 <_> 10591 <!-- root node --> 10592 <feature> 10593 <rects> 10594 <_>8 4 6 8 -1.</_> 10595 <_>6 6 6 4 2.</_></rects> 10596 <tilted>1</tilted></feature> 10597 <threshold>-0.1093515008687973</threshold> 10598 <left_val>0.2111950963735580</left_val> 10599 <right_val>-0.0397316403687000</right_val></_></_> 10600 <_> 10601 <!-- tree 38 --> 10602 <_> 10603 <!-- root node --> 10604 <feature> 10605 <rects> 10606 <_>7 5 6 4 -1.</_> 10607 <_>7 5 6 2 2.</_></rects> 10608 <tilted>1</tilted></feature> 10609 <threshold>0.0309234093874693</threshold> 10610 <left_val>0.0447794012725353</left_val> 10611 <right_val>-0.3587503135204315</right_val></_></_> 10612 <_> 10613 <!-- tree 39 --> 10614 <_> 10615 <!-- root node --> 10616 <feature> 10617 <rects> 10618 <_>5 1 4 6 -1.</_> 10619 <_>5 4 4 3 2.</_></rects> 10620 <tilted>0</tilted></feature> 10621 <threshold>0.0132859796285629</threshold> 10622 <left_val>-0.0481516607105732</left_val> 10623 <right_val>0.3711921870708466</right_val></_></_> 10624 <_> 10625 <!-- tree 40 --> 10626 <_> 10627 <!-- root node --> 10628 <feature> 10629 <rects> 10630 <_>0 0 7 10 -1.</_> 10631 <_>0 5 7 5 2.</_></rects> 10632 <tilted>0</tilted></feature> 10633 <threshold>-3.9830091409385204e-003</threshold> 10634 <left_val>0.1278153061866760</left_val> 10635 <right_val>-0.1995912045240402</right_val></_></_> 10636 <_> 10637 <!-- tree 41 --> 10638 <_> 10639 <!-- root node --> 10640 <feature> 10641 <rects> 10642 <_>7 2 3 24 -1.</_> 10643 <_>7 8 3 12 2.</_></rects> 10644 <tilted>0</tilted></feature> 10645 <threshold>0.0141846202313900</threshold> 10646 <left_val>-0.0398960486054420</left_val> 10647 <right_val>0.2408592998981476</right_val></_></_> 10648 <_> 10649 <!-- tree 42 --> 10650 <_> 10651 <!-- root node --> 10652 <feature> 10653 <rects> 10654 <_>1 8 4 15 -1.</_> 10655 <_>2 8 2 15 2.</_></rects> 10656 <tilted>0</tilted></feature> 10657 <threshold>1.6680279513821006e-003</threshold> 10658 <left_val>-0.1810705959796906</left_val> 10659 <right_val>0.0939819067716599</right_val></_></_> 10660 <_> 10661 <!-- tree 43 --> 10662 <_> 10663 <!-- root node --> 10664 <feature> 10665 <rects> 10666 <_>6 25 8 3 -1.</_> 10667 <_>6 25 4 3 2.</_></rects> 10668 <tilted>0</tilted></feature> 10669 <threshold>-0.0220558904111385</threshold> 10670 <left_val>-0.2879816889762878</left_val> 10671 <right_val>0.0300383698195219</right_val></_></_> 10672 <_> 10673 <!-- tree 44 --> 10674 <_> 10675 <!-- root node --> 10676 <feature> 10677 <rects> 10678 <_>1 23 12 3 -1.</_> 10679 <_>5 23 4 3 3.</_></rects> 10680 <tilted>0</tilted></feature> 10681 <threshold>-0.0603718012571335</threshold> 10682 <left_val>0.2952964007854462</left_val> 10683 <right_val>-0.0647140964865685</right_val></_></_> 10684 <_> 10685 <!-- tree 45 --> 10686 <_> 10687 <!-- root node --> 10688 <feature> 10689 <rects> 10690 <_>6 22 8 6 -1.</_> 10691 <_>10 22 4 3 2.</_> 10692 <_>6 25 4 3 2.</_></rects> 10693 <tilted>0</tilted></feature> 10694 <threshold>0.0592914484441280</threshold> 10695 <left_val>8.4209917113184929e-003</left_val> 10696 <right_val>-0.5883092284202576</right_val></_></_> 10697 <_> 10698 <!-- tree 46 --> 10699 <_> 10700 <!-- root node --> 10701 <feature> 10702 <rects> 10703 <_>0 22 14 6 -1.</_> 10704 <_>0 22 7 3 2.</_> 10705 <_>7 25 7 3 2.</_></rects> 10706 <tilted>0</tilted></feature> 10707 <threshold>0.0326371490955353</threshold> 10708 <left_val>0.0321183390915394</left_val> 10709 <right_val>-0.5119292140007019</right_val></_></_> 10710 <_> 10711 <!-- tree 47 --> 10712 <_> 10713 <!-- root node --> 10714 <feature> 10715 <rects> 10716 <_>2 3 12 3 -1.</_> 10717 <_>2 4 12 1 3.</_></rects> 10718 <tilted>0</tilted></feature> 10719 <threshold>-9.8897633142769337e-004</threshold> 10720 <left_val>0.1338261961936951</left_val> 10721 <right_val>-0.1154571026563644</right_val></_></_> 10722 <_> 10723 <!-- tree 48 --> 10724 <_> 10725 <!-- root node --> 10726 <feature> 10727 <rects> 10728 <_>0 2 12 9 -1.</_> 10729 <_>4 5 4 3 9.</_></rects> 10730 <tilted>0</tilted></feature> 10731 <threshold>-0.0355604402720928</threshold> 10732 <left_val>-0.1515962928533554</left_val> 10733 <right_val>0.1051914021372795</right_val></_></_> 10734 <_> 10735 <!-- tree 49 --> 10736 <_> 10737 <!-- root node --> 10738 <feature> 10739 <rects> 10740 <_>1 0 12 12 -1.</_> 10741 <_>5 4 4 4 9.</_></rects> 10742 <tilted>0</tilted></feature> 10743 <threshold>9.8722549155354500e-003</threshold> 10744 <left_val>0.0934620425105095</left_val> 10745 <right_val>-0.2598895132541657</right_val></_></_> 10746 <_> 10747 <!-- tree 50 --> 10748 <_> 10749 <!-- root node --> 10750 <feature> 10751 <rects> 10752 <_>1 3 12 3 -1.</_> 10753 <_>1 4 12 1 3.</_></rects> 10754 <tilted>0</tilted></feature> 10755 <threshold>7.1953269653022289e-003</threshold> 10756 <left_val>-0.0869378298521042</left_val> 10757 <right_val>0.2837277054786682</right_val></_></_> 10758 <_> 10759 <!-- tree 51 --> 10760 <_> 10761 <!-- root node --> 10762 <feature> 10763 <rects> 10764 <_>1 4 12 3 -1.</_> 10765 <_>5 4 4 3 3.</_></rects> 10766 <tilted>0</tilted></feature> 10767 <threshold>0.0244370996952057</threshold> 10768 <left_val>-0.0399301089346409</left_val> 10769 <right_val>0.3924323916435242</right_val></_></_> 10770 <_> 10771 <!-- tree 52 --> 10772 <_> 10773 <!-- root node --> 10774 <feature> 10775 <rects> 10776 <_>1 15 2 12 -1.</_> 10777 <_>2 15 1 12 2.</_></rects> 10778 <tilted>0</tilted></feature> 10779 <threshold>5.2195340394973755e-003</threshold> 10780 <left_val>0.0498041100800037</left_val> 10781 <right_val>-0.3184682130813599</right_val></_></_> 10782 <_> 10783 <!-- tree 53 --> 10784 <_> 10785 <!-- root node --> 10786 <feature> 10787 <rects> 10788 <_>1 20 12 5 -1.</_> 10789 <_>5 20 4 5 3.</_></rects> 10790 <tilted>0</tilted></feature> 10791 <threshold>2.3442960809916258e-003</threshold> 10792 <left_val>-0.0544699504971504</left_val> 10793 <right_val>0.3371812105178833</right_val></_></_> 10794 <_> 10795 <!-- tree 54 --> 10796 <_> 10797 <!-- root node --> 10798 <feature> 10799 <rects> 10800 <_>7 15 5 4 -1.</_> 10801 <_>6 16 5 2 2.</_></rects> 10802 <tilted>1</tilted></feature> 10803 <threshold>4.7694300301373005e-003</threshold> 10804 <left_val>0.0714767873287201</left_val> 10805 <right_val>-0.3101828098297119</right_val></_></_> 10806 <_> 10807 <!-- tree 55 --> 10808 <_> 10809 <!-- root node --> 10810 <feature> 10811 <rects> 10812 <_>7 2 3 21 -1.</_> 10813 <_>7 9 3 7 3.</_></rects> 10814 <tilted>0</tilted></feature> 10815 <threshold>-0.0145174702629447</threshold> 10816 <left_val>0.0786424800753593</left_val> 10817 <right_val>-0.1453883945941925</right_val></_></_> 10818 <_> 10819 <!-- tree 56 --> 10820 <_> 10821 <!-- root node --> 10822 <feature> 10823 <rects> 10824 <_>2 2 4 12 -1.</_> 10825 <_>2 2 2 6 2.</_> 10826 <_>4 8 2 6 2.</_></rects> 10827 <tilted>0</tilted></feature> 10828 <threshold>0.0447107292711735</threshold> 10829 <left_val>-0.0250517800450325</left_val> 10830 <right_val>0.6473051905632019</right_val></_></_> 10831 <_> 10832 <!-- tree 57 --> 10833 <_> 10834 <!-- root node --> 10835 <feature> 10836 <rects> 10837 <_>5 22 8 6 -1.</_> 10838 <_>7 22 4 6 2.</_></rects> 10839 <tilted>0</tilted></feature> 10840 <threshold>0.0168673992156982</threshold> 10841 <left_val>0.0290889590978622</left_val> 10842 <right_val>-0.3903023898601532</right_val></_></_> 10843 <_> 10844 <!-- tree 58 --> 10845 <_> 10846 <!-- root node --> 10847 <feature> 10848 <rects> 10849 <_>0 1 10 6 -1.</_> 10850 <_>0 1 5 3 2.</_> 10851 <_>5 4 5 3 2.</_></rects> 10852 <tilted>0</tilted></feature> 10853 <threshold>-9.0343318879604340e-004</threshold> 10854 <left_val>0.0877225771546364</left_val> 10855 <right_val>-0.1658854931592941</right_val></_></_> 10856 <_> 10857 <!-- tree 59 --> 10858 <_> 10859 <!-- root node --> 10860 <feature> 10861 <rects> 10862 <_>3 11 9 6 -1.</_> 10863 <_>3 13 9 2 3.</_></rects> 10864 <tilted>0</tilted></feature> 10865 <threshold>-0.0821873396635056</threshold> 10866 <left_val>-0.8423885703086853</left_val> 10867 <right_val>9.8376423120498657e-003</right_val></_></_> 10868 <_> 10869 <!-- tree 60 --> 10870 <_> 10871 <!-- root node --> 10872 <feature> 10873 <rects> 10874 <_>6 7 2 19 -1.</_> 10875 <_>7 7 1 19 2.</_></rects> 10876 <tilted>0</tilted></feature> 10877 <threshold>1.8525390187278390e-003</threshold> 10878 <left_val>-0.1225149035453796</left_val> 10879 <right_val>0.1200018972158432</right_val></_></_> 10880 <_> 10881 <!-- tree 61 --> 10882 <_> 10883 <!-- root node --> 10884 <feature> 10885 <rects> 10886 <_>5 10 8 16 -1.</_> 10887 <_>7 10 4 16 2.</_></rects> 10888 <tilted>0</tilted></feature> 10889 <threshold>-9.3228723853826523e-003</threshold> 10890 <left_val>0.0784228518605232</left_val> 10891 <right_val>-0.1323194950819016</right_val></_></_> 10892 <_> 10893 <!-- tree 62 --> 10894 <_> 10895 <!-- root node --> 10896 <feature> 10897 <rects> 10898 <_>5 16 3 12 -1.</_> 10899 <_>6 16 1 12 3.</_></rects> 10900 <tilted>0</tilted></feature> 10901 <threshold>0.0227306894958019</threshold> 10902 <left_val>-0.0336967892944813</left_val> 10903 <right_val>0.4438394010066986</right_val></_></_> 10904 <_> 10905 <!-- tree 63 --> 10906 <_> 10907 <!-- root node --> 10908 <feature> 10909 <rects> 10910 <_>10 13 4 15 -1.</_> 10911 <_>10 18 4 5 3.</_></rects> 10912 <tilted>0</tilted></feature> 10913 <threshold>0.1028665974736214</threshold> 10914 <left_val>0.0179174300283194</left_val> 10915 <right_val>-0.5834161043167114</right_val></_></_> 10916 <_> 10917 <!-- tree 64 --> 10918 <_> 10919 <!-- root node --> 10920 <feature> 10921 <rects> 10922 <_>2 1 10 10 -1.</_> 10923 <_>2 1 5 5 2.</_> 10924 <_>7 6 5 5 2.</_></rects> 10925 <tilted>0</tilted></feature> 10926 <threshold>-0.0995473712682724</threshold> 10927 <left_val>-0.9536556005477905</left_val> 10928 <right_val>0.0125820403918624</right_val></_></_> 10929 <_> 10930 <!-- tree 65 --> 10931 <_> 10932 <!-- root node --> 10933 <feature> 10934 <rects> 10935 <_>7 19 2 7 -1.</_> 10936 <_>7 19 1 7 2.</_></rects> 10937 <tilted>1</tilted></feature> 10938 <threshold>0.0164127591997385</threshold> 10939 <left_val>0.0160671193152666</left_val> 10940 <right_val>-0.4140237867832184</right_val></_></_> 10941 <_> 10942 <!-- tree 66 --> 10943 <_> 10944 <!-- root node --> 10945 <feature> 10946 <rects> 10947 <_>2 14 9 6 -1.</_> 10948 <_>5 14 3 6 3.</_></rects> 10949 <tilted>0</tilted></feature> 10950 <threshold>-2.5932409334927797e-003</threshold> 10951 <left_val>0.0527634993195534</left_val> 10952 <right_val>-0.3040460050106049</right_val></_></_> 10953 <_> 10954 <!-- tree 67 --> 10955 <_> 10956 <!-- root node --> 10957 <feature> 10958 <rects> 10959 <_>4 13 10 14 -1.</_> 10960 <_>9 13 5 7 2.</_> 10961 <_>4 20 5 7 2.</_></rects> 10962 <tilted>0</tilted></feature> 10963 <threshold>9.5953093841671944e-003</threshold> 10964 <left_val>0.0835280865430832</left_val> 10965 <right_val>-0.1178006976842880</right_val></_></_></trees> 10966 <stage_threshold>-0.7301942706108093</stage_threshold> 10967 <parent>21</parent> 10968 <next>-1</next></_> 10969 <_> 10970 <!-- stage 23 --> 10971 <trees> 10972 <_> 10973 <!-- tree 0 --> 10974 <_> 10975 <!-- root node --> 10976 <feature> 10977 <rects> 10978 <_>1 7 12 15 -1.</_> 10979 <_>5 12 4 5 9.</_></rects> 10980 <tilted>0</tilted></feature> 10981 <threshold>-0.3543010950088501</threshold> 10982 <left_val>0.3179292082786560</left_val> 10983 <right_val>-0.1851280033588409</right_val></_></_> 10984 <_> 10985 <!-- tree 1 --> 10986 <_> 10987 <!-- root node --> 10988 <feature> 10989 <rects> 10990 <_>6 2 2 24 -1.</_> 10991 <_>7 2 1 12 2.</_> 10992 <_>6 14 1 12 2.</_></rects> 10993 <tilted>0</tilted></feature> 10994 <threshold>-0.0147613296285272</threshold> 10995 <left_val>0.3406507968902588</left_val> 10996 <right_val>-0.0866217389702797</right_val></_></_> 10997 <_> 10998 <!-- tree 2 --> 10999 <_> 11000 <!-- root node --> 11001 <feature> 11002 <rects> 11003 <_>5 3 4 12 -1.</_> 11004 <_>5 9 4 6 2.</_></rects> 11005 <tilted>0</tilted></feature> 11006 <threshold>-0.1158045008778572</threshold> 11007 <left_val>-0.7235320210456848</left_val> 11008 <right_val>0.0344048403203487</right_val></_></_> 11009 <_> 11010 <!-- tree 3 --> 11011 <_> 11012 <!-- root node --> 11013 <feature> 11014 <rects> 11015 <_>8 24 6 4 -1.</_> 11016 <_>8 24 3 4 2.</_></rects> 11017 <tilted>0</tilted></feature> 11018 <threshold>-4.4705160689773038e-005</threshold> 11019 <left_val>0.0824970826506615</left_val> 11020 <right_val>-0.2131111025810242</right_val></_></_> 11021 <_> 11022 <!-- tree 4 --> 11023 <_> 11024 <!-- root node --> 11025 <feature> 11026 <rects> 11027 <_>0 24 6 4 -1.</_> 11028 <_>3 24 3 4 2.</_></rects> 11029 <tilted>0</tilted></feature> 11030 <threshold>-5.8883379097096622e-005</threshold> 11031 <left_val>0.1080930009484291</left_val> 11032 <right_val>-0.1826986074447632</right_val></_></_> 11033 <_> 11034 <!-- tree 5 --> 11035 <_> 11036 <!-- root node --> 11037 <feature> 11038 <rects> 11039 <_>1 8 12 4 -1.</_> 11040 <_>4 8 6 4 2.</_></rects> 11041 <tilted>0</tilted></feature> 11042 <threshold>0.0379448495805264</threshold> 11043 <left_val>-0.0247565507888794</left_val> 11044 <right_val>0.4586691856384277</right_val></_></_> 11045 <_> 11046 <!-- tree 6 --> 11047 <_> 11048 <!-- root node --> 11049 <feature> 11050 <rects> 11051 <_>5 5 4 9 -1.</_> 11052 <_>5 8 4 3 3.</_></rects> 11053 <tilted>0</tilted></feature> 11054 <threshold>-2.1807940211147070e-003</threshold> 11055 <left_val>0.1578385978937149</left_val> 11056 <right_val>-0.1775245964527130</right_val></_></_> 11057 <_> 11058 <!-- tree 7 --> 11059 <_> 11060 <!-- root node --> 11061 <feature> 11062 <rects> 11063 <_>9 18 4 6 -1.</_> 11064 <_>9 18 2 6 2.</_></rects> 11065 <tilted>0</tilted></feature> 11066 <threshold>-0.0454301014542580</threshold> 11067 <left_val>-0.3724954128265381</left_val> 11068 <right_val>5.7393261231482029e-003</right_val></_></_> 11069 <_> 11070 <!-- tree 8 --> 11071 <_> 11072 <!-- root node --> 11073 <feature> 11074 <rects> 11075 <_>2 20 8 8 -1.</_> 11076 <_>2 20 4 4 2.</_> 11077 <_>6 24 4 4 2.</_></rects> 11078 <tilted>0</tilted></feature> 11079 <threshold>1.9972559530287981e-003</threshold> 11080 <left_val>-0.1917531043291092</left_val> 11081 <right_val>0.1199517026543617</right_val></_></_> 11082 <_> 11083 <!-- tree 9 --> 11084 <_> 11085 <!-- root node --> 11086 <feature> 11087 <rects> 11088 <_>11 15 2 8 -1.</_> 11089 <_>11 15 1 8 2.</_></rects> 11090 <tilted>1</tilted></feature> 11091 <threshold>-2.2458820239990018e-005</threshold> 11092 <left_val>0.0915291681885719</left_val> 11093 <right_val>-0.1308099031448364</right_val></_></_> 11094 <_> 11095 <!-- tree 10 --> 11096 <_> 11097 <!-- root node --> 11098 <feature> 11099 <rects> 11100 <_>3 15 8 2 -1.</_> 11101 <_>3 15 8 1 2.</_></rects> 11102 <tilted>1</tilted></feature> 11103 <threshold>-3.7994279991835356e-003</threshold> 11104 <left_val>-0.2045497000217438</left_val> 11105 <right_val>0.1414657980203629</right_val></_></_> 11106 <_> 11107 <!-- tree 11 --> 11108 <_> 11109 <!-- root node --> 11110 <feature> 11111 <rects> 11112 <_>5 9 4 6 -1.</_> 11113 <_>5 9 2 6 2.</_></rects> 11114 <tilted>0</tilted></feature> 11115 <threshold>-2.7970419614575803e-004</threshold> 11116 <left_val>0.1107816025614739</left_val> 11117 <right_val>-0.1871396005153656</right_val></_></_> 11118 <_> 11119 <!-- tree 12 --> 11120 <_> 11121 <!-- root node --> 11122 <feature> 11123 <rects> 11124 <_>0 22 4 6 -1.</_> 11125 <_>2 22 2 6 2.</_></rects> 11126 <tilted>0</tilted></feature> 11127 <threshold>-3.9631421677768230e-003</threshold> 11128 <left_val>-0.3774999082088471</left_val> 11129 <right_val>0.0569357909262180</right_val></_></_> 11130 <_> 11131 <!-- tree 13 --> 11132 <_> 11133 <!-- root node --> 11134 <feature> 11135 <rects> 11136 <_>0 26 14 2 -1.</_> 11137 <_>0 26 7 2 2.</_></rects> 11138 <tilted>0</tilted></feature> 11139 <threshold>-1.4290240360423923e-003</threshold> 11140 <left_val>-0.1944985985755920</left_val> 11141 <right_val>0.0988349169492722</right_val></_></_> 11142 <_> 11143 <!-- tree 14 --> 11144 <_> 11145 <!-- root node --> 11146 <feature> 11147 <rects> 11148 <_>3 20 6 8 -1.</_> 11149 <_>3 20 3 4 2.</_> 11150 <_>6 24 3 4 2.</_></rects> 11151 <tilted>0</tilted></feature> 11152 <threshold>0.0211821794509888</threshold> 11153 <left_val>-0.0870304107666016</left_val> 11154 <right_val>0.2888861000537872</right_val></_></_> 11155 <_> 11156 <!-- tree 15 --> 11157 <_> 11158 <!-- root node --> 11159 <feature> 11160 <rects> 11161 <_>7 16 2 12 -1.</_> 11162 <_>7 16 1 12 2.</_></rects> 11163 <tilted>0</tilted></feature> 11164 <threshold>8.7332521798089147e-004</threshold> 11165 <left_val>-0.1172915995121002</left_val> 11166 <right_val>0.1250654011964798</right_val></_></_> 11167 <_> 11168 <!-- tree 16 --> 11169 <_> 11170 <!-- root node --> 11171 <feature> 11172 <rects> 11173 <_>4 13 4 12 -1.</_> 11174 <_>5 13 2 12 2.</_></rects> 11175 <tilted>0</tilted></feature> 11176 <threshold>0.0261357594281435</threshold> 11177 <left_val>-0.0395724289119244</left_val> 11178 <right_val>0.6225264072418213</right_val></_></_> 11179 <_> 11180 <!-- tree 17 --> 11181 <_> 11182 <!-- root node --> 11183 <feature> 11184 <rects> 11185 <_>1 22 12 2 -1.</_> 11186 <_>1 22 6 2 2.</_></rects> 11187 <tilted>0</tilted></feature> 11188 <threshold>4.3046330101788044e-003</threshold> 11189 <left_val>0.1158230975270271</left_val> 11190 <right_val>-0.1961823999881744</right_val></_></_> 11191 <_> 11192 <!-- tree 18 --> 11193 <_> 11194 <!-- root node --> 11195 <feature> 11196 <rects> 11197 <_>0 24 12 4 -1.</_> 11198 <_>0 24 6 2 2.</_> 11199 <_>6 26 6 2 2.</_></rects> 11200 <tilted>0</tilted></feature> 11201 <threshold>1.5224959934130311e-003</threshold> 11202 <left_val>-0.1858606040477753</left_val> 11203 <right_val>0.1168838962912560</right_val></_></_> 11204 <_> 11205 <!-- tree 19 --> 11206 <_> 11207 <!-- root node --> 11208 <feature> 11209 <rects> 11210 <_>5 8 6 4 -1.</_> 11211 <_>5 10 6 2 2.</_></rects> 11212 <tilted>0</tilted></feature> 11213 <threshold>-7.4201932875439525e-004</threshold> 11214 <left_val>0.0987247377634048</left_val> 11215 <right_val>-0.2579134106636047</right_val></_></_> 11216 <_> 11217 <!-- tree 20 --> 11218 <_> 11219 <!-- root node --> 11220 <feature> 11221 <rects> 11222 <_>0 3 12 3 -1.</_> 11223 <_>0 4 12 1 3.</_></rects> 11224 <tilted>0</tilted></feature> 11225 <threshold>-2.5593061000108719e-003</threshold> 11226 <left_val>0.1730794012546539</left_val> 11227 <right_val>-0.1206706985831261</right_val></_></_> 11228 <_> 11229 <!-- tree 21 --> 11230 <_> 11231 <!-- root node --> 11232 <feature> 11233 <rects> 11234 <_>7 4 6 6 -1.</_> 11235 <_>7 4 3 6 2.</_></rects> 11236 <tilted>1</tilted></feature> 11237 <threshold>-0.0955632179975510</threshold> 11238 <left_val>0.3464641869068146</left_val> 11239 <right_val>-0.0131421396508813</right_val></_></_> 11240 <_> 11241 <!-- tree 22 --> 11242 <_> 11243 <!-- root node --> 11244 <feature> 11245 <rects> 11246 <_>7 4 6 6 -1.</_> 11247 <_>7 4 6 3 2.</_></rects> 11248 <tilted>1</tilted></feature> 11249 <threshold>0.0132807902991772</threshold> 11250 <left_val>0.1205687969923019</left_val> 11251 <right_val>-0.2062774002552033</right_val></_></_> 11252 <_> 11253 <!-- tree 23 --> 11254 <_> 11255 <!-- root node --> 11256 <feature> 11257 <rects> 11258 <_>8 3 6 8 -1.</_> 11259 <_>8 3 3 8 2.</_></rects> 11260 <tilted>1</tilted></feature> 11261 <threshold>0.0182455293834209</threshold> 11262 <left_val>-0.0672429502010345</left_val> 11263 <right_val>0.0468581281602383</right_val></_></_> 11264 <_> 11265 <!-- tree 24 --> 11266 <_> 11267 <!-- root node --> 11268 <feature> 11269 <rects> 11270 <_>0 6 6 5 -1.</_> 11271 <_>3 6 3 5 2.</_></rects> 11272 <tilted>0</tilted></feature> 11273 <threshold>-0.0612889714539051</threshold> 11274 <left_val>-0.6636496782302856</left_val> 11275 <right_val>0.0293191503733397</right_val></_></_> 11276 <_> 11277 <!-- tree 25 --> 11278 <_> 11279 <!-- root node --> 11280 <feature> 11281 <rects> 11282 <_>8 3 3 12 -1.</_> 11283 <_>9 3 1 12 3.</_></rects> 11284 <tilted>0</tilted></feature> 11285 <threshold>-0.0261334199458361</threshold> 11286 <left_val>0.2084838002920151</left_val> 11287 <right_val>-0.0272029303014278</right_val></_></_> 11288 <_> 11289 <!-- tree 26 --> 11290 <_> 11291 <!-- root node --> 11292 <feature> 11293 <rects> 11294 <_>6 0 2 22 -1.</_> 11295 <_>7 0 1 22 2.</_></rects> 11296 <tilted>0</tilted></feature> 11297 <threshold>-0.0323008187115192</threshold> 11298 <left_val>-0.6272640824317932</left_val> 11299 <right_val>0.0300918798893690</right_val></_></_> 11300 <_> 11301 <!-- tree 27 --> 11302 <_> 11303 <!-- root node --> 11304 <feature> 11305 <rects> 11306 <_>8 3 3 12 -1.</_> 11307 <_>9 3 1 12 3.</_></rects> 11308 <tilted>0</tilted></feature> 11309 <threshold>0.0502844899892807</threshold> 11310 <left_val>1.5047290362417698e-003</left_val> 11311 <right_val>-0.5963041186332703</right_val></_></_> 11312 <_> 11313 <!-- tree 28 --> 11314 <_> 11315 <!-- root node --> 11316 <feature> 11317 <rects> 11318 <_>3 3 3 12 -1.</_> 11319 <_>4 3 1 12 3.</_></rects> 11320 <tilted>0</tilted></feature> 11321 <threshold>-0.0181371197104454</threshold> 11322 <left_val>0.2926290929317474</left_val> 11323 <right_val>-0.0692134499549866</right_val></_></_> 11324 <_> 11325 <!-- tree 29 --> 11326 <_> 11327 <!-- root node --> 11328 <feature> 11329 <rects> 11330 <_>6 6 3 12 -1.</_> 11331 <_>7 6 1 12 3.</_></rects> 11332 <tilted>0</tilted></feature> 11333 <threshold>1.0980300139635801e-003</threshold> 11334 <left_val>0.1031685993075371</left_val> 11335 <right_val>-0.1655807048082352</right_val></_></_> 11336 <_> 11337 <!-- tree 30 --> 11338 <_> 11339 <!-- root node --> 11340 <feature> 11341 <rects> 11342 <_>5 15 2 12 -1.</_> 11343 <_>6 15 1 12 2.</_></rects> 11344 <tilted>0</tilted></feature> 11345 <threshold>3.9596110582351685e-003</threshold> 11346 <left_val>-0.0570635795593262</left_val> 11347 <right_val>0.3374491035938263</right_val></_></_> 11348 <_> 11349 <!-- tree 31 --> 11350 <_> 11351 <!-- root node --> 11352 <feature> 11353 <rects> 11354 <_>5 8 6 10 -1.</_> 11355 <_>8 8 3 5 2.</_> 11356 <_>5 13 3 5 2.</_></rects> 11357 <tilted>0</tilted></feature> 11358 <threshold>3.1622028909623623e-003</threshold> 11359 <left_val>0.0883023589849472</left_val> 11360 <right_val>-0.2791759073734283</right_val></_></_> 11361 <_> 11362 <!-- tree 32 --> 11363 <_> 11364 <!-- root node --> 11365 <feature> 11366 <rects> 11367 <_>2 8 10 10 -1.</_> 11368 <_>2 8 5 5 2.</_> 11369 <_>7 13 5 5 2.</_></rects> 11370 <tilted>0</tilted></feature> 11371 <threshold>8.4337368607521057e-003</threshold> 11372 <left_val>0.0863110572099686</left_val> 11373 <right_val>-0.2515366077423096</right_val></_></_> 11374 <_> 11375 <!-- tree 33 --> 11376 <_> 11377 <!-- root node --> 11378 <feature> 11379 <rects> 11380 <_>7 9 6 10 -1.</_> 11381 <_>10 9 3 5 2.</_> 11382 <_>7 14 3 5 2.</_></rects> 11383 <tilted>0</tilted></feature> 11384 <threshold>0.0234084799885750</threshold> 11385 <left_val>-0.0370115190744400</left_val> 11386 <right_val>0.2557156085968018</right_val></_></_> 11387 <_> 11388 <!-- tree 34 --> 11389 <_> 11390 <!-- root node --> 11391 <feature> 11392 <rects> 11393 <_>0 4 12 3 -1.</_> 11394 <_>0 5 12 1 3.</_></rects> 11395 <tilted>0</tilted></feature> 11396 <threshold>-1.9710899796336889e-003</threshold> 11397 <left_val>0.1496087014675140</left_val> 11398 <right_val>-0.1321375966072083</right_val></_></_> 11399 <_> 11400 <!-- tree 35 --> 11401 <_> 11402 <!-- root node --> 11403 <feature> 11404 <rects> 11405 <_>9 16 2 12 -1.</_> 11406 <_>9 16 1 12 2.</_></rects> 11407 <tilted>0</tilted></feature> 11408 <threshold>-0.0314347818493843</threshold> 11409 <left_val>0.2707290947437286</left_val> 11410 <right_val>-0.0247841402888298</right_val></_></_> 11411 <_> 11412 <!-- tree 36 --> 11413 <_> 11414 <!-- root node --> 11415 <feature> 11416 <rects> 11417 <_>3 16 2 12 -1.</_> 11418 <_>4 16 1 12 2.</_></rects> 11419 <tilted>0</tilted></feature> 11420 <threshold>-2.0984669681638479e-003</threshold> 11421 <left_val>-0.2284294068813324</left_val> 11422 <right_val>0.0923924893140793</right_val></_></_> 11423 <_> 11424 <!-- tree 37 --> 11425 <_> 11426 <!-- root node --> 11427 <feature> 11428 <rects> 11429 <_>2 20 12 6 -1.</_> 11430 <_>6 20 4 6 3.</_></rects> 11431 <tilted>0</tilted></feature> 11432 <threshold>-0.1047758013010025</threshold> 11433 <left_val>0.1374094933271408</left_val> 11434 <right_val>-0.0586049407720566</right_val></_></_> 11435 <_> 11436 <!-- tree 38 --> 11437 <_> 11438 <!-- root node --> 11439 <feature> 11440 <rects> 11441 <_>0 10 8 8 -1.</_> 11442 <_>2 10 4 8 2.</_></rects> 11443 <tilted>0</tilted></feature> 11444 <threshold>0.0125585002824664</threshold> 11445 <left_val>0.0944282636046410</left_val> 11446 <right_val>-0.2318764030933380</right_val></_></_> 11447 <_> 11448 <!-- tree 39 --> 11449 <_> 11450 <!-- root node --> 11451 <feature> 11452 <rects> 11453 <_>0 12 14 6 -1.</_> 11454 <_>0 15 14 3 2.</_></rects> 11455 <tilted>0</tilted></feature> 11456 <threshold>2.6465631090104580e-003</threshold> 11457 <left_val>-0.2049358934164047</left_val> 11458 <right_val>0.0928895771503448</right_val></_></_> 11459 <_> 11460 <!-- tree 40 --> 11461 <_> 11462 <!-- root node --> 11463 <feature> 11464 <rects> 11465 <_>1 6 12 16 -1.</_> 11466 <_>1 14 12 8 2.</_></rects> 11467 <tilted>0</tilted></feature> 11468 <threshold>0.2806937992572784</threshold> 11469 <left_val>0.0408484004437923</left_val> 11470 <right_val>-0.4617752134799957</right_val></_></_> 11471 <_> 11472 <!-- tree 41 --> 11473 <_> 11474 <!-- root node --> 11475 <feature> 11476 <rects> 11477 <_>7 7 3 12 -1.</_> 11478 <_>8 7 1 12 3.</_></rects> 11479 <tilted>0</tilted></feature> 11480 <threshold>-0.0458823181688786</threshold> 11481 <left_val>-0.7171555161476135</left_val> 11482 <right_val>9.1696027666330338e-003</right_val></_></_> 11483 <_> 11484 <!-- tree 42 --> 11485 <_> 11486 <!-- root node --> 11487 <feature> 11488 <rects> 11489 <_>0 0 14 3 -1.</_> 11490 <_>0 1 14 1 3.</_></rects> 11491 <tilted>0</tilted></feature> 11492 <threshold>-1.3070689747110009e-003</threshold> 11493 <left_val>0.1625052988529205</left_val> 11494 <right_val>-0.1143703013658524</right_val></_></_> 11495 <_> 11496 <!-- tree 43 --> 11497 <_> 11498 <!-- root node --> 11499 <feature> 11500 <rects> 11501 <_>1 0 13 3 -1.</_> 11502 <_>1 1 13 1 3.</_></rects> 11503 <tilted>0</tilted></feature> 11504 <threshold>6.8374760448932648e-003</threshold> 11505 <left_val>-0.0675647929310799</left_val> 11506 <right_val>0.2192721962928772</right_val></_></_> 11507 <_> 11508 <!-- tree 44 --> 11509 <_> 11510 <!-- root node --> 11511 <feature> 11512 <rects> 11513 <_>0 17 6 7 -1.</_> 11514 <_>2 17 2 7 3.</_></rects> 11515 <tilted>0</tilted></feature> 11516 <threshold>-5.8329561725258827e-003</threshold> 11517 <left_val>-0.3584390878677368</left_val> 11518 <right_val>0.0574676282703877</right_val></_></_> 11519 <_> 11520 <!-- tree 45 --> 11521 <_> 11522 <!-- root node --> 11523 <feature> 11524 <rects> 11525 <_>6 24 6 4 -1.</_> 11526 <_>6 24 3 4 2.</_></rects> 11527 <tilted>0</tilted></feature> 11528 <threshold>-0.0409369990229607</threshold> 11529 <left_val>-0.5512949824333191</left_val> 11530 <right_val>0.0138196200132370</right_val></_></_> 11531 <_> 11532 <!-- tree 46 --> 11533 <_> 11534 <!-- root node --> 11535 <feature> 11536 <rects> 11537 <_>0 9 6 7 -1.</_> 11538 <_>3 9 3 7 2.</_></rects> 11539 <tilted>0</tilted></feature> 11540 <threshold>0.0187274403870106</threshold> 11541 <left_val>-0.0528446398675442</left_val> 11542 <right_val>0.3442713022232056</right_val></_></_> 11543 <_> 11544 <!-- tree 47 --> 11545 <_> 11546 <!-- root node --> 11547 <feature> 11548 <rects> 11549 <_>7 9 6 18 -1.</_> 11550 <_>10 9 3 9 2.</_> 11551 <_>7 18 3 9 2.</_></rects> 11552 <tilted>0</tilted></feature> 11553 <threshold>1.0303989984095097e-003</threshold> 11554 <left_val>-0.0948721468448639</left_val> 11555 <right_val>0.1123586967587471</right_val></_></_> 11556 <_> 11557 <!-- tree 48 --> 11558 <_> 11559 <!-- root node --> 11560 <feature> 11561 <rects> 11562 <_>0 22 12 5 -1.</_> 11563 <_>4 22 4 5 3.</_></rects> 11564 <tilted>0</tilted></feature> 11565 <threshold>-2.6228028582409024e-004</threshold> 11566 <left_val>0.0638755112886429</left_val> 11567 <right_val>-0.3039735853672028</right_val></_></_> 11568 <_> 11569 <!-- tree 49 --> 11570 <_> 11571 <!-- root node --> 11572 <feature> 11573 <rects> 11574 <_>7 9 6 10 -1.</_> 11575 <_>10 9 3 5 2.</_> 11576 <_>7 14 3 5 2.</_></rects> 11577 <tilted>0</tilted></feature> 11578 <threshold>-0.0268611107021570</threshold> 11579 <left_val>0.1759292036294937</left_val> 11580 <right_val>-0.0625069886445999</right_val></_></_> 11581 <_> 11582 <!-- tree 50 --> 11583 <_> 11584 <!-- root node --> 11585 <feature> 11586 <rects> 11587 <_>1 9 6 10 -1.</_> 11588 <_>1 9 3 5 2.</_> 11589 <_>4 14 3 5 2.</_></rects> 11590 <tilted>0</tilted></feature> 11591 <threshold>0.0310612805187702</threshold> 11592 <left_val>-0.0721711292862892</left_val> 11593 <right_val>0.3153252005577087</right_val></_></_> 11594 <_> 11595 <!-- tree 51 --> 11596 <_> 11597 <!-- root node --> 11598 <feature> 11599 <rects> 11600 <_>8 22 4 6 -1.</_> 11601 <_>8 22 2 6 2.</_></rects> 11602 <tilted>0</tilted></feature> 11603 <threshold>-7.1269841864705086e-003</threshold> 11604 <left_val>-0.1254031062126160</left_val> 11605 <right_val>0.1006817966699600</right_val></_></_> 11606 <_> 11607 <!-- tree 52 --> 11608 <_> 11609 <!-- root node --> 11610 <feature> 11611 <rects> 11612 <_>0 16 6 8 -1.</_> 11613 <_>0 16 3 4 2.</_> 11614 <_>3 20 3 4 2.</_></rects> 11615 <tilted>0</tilted></feature> 11616 <threshold>-0.0277093406766653</threshold> 11617 <left_val>-0.8008555173873901</left_val> 11618 <right_val>0.0257421806454659</right_val></_></_> 11619 <_> 11620 <!-- tree 53 --> 11621 <_> 11622 <!-- root node --> 11623 <feature> 11624 <rects> 11625 <_>4 0 6 8 -1.</_> 11626 <_>4 2 6 4 2.</_></rects> 11627 <tilted>0</tilted></feature> 11628 <threshold>0.0422094501554966</threshold> 11629 <left_val>0.0278460700064898</left_val> 11630 <right_val>-0.5614020228385925</right_val></_></_> 11631 <_> 11632 <!-- tree 54 --> 11633 <_> 11634 <!-- root node --> 11635 <feature> 11636 <rects> 11637 <_>5 3 4 9 -1.</_> 11638 <_>5 6 4 3 3.</_></rects> 11639 <tilted>0</tilted></feature> 11640 <threshold>6.2995860353112221e-003</threshold> 11641 <left_val>0.1080691963434219</left_val> 11642 <right_val>-0.2011452019214630</right_val></_></_> 11643 <_> 11644 <!-- tree 55 --> 11645 <_> 11646 <!-- root node --> 11647 <feature> 11648 <rects> 11649 <_>9 8 4 19 -1.</_> 11650 <_>10 8 2 19 2.</_></rects> 11651 <tilted>0</tilted></feature> 11652 <threshold>0.0200487896800041</threshold> 11653 <left_val>-0.0581646189093590</left_val> 11654 <right_val>0.1888546943664551</right_val></_></_> 11655 <_> 11656 <!-- tree 56 --> 11657 <_> 11658 <!-- root node --> 11659 <feature> 11660 <rects> 11661 <_>5 8 4 6 -1.</_> 11662 <_>5 11 4 3 2.</_></rects> 11663 <tilted>0</tilted></feature> 11664 <threshold>-7.8481709351763129e-005</threshold> 11665 <left_val>0.0829957127571106</left_val> 11666 <right_val>-0.2133198976516724</right_val></_></_> 11667 <_> 11668 <!-- tree 57 --> 11669 <_> 11670 <!-- root node --> 11671 <feature> 11672 <rects> 11673 <_>7 2 7 6 -1.</_> 11674 <_>7 4 7 2 3.</_></rects> 11675 <tilted>0</tilted></feature> 11676 <threshold>-0.0899455472826958</threshold> 11677 <left_val>-0.7930771708488464</left_val> 11678 <right_val>7.8350491821765900e-003</right_val></_></_> 11679 <_> 11680 <!-- tree 58 --> 11681 <_> 11682 <!-- root node --> 11683 <feature> 11684 <rects> 11685 <_>0 16 2 12 -1.</_> 11686 <_>1 16 1 12 2.</_></rects> 11687 <tilted>0</tilted></feature> 11688 <threshold>7.7181761153042316e-003</threshold> 11689 <left_val>0.0414350405335426</left_val> 11690 <right_val>-0.3772186040878296</right_val></_></_> 11691 <_> 11692 <!-- tree 59 --> 11693 <_> 11694 <!-- root node --> 11695 <feature> 11696 <rects> 11697 <_>11 0 3 17 -1.</_> 11698 <_>12 0 1 17 3.</_></rects> 11699 <tilted>0</tilted></feature> 11700 <threshold>5.3638177923858166e-003</threshold> 11701 <left_val>-0.0935679376125336</left_val> 11702 <right_val>0.1466635018587112</right_val></_></_> 11703 <_> 11704 <!-- tree 60 --> 11705 <_> 11706 <!-- root node --> 11707 <feature> 11708 <rects> 11709 <_>0 0 3 17 -1.</_> 11710 <_>1 0 1 17 3.</_></rects> 11711 <tilted>0</tilted></feature> 11712 <threshold>0.0145553303882480</threshold> 11713 <left_val>-0.0569892115890980</left_val> 11714 <right_val>0.3436796963214874</right_val></_></_> 11715 <_> 11716 <!-- tree 61 --> 11717 <_> 11718 <!-- root node --> 11719 <feature> 11720 <rects> 11721 <_>5 13 4 14 -1.</_> 11722 <_>5 20 4 7 2.</_></rects> 11723 <tilted>0</tilted></feature> 11724 <threshold>0.1058373004198074</threshold> 11725 <left_val>0.0305793005973101</left_val> 11726 <right_val>-0.5868499875068665</right_val></_></_> 11727 <_> 11728 <!-- tree 62 --> 11729 <_> 11730 <!-- root node --> 11731 <feature> 11732 <rects> 11733 <_>6 15 8 4 -1.</_> 11734 <_>6 15 4 4 2.</_></rects> 11735 <tilted>1</tilted></feature> 11736 <threshold>2.7123570907860994e-004</threshold> 11737 <left_val>0.0854805186390877</left_val> 11738 <right_val>-0.2280874997377396</right_val></_></_> 11739 <_> 11740 <!-- tree 63 --> 11741 <_> 11742 <!-- root node --> 11743 <feature> 11744 <rects> 11745 <_>5 17 8 6 -1.</_> 11746 <_>7 17 4 6 2.</_></rects> 11747 <tilted>0</tilted></feature> 11748 <threshold>-0.0731964334845543</threshold> 11749 <left_val>-0.5121256113052368</left_val> 11750 <right_val>9.6583841368556023e-003</right_val></_></_> 11751 <_> 11752 <!-- tree 64 --> 11753 <_> 11754 <!-- root node --> 11755 <feature> 11756 <rects> 11757 <_>1 17 8 6 -1.</_> 11758 <_>3 17 4 6 2.</_></rects> 11759 <tilted>0</tilted></feature> 11760 <threshold>8.3729642210528255e-004</threshold> 11761 <left_val>-0.1797831952571869</left_val> 11762 <right_val>0.1411747038364410</right_val></_></_> 11763 <_> 11764 <!-- tree 65 --> 11765 <_> 11766 <!-- root node --> 11767 <feature> 11768 <rects> 11769 <_>5 11 4 6 -1.</_> 11770 <_>5 11 2 6 2.</_></rects> 11771 <tilted>0</tilted></feature> 11772 <threshold>1.9459549803286791e-003</threshold> 11773 <left_val>0.0876059383153915</left_val> 11774 <right_val>-0.2044205069541931</right_val></_></_></trees> 11775 <stage_threshold>-0.6855844259262085</stage_threshold> 11776 <parent>22</parent> 11777 <next>-1</next></_> 11778 <_> 11779 <!-- stage 24 --> 11780 <trees> 11781 <_> 11782 <!-- tree 0 --> 11783 <_> 11784 <!-- root node --> 11785 <feature> 11786 <rects> 11787 <_>3 13 8 13 -1.</_> 11788 <_>5 13 4 13 2.</_></rects> 11789 <tilted>0</tilted></feature> 11790 <threshold>-0.0855053663253784</threshold> 11791 <left_val>0.2671464979648590</left_val> 11792 <right_val>-0.1815284937620163</right_val></_></_> 11793 <_> 11794 <!-- tree 1 --> 11795 <_> 11796 <!-- root node --> 11797 <feature> 11798 <rects> 11799 <_>3 6 8 4 -1.</_> 11800 <_>3 8 8 2 2.</_></rects> 11801 <tilted>0</tilted></feature> 11802 <threshold>-0.0370142795145512</threshold> 11803 <left_val>0.3740546107292175</left_val> 11804 <right_val>-0.0703127011656761</right_val></_></_> 11805 <_> 11806 <!-- tree 2 --> 11807 <_> 11808 <!-- root node --> 11809 <feature> 11810 <rects> 11811 <_>7 5 6 4 -1.</_> 11812 <_>7 5 6 2 2.</_></rects> 11813 <tilted>1</tilted></feature> 11814 <threshold>0.0168347805738449</threshold> 11815 <left_val>0.0891601070761681</left_val> 11816 <right_val>-0.2456610053777695</right_val></_></_> 11817 <_> 11818 <!-- tree 3 --> 11819 <_> 11820 <!-- root node --> 11821 <feature> 11822 <rects> 11823 <_>4 9 6 8 -1.</_> 11824 <_>7 9 3 4 2.</_> 11825 <_>4 13 3 4 2.</_></rects> 11826 <tilted>0</tilted></feature> 11827 <threshold>9.7268886747770011e-005</threshold> 11828 <left_val>-0.1983094066381455</left_val> 11829 <right_val>0.1498146951198578</right_val></_></_> 11830 <_> 11831 <!-- tree 4 --> 11832 <_> 11833 <!-- root node --> 11834 <feature> 11835 <rects> 11836 <_>6 4 2 24 -1.</_> 11837 <_>6 4 1 12 2.</_> 11838 <_>7 16 1 12 2.</_></rects> 11839 <tilted>0</tilted></feature> 11840 <threshold>5.2984068170189857e-003</threshold> 11841 <left_val>-0.1577990949153900</left_val> 11842 <right_val>0.1709541976451874</right_val></_></_> 11843 <_> 11844 <!-- tree 5 --> 11845 <_> 11846 <!-- root node --> 11847 <feature> 11848 <rects> 11849 <_>7 24 6 4 -1.</_> 11850 <_>7 24 3 4 2.</_></rects> 11851 <tilted>0</tilted></feature> 11852 <threshold>-0.0237708594650030</threshold> 11853 <left_val>-0.2509627938270569</left_val> 11854 <right_val>0.0327907316386700</right_val></_></_> 11855 <_> 11856 <!-- tree 6 --> 11857 <_> 11858 <!-- root node --> 11859 <feature> 11860 <rects> 11861 <_>7 20 5 3 -1.</_> 11862 <_>6 21 5 1 3.</_></rects> 11863 <tilted>1</tilted></feature> 11864 <threshold>-0.0148529596626759</threshold> 11865 <left_val>0.2726315855979919</left_val> 11866 <right_val>-0.0721883028745651</right_val></_></_> 11867 <_> 11868 <!-- tree 7 --> 11869 <_> 11870 <!-- root node --> 11871 <feature> 11872 <rects> 11873 <_>3 15 9 12 -1.</_> 11874 <_>6 19 3 4 9.</_></rects> 11875 <tilted>0</tilted></feature> 11876 <threshold>-0.0827229693531990</threshold> 11877 <left_val>-0.0668017715215683</left_val> 11878 <right_val>0.1338412016630173</right_val></_></_> 11879 <_> 11880 <!-- tree 8 --> 11881 <_> 11882 <!-- root node --> 11883 <feature> 11884 <rects> 11885 <_>1 20 8 7 -1.</_> 11886 <_>3 20 4 7 2.</_></rects> 11887 <tilted>0</tilted></feature> 11888 <threshold>6.4472708618268371e-004</threshold> 11889 <left_val>-0.1930968016386032</left_val> 11890 <right_val>0.1362846940755844</right_val></_></_> 11891 <_> 11892 <!-- tree 9 --> 11893 <_> 11894 <!-- root node --> 11895 <feature> 11896 <rects> 11897 <_>10 12 2 14 -1.</_> 11898 <_>10 12 1 14 2.</_></rects> 11899 <tilted>0</tilted></feature> 11900 <threshold>-4.3215509504079819e-004</threshold> 11901 <left_val>0.0574269108474255</left_val> 11902 <right_val>-0.0729834362864494</right_val></_></_> 11903 <_> 11904 <!-- tree 10 --> 11905 <_> 11906 <!-- root node --> 11907 <feature> 11908 <rects> 11909 <_>2 12 2 14 -1.</_> 11910 <_>3 12 1 14 2.</_></rects> 11911 <tilted>0</tilted></feature> 11912 <threshold>-7.5133621066925116e-006</threshold> 11913 <left_val>0.1217446997761726</left_val> 11914 <right_val>-0.1816664040088654</right_val></_></_> 11915 <_> 11916 <!-- tree 11 --> 11917 <_> 11918 <!-- root node --> 11919 <feature> 11920 <rects> 11921 <_>3 6 8 4 -1.</_> 11922 <_>3 8 8 2 2.</_></rects> 11923 <tilted>0</tilted></feature> 11924 <threshold>0.0204936098307371</threshold> 11925 <left_val>-0.0616576001048088</left_val> 11926 <right_val>0.3857055008411408</right_val></_></_> 11927 <_> 11928 <!-- tree 12 --> 11929 <_> 11930 <!-- root node --> 11931 <feature> 11932 <rects> 11933 <_>3 9 8 8 -1.</_> 11934 <_>3 9 4 4 2.</_> 11935 <_>7 13 4 4 2.</_></rects> 11936 <tilted>0</tilted></feature> 11937 <threshold>-5.9959441423416138e-003</threshold> 11938 <left_val>-0.1809124946594238</left_val> 11939 <right_val>0.1179118007421494</right_val></_></_> 11940 <_> 11941 <!-- tree 13 --> 11942 <_> 11943 <!-- root node --> 11944 <feature> 11945 <rects> 11946 <_>1 2 12 24 -1.</_> 11947 <_>5 10 4 8 9.</_></rects> 11948 <tilted>0</tilted></feature> 11949 <threshold>-0.9391052126884460</threshold> 11950 <left_val>0.3137440979480743</left_val> 11951 <right_val>-0.0592162981629372</right_val></_></_> 11952 <_> 11953 <!-- tree 14 --> 11954 <_> 11955 <!-- root node --> 11956 <feature> 11957 <rects> 11958 <_>2 8 10 3 -1.</_> 11959 <_>7 8 5 3 2.</_></rects> 11960 <tilted>0</tilted></feature> 11961 <threshold>-0.0243414901196957</threshold> 11962 <left_val>-0.3705335855484009</left_val> 11963 <right_val>0.0552511103451252</right_val></_></_> 11964 <_> 11965 <!-- tree 15 --> 11966 <_> 11967 <!-- root node --> 11968 <feature> 11969 <rects> 11970 <_>4 15 8 8 -1.</_> 11971 <_>6 15 4 8 2.</_></rects> 11972 <tilted>0</tilted></feature> 11973 <threshold>-0.0767967775464058</threshold> 11974 <left_val>0.1375488936901093</left_val> 11975 <right_val>-0.0582019388675690</right_val></_></_> 11976 <_> 11977 <!-- tree 16 --> 11978 <_> 11979 <!-- root node --> 11980 <feature> 11981 <rects> 11982 <_>7 15 4 4 -1.</_> 11983 <_>6 16 4 2 2.</_></rects> 11984 <tilted>1</tilted></feature> 11985 <threshold>-8.2179326564073563e-003</threshold> 11986 <left_val>-0.2567924857139587</left_val> 11987 <right_val>0.0991956964135170</right_val></_></_> 11988 <_> 11989 <!-- tree 17 --> 11990 <_> 11991 <!-- root node --> 11992 <feature> 11993 <rects> 11994 <_>4 12 6 6 -1.</_> 11995 <_>6 12 2 6 3.</_></rects> 11996 <tilted>0</tilted></feature> 11997 <threshold>-0.0517026185989380</threshold> 11998 <left_val>-0.5293763875961304</left_val> 11999 <right_val>0.0272751804441214</right_val></_></_> 12000 <_> 12001 <!-- tree 18 --> 12002 <_> 12003 <!-- root node --> 12004 <feature> 12005 <rects> 12006 <_>4 16 3 12 -1.</_> 12007 <_>5 16 1 12 3.</_></rects> 12008 <tilted>0</tilted></feature> 12009 <threshold>6.3065597787499428e-003</threshold> 12010 <left_val>-0.1040067970752716</left_val> 12011 <right_val>0.2038889974355698</right_val></_></_> 12012 <_> 12013 <!-- tree 19 --> 12014 <_> 12015 <!-- root node --> 12016 <feature> 12017 <rects> 12018 <_>7 8 3 12 -1.</_> 12019 <_>8 8 1 12 3.</_></rects> 12020 <tilted>0</tilted></feature> 12021 <threshold>0.0363370403647423</threshold> 12022 <left_val>0.0131788402795792</left_val> 12023 <right_val>-0.3871706128120422</right_val></_></_> 12024 <_> 12025 <!-- tree 20 --> 12026 <_> 12027 <!-- root node --> 12028 <feature> 12029 <rects> 12030 <_>4 8 3 12 -1.</_> 12031 <_>5 8 1 12 3.</_></rects> 12032 <tilted>0</tilted></feature> 12033 <threshold>-2.7929339557886124e-003</threshold> 12034 <left_val>0.1235100030899048</left_val> 12035 <right_val>-0.2046077996492386</right_val></_></_> 12036 <_> 12037 <!-- tree 21 --> 12038 <_> 12039 <!-- root node --> 12040 <feature> 12041 <rects> 12042 <_>10 17 4 6 -1.</_> 12043 <_>10 17 2 6 2.</_></rects> 12044 <tilted>0</tilted></feature> 12045 <threshold>-0.0144353797659278</threshold> 12046 <left_val>-0.5011137723922730</left_val> 12047 <right_val>0.0372625403106213</right_val></_></_> 12048 <_> 12049 <!-- tree 22 --> 12050 <_> 12051 <!-- root node --> 12052 <feature> 12053 <rects> 12054 <_>5 4 2 24 -1.</_> 12055 <_>5 4 1 12 2.</_> 12056 <_>6 16 1 12 2.</_></rects> 12057 <tilted>0</tilted></feature> 12058 <threshold>6.4411992207169533e-003</threshold> 12059 <left_val>-0.0605571903288364</left_val> 12060 <right_val>0.3057847023010254</right_val></_></_> 12061 <_> 12062 <!-- tree 23 --> 12063 <_> 12064 <!-- root node --> 12065 <feature> 12066 <rects> 12067 <_>6 25 8 3 -1.</_> 12068 <_>6 25 4 3 2.</_></rects> 12069 <tilted>0</tilted></feature> 12070 <threshold>-1.2598140165209770e-003</threshold> 12071 <left_val>0.0532007515430450</left_val> 12072 <right_val>-0.1691620051860809</right_val></_></_> 12073 <_> 12074 <!-- tree 24 --> 12075 <_> 12076 <!-- root node --> 12077 <feature> 12078 <rects> 12079 <_>0 17 4 6 -1.</_> 12080 <_>2 17 2 6 2.</_></rects> 12081 <tilted>0</tilted></feature> 12082 <threshold>-6.9105648435652256e-003</threshold> 12083 <left_val>-0.3639864921569824</left_val> 12084 <right_val>0.0428431518375874</right_val></_></_> 12085 <_> 12086 <!-- tree 25 --> 12087 <_> 12088 <!-- root node --> 12089 <feature> 12090 <rects> 12091 <_>8 11 6 12 -1.</_> 12092 <_>11 11 3 6 2.</_> 12093 <_>8 17 3 6 2.</_></rects> 12094 <tilted>0</tilted></feature> 12095 <threshold>-0.0526631101965904</threshold> 12096 <left_val>0.4416917860507965</left_val> 12097 <right_val>-0.0320968292653561</right_val></_></_> 12098 <_> 12099 <!-- tree 26 --> 12100 <_> 12101 <!-- root node --> 12102 <feature> 12103 <rects> 12104 <_>3 7 3 10 -1.</_> 12105 <_>3 12 3 5 2.</_></rects> 12106 <tilted>0</tilted></feature> 12107 <threshold>-0.0409250594675541</threshold> 12108 <left_val>-0.5567336082458496</left_val> 12109 <right_val>0.0291916895657778</right_val></_></_> 12110 <_> 12111 <!-- tree 27 --> 12112 <_> 12113 <!-- root node --> 12114 <feature> 12115 <rects> 12116 <_>7 6 4 6 -1.</_> 12117 <_>7 6 4 3 2.</_></rects> 12118 <tilted>1</tilted></feature> 12119 <threshold>-2.1683140657842159e-003</threshold> 12120 <left_val>0.0665858536958694</left_val> 12121 <right_val>-0.1171517968177795</right_val></_></_> 12122 <_> 12123 <!-- tree 28 --> 12124 <_> 12125 <!-- root node --> 12126 <feature> 12127 <rects> 12128 <_>1 7 10 3 -1.</_> 12129 <_>6 7 5 3 2.</_></rects> 12130 <tilted>0</tilted></feature> 12131 <threshold>0.0174809191375971</threshold> 12132 <left_val>-0.0677478536963463</left_val> 12133 <right_val>0.3422436118125916</right_val></_></_> 12134 <_> 12135 <!-- tree 29 --> 12136 <_> 12137 <!-- root node --> 12138 <feature> 12139 <rects> 12140 <_>7 6 4 6 -1.</_> 12141 <_>7 6 4 3 2.</_></rects> 12142 <tilted>1</tilted></feature> 12143 <threshold>0.1303298026323319</threshold> 12144 <left_val>0.0108534395694733</left_val> 12145 <right_val>-0.5989474058151245</right_val></_></_> 12146 <_> 12147 <!-- tree 30 --> 12148 <_> 12149 <!-- root node --> 12150 <feature> 12151 <rects> 12152 <_>7 6 6 4 -1.</_> 12153 <_>7 6 3 4 2.</_></rects> 12154 <tilted>1</tilted></feature> 12155 <threshold>5.1362451631575823e-004</threshold> 12156 <left_val>-0.1881096959114075</left_val> 12157 <right_val>0.1093890964984894</right_val></_></_> 12158 <_> 12159 <!-- tree 31 --> 12160 <_> 12161 <!-- root node --> 12162 <feature> 12163 <rects> 12164 <_>7 0 4 6 -1.</_> 12165 <_>7 3 4 3 2.</_></rects> 12166 <tilted>0</tilted></feature> 12167 <threshold>-0.0387644208967686</threshold> 12168 <left_val>-0.2692834138870239</left_val> 12169 <right_val>0.0201565697789192</right_val></_></_> 12170 <_> 12171 <!-- tree 32 --> 12172 <_> 12173 <!-- root node --> 12174 <feature> 12175 <rects> 12176 <_>4 6 6 8 -1.</_> 12177 <_>4 6 3 4 2.</_> 12178 <_>7 10 3 4 2.</_></rects> 12179 <tilted>0</tilted></feature> 12180 <threshold>-4.8952922224998474e-003</threshold> 12181 <left_val>-0.2367085069417954</left_val> 12182 <right_val>0.0706935375928879</right_val></_></_> 12183 <_> 12184 <!-- tree 33 --> 12185 <_> 12186 <!-- root node --> 12187 <feature> 12188 <rects> 12189 <_>8 12 6 16 -1.</_> 12190 <_>8 20 6 8 2.</_></rects> 12191 <tilted>0</tilted></feature> 12192 <threshold>0.0843806117773056</threshold> 12193 <left_val>-0.0617771111428738</left_val> 12194 <right_val>0.1513081938028336</right_val></_></_> 12195 <_> 12196 <!-- tree 34 --> 12197 <_> 12198 <!-- root node --> 12199 <feature> 12200 <rects> 12201 <_>0 4 10 3 -1.</_> 12202 <_>5 4 5 3 2.</_></rects> 12203 <tilted>0</tilted></feature> 12204 <threshold>-0.0548328608274460</threshold> 12205 <left_val>-0.4994516074657440</left_val> 12206 <right_val>0.0359158106148243</right_val></_></_> 12207 <_> 12208 <!-- tree 35 --> 12209 <_> 12210 <!-- root node --> 12211 <feature> 12212 <rects> 12213 <_>8 2 4 13 -1.</_> 12214 <_>8 2 2 13 2.</_></rects> 12215 <tilted>0</tilted></feature> 12216 <threshold>-5.4148300550878048e-003</threshold> 12217 <left_val>0.0821169093251228</left_val> 12218 <right_val>-0.1367274969816208</right_val></_></_> 12219 <_> 12220 <!-- tree 36 --> 12221 <_> 12222 <!-- root node --> 12223 <feature> 12224 <rects> 12225 <_>1 1 10 14 -1.</_> 12226 <_>1 1 5 7 2.</_> 12227 <_>6 8 5 7 2.</_></rects> 12228 <tilted>0</tilted></feature> 12229 <threshold>0.1281372010707855</threshold> 12230 <left_val>-0.0397552810609341</left_val> 12231 <right_val>0.6034091114997864</right_val></_></_> 12232 <_> 12233 <!-- tree 37 --> 12234 <_> 12235 <!-- root node --> 12236 <feature> 12237 <rects> 12238 <_>6 25 8 3 -1.</_> 12239 <_>6 25 4 3 2.</_></rects> 12240 <tilted>0</tilted></feature> 12241 <threshold>-4.4217561371624470e-003</threshold> 12242 <left_val>-0.0746426135301590</left_val> 12243 <right_val>0.1023570001125336</right_val></_></_> 12244 <_> 12245 <!-- tree 38 --> 12246 <_> 12247 <!-- root node --> 12248 <feature> 12249 <rects> 12250 <_>0 25 8 3 -1.</_> 12251 <_>4 25 4 3 2.</_></rects> 12252 <tilted>0</tilted></feature> 12253 <threshold>-7.1978997766564135e-006</threshold> 12254 <left_val>0.0745955929160118</left_val> 12255 <right_val>-0.2904655933380127</right_val></_></_> 12256 <_> 12257 <!-- tree 39 --> 12258 <_> 12259 <!-- root node --> 12260 <feature> 12261 <rects> 12262 <_>6 13 3 13 -1.</_> 12263 <_>7 13 1 13 3.</_></rects> 12264 <tilted>0</tilted></feature> 12265 <threshold>0.0733218863606453</threshold> 12266 <left_val>-0.0213644690811634</left_val> 12267 <right_val>0.6980969905853272</right_val></_></_> 12268 <_> 12269 <!-- tree 40 --> 12270 <_> 12271 <!-- root node --> 12272 <feature> 12273 <rects> 12274 <_>1 24 6 4 -1.</_> 12275 <_>4 24 3 4 2.</_></rects> 12276 <tilted>0</tilted></feature> 12277 <threshold>-0.0225664693862200</threshold> 12278 <left_val>-0.5371477007865906</left_val> 12279 <right_val>0.0365099683403969</right_val></_></_> 12280 <_> 12281 <!-- tree 41 --> 12282 <_> 12283 <!-- root node --> 12284 <feature> 12285 <rects> 12286 <_>8 8 4 7 -1.</_> 12287 <_>8 8 2 7 2.</_></rects> 12288 <tilted>0</tilted></feature> 12289 <threshold>-0.0293380804359913</threshold> 12290 <left_val>0.1062619984149933</left_val> 12291 <right_val>-0.0316522903740406</right_val></_></_> 12292 <_> 12293 <!-- tree 42 --> 12294 <_> 12295 <!-- root node --> 12296 <feature> 12297 <rects> 12298 <_>0 7 12 3 -1.</_> 12299 <_>0 8 12 1 3.</_></rects> 12300 <tilted>0</tilted></feature> 12301 <threshold>0.0136840902268887</threshold> 12302 <left_val>-0.0577095411717892</left_val> 12303 <right_val>0.3035565018653870</right_val></_></_> 12304 <_> 12305 <!-- tree 43 --> 12306 <_> 12307 <!-- root node --> 12308 <feature> 12309 <rects> 12310 <_>4 6 6 6 -1.</_> 12311 <_>4 8 6 2 3.</_></rects> 12312 <tilted>0</tilted></feature> 12313 <threshold>-8.2646618830040097e-004</threshold> 12314 <left_val>0.1295858025550842</left_val> 12315 <right_val>-0.1360308974981308</right_val></_></_> 12316 <_> 12317 <!-- tree 44 --> 12318 <_> 12319 <!-- root node --> 12320 <feature> 12321 <rects> 12322 <_>3 9 7 4 -1.</_> 12323 <_>3 11 7 2 2.</_></rects> 12324 <tilted>0</tilted></feature> 12325 <threshold>3.9828647859394550e-003</threshold> 12326 <left_val>0.0507346689701080</left_val> 12327 <right_val>-0.3389672935009003</right_val></_></_> 12328 <_> 12329 <!-- tree 45 --> 12330 <_> 12331 <!-- root node --> 12332 <feature> 12333 <rects> 12334 <_>5 7 4 18 -1.</_> 12335 <_>5 16 4 9 2.</_></rects> 12336 <tilted>0</tilted></feature> 12337 <threshold>-0.0205359794199467</threshold> 12338 <left_val>0.2602849006652832</left_val> 12339 <right_val>-0.0722593963146210</right_val></_></_> 12340 <_> 12341 <!-- tree 46 --> 12342 <_> 12343 <!-- root node --> 12344 <feature> 12345 <rects> 12346 <_>4 1 5 26 -1.</_> 12347 <_>4 14 5 13 2.</_></rects> 12348 <tilted>0</tilted></feature> 12349 <threshold>-0.1493218988180161</threshold> 12350 <left_val>-0.5417259931564331</left_val> 12351 <right_val>0.0445343889296055</right_val></_></_> 12352 <_> 12353 <!-- tree 47 --> 12354 <_> 12355 <!-- root node --> 12356 <feature> 12357 <rects> 12358 <_>6 22 8 6 -1.</_> 12359 <_>10 22 4 3 2.</_> 12360 <_>6 25 4 3 2.</_></rects> 12361 <tilted>0</tilted></feature> 12362 <threshold>-0.0178947895765305</threshold> 12363 <left_val>0.4714992940425873</left_val> 12364 <right_val>-0.0308010708540678</right_val></_></_> 12365 <_> 12366 <!-- tree 48 --> 12367 <_> 12368 <!-- root node --> 12369 <feature> 12370 <rects> 12371 <_>0 22 8 6 -1.</_> 12372 <_>0 22 4 3 2.</_> 12373 <_>4 25 4 3 2.</_></rects> 12374 <tilted>0</tilted></feature> 12375 <threshold>4.7443818766623735e-004</threshold> 12376 <left_val>-0.1968698948621750</left_val> 12377 <right_val>0.1243302002549171</right_val></_></_> 12378 <_> 12379 <!-- tree 49 --> 12380 <_> 12381 <!-- root node --> 12382 <feature> 12383 <rects> 12384 <_>5 21 8 6 -1.</_> 12385 <_>9 21 4 3 2.</_> 12386 <_>5 24 4 3 2.</_></rects> 12387 <tilted>0</tilted></feature> 12388 <threshold>-4.0598851628601551e-003</threshold> 12389 <left_val>0.1402866989374161</left_val> 12390 <right_val>-0.0477513298392296</right_val></_></_> 12391 <_> 12392 <!-- tree 50 --> 12393 <_> 12394 <!-- root node --> 12395 <feature> 12396 <rects> 12397 <_>3 0 6 4 -1.</_> 12398 <_>6 0 3 4 2.</_></rects> 12399 <tilted>0</tilted></feature> 12400 <threshold>-0.0117557998746634</threshold> 12401 <left_val>-0.2623791098594666</left_val> 12402 <right_val>0.0599330700933933</right_val></_></_> 12403 <_> 12404 <!-- tree 51 --> 12405 <_> 12406 <!-- root node --> 12407 <feature> 12408 <rects> 12409 <_>6 1 6 5 -1.</_> 12410 <_>6 1 3 5 2.</_></rects> 12411 <tilted>0</tilted></feature> 12412 <threshold>-0.0185596495866776</threshold> 12413 <left_val>0.1049325019121170</left_val> 12414 <right_val>-0.0321592614054680</right_val></_></_> 12415 <_> 12416 <!-- tree 52 --> 12417 <_> 12418 <!-- root node --> 12419 <feature> 12420 <rects> 12421 <_>5 6 4 12 -1.</_> 12422 <_>6 6 2 12 2.</_></rects> 12423 <tilted>0</tilted></feature> 12424 <threshold>3.4838409628719091e-003</threshold> 12425 <left_val>0.0794998928904533</left_val> 12426 <right_val>-0.2048601061105728</right_val></_></_> 12427 <_> 12428 <!-- tree 53 --> 12429 <_> 12430 <!-- root node --> 12431 <feature> 12432 <rects> 12433 <_>8 8 4 7 -1.</_> 12434 <_>8 8 2 7 2.</_></rects> 12435 <tilted>0</tilted></feature> 12436 <threshold>-0.0621333085000515</threshold> 12437 <left_val>-0.3509109020233154</left_val> 12438 <right_val>0.0122655602172017</right_val></_></_> 12439 <_> 12440 <!-- tree 54 --> 12441 <_> 12442 <!-- root node --> 12443 <feature> 12444 <rects> 12445 <_>2 8 4 7 -1.</_> 12446 <_>4 8 2 7 2.</_></rects> 12447 <tilted>0</tilted></feature> 12448 <threshold>-0.0440086685121059</threshold> 12449 <left_val>0.2683838903903961</left_val> 12450 <right_val>-0.0882848873734474</right_val></_></_> 12451 <_> 12452 <!-- tree 55 --> 12453 <_> 12454 <!-- root node --> 12455 <feature> 12456 <rects> 12457 <_>6 12 8 3 -1.</_> 12458 <_>6 12 4 3 2.</_></rects> 12459 <tilted>0</tilted></feature> 12460 <threshold>3.0750890728086233e-003</threshold> 12461 <left_val>-0.0455819293856621</left_val> 12462 <right_val>0.1934330016374588</right_val></_></_> 12463 <_> 12464 <!-- tree 56 --> 12465 <_> 12466 <!-- root node --> 12467 <feature> 12468 <rects> 12469 <_>1 11 9 5 -1.</_> 12470 <_>4 11 3 5 3.</_></rects> 12471 <tilted>0</tilted></feature> 12472 <threshold>-0.0898653715848923</threshold> 12473 <left_val>-0.4860535860061646</left_val> 12474 <right_val>0.0451018810272217</right_val></_></_> 12475 <_> 12476 <!-- tree 57 --> 12477 <_> 12478 <!-- root node --> 12479 <feature> 12480 <rects> 12481 <_>10 3 4 14 -1.</_> 12482 <_>12 3 2 7 2.</_> 12483 <_>10 10 2 7 2.</_></rects> 12484 <tilted>0</tilted></feature> 12485 <threshold>-1.6210540197789669e-003</threshold> 12486 <left_val>0.0877222567796707</left_val> 12487 <right_val>-0.1668934971094132</right_val></_></_> 12488 <_> 12489 <!-- tree 58 --> 12490 <_> 12491 <!-- root node --> 12492 <feature> 12493 <rects> 12494 <_>0 2 4 14 -1.</_> 12495 <_>0 2 2 7 2.</_> 12496 <_>2 9 2 7 2.</_></rects> 12497 <tilted>0</tilted></feature> 12498 <threshold>-0.0293709393590689</threshold> 12499 <left_val>-0.4279470145702362</left_val> 12500 <right_val>0.0455667898058891</right_val></_></_> 12501 <_> 12502 <!-- tree 59 --> 12503 <_> 12504 <!-- root node --> 12505 <feature> 12506 <rects> 12507 <_>1 9 13 6 -1.</_> 12508 <_>1 11 13 2 3.</_></rects> 12509 <tilted>0</tilted></feature> 12510 <threshold>-0.0859218165278435</threshold> 12511 <left_val>-0.6907737851142883</left_val> 12512 <right_val>0.0151229295879602</right_val></_></_> 12513 <_> 12514 <!-- tree 60 --> 12515 <_> 12516 <!-- root node --> 12517 <feature> 12518 <rects> 12519 <_>7 17 4 2 -1.</_> 12520 <_>7 17 4 1 2.</_></rects> 12521 <tilted>1</tilted></feature> 12522 <threshold>6.7258282797411084e-004</threshold> 12523 <left_val>-0.1116608977317810</left_val> 12524 <right_val>0.1563075929880142</right_val></_></_> 12525 <_> 12526 <!-- tree 61 --> 12527 <_> 12528 <!-- root node --> 12529 <feature> 12530 <rects> 12531 <_>10 15 3 6 -1.</_> 12532 <_>11 16 1 6 3.</_></rects> 12533 <tilted>1</tilted></feature> 12534 <threshold>1.7752440180629492e-003</threshold> 12535 <left_val>-0.0454094186425209</left_val> 12536 <right_val>0.0779330879449844</right_val></_></_> 12537 <_> 12538 <!-- tree 62 --> 12539 <_> 12540 <!-- root node --> 12541 <feature> 12542 <rects> 12543 <_>4 15 6 3 -1.</_> 12544 <_>3 16 6 1 3.</_></rects> 12545 <tilted>1</tilted></feature> 12546 <threshold>1.5036190234241076e-005</threshold> 12547 <left_val>-0.1634947955608368</left_val> 12548 <right_val>0.1086442023515701</right_val></_></_> 12549 <_> 12550 <!-- tree 63 --> 12551 <_> 12552 <!-- root node --> 12553 <feature> 12554 <rects> 12555 <_>7 19 2 7 -1.</_> 12556 <_>7 19 1 7 2.</_></rects> 12557 <tilted>1</tilted></feature> 12558 <threshold>1.8150300020352006e-003</threshold> 12559 <left_val>0.0963299125432968</left_val> 12560 <right_val>-0.1181806027889252</right_val></_></_> 12561 <_> 12562 <!-- tree 64 --> 12563 <_> 12564 <!-- root node --> 12565 <feature> 12566 <rects> 12567 <_>0 18 12 9 -1.</_> 12568 <_>3 18 6 9 2.</_></rects> 12569 <tilted>0</tilted></feature> 12570 <threshold>-0.0675883665680885</threshold> 12571 <left_val>0.2265702039003372</left_val> 12572 <right_val>-0.0904929265379906</right_val></_></_> 12573 <_> 12574 <!-- tree 65 --> 12575 <_> 12576 <!-- root node --> 12577 <feature> 12578 <rects> 12579 <_>7 19 2 7 -1.</_> 12580 <_>7 19 1 7 2.</_></rects> 12581 <tilted>1</tilted></feature> 12582 <threshold>0.0183474905788898</threshold> 12583 <left_val>0.0163501407951117</left_val> 12584 <right_val>-0.4487788081169128</right_val></_></_> 12585 <_> 12586 <!-- tree 66 --> 12587 <_> 12588 <!-- root node --> 12589 <feature> 12590 <rects> 12591 <_>7 19 7 2 -1.</_> 12592 <_>7 19 7 1 2.</_></rects> 12593 <tilted>1</tilted></feature> 12594 <threshold>-0.0108225103467703</threshold> 12595 <left_val>-0.4962235093116760</left_val> 12596 <right_val>0.0407033301889896</right_val></_></_> 12597 <_> 12598 <!-- tree 67 --> 12599 <_> 12600 <!-- root node --> 12601 <feature> 12602 <rects> 12603 <_>7 15 3 13 -1.</_> 12604 <_>8 15 1 13 3.</_></rects> 12605 <tilted>0</tilted></feature> 12606 <threshold>0.0174279995262623</threshold> 12607 <left_val>-0.0354756899178028</left_val> 12608 <right_val>0.3085643053054810</right_val></_></_> 12609 <_> 12610 <!-- tree 68 --> 12611 <_> 12612 <!-- root node --> 12613 <feature> 12614 <rects> 12615 <_>2 16 8 7 -1.</_> 12616 <_>4 16 4 7 2.</_></rects> 12617 <tilted>0</tilted></feature> 12618 <threshold>-0.0787531211972237</threshold> 12619 <left_val>-0.6714407801628113</left_val> 12620 <right_val>0.0261704698204994</right_val></_></_> 12621 <_> 12622 <!-- tree 69 --> 12623 <_> 12624 <!-- root node --> 12625 <feature> 12626 <rects> 12627 <_>4 21 10 6 -1.</_> 12628 <_>9 21 5 3 2.</_> 12629 <_>4 24 5 3 2.</_></rects> 12630 <tilted>0</tilted></feature> 12631 <threshold>7.3261657962575555e-004</threshold> 12632 <left_val>-0.1030958965420723</left_val> 12633 <right_val>0.0645039826631546</right_val></_></_> 12634 <_> 12635 <!-- tree 70 --> 12636 <_> 12637 <!-- root node --> 12638 <feature> 12639 <rects> 12640 <_>0 21 10 6 -1.</_> 12641 <_>0 21 5 3 2.</_> 12642 <_>5 24 5 3 2.</_></rects> 12643 <tilted>0</tilted></feature> 12644 <threshold>0.0281850099563599</threshold> 12645 <left_val>-0.0551248118281364</left_val> 12646 <right_val>0.3113391995429993</right_val></_></_> 12647 <_> 12648 <!-- tree 71 --> 12649 <_> 12650 <!-- root node --> 12651 <feature> 12652 <rects> 12653 <_>8 14 6 7 -1.</_> 12654 <_>10 16 2 7 3.</_></rects> 12655 <tilted>1</tilted></feature> 12656 <threshold>-0.0155364703387022</threshold> 12657 <left_val>-0.0855273008346558</left_val> 12658 <right_val>0.0490242093801498</right_val></_></_> 12659 <_> 12660 <!-- tree 72 --> 12661 <_> 12662 <!-- root node --> 12663 <feature> 12664 <rects> 12665 <_>0 20 12 4 -1.</_> 12666 <_>0 20 6 2 2.</_> 12667 <_>6 22 6 2 2.</_></rects> 12668 <tilted>0</tilted></feature> 12669 <threshold>-0.0262907296419144</threshold> 12670 <left_val>-0.6526719927787781</left_val> 12671 <right_val>0.0244957599788904</right_val></_></_> 12672 <_> 12673 <!-- tree 73 --> 12674 <_> 12675 <!-- root node --> 12676 <feature> 12677 <rects> 12678 <_>1 14 12 10 -1.</_> 12679 <_>4 14 6 10 2.</_></rects> 12680 <tilted>0</tilted></feature> 12681 <threshold>-6.8586082197725773e-003</threshold> 12682 <left_val>-0.0585488304495811</left_val> 12683 <right_val>0.2873598933219910</right_val></_></_> 12684 <_> 12685 <!-- tree 74 --> 12686 <_> 12687 <!-- root node --> 12688 <feature> 12689 <rects> 12690 <_>3 18 6 4 -1.</_> 12691 <_>6 18 3 4 2.</_></rects> 12692 <tilted>0</tilted></feature> 12693 <threshold>-3.0750960577279329e-003</threshold> 12694 <left_val>0.0864257365465164</left_val> 12695 <right_val>-0.2262724936008453</right_val></_></_> 12696 <_> 12697 <!-- tree 75 --> 12698 <_> 12699 <!-- root node --> 12700 <feature> 12701 <rects> 12702 <_>11 11 2 16 -1.</_> 12703 <_>11 19 2 8 2.</_></rects> 12704 <tilted>0</tilted></feature> 12705 <threshold>0.0567994304001331</threshold> 12706 <left_val>0.0290484596043825</left_val> 12707 <right_val>-0.3679820001125336</right_val></_></_> 12708 <_> 12709 <!-- tree 76 --> 12710 <_> 12711 <!-- root node --> 12712 <feature> 12713 <rects> 12714 <_>3 10 6 14 -1.</_> 12715 <_>3 10 3 7 2.</_> 12716 <_>6 17 3 7 2.</_></rects> 12717 <tilted>0</tilted></feature> 12718 <threshold>0.0371825993061066</threshold> 12719 <left_val>-0.0350622795522213</left_val> 12720 <right_val>0.4509462118148804</right_val></_></_> 12721 <_> 12722 <!-- tree 77 --> 12723 <_> 12724 <!-- root node --> 12725 <feature> 12726 <rects> 12727 <_>6 9 4 6 -1.</_> 12728 <_>6 9 2 6 2.</_></rects> 12729 <tilted>0</tilted></feature> 12730 <threshold>-3.5590359475463629e-003</threshold> 12731 <left_val>-0.1789246946573257</left_val> 12732 <right_val>0.0684595182538033</right_val></_></_></trees> 12733 <stage_threshold>-30.7173004150390630</stage_threshold> 12734 <parent>23</parent> 12735 <next>-1</next></_> 12736 <_> 12737 <!-- stage 25 --> 12738 <trees> 12739 <_> 12740 <!-- tree 0 --> 12741 <_> 12742 <!-- root node --> 12743 <feature> 12744 <rects> 12745 <_>5 16 3 12 -1.</_> 12746 <_>6 16 1 12 3.</_></rects> 12747 <tilted>0</tilted></feature> 12748 <threshold>-5.8595160953700542e-003</threshold> 12749 <left_val>0.2013258934020996</left_val> 12750 <right_val>-0.2658714056015015</right_val></_></_> 12751 <_> 12752 <!-- tree 1 --> 12753 <_> 12754 <!-- root node --> 12755 <feature> 12756 <rects> 12757 <_>2 3 12 18 -1.</_> 12758 <_>6 9 4 6 9.</_></rects> 12759 <tilted>0</tilted></feature> 12760 <threshold>-0.5950713753700256</threshold> 12761 <left_val>0.3613406121730804</left_val> 12762 <right_val>-0.1220315992832184</right_val></_></_> 12763 <_> 12764 <!-- tree 2 --> 12765 <_> 12766 <!-- root node --> 12767 <feature> 12768 <rects> 12769 <_>3 4 6 10 -1.</_> 12770 <_>3 4 3 5 2.</_> 12771 <_>6 9 3 5 2.</_></rects> 12772 <tilted>0</tilted></feature> 12773 <threshold>0.0417266003787518</threshold> 12774 <left_val>-0.0528890006244183</left_val> 12775 <right_val>0.3908247053623200</right_val></_></_> 12776 <_> 12777 <!-- tree 3 --> 12778 <_> 12779 <!-- root node --> 12780 <feature> 12781 <rects> 12782 <_>7 18 6 4 -1.</_> 12783 <_>7 18 6 2 2.</_></rects> 12784 <tilted>1</tilted></feature> 12785 <threshold>0.0472537502646446</threshold> 12786 <left_val>0.0149239096790552</left_val> 12787 <right_val>-0.5054414868354797</right_val></_></_> 12788 <_> 12789 <!-- tree 4 --> 12790 <_> 12791 <!-- root node --> 12792 <feature> 12793 <rects> 12794 <_>7 18 4 6 -1.</_> 12795 <_>7 18 2 6 2.</_></rects> 12796 <tilted>1</tilted></feature> 12797 <threshold>9.8612194415181875e-004</threshold> 12798 <left_val>-0.2033773958683014</left_val> 12799 <right_val>0.1103067025542259</right_val></_></_> 12800 <_> 12801 <!-- tree 5 --> 12802 <_> 12803 <!-- root node --> 12804 <feature> 12805 <rects> 12806 <_>5 8 4 13 -1.</_> 12807 <_>6 8 2 13 2.</_></rects> 12808 <tilted>0</tilted></feature> 12809 <threshold>-7.2683179751038551e-003</threshold> 12810 <left_val>-0.2089924067258835</left_val> 12811 <right_val>0.1473315060138702</right_val></_></_> 12812 <_> 12813 <!-- tree 6 --> 12814 <_> 12815 <!-- root node --> 12816 <feature> 12817 <rects> 12818 <_>2 6 3 12 -1.</_> 12819 <_>3 6 1 12 3.</_></rects> 12820 <tilted>0</tilted></feature> 12821 <threshold>-0.0296954102814198</threshold> 12822 <left_val>0.6619029045104981</left_val> 12823 <right_val>-0.0672576203942299</right_val></_></_> 12824 <_> 12825 <!-- tree 7 --> 12826 <_> 12827 <!-- root node --> 12828 <feature> 12829 <rects> 12830 <_>2 15 12 12 -1.</_> 12831 <_>5 15 6 12 2.</_></rects> 12832 <tilted>0</tilted></feature> 12833 <threshold>-0.1309722959995270</threshold> 12834 <left_val>0.1748578995466232</left_val> 12835 <right_val>-0.0810295715928078</right_val></_></_> 12836 <_> 12837 <!-- tree 8 --> 12838 <_> 12839 <!-- root node --> 12840 <feature> 12841 <rects> 12842 <_>4 15 4 12 -1.</_> 12843 <_>5 15 2 12 2.</_></rects> 12844 <tilted>0</tilted></feature> 12845 <threshold>0.0173167604953051</threshold> 12846 <left_val>-0.0489086806774139</left_val> 12847 <right_val>0.4684366881847382</right_val></_></_> 12848 <_> 12849 <!-- tree 9 --> 12850 <_> 12851 <!-- root node --> 12852 <feature> 12853 <rects> 12854 <_>4 19 9 9 -1.</_> 12855 <_>7 19 3 9 3.</_></rects> 12856 <tilted>0</tilted></feature> 12857 <threshold>-0.1022140979766846</threshold> 12858 <left_val>-0.2227514982223511</left_val> 12859 <right_val>0.0774796381592751</right_val></_></_> 12860 <_> 12861 <!-- tree 10 --> 12862 <_> 12863 <!-- root node --> 12864 <feature> 12865 <rects> 12866 <_>7 16 5 4 -1.</_> 12867 <_>6 17 5 2 2.</_></rects> 12868 <tilted>1</tilted></feature> 12869 <threshold>2.9453460592776537e-003</threshold> 12870 <left_val>0.0397382788360119</left_val> 12871 <right_val>-0.2810744941234589</right_val></_></_> 12872 <_> 12873 <!-- tree 11 --> 12874 <_> 12875 <!-- root node --> 12876 <feature> 12877 <rects> 12878 <_>6 14 6 8 -1.</_> 12879 <_>9 14 3 4 2.</_> 12880 <_>6 18 3 4 2.</_></rects> 12881 <tilted>0</tilted></feature> 12882 <threshold>-0.0454255901277065</threshold> 12883 <left_val>0.2419378012418747</left_val> 12884 <right_val>0.0136219495907426</right_val></_></_> 12885 <_> 12886 <!-- tree 12 --> 12887 <_> 12888 <!-- root node --> 12889 <feature> 12890 <rects> 12891 <_>2 14 6 8 -1.</_> 12892 <_>2 14 3 4 2.</_> 12893 <_>5 18 3 4 2.</_></rects> 12894 <tilted>0</tilted></feature> 12895 <threshold>2.2699350956827402e-003</threshold> 12896 <left_val>-0.1624758988618851</left_val> 12897 <right_val>0.1606360971927643</right_val></_></_> 12898 <_> 12899 <!-- tree 13 --> 12900 <_> 12901 <!-- root node --> 12902 <feature> 12903 <rects> 12904 <_>3 2 10 16 -1.</_> 12905 <_>8 2 5 8 2.</_> 12906 <_>3 10 5 8 2.</_></rects> 12907 <tilted>0</tilted></feature> 12908 <threshold>0.1142186969518662</threshold> 12909 <left_val>0.0157504808157682</left_val> 12910 <right_val>-0.5738288760185242</right_val></_></_> 12911 <_> 12912 <!-- tree 14 --> 12913 <_> 12914 <!-- root node --> 12915 <feature> 12916 <rects> 12917 <_>5 15 3 12 -1.</_> 12918 <_>6 15 1 12 3.</_></rects> 12919 <tilted>0</tilted></feature> 12920 <threshold>-0.0410540699958801</threshold> 12921 <left_val>0.3052262961864471</left_val> 12922 <right_val>-0.0558989606797695</right_val></_></_> 12923 <_> 12924 <!-- tree 15 --> 12925 <_> 12926 <!-- root node --> 12927 <feature> 12928 <rects> 12929 <_>8 23 6 4 -1.</_> 12930 <_>8 23 3 4 2.</_></rects> 12931 <tilted>0</tilted></feature> 12932 <threshold>0.0119805401191115</threshold> 12933 <left_val>0.0174771696329117</left_val> 12934 <right_val>-0.4070706963539124</right_val></_></_> 12935 <_> 12936 <!-- tree 16 --> 12937 <_> 12938 <!-- root node --> 12939 <feature> 12940 <rects> 12941 <_>4 2 4 14 -1.</_> 12942 <_>4 2 2 7 2.</_> 12943 <_>6 9 2 7 2.</_></rects> 12944 <tilted>0</tilted></feature> 12945 <threshold>1.2105259811505675e-003</threshold> 12946 <left_val>-0.1784096062183380</left_val> 12947 <right_val>0.1035320982336998</right_val></_></_> 12948 <_> 12949 <!-- tree 17 --> 12950 <_> 12951 <!-- root node --> 12952 <feature> 12953 <rects> 12954 <_>3 7 8 6 -1.</_> 12955 <_>7 7 4 3 2.</_> 12956 <_>3 10 4 3 2.</_></rects> 12957 <tilted>0</tilted></feature> 12958 <threshold>-0.0223519802093506</threshold> 12959 <left_val>-0.4756760001182556</left_val> 12960 <right_val>0.0373113900423050</right_val></_></_> 12961 <_> 12962 <!-- tree 18 --> 12963 <_> 12964 <!-- root node --> 12965 <feature> 12966 <rects> 12967 <_>2 4 4 6 -1.</_> 12968 <_>2 7 4 3 2.</_></rects> 12969 <tilted>0</tilted></feature> 12970 <threshold>0.0221354793757200</threshold> 12971 <left_val>-0.0541376285254955</left_val> 12972 <right_val>0.4286107122898102</right_val></_></_> 12973 <_> 12974 <!-- tree 19 --> 12975 <_> 12976 <!-- root node --> 12977 <feature> 12978 <rects> 12979 <_>7 0 6 24 -1.</_> 12980 <_>7 6 6 12 2.</_></rects> 12981 <tilted>0</tilted></feature> 12982 <threshold>-0.0158755797892809</threshold> 12983 <left_val>0.0663736164569855</left_val> 12984 <right_val>-0.1645548939704895</right_val></_></_> 12985 <_> 12986 <!-- tree 20 --> 12987 <_> 12988 <!-- root node --> 12989 <feature> 12990 <rects> 12991 <_>0 13 6 14 -1.</_> 12992 <_>0 13 3 7 2.</_> 12993 <_>3 20 3 7 2.</_></rects> 12994 <tilted>0</tilted></feature> 12995 <threshold>0.0603713691234589</threshold> 12996 <left_val>0.0386639311909676</left_val> 12997 <right_val>-0.4649620056152344</right_val></_></_> 12998 <_> 12999 <!-- tree 21 --> 13000 <_> 13001 <!-- root node --> 13002 <feature> 13003 <rects> 13004 <_>4 19 10 6 -1.</_> 13005 <_>9 19 5 3 2.</_> 13006 <_>4 22 5 3 2.</_></rects> 13007 <tilted>0</tilted></feature> 13008 <threshold>-0.0518812388181686</threshold> 13009 <left_val>-0.5614129900932312</left_val> 13010 <right_val>5.4471958428621292e-003</right_val></_></_> 13011 <_> 13012 <!-- tree 22 --> 13013 <_> 13014 <!-- root node --> 13015 <feature> 13016 <rects> 13017 <_>0 19 10 6 -1.</_> 13018 <_>0 19 5 3 2.</_> 13019 <_>5 22 5 3 2.</_></rects> 13020 <tilted>0</tilted></feature> 13021 <threshold>1.9330360228195786e-003</threshold> 13022 <left_val>-0.1347597986459732</left_val> 13023 <right_val>0.1374733000993729</right_val></_></_> 13024 <_> 13025 <!-- tree 23 --> 13026 <_> 13027 <!-- root node --> 13028 <feature> 13029 <rects> 13030 <_>4 18 8 10 -1.</_> 13031 <_>8 18 4 5 2.</_> 13032 <_>4 23 4 5 2.</_></rects> 13033 <tilted>0</tilted></feature> 13034 <threshold>-4.3940469622612000e-003</threshold> 13035 <left_val>-0.0934059172868729</left_val> 13036 <right_val>0.0351238213479519</right_val></_></_> 13037 <_> 13038 <!-- tree 24 --> 13039 <_> 13040 <!-- root node --> 13041 <feature> 13042 <rects> 13043 <_>2 18 8 10 -1.</_> 13044 <_>2 18 4 5 2.</_> 13045 <_>6 23 4 5 2.</_></rects> 13046 <tilted>0</tilted></feature> 13047 <threshold>-0.0523141510784626</threshold> 13048 <left_val>0.7531176209449768</left_val> 13049 <right_val>-0.0292107705026865</right_val></_></_> 13050 <_> 13051 <!-- tree 25 --> 13052 <_> 13053 <!-- root node --> 13054 <feature> 13055 <rects> 13056 <_>5 14 4 14 -1.</_> 13057 <_>5 14 2 14 2.</_></rects> 13058 <tilted>0</tilted></feature> 13059 <threshold>-0.0568978115916252</threshold> 13060 <left_val>-0.9185898900032044</left_val> 13061 <right_val>0.0288624204695225</right_val></_></_> 13062 <_> 13063 <!-- tree 26 --> 13064 <_> 13065 <!-- root node --> 13066 <feature> 13067 <rects> 13068 <_>1 2 10 16 -1.</_> 13069 <_>1 2 5 8 2.</_> 13070 <_>6 10 5 8 2.</_></rects> 13071 <tilted>0</tilted></feature> 13072 <threshold>-0.2161463946104050</threshold> 13073 <left_val>-1.</left_val> 13074 <right_val>6.9490820169448853e-003</right_val></_></_> 13075 <_> 13076 <!-- tree 27 --> 13077 <_> 13078 <!-- root node --> 13079 <feature> 13080 <rects> 13081 <_>0 12 14 16 -1.</_> 13082 <_>0 20 14 8 2.</_></rects> 13083 <tilted>0</tilted></feature> 13084 <threshold>0.1847925931215286</threshold> 13085 <left_val>-0.0883579924702644</left_val> 13086 <right_val>0.1900268942117691</right_val></_></_> 13087 <_> 13088 <!-- tree 28 --> 13089 <_> 13090 <!-- root node --> 13091 <feature> 13092 <rects> 13093 <_>2 3 10 6 -1.</_> 13094 <_>2 3 5 3 2.</_> 13095 <_>7 6 5 3 2.</_></rects> 13096 <tilted>0</tilted></feature> 13097 <threshold>-5.6834658607840538e-003</threshold> 13098 <left_val>-0.1779156029224396</left_val> 13099 <right_val>0.0982860773801804</right_val></_></_> 13100 <_> 13101 <!-- tree 29 --> 13102 <_> 13103 <!-- root node --> 13104 <feature> 13105 <rects> 13106 <_>10 1 3 26 -1.</_> 13107 <_>10 14 3 13 2.</_></rects> 13108 <tilted>0</tilted></feature> 13109 <threshold>-0.0824480429291725</threshold> 13110 <left_val>-0.3405865132808685</left_val> 13111 <right_val>0.0156127195805311</right_val></_></_> 13112 <_> 13113 <!-- tree 30 --> 13114 <_> 13115 <!-- root node --> 13116 <feature> 13117 <rects> 13118 <_>0 9 4 18 -1.</_> 13119 <_>0 18 4 9 2.</_></rects> 13120 <tilted>0</tilted></feature> 13121 <threshold>-7.5926659628748894e-003</threshold> 13122 <left_val>0.2592946887016296</left_val> 13123 <right_val>-0.0693704411387444</right_val></_></_> 13124 <_> 13125 <!-- tree 31 --> 13126 <_> 13127 <!-- root node --> 13128 <feature> 13129 <rects> 13130 <_>8 21 4 6 -1.</_> 13131 <_>8 21 2 6 2.</_></rects> 13132 <tilted>0</tilted></feature> 13133 <threshold>-2.9748380184173584e-003</threshold> 13134 <left_val>0.0545341782271862</left_val> 13135 <right_val>-0.1263083964586258</right_val></_></_> 13136 <_> 13137 <!-- tree 32 --> 13138 <_> 13139 <!-- root node --> 13140 <feature> 13141 <rects> 13142 <_>2 6 9 8 -1.</_> 13143 <_>5 6 3 8 3.</_></rects> 13144 <tilted>0</tilted></feature> 13145 <threshold>-0.1637797057628632</threshold> 13146 <left_val>-0.8372569084167481</left_val> 13147 <right_val>0.0224467907100916</right_val></_></_> 13148 <_> 13149 <!-- tree 33 --> 13150 <_> 13151 <!-- root node --> 13152 <feature> 13153 <rects> 13154 <_>9 21 4 6 -1.</_> 13155 <_>9 21 2 6 2.</_></rects> 13156 <tilted>0</tilted></feature> 13157 <threshold>-3.8845320232212543e-003</threshold> 13158 <left_val>-0.2100805938243866</left_val> 13159 <right_val>0.0918143764138222</right_val></_></_> 13160 <_> 13161 <!-- tree 34 --> 13162 <_> 13163 <!-- root node --> 13164 <feature> 13165 <rects> 13166 <_>3 0 6 8 -1.</_> 13167 <_>3 0 3 4 2.</_> 13168 <_>6 4 3 4 2.</_></rects> 13169 <tilted>0</tilted></feature> 13170 <threshold>-0.0554963313043118</threshold> 13171 <left_val>0.5273922085762024</left_val> 13172 <right_val>-0.0385616384446621</right_val></_></_> 13173 <_> 13174 <!-- tree 35 --> 13175 <_> 13176 <!-- root node --> 13177 <feature> 13178 <rects> 13179 <_>9 20 4 7 -1.</_> 13180 <_>9 20 2 7 2.</_></rects> 13181 <tilted>0</tilted></feature> 13182 <threshold>4.5041809789836407e-003</threshold> 13183 <left_val>0.0389079898595810</left_val> 13184 <right_val>-0.2107748985290527</right_val></_></_> 13185 <_> 13186 <!-- tree 36 --> 13187 <_> 13188 <!-- root node --> 13189 <feature> 13190 <rects> 13191 <_>1 4 10 12 -1.</_> 13192 <_>6 4 5 12 2.</_></rects> 13193 <tilted>0</tilted></feature> 13194 <threshold>0.0575163103640080</threshold> 13195 <left_val>-0.0544424615800381</left_val> 13196 <right_val>0.3497731983661652</right_val></_></_> 13197 <_> 13198 <!-- tree 37 --> 13199 <_> 13200 <!-- root node --> 13201 <feature> 13202 <rects> 13203 <_>6 1 2 24 -1.</_> 13204 <_>6 9 2 8 3.</_></rects> 13205 <tilted>0</tilted></feature> 13206 <threshold>-5.4960879497230053e-003</threshold> 13207 <left_val>0.1045932993292809</left_val> 13208 <right_val>-0.2295698970556259</right_val></_></_> 13209 <_> 13210 <!-- tree 38 --> 13211 <_> 13212 <!-- root node --> 13213 <feature> 13214 <rects> 13215 <_>2 21 4 6 -1.</_> 13216 <_>4 21 2 6 2.</_></rects> 13217 <tilted>0</tilted></feature> 13218 <threshold>5.8753142366185784e-004</threshold> 13219 <left_val>0.0740455389022827</left_val> 13220 <right_val>-0.2373113036155701</right_val></_></_> 13221 <_> 13222 <!-- tree 39 --> 13223 <_> 13224 <!-- root node --> 13225 <feature> 13226 <rects> 13227 <_>10 1 3 26 -1.</_> 13228 <_>10 14 3 13 2.</_></rects> 13229 <tilted>0</tilted></feature> 13230 <threshold>0.1121611967682838</threshold> 13231 <left_val>-0.0259160008281469</left_val> 13232 <right_val>0.1138947010040283</right_val></_></_> 13233 <_> 13234 <!-- tree 40 --> 13235 <_> 13236 <!-- root node --> 13237 <feature> 13238 <rects> 13239 <_>1 1 3 26 -1.</_> 13240 <_>1 14 3 13 2.</_></rects> 13241 <tilted>0</tilted></feature> 13242 <threshold>0.2175375074148178</threshold> 13243 <left_val>0.0197278708219528</left_val> 13244 <right_val>-0.9622092247009277</right_val></_></_> 13245 <_> 13246 <!-- tree 41 --> 13247 <_> 13248 <!-- root node --> 13249 <feature> 13250 <rects> 13251 <_>2 9 12 14 -1.</_> 13252 <_>8 9 6 7 2.</_> 13253 <_>2 16 6 7 2.</_></rects> 13254 <tilted>0</tilted></feature> 13255 <threshold>-1.4632700476795435e-003</threshold> 13256 <left_val>-0.0940528213977814</left_val> 13257 <right_val>0.0643891766667366</right_val></_></_> 13258 <_> 13259 <!-- tree 42 --> 13260 <_> 13261 <!-- root node --> 13262 <feature> 13263 <rects> 13264 <_>4 11 6 8 -1.</_> 13265 <_>4 15 6 4 2.</_></rects> 13266 <tilted>0</tilted></feature> 13267 <threshold>-8.6313979700207710e-003</threshold> 13268 <left_val>0.2503606081008911</left_val> 13269 <right_val>-0.0722346529364586</right_val></_></_> 13270 <_> 13271 <!-- tree 43 --> 13272 <_> 13273 <!-- root node --> 13274 <feature> 13275 <rects> 13276 <_>5 9 9 18 -1.</_> 13277 <_>5 15 9 6 3.</_></rects> 13278 <tilted>0</tilted></feature> 13279 <threshold>-0.0198585093021393</threshold> 13280 <left_val>-0.1269809007644653</left_val> 13281 <right_val>0.0790514871478081</right_val></_></_> 13282 <_> 13283 <!-- tree 44 --> 13284 <_> 13285 <!-- root node --> 13286 <feature> 13287 <rects> 13288 <_>1 0 9 4 -1.</_> 13289 <_>4 0 3 4 3.</_></rects> 13290 <tilted>0</tilted></feature> 13291 <threshold>-1.3804109767079353e-004</threshold> 13292 <left_val>0.1446664035320282</left_val> 13293 <right_val>-0.1144407019019127</right_val></_></_> 13294 <_> 13295 <!-- tree 45 --> 13296 <_> 13297 <!-- root node --> 13298 <feature> 13299 <rects> 13300 <_>5 7 4 6 -1.</_> 13301 <_>5 10 4 3 2.</_></rects> 13302 <tilted>0</tilted></feature> 13303 <threshold>0.0267812404781580</threshold> 13304 <left_val>0.0176477506756783</left_val> 13305 <right_val>-0.8315789103507996</right_val></_></_> 13306 <_> 13307 <!-- tree 46 --> 13308 <_> 13309 <!-- root node --> 13310 <feature> 13311 <rects> 13312 <_>3 7 8 4 -1.</_> 13313 <_>3 9 8 2 2.</_></rects> 13314 <tilted>0</tilted></feature> 13315 <threshold>0.0193311199545860</threshold> 13316 <left_val>-0.0455000810325146</left_val> 13317 <right_val>0.5011094808578491</right_val></_></_> 13318 <_> 13319 <!-- tree 47 --> 13320 <_> 13321 <!-- root node --> 13322 <feature> 13323 <rects> 13324 <_>2 16 12 6 -1.</_> 13325 <_>8 16 6 3 2.</_> 13326 <_>2 19 6 3 2.</_></rects> 13327 <tilted>0</tilted></feature> 13328 <threshold>0.0416920706629753</threshold> 13329 <left_val>0.0225023496896029</left_val> 13330 <right_val>-0.3899222016334534</right_val></_></_> 13331 <_> 13332 <!-- tree 48 --> 13333 <_> 13334 <!-- root node --> 13335 <feature> 13336 <rects> 13337 <_>1 2 8 22 -1.</_> 13338 <_>1 2 4 11 2.</_> 13339 <_>5 13 4 11 2.</_></rects> 13340 <tilted>0</tilted></feature> 13341 <threshold>0.1129698008298874</threshold> 13342 <left_val>-0.0324948392808437</left_val> 13343 <right_val>0.5392962098121643</right_val></_></_> 13344 <_> 13345 <!-- tree 49 --> 13346 <_> 13347 <!-- root node --> 13348 <feature> 13349 <rects> 13350 <_>7 19 6 7 -1.</_> 13351 <_>9 19 2 7 3.</_></rects> 13352 <tilted>0</tilted></feature> 13353 <threshold>3.1683610286563635e-003</threshold> 13354 <left_val>-0.1719558984041214</left_val> 13355 <right_val>0.0936198011040688</right_val></_></_> 13356 <_> 13357 <!-- tree 50 --> 13358 <_> 13359 <!-- root node --> 13360 <feature> 13361 <rects> 13362 <_>6 7 2 18 -1.</_> 13363 <_>6 13 2 6 3.</_></rects> 13364 <tilted>0</tilted></feature> 13365 <threshold>5.3966748528182507e-003</threshold> 13366 <left_val>0.0576776303350925</left_val> 13367 <right_val>-0.3043614923954010</right_val></_></_> 13368 <_> 13369 <!-- tree 51 --> 13370 <_> 13371 <!-- root node --> 13372 <feature> 13373 <rects> 13374 <_>5 8 8 16 -1.</_> 13375 <_>5 12 8 8 2.</_></rects> 13376 <tilted>0</tilted></feature> 13377 <threshold>-0.1382918059825897</threshold> 13378 <left_val>-0.5215879082679749</left_val> 13379 <right_val>0.0184449106454849</right_val></_></_> 13380 <_> 13381 <!-- tree 52 --> 13382 <_> 13383 <!-- root node --> 13384 <feature> 13385 <rects> 13386 <_>5 20 6 2 -1.</_> 13387 <_>5 20 6 1 2.</_></rects> 13388 <tilted>1</tilted></feature> 13389 <threshold>-0.0125941196456552</threshold> 13390 <left_val>0.2274890989065170</left_val> 13391 <right_val>-0.0693250000476837</right_val></_></_> 13392 <_> 13393 <!-- tree 53 --> 13394 <_> 13395 <!-- root node --> 13396 <feature> 13397 <rects> 13398 <_>10 19 3 6 -1.</_> 13399 <_>11 20 1 6 3.</_></rects> 13400 <tilted>1</tilted></feature> 13401 <threshold>-0.0165144801139832</threshold> 13402 <left_val>0.1627922952175140</left_val> 13403 <right_val>-0.0344461500644684</right_val></_></_> 13404 <_> 13405 <!-- tree 54 --> 13406 <_> 13407 <!-- root node --> 13408 <feature> 13409 <rects> 13410 <_>1 22 12 6 -1.</_> 13411 <_>4 22 6 6 2.</_></rects> 13412 <tilted>0</tilted></feature> 13413 <threshold>-0.0163928493857384</threshold> 13414 <left_val>-0.1427768021821976</left_val> 13415 <right_val>0.1629009991884232</right_val></_></_> 13416 <_> 13417 <!-- tree 55 --> 13418 <_> 13419 <!-- root node --> 13420 <feature> 13421 <rects> 13422 <_>2 25 12 3 -1.</_> 13423 <_>2 25 6 3 2.</_></rects> 13424 <tilted>0</tilted></feature> 13425 <threshold>-0.0346064902842045</threshold> 13426 <left_val>-0.4035637974739075</left_val> 13427 <right_val>8.3033805713057518e-003</right_val></_></_> 13428 <_> 13429 <!-- tree 56 --> 13430 <_> 13431 <!-- root node --> 13432 <feature> 13433 <rects> 13434 <_>4 19 6 3 -1.</_> 13435 <_>3 20 6 1 3.</_></rects> 13436 <tilted>1</tilted></feature> 13437 <threshold>-6.8894061259925365e-003</threshold> 13438 <left_val>0.2689009010791779</left_val> 13439 <right_val>-0.0694508627057076</right_val></_></_> 13440 <_> 13441 <!-- tree 57 --> 13442 <_> 13443 <!-- root node --> 13444 <feature> 13445 <rects> 13446 <_>7 20 6 7 -1.</_> 13447 <_>9 20 2 7 3.</_></rects> 13448 <tilted>0</tilted></feature> 13449 <threshold>-0.0118794003501534</threshold> 13450 <left_val>0.2139520943164825</left_val> 13451 <right_val>-0.0209304504096508</right_val></_></_> 13452 <_> 13453 <!-- tree 58 --> 13454 <_> 13455 <!-- root node --> 13456 <feature> 13457 <rects> 13458 <_>0 17 12 10 -1.</_> 13459 <_>4 17 4 10 3.</_></rects> 13460 <tilted>0</tilted></feature> 13461 <threshold>-1.9165100529789925e-003</threshold> 13462 <left_val>0.0684642195701599</left_val> 13463 <right_val>-0.3145321905612946</right_val></_></_> 13464 <_> 13465 <!-- tree 59 --> 13466 <_> 13467 <!-- root node --> 13468 <feature> 13469 <rects> 13470 <_>1 18 12 4 -1.</_> 13471 <_>4 18 6 4 2.</_></rects> 13472 <tilted>0</tilted></feature> 13473 <threshold>1.3729350175708532e-003</threshold> 13474 <left_val>-0.0603400282561779</left_val> 13475 <right_val>0.2757284045219421</right_val></_></_> 13476 <_> 13477 <!-- tree 60 --> 13478 <_> 13479 <!-- root node --> 13480 <feature> 13481 <rects> 13482 <_>1 19 6 7 -1.</_> 13483 <_>3 19 2 7 3.</_></rects> 13484 <tilted>0</tilted></feature> 13485 <threshold>2.4278028868138790e-003</threshold> 13486 <left_val>-0.2394450008869171</left_val> 13487 <right_val>0.0846588388085365</right_val></_></_> 13488 <_> 13489 <!-- tree 61 --> 13490 <_> 13491 <!-- root node --> 13492 <feature> 13493 <rects> 13494 <_>10 22 4 6 -1.</_> 13495 <_>10 22 2 6 2.</_></rects> 13496 <tilted>0</tilted></feature> 13497 <threshold>2.1290169097483158e-003</threshold> 13498 <left_val>0.0869384780526161</left_val> 13499 <right_val>-0.2821848094463348</right_val></_></_> 13500 <_> 13501 <!-- tree 62 --> 13502 <_> 13503 <!-- root node --> 13504 <feature> 13505 <rects> 13506 <_>1 4 2 24 -1.</_> 13507 <_>1 4 1 12 2.</_> 13508 <_>2 16 1 12 2.</_></rects> 13509 <tilted>0</tilted></feature> 13510 <threshold>-5.2569470426533371e-005</threshold> 13511 <left_val>0.1368235945701599</left_val> 13512 <right_val>-0.1198064982891083</right_val></_></_> 13513 <_> 13514 <!-- tree 63 --> 13515 <_> 13516 <!-- root node --> 13517 <feature> 13518 <rects> 13519 <_>10 5 4 10 -1.</_> 13520 <_>10 5 2 10 2.</_></rects> 13521 <tilted>0</tilted></feature> 13522 <threshold>0.0159578993916512</threshold> 13523 <left_val>-0.0396103002130985</left_val> 13524 <right_val>0.2482517063617706</right_val></_></_> 13525 <_> 13526 <!-- tree 64 --> 13527 <_> 13528 <!-- root node --> 13529 <feature> 13530 <rects> 13531 <_>0 5 4 10 -1.</_> 13532 <_>2 5 2 10 2.</_></rects> 13533 <tilted>0</tilted></feature> 13534 <threshold>8.9294081553816795e-003</threshold> 13535 <left_val>0.0811235085129738</left_val> 13536 <right_val>-0.2656157016754150</right_val></_></_> 13537 <_> 13538 <!-- tree 65 --> 13539 <_> 13540 <!-- root node --> 13541 <feature> 13542 <rects> 13543 <_>8 10 3 15 -1.</_> 13544 <_>9 10 1 15 3.</_></rects> 13545 <tilted>0</tilted></feature> 13546 <threshold>0.0499253086745739</threshold> 13547 <left_val>0.0150186298415065</left_val> 13548 <right_val>-0.3664787113666534</right_val></_></_> 13549 <_> 13550 <!-- tree 66 --> 13551 <_> 13552 <!-- root node --> 13553 <feature> 13554 <rects> 13555 <_>3 10 3 15 -1.</_> 13556 <_>4 10 1 15 3.</_></rects> 13557 <tilted>0</tilted></feature> 13558 <threshold>-0.0173748396337032</threshold> 13559 <left_val>0.3397102057933807</left_val> 13560 <right_val>-0.0544941499829292</right_val></_></_> 13561 <_> 13562 <!-- tree 67 --> 13563 <_> 13564 <!-- root node --> 13565 <feature> 13566 <rects> 13567 <_>8 7 3 17 -1.</_> 13568 <_>9 7 1 17 3.</_></rects> 13569 <tilted>0</tilted></feature> 13570 <threshold>-0.0783570632338524</threshold> 13571 <left_val>-0.4943583905696869</left_val> 13572 <right_val>8.4990533068776131e-003</right_val></_></_> 13573 <_> 13574 <!-- tree 68 --> 13575 <_> 13576 <!-- root node --> 13577 <feature> 13578 <rects> 13579 <_>3 7 3 17 -1.</_> 13580 <_>4 7 1 17 3.</_></rects> 13581 <tilted>0</tilted></feature> 13582 <threshold>-8.9894477277994156e-003</threshold> 13583 <left_val>-0.2320985943078995</left_val> 13584 <right_val>0.0713790878653526</right_val></_></_> 13585 <_> 13586 <!-- tree 69 --> 13587 <_> 13588 <!-- root node --> 13589 <feature> 13590 <rects> 13591 <_>9 0 3 13 -1.</_> 13592 <_>10 0 1 13 3.</_></rects> 13593 <tilted>0</tilted></feature> 13594 <threshold>-1.5932919923216105e-003</threshold> 13595 <left_val>0.0825047194957733</left_val> 13596 <right_val>-0.0931231826543808</right_val></_></_> 13597 <_> 13598 <!-- tree 70 --> 13599 <_> 13600 <!-- root node --> 13601 <feature> 13602 <rects> 13603 <_>2 0 3 13 -1.</_> 13604 <_>3 0 1 13 3.</_></rects> 13605 <tilted>0</tilted></feature> 13606 <threshold>2.6272730901837349e-003</threshold> 13607 <left_val>-0.1321343034505844</left_val> 13608 <right_val>0.1309982985258102</right_val></_></_> 13609 <_> 13610 <!-- tree 71 --> 13611 <_> 13612 <!-- root node --> 13613 <feature> 13614 <rects> 13615 <_>1 3 12 5 -1.</_> 13616 <_>4 3 6 5 2.</_></rects> 13617 <tilted>0</tilted></feature> 13618 <threshold>-0.0591081604361534</threshold> 13619 <left_val>-0.3722976148128510</left_val> 13620 <right_val>0.0455746613442898</right_val></_></_> 13621 <_> 13622 <!-- tree 72 --> 13623 <_> 13624 <!-- root node --> 13625 <feature> 13626 <rects> 13627 <_>6 0 7 6 -1.</_> 13628 <_>4 2 7 2 3.</_></rects> 13629 <tilted>1</tilted></feature> 13630 <threshold>3.5086690913885832e-003</threshold> 13631 <left_val>0.0894784629344940</left_val> 13632 <right_val>-0.1854341030120850</right_val></_></_> 13633 <_> 13634 <!-- tree 73 --> 13635 <_> 13636 <!-- root node --> 13637 <feature> 13638 <rects> 13639 <_>7 2 4 8 -1.</_> 13640 <_>7 2 2 8 2.</_></rects> 13641 <tilted>0</tilted></feature> 13642 <threshold>0.0154652204364538</threshold> 13643 <left_val>-0.0306048206984997</left_val> 13644 <right_val>0.2075458019971848</right_val></_></_> 13645 <_> 13646 <!-- tree 74 --> 13647 <_> 13648 <!-- root node --> 13649 <feature> 13650 <rects> 13651 <_>6 4 2 12 -1.</_> 13652 <_>7 4 1 12 2.</_></rects> 13653 <tilted>0</tilted></feature> 13654 <threshold>-0.0117490198463202</threshold> 13655 <left_val>0.3920016884803772</left_val> 13656 <right_val>-0.0411008596420288</right_val></_></_> 13657 <_> 13658 <!-- tree 75 --> 13659 <_> 13660 <!-- root node --> 13661 <feature> 13662 <rects> 13663 <_>9 16 3 6 -1.</_> 13664 <_>10 17 1 6 3.</_></rects> 13665 <tilted>1</tilted></feature> 13666 <threshold>0.0484136082231998</threshold> 13667 <left_val>3.7391050718724728e-003</left_val> 13668 <right_val>-0.8570184111595154</right_val></_></_> 13669 <_> 13670 <!-- tree 76 --> 13671 <_> 13672 <!-- root node --> 13673 <feature> 13674 <rects> 13675 <_>5 8 4 6 -1.</_> 13676 <_>7 8 2 6 2.</_></rects> 13677 <tilted>0</tilted></feature> 13678 <threshold>-1.1499889660626650e-003</threshold> 13679 <left_val>-0.2244154959917069</left_val> 13680 <right_val>0.0713050886988640</right_val></_></_></trees> 13681 <stage_threshold>-30.7402000427246090</stage_threshold> 13682 <parent>24</parent> 13683 <next>-1</next></_> 13684 <_> 13685 <!-- stage 26 --> 13686 <trees> 13687 <_> 13688 <!-- tree 0 --> 13689 <_> 13690 <!-- root node --> 13691 <feature> 13692 <rects> 13693 <_>1 5 12 21 -1.</_> 13694 <_>4 5 6 21 2.</_></rects> 13695 <tilted>0</tilted></feature> 13696 <threshold>-0.3242005109786987</threshold> 13697 <left_val>0.4144775867462158</left_val> 13698 <right_val>-0.1068423017859459</right_val></_></_> 13699 <_> 13700 <!-- tree 1 --> 13701 <_> 13702 <!-- root node --> 13703 <feature> 13704 <rects> 13705 <_>2 3 12 18 -1.</_> 13706 <_>2 9 12 6 3.</_></rects> 13707 <tilted>0</tilted></feature> 13708 <threshold>-0.2106568962335587</threshold> 13709 <left_val>0.2330280989408493</left_val> 13710 <right_val>-0.0946957990527153</right_val></_></_> 13711 <_> 13712 <!-- tree 2 --> 13713 <_> 13714 <!-- root node --> 13715 <feature> 13716 <rects> 13717 <_>1 1 12 4 -1.</_> 13718 <_>4 1 6 4 2.</_></rects> 13719 <tilted>0</tilted></feature> 13720 <threshold>-0.0215405505150557</threshold> 13721 <left_val>-0.2889172136783600</left_val> 13722 <right_val>0.0706660673022270</right_val></_></_> 13723 <_> 13724 <!-- tree 3 --> 13725 <_> 13726 <!-- root node --> 13727 <feature> 13728 <rects> 13729 <_>6 13 3 13 -1.</_> 13730 <_>7 13 1 13 3.</_></rects> 13731 <tilted>0</tilted></feature> 13732 <threshold>5.9726871550083160e-003</threshold> 13733 <left_val>-0.0905594900250435</left_val> 13734 <right_val>0.2298959940671921</right_val></_></_> 13735 <_> 13736 <!-- tree 4 --> 13737 <_> 13738 <!-- root node --> 13739 <feature> 13740 <rects> 13741 <_>1 1 6 12 -1.</_> 13742 <_>1 1 3 6 2.</_> 13743 <_>4 7 3 6 2.</_></rects> 13744 <tilted>0</tilted></feature> 13745 <threshold>0.0264681000262499</threshold> 13746 <left_val>-0.0502540506422520</left_val> 13747 <right_val>0.3934643864631653</right_val></_></_> 13748 <_> 13749 <!-- tree 5 --> 13750 <_> 13751 <!-- root node --> 13752 <feature> 13753 <rects> 13754 <_>7 6 6 6 -1.</_> 13755 <_>9 6 2 6 3.</_></rects> 13756 <tilted>0</tilted></feature> 13757 <threshold>-0.0725311264395714</threshold> 13758 <left_val>-0.3942146897315979</left_val> 13759 <right_val>7.5547359883785248e-003</right_val></_></_> 13760 <_> 13761 <!-- tree 6 --> 13762 <_> 13763 <!-- root node --> 13764 <feature> 13765 <rects> 13766 <_>1 6 6 6 -1.</_> 13767 <_>3 6 2 6 3.</_></rects> 13768 <tilted>0</tilted></feature> 13769 <threshold>-0.0436849184334278</threshold> 13770 <left_val>-0.5755354762077332</left_val> 13771 <right_val>0.0518933199346066</right_val></_></_> 13772 <_> 13773 <!-- tree 7 --> 13774 <_> 13775 <!-- root node --> 13776 <feature> 13777 <rects> 13778 <_>7 2 6 13 -1.</_> 13779 <_>9 2 2 13 3.</_></rects> 13780 <tilted>0</tilted></feature> 13781 <threshold>0.1167066022753716</threshold> 13782 <left_val>-2.5791339576244354e-003</left_val> 13783 <right_val>-0.8259764909744263</right_val></_></_> 13784 <_> 13785 <!-- tree 8 --> 13786 <_> 13787 <!-- root node --> 13788 <feature> 13789 <rects> 13790 <_>1 2 6 13 -1.</_> 13791 <_>3 2 2 13 3.</_></rects> 13792 <tilted>0</tilted></feature> 13793 <threshold>-0.0823811665177345</threshold> 13794 <left_val>0.7581896185874939</left_val> 13795 <right_val>-0.0265769306570292</right_val></_></_> 13796 <_> 13797 <!-- tree 9 --> 13798 <_> 13799 <!-- root node --> 13800 <feature> 13801 <rects> 13802 <_>4 0 6 28 -1.</_> 13803 <_>6 0 2 28 3.</_></rects> 13804 <tilted>0</tilted></feature> 13805 <threshold>-2.3157079704105854e-003</threshold> 13806 <left_val>0.0668586865067482</left_val> 13807 <right_val>-0.3040786981582642</right_val></_></_> 13808 <_> 13809 <!-- tree 10 --> 13810 <_> 13811 <!-- root node --> 13812 <feature> 13813 <rects> 13814 <_>0 13 14 3 -1.</_> 13815 <_>0 14 14 1 3.</_></rects> 13816 <tilted>0</tilted></feature> 13817 <threshold>-0.0166781898587942</threshold> 13818 <left_val>0.3852531909942627</left_val> 13819 <right_val>-0.0488426797091961</right_val></_></_> 13820 <_> 13821 <!-- tree 11 --> 13822 <_> 13823 <!-- root node --> 13824 <feature> 13825 <rects> 13826 <_>10 20 4 7 -1.</_> 13827 <_>10 20 2 7 2.</_></rects> 13828 <tilted>0</tilted></feature> 13829 <threshold>-3.0678999610245228e-003</threshold> 13830 <left_val>-0.2715098857879639</left_val> 13831 <right_val>0.0645612627267838</right_val></_></_> 13832 <_> 13833 <!-- tree 12 --> 13834 <_> 13835 <!-- root node --> 13836 <feature> 13837 <rects> 13838 <_>5 8 2 12 -1.</_> 13839 <_>6 8 1 12 2.</_></rects> 13840 <tilted>0</tilted></feature> 13841 <threshold>-8.3884904161095619e-003</threshold> 13842 <left_val>-0.2826730012893677</left_val> 13843 <right_val>0.0707788914442062</right_val></_></_> 13844 <_> 13845 <!-- tree 13 --> 13846 <_> 13847 <!-- root node --> 13848 <feature> 13849 <rects> 13850 <_>5 16 4 8 -1.</_> 13851 <_>5 16 2 8 2.</_></rects> 13852 <tilted>0</tilted></feature> 13853 <threshold>0.0213579107075930</threshold> 13854 <left_val>-0.0661064833402634</left_val> 13855 <right_val>0.3186753988265991</right_val></_></_> 13856 <_> 13857 <!-- tree 14 --> 13858 <_> 13859 <!-- root node --> 13860 <feature> 13861 <rects> 13862 <_>3 0 6 8 -1.</_> 13863 <_>3 0 3 4 2.</_> 13864 <_>6 4 3 4 2.</_></rects> 13865 <tilted>0</tilted></feature> 13866 <threshold>-4.0636979974806309e-003</threshold> 13867 <left_val>0.1173984035849571</left_val> 13868 <right_val>-0.1510592997074127</right_val></_></_> 13869 <_> 13870 <!-- tree 15 --> 13871 <_> 13872 <!-- root node --> 13873 <feature> 13874 <rects> 13875 <_>5 0 6 8 -1.</_> 13876 <_>8 0 3 4 2.</_> 13877 <_>5 4 3 4 2.</_></rects> 13878 <tilted>0</tilted></feature> 13879 <threshold>-1.1475679930299520e-003</threshold> 13880 <left_val>0.0642628967761993</left_val> 13881 <right_val>-0.0744720771908760</right_val></_></_> 13882 <_> 13883 <!-- tree 16 --> 13884 <_> 13885 <!-- root node --> 13886 <feature> 13887 <rects> 13888 <_>3 0 6 8 -1.</_> 13889 <_>3 0 3 4 2.</_> 13890 <_>6 4 3 4 2.</_></rects> 13891 <tilted>0</tilted></feature> 13892 <threshold>0.0181456897407770</threshold> 13893 <left_val>-0.0569460093975067</left_val> 13894 <right_val>0.4210714995861054</right_val></_></_> 13895 <_> 13896 <!-- tree 17 --> 13897 <_> 13898 <!-- root node --> 13899 <feature> 13900 <rects> 13901 <_>10 20 4 7 -1.</_> 13902 <_>10 20 2 7 2.</_></rects> 13903 <tilted>0</tilted></feature> 13904 <threshold>5.0288350321352482e-003</threshold> 13905 <left_val>0.0838666707277298</left_val> 13906 <right_val>-0.3392939865589142</right_val></_></_> 13907 <_> 13908 <!-- tree 18 --> 13909 <_> 13910 <!-- root node --> 13911 <feature> 13912 <rects> 13913 <_>4 15 4 12 -1.</_> 13914 <_>5 15 2 12 2.</_></rects> 13915 <tilted>0</tilted></feature> 13916 <threshold>-0.0579163618385792</threshold> 13917 <left_val>0.4517017900943756</left_val> 13918 <right_val>-0.0431988686323166</right_val></_></_> 13919 <_> 13920 <!-- tree 19 --> 13921 <_> 13922 <!-- root node --> 13923 <feature> 13924 <rects> 13925 <_>7 16 4 6 -1.</_> 13926 <_>7 16 2 6 2.</_></rects> 13927 <tilted>1</tilted></feature> 13928 <threshold>0.0310252998024225</threshold> 13929 <left_val>0.0280007403343916</left_val> 13930 <right_val>-0.1681894063949585</right_val></_></_> 13931 <_> 13932 <!-- tree 20 --> 13933 <_> 13934 <!-- root node --> 13935 <feature> 13936 <rects> 13937 <_>3 2 6 9 -1.</_> 13938 <_>6 2 3 9 2.</_></rects> 13939 <tilted>0</tilted></feature> 13940 <threshold>0.0821342915296555</threshold> 13941 <left_val>0.0199995301663876</left_val> 13942 <right_val>-0.7691050767898560</right_val></_></_> 13943 <_> 13944 <!-- tree 21 --> 13945 <_> 13946 <!-- root node --> 13947 <feature> 13948 <rects> 13949 <_>2 2 12 2 -1.</_> 13950 <_>2 2 6 2 2.</_></rects> 13951 <tilted>0</tilted></feature> 13952 <threshold>0.0736665725708008</threshold> 13953 <left_val>-1.2391459895297885e-003</left_val> 13954 <right_val>-1.0004559755325317</right_val></_></_> 13955 <_> 13956 <!-- tree 22 --> 13957 <_> 13958 <!-- root node --> 13959 <feature> 13960 <rects> 13961 <_>0 2 12 2 -1.</_> 13962 <_>6 2 6 2 2.</_></rects> 13963 <tilted>0</tilted></feature> 13964 <threshold>1.5681830700486898e-004</threshold> 13965 <left_val>-0.1215459033846855</left_val> 13966 <right_val>0.1356196999549866</right_val></_></_> 13967 <_> 13968 <!-- tree 23 --> 13969 <_> 13970 <!-- root node --> 13971 <feature> 13972 <rects> 13973 <_>6 1 6 4 -1.</_> 13974 <_>6 1 3 4 2.</_></rects> 13975 <tilted>0</tilted></feature> 13976 <threshold>0.0451309308409691</threshold> 13977 <left_val>4.7123869881033897e-003</left_val> 13978 <right_val>-0.2967104911804199</right_val></_></_> 13979 <_> 13980 <!-- tree 24 --> 13981 <_> 13982 <!-- root node --> 13983 <feature> 13984 <rects> 13985 <_>0 2 4 6 -1.</_> 13986 <_>0 5 4 3 2.</_></rects> 13987 <tilted>0</tilted></feature> 13988 <threshold>-5.1468348829075694e-004</threshold> 13989 <left_val>0.1460689008235931</left_val> 13990 <right_val>-0.1360048055648804</right_val></_></_> 13991 <_> 13992 <!-- tree 25 --> 13993 <_> 13994 <!-- root node --> 13995 <feature> 13996 <rects> 13997 <_>5 4 8 4 -1.</_> 13998 <_>5 6 8 2 2.</_></rects> 13999 <tilted>0</tilted></feature> 14000 <threshold>-0.0149811198934913</threshold> 14001 <left_val>-0.1793365925550461</left_val> 14002 <right_val>0.0539286993443966</right_val></_></_> 14003 <_> 14004 <!-- tree 26 --> 14005 <_> 14006 <!-- root node --> 14007 <feature> 14008 <rects> 14009 <_>1 8 12 2 -1.</_> 14010 <_>1 9 12 1 2.</_></rects> 14011 <tilted>0</tilted></feature> 14012 <threshold>-0.0271517895162106</threshold> 14013 <left_val>-0.6752901077270508</left_val> 14014 <right_val>0.0230467803776264</right_val></_></_> 14015 <_> 14016 <!-- tree 27 --> 14017 <_> 14018 <!-- root node --> 14019 <feature> 14020 <rects> 14021 <_>8 7 6 8 -1.</_> 14022 <_>8 9 6 4 2.</_></rects> 14023 <tilted>0</tilted></feature> 14024 <threshold>-0.0665780231356621</threshold> 14025 <left_val>-0.6558642983436585</left_val> 14026 <right_val>4.7667929902672768e-003</right_val></_></_> 14027 <_> 14028 <!-- tree 28 --> 14029 <_> 14030 <!-- root node --> 14031 <feature> 14032 <rects> 14033 <_>0 7 6 8 -1.</_> 14034 <_>0 9 6 4 2.</_></rects> 14035 <tilted>0</tilted></feature> 14036 <threshold>-3.3119178842753172e-003</threshold> 14037 <left_val>0.1225500032305718</left_val> 14038 <right_val>-0.1633393019437790</right_val></_></_> 14039 <_> 14040 <!-- tree 29 --> 14041 <_> 14042 <!-- root node --> 14043 <feature> 14044 <rects> 14045 <_>11 15 2 12 -1.</_> 14046 <_>11 15 1 12 2.</_></rects> 14047 <tilted>0</tilted></feature> 14048 <threshold>-0.0158111806958914</threshold> 14049 <left_val>-0.4473117887973785</left_val> 14050 <right_val>8.9029967784881592e-003</right_val></_></_> 14051 <_> 14052 <!-- tree 30 --> 14053 <_> 14054 <!-- root node --> 14055 <feature> 14056 <rects> 14057 <_>2 15 3 12 -1.</_> 14058 <_>3 15 1 12 3.</_></rects> 14059 <tilted>0</tilted></feature> 14060 <threshold>-5.6757620768621564e-005</threshold> 14061 <left_val>0.1494435071945190</left_val> 14062 <right_val>-0.1068682968616486</right_val></_></_> 14063 <_> 14064 <!-- tree 31 --> 14065 <_> 14066 <!-- root node --> 14067 <feature> 14068 <rects> 14069 <_>11 15 2 12 -1.</_> 14070 <_>11 15 1 12 2.</_></rects> 14071 <tilted>0</tilted></feature> 14072 <threshold>0.0106024900451303</threshold> 14073 <left_val>0.0216858293861151</left_val> 14074 <right_val>-0.3220812976360321</right_val></_></_> 14075 <_> 14076 <!-- tree 32 --> 14077 <_> 14078 <!-- root node --> 14079 <feature> 14080 <rects> 14081 <_>1 12 6 16 -1.</_> 14082 <_>1 12 3 8 2.</_> 14083 <_>4 20 3 8 2.</_></rects> 14084 <tilted>0</tilted></feature> 14085 <threshold>2.1245649550110102e-003</threshold> 14086 <left_val>-0.2042573988437653</left_val> 14087 <right_val>0.0823309570550919</right_val></_></_> 14088 <_> 14089 <!-- tree 33 --> 14090 <_> 14091 <!-- root node --> 14092 <feature> 14093 <rects> 14094 <_>4 10 10 5 -1.</_> 14095 <_>4 10 5 5 2.</_></rects> 14096 <tilted>0</tilted></feature> 14097 <threshold>0.0476385802030563</threshold> 14098 <left_val>-0.0327284410595894</left_val> 14099 <right_val>0.4472625851631165</right_val></_></_> 14100 <_> 14101 <!-- tree 34 --> 14102 <_> 14103 <!-- root node --> 14104 <feature> 14105 <rects> 14106 <_>4 16 8 3 -1.</_> 14107 <_>3 17 8 1 3.</_></rects> 14108 <tilted>1</tilted></feature> 14109 <threshold>-0.0113001996651292</threshold> 14110 <left_val>0.2554602026939392</left_val> 14111 <right_val>-0.0699698999524117</right_val></_></_> 14112 <_> 14113 <!-- tree 35 --> 14114 <_> 14115 <!-- root node --> 14116 <feature> 14117 <rects> 14118 <_>2 25 12 3 -1.</_> 14119 <_>6 25 4 3 3.</_></rects> 14120 <tilted>0</tilted></feature> 14121 <threshold>-1.1472209589555860e-003</threshold> 14122 <left_val>0.0474677905440331</left_val> 14123 <right_val>-0.2222079038619995</right_val></_></_> 14124 <_> 14125 <!-- tree 36 --> 14126 <_> 14127 <!-- root node --> 14128 <feature> 14129 <rects> 14130 <_>1 10 10 8 -1.</_> 14131 <_>1 10 5 4 2.</_> 14132 <_>6 14 5 4 2.</_></rects> 14133 <tilted>0</tilted></feature> 14134 <threshold>0.0180086400359869</threshold> 14135 <left_val>-0.0608602091670036</left_val> 14136 <right_val>0.2908244132995606</right_val></_></_> 14137 <_> 14138 <!-- tree 37 --> 14139 <_> 14140 <!-- root node --> 14141 <feature> 14142 <rects> 14143 <_>0 12 14 6 -1.</_> 14144 <_>7 12 7 3 2.</_> 14145 <_>0 15 7 3 2.</_></rects> 14146 <tilted>0</tilted></feature> 14147 <threshold>-0.0116342604160309</threshold> 14148 <left_val>-0.3147492110729218</left_val> 14149 <right_val>0.0836308971047401</right_val></_></_> 14150 <_> 14151 <!-- tree 38 --> 14152 <_> 14153 <!-- root node --> 14154 <feature> 14155 <rects> 14156 <_>2 20 8 8 -1.</_> 14157 <_>2 20 4 4 2.</_> 14158 <_>6 24 4 4 2.</_></rects> 14159 <tilted>0</tilted></feature> 14160 <threshold>6.5580541267991066e-003</threshold> 14161 <left_val>-0.1212183013558388</left_val> 14162 <right_val>0.1312450021505356</right_val></_></_> 14163 <_> 14164 <!-- tree 39 --> 14165 <_> 14166 <!-- root node --> 14167 <feature> 14168 <rects> 14169 <_>12 16 2 7 -1.</_> 14170 <_>12 16 1 7 2.</_></rects> 14171 <tilted>1</tilted></feature> 14172 <threshold>-2.3253620602190495e-003</threshold> 14173 <left_val>-0.0871386229991913</left_val> 14174 <right_val>0.0704765170812607</right_val></_></_> 14175 <_> 14176 <!-- tree 40 --> 14177 <_> 14178 <!-- root node --> 14179 <feature> 14180 <rects> 14181 <_>1 17 12 4 -1.</_> 14182 <_>4 17 6 4 2.</_></rects> 14183 <tilted>0</tilted></feature> 14184 <threshold>0.0214862208813429</threshold> 14185 <left_val>-0.0359365493059158</left_val> 14186 <right_val>0.4373702108860016</right_val></_></_> 14187 <_> 14188 <!-- tree 41 --> 14189 <_> 14190 <!-- root node --> 14191 <feature> 14192 <rects> 14193 <_>5 9 6 14 -1.</_> 14194 <_>7 9 2 14 3.</_></rects> 14195 <tilted>0</tilted></feature> 14196 <threshold>0.1258939951658249</threshold> 14197 <left_val>0.0124431503936648</left_val> 14198 <right_val>-0.9282261729240418</right_val></_></_> 14199 <_> 14200 <!-- tree 42 --> 14201 <_> 14202 <!-- root node --> 14203 <feature> 14204 <rects> 14205 <_>3 9 6 14 -1.</_> 14206 <_>5 9 2 14 3.</_></rects> 14207 <tilted>0</tilted></feature> 14208 <threshold>-2.2191529569681734e-004</threshold> 14209 <left_val>0.0697983428835869</left_val> 14210 <right_val>-0.3210623860359192</right_val></_></_> 14211 <_> 14212 <!-- tree 43 --> 14213 <_> 14214 <!-- root node --> 14215 <feature> 14216 <rects> 14217 <_>3 8 9 12 -1.</_> 14218 <_>6 12 3 4 9.</_></rects> 14219 <tilted>0</tilted></feature> 14220 <threshold>-0.0581751987338066</threshold> 14221 <left_val>-0.0770256295800209</left_val> 14222 <right_val>0.0967479869723320</right_val></_></_> 14223 <_> 14224 <!-- tree 44 --> 14225 <_> 14226 <!-- root node --> 14227 <feature> 14228 <rects> 14229 <_>5 4 4 19 -1.</_> 14230 <_>7 4 2 19 2.</_></rects> 14231 <tilted>0</tilted></feature> 14232 <threshold>-4.5887380838394165e-004</threshold> 14233 <left_val>0.1141244992613792</left_val> 14234 <right_val>-0.1471917033195496</right_val></_></_> 14235 <_> 14236 <!-- tree 45 --> 14237 <_> 14238 <!-- root node --> 14239 <feature> 14240 <rects> 14241 <_>5 5 4 19 -1.</_> 14242 <_>5 5 2 19 2.</_></rects> 14243 <tilted>0</tilted></feature> 14244 <threshold>-0.0408370196819305</threshold> 14245 <left_val>0.4765458106994629</left_val> 14246 <right_val>-0.0497375689446926</right_val></_></_> 14247 <_> 14248 <!-- tree 46 --> 14249 <_> 14250 <!-- root node --> 14251 <feature> 14252 <rects> 14253 <_>2 10 10 18 -1.</_> 14254 <_>2 10 5 9 2.</_> 14255 <_>7 19 5 9 2.</_></rects> 14256 <tilted>0</tilted></feature> 14257 <threshold>-9.7786840051412582e-003</threshold> 14258 <left_val>-0.2051378041505814</left_val> 14259 <right_val>0.0844689831137657</right_val></_></_> 14260 <_> 14261 <!-- tree 47 --> 14262 <_> 14263 <!-- root node --> 14264 <feature> 14265 <rects> 14266 <_>3 3 9 15 -1.</_> 14267 <_>3 8 9 5 3.</_></rects> 14268 <tilted>0</tilted></feature> 14269 <threshold>0.2796426117420197</threshold> 14270 <left_val>-0.0300348699092865</left_val> 14271 <right_val>0.6952624917030335</right_val></_></_> 14272 <_> 14273 <!-- tree 48 --> 14274 <_> 14275 <!-- root node --> 14276 <feature> 14277 <rects> 14278 <_>3 7 8 12 -1.</_> 14279 <_>3 11 8 4 3.</_></rects> 14280 <tilted>0</tilted></feature> 14281 <threshold>-0.0888691172003746</threshold> 14282 <left_val>0.2408183962106705</left_val> 14283 <right_val>-0.0705763772130013</right_val></_></_> 14284 <_> 14285 <!-- tree 49 --> 14286 <_> 14287 <!-- root node --> 14288 <feature> 14289 <rects> 14290 <_>6 9 6 8 -1.</_> 14291 <_>6 11 6 4 2.</_></rects> 14292 <tilted>0</tilted></feature> 14293 <threshold>-0.0140954600647092</threshold> 14294 <left_val>-0.1045643985271454</left_val> 14295 <right_val>0.0466049797832966</right_val></_></_> 14296 <_> 14297 <!-- tree 50 --> 14298 <_> 14299 <!-- root node --> 14300 <feature> 14301 <rects> 14302 <_>1 16 2 12 -1.</_> 14303 <_>2 16 1 12 2.</_></rects> 14304 <tilted>0</tilted></feature> 14305 <threshold>2.6836670003831387e-003</threshold> 14306 <left_val>0.0604959689080715</left_val> 14307 <right_val>-0.2578496932983398</right_val></_></_> 14308 <_> 14309 <!-- tree 51 --> 14310 <_> 14311 <!-- root node --> 14312 <feature> 14313 <rects> 14314 <_>11 3 3 18 -1.</_> 14315 <_>11 12 3 9 2.</_></rects> 14316 <tilted>0</tilted></feature> 14317 <threshold>0.0870512798428535</threshold> 14318 <left_val>-0.0241736695170403</left_val> 14319 <right_val>0.2404305934906006</right_val></_></_> 14320 <_> 14321 <!-- tree 52 --> 14322 <_> 14323 <!-- root node --> 14324 <feature> 14325 <rects> 14326 <_>0 3 3 18 -1.</_> 14327 <_>0 12 3 9 2.</_></rects> 14328 <tilted>0</tilted></feature> 14329 <threshold>-0.0101780397817492</threshold> 14330 <left_val>0.2546978890895844</left_val> 14331 <right_val>-0.0928905084729195</right_val></_></_> 14332 <_> 14333 <!-- tree 53 --> 14334 <_> 14335 <!-- root node --> 14336 <feature> 14337 <rects> 14338 <_>2 8 10 6 -1.</_> 14339 <_>7 8 5 3 2.</_> 14340 <_>2 11 5 3 2.</_></rects> 14341 <tilted>0</tilted></feature> 14342 <threshold>-9.0314531698822975e-003</threshold> 14343 <left_val>-0.2634347975254059</left_val> 14344 <right_val>0.0708488076925278</right_val></_></_> 14345 <_> 14346 <!-- tree 54 --> 14347 <_> 14348 <!-- root node --> 14349 <feature> 14350 <rects> 14351 <_>0 3 3 23 -1.</_> 14352 <_>1 3 1 23 3.</_></rects> 14353 <tilted>0</tilted></feature> 14354 <threshold>-6.7082298919558525e-003</threshold> 14355 <left_val>0.2331347018480301</left_val> 14356 <right_val>-0.0762718096375465</right_val></_></_> 14357 <_> 14358 <!-- tree 55 --> 14359 <_> 14360 <!-- root node --> 14361 <feature> 14362 <rects> 14363 <_>7 3 6 5 -1.</_> 14364 <_>7 3 3 5 2.</_></rects> 14365 <tilted>0</tilted></feature> 14366 <threshold>-0.0676144734025002</threshold> 14367 <left_val>-0.5201326012611389</left_val> 14368 <right_val>0.0137851601466537</right_val></_></_> 14369 <_> 14370 <!-- tree 56 --> 14371 <_> 14372 <!-- root node --> 14373 <feature> 14374 <rects> 14375 <_>2 0 10 28 -1.</_> 14376 <_>2 14 10 14 2.</_></rects> 14377 <tilted>0</tilted></feature> 14378 <threshold>-0.3963688015937805</threshold> 14379 <left_val>-0.7626718878746033</left_val> 14380 <right_val>0.0206865202635527</right_val></_></_> 14381 <_> 14382 <!-- tree 57 --> 14383 <_> 14384 <!-- root node --> 14385 <feature> 14386 <rects> 14387 <_>6 17 8 6 -1.</_> 14388 <_>10 17 4 3 2.</_> 14389 <_>6 20 4 3 2.</_></rects> 14390 <tilted>0</tilted></feature> 14391 <threshold>1.2813470093533397e-003</threshold> 14392 <left_val>-0.1404623985290527</left_val> 14393 <right_val>0.1271191984415054</right_val></_></_> 14394 <_> 14395 <!-- tree 58 --> 14396 <_> 14397 <!-- root node --> 14398 <feature> 14399 <rects> 14400 <_>4 13 4 14 -1.</_> 14401 <_>4 13 2 7 2.</_> 14402 <_>6 20 2 7 2.</_></rects> 14403 <tilted>0</tilted></feature> 14404 <threshold>8.4416065365076065e-003</threshold> 14405 <left_val>0.0747128278017044</left_val> 14406 <right_val>-0.2566313147544861</right_val></_></_> 14407 <_> 14408 <!-- tree 59 --> 14409 <_> 14410 <!-- root node --> 14411 <feature> 14412 <rects> 14413 <_>12 7 2 12 -1.</_> 14414 <_>12 7 1 12 2.</_></rects> 14415 <tilted>0</tilted></feature> 14416 <threshold>1.4749030015082099e-005</threshold> 14417 <left_val>-0.1401512026786804</left_val> 14418 <right_val>0.1521048992872238</right_val></_></_> 14419 <_> 14420 <!-- tree 60 --> 14421 <_> 14422 <!-- root node --> 14423 <feature> 14424 <rects> 14425 <_>1 3 6 5 -1.</_> 14426 <_>4 3 3 5 2.</_></rects> 14427 <tilted>0</tilted></feature> 14428 <threshold>-0.0450732111930847</threshold> 14429 <left_val>-0.6426286101341248</left_val> 14430 <right_val>0.0259254500269890</right_val></_></_> 14431 <_> 14432 <!-- tree 61 --> 14433 <_> 14434 <!-- root node --> 14435 <feature> 14436 <rects> 14437 <_>12 7 2 12 -1.</_> 14438 <_>12 7 1 12 2.</_></rects> 14439 <tilted>0</tilted></feature> 14440 <threshold>7.7068619430065155e-003</threshold> 14441 <left_val>0.0324856899678707</left_val> 14442 <right_val>-0.2037702947854996</right_val></_></_> 14443 <_> 14444 <!-- tree 62 --> 14445 <_> 14446 <!-- root node --> 14447 <feature> 14448 <rects> 14449 <_>0 7 2 12 -1.</_> 14450 <_>1 7 1 12 2.</_></rects> 14451 <tilted>0</tilted></feature> 14452 <threshold>5.9383822372183204e-004</threshold> 14453 <left_val>-0.1295032948255539</left_val> 14454 <right_val>0.1621938049793243</right_val></_></_> 14455 <_> 14456 <!-- tree 63 --> 14457 <_> 14458 <!-- root node --> 14459 <feature> 14460 <rects> 14461 <_>4 12 6 6 -1.</_> 14462 <_>6 12 2 6 3.</_></rects> 14463 <tilted>0</tilted></feature> 14464 <threshold>-1.3042639475315809e-003</threshold> 14465 <left_val>0.0863188430666924</left_val> 14466 <right_val>-0.1922470927238464</right_val></_></_> 14467 <_> 14468 <!-- tree 64 --> 14469 <_> 14470 <!-- root node --> 14471 <feature> 14472 <rects> 14473 <_>0 10 10 5 -1.</_> 14474 <_>5 10 5 5 2.</_></rects> 14475 <tilted>0</tilted></feature> 14476 <threshold>6.4417850226163864e-003</threshold> 14477 <left_val>-0.0715060532093048</left_val> 14478 <right_val>0.3062734901905060</right_val></_></_> 14479 <_> 14480 <!-- tree 65 --> 14481 <_> 14482 <!-- root node --> 14483 <feature> 14484 <rects> 14485 <_>2 9 12 8 -1.</_> 14486 <_>5 9 6 8 2.</_></rects> 14487 <tilted>0</tilted></feature> 14488 <threshold>-0.0156303308904171</threshold> 14489 <left_val>0.0495155490934849</left_val> 14490 <right_val>-0.1484034955501556</right_val></_></_> 14491 <_> 14492 <!-- tree 66 --> 14493 <_> 14494 <!-- root node --> 14495 <feature> 14496 <rects> 14497 <_>0 7 4 12 -1.</_> 14498 <_>2 7 2 12 2.</_></rects> 14499 <tilted>0</tilted></feature> 14500 <threshold>0.0113956201821566</threshold> 14501 <left_val>0.0633552968502045</left_val> 14502 <right_val>-0.2557640969753265</right_val></_></_> 14503 <_> 14504 <!-- tree 67 --> 14505 <_> 14506 <!-- root node --> 14507 <feature> 14508 <rects> 14509 <_>11 16 3 6 -1.</_> 14510 <_>12 17 1 6 3.</_></rects> 14511 <tilted>1</tilted></feature> 14512 <threshold>0.0475444309413433</threshold> 14513 <left_val>4.8167328350245953e-003</left_val> 14514 <right_val>-0.7898777723312378</right_val></_></_> 14515 <_> 14516 <!-- tree 68 --> 14517 <_> 14518 <!-- root node --> 14519 <feature> 14520 <rects> 14521 <_>5 16 2 12 -1.</_> 14522 <_>6 16 1 12 2.</_></rects> 14523 <tilted>0</tilted></feature> 14524 <threshold>8.3856023848056793e-003</threshold> 14525 <left_val>-0.0430120117962360</left_val> 14526 <right_val>0.4110831916332245</right_val></_></_> 14527 <_> 14528 <!-- tree 69 --> 14529 <_> 14530 <!-- root node --> 14531 <feature> 14532 <rects> 14533 <_>11 16 3 6 -1.</_> 14534 <_>12 17 1 6 3.</_></rects> 14535 <tilted>1</tilted></feature> 14536 <threshold>-1.6369849909096956e-003</threshold> 14537 <left_val>0.0824732929468155</left_val> 14538 <right_val>-0.0789568126201630</right_val></_></_> 14539 <_> 14540 <!-- tree 70 --> 14541 <_> 14542 <!-- root node --> 14543 <feature> 14544 <rects> 14545 <_>6 6 2 14 -1.</_> 14546 <_>7 6 1 14 2.</_></rects> 14547 <tilted>0</tilted></feature> 14548 <threshold>-0.0165131092071533</threshold> 14549 <left_val>-0.5069249272346497</left_val> 14550 <right_val>0.0390719100832939</right_val></_></_> 14551 <_> 14552 <!-- tree 71 --> 14553 <_> 14554 <!-- root node --> 14555 <feature> 14556 <rects> 14557 <_>3 2 8 11 -1.</_> 14558 <_>5 2 4 11 2.</_></rects> 14559 <tilted>0</tilted></feature> 14560 <threshold>0.1035835966467857</threshold> 14561 <left_val>0.0207722708582878</left_val> 14562 <right_val>-0.6937174797058106</right_val></_></_> 14563 <_> 14564 <!-- tree 72 --> 14565 <_> 14566 <!-- root node --> 14567 <feature> 14568 <rects> 14569 <_>5 3 3 22 -1.</_> 14570 <_>6 3 1 22 3.</_></rects> 14571 <tilted>0</tilted></feature> 14572 <threshold>0.0333618409931660</threshold> 14573 <left_val>-0.0444790087640285</left_val> 14574 <right_val>0.4639281928539276</right_val></_></_> 14575 <_> 14576 <!-- tree 73 --> 14577 <_> 14578 <!-- root node --> 14579 <feature> 14580 <rects> 14581 <_>5 7 4 6 -1.</_> 14582 <_>5 10 4 3 2.</_></rects> 14583 <tilted>0</tilted></feature> 14584 <threshold>-0.0286644306033850</threshold> 14585 <left_val>-0.4588367044925690</left_val> 14586 <right_val>0.0356761701405048</right_val></_></_> 14587 <_> 14588 <!-- tree 74 --> 14589 <_> 14590 <!-- root node --> 14591 <feature> 14592 <rects> 14593 <_>4 9 6 4 -1.</_> 14594 <_>4 11 6 2 2.</_></rects> 14595 <tilted>0</tilted></feature> 14596 <threshold>-1.1209170043002814e-004</threshold> 14597 <left_val>0.0843445137143135</left_val> 14598 <right_val>-0.2155565023422241</right_val></_></_> 14599 <_> 14600 <!-- tree 75 --> 14601 <_> 14602 <!-- root node --> 14603 <feature> 14604 <rects> 14605 <_>5 25 8 3 -1.</_> 14606 <_>5 25 4 3 2.</_></rects> 14607 <tilted>0</tilted></feature> 14608 <threshold>0.0176902003586292</threshold> 14609 <left_val>9.7461966797709465e-003</left_val> 14610 <right_val>-0.8526154160499573</right_val></_></_> 14611 <_> 14612 <!-- tree 76 --> 14613 <_> 14614 <!-- root node --> 14615 <feature> 14616 <rects> 14617 <_>4 6 6 4 -1.</_> 14618 <_>4 8 6 2 2.</_></rects> 14619 <tilted>0</tilted></feature> 14620 <threshold>-0.0218784697353840</threshold> 14621 <left_val>0.2634595036506653</left_val> 14622 <right_val>-0.0702206417918205</right_val></_></_> 14623 <_> 14624 <!-- tree 77 --> 14625 <_> 14626 <!-- root node --> 14627 <feature> 14628 <rects> 14629 <_>4 5 10 8 -1.</_> 14630 <_>4 9 10 4 2.</_></rects> 14631 <tilted>0</tilted></feature> 14632 <threshold>-0.1242443025112152</threshold> 14633 <left_val>-0.2865940928459168</left_val> 14634 <right_val>0.0218161400407553</right_val></_></_> 14635 <_> 14636 <!-- tree 78 --> 14637 <_> 14638 <!-- root node --> 14639 <feature> 14640 <rects> 14641 <_>0 12 6 6 -1.</_> 14642 <_>0 15 6 3 2.</_></rects> 14643 <tilted>0</tilted></feature> 14644 <threshold>0.0657360926270485</threshold> 14645 <left_val>0.0236005801707506</left_val> 14646 <right_val>-0.7026379108428955</right_val></_></_> 14647 <_> 14648 <!-- tree 79 --> 14649 <_> 14650 <!-- root node --> 14651 <feature> 14652 <rects> 14653 <_>5 25 8 3 -1.</_> 14654 <_>5 25 4 3 2.</_></rects> 14655 <tilted>0</tilted></feature> 14656 <threshold>-0.0446337014436722</threshold> 14657 <left_val>-0.9577643275260925</left_val> 14658 <right_val>3.5877549089491367e-003</right_val></_></_> 14659 <_> 14660 <!-- tree 80 --> 14661 <_> 14662 <!-- root node --> 14663 <feature> 14664 <rects> 14665 <_>0 13 10 6 -1.</_> 14666 <_>0 13 5 3 2.</_> 14667 <_>5 16 5 3 2.</_></rects> 14668 <tilted>0</tilted></feature> 14669 <threshold>-0.0642715767025948</threshold> 14670 <left_val>0.6009951829910278</left_val> 14671 <right_val>-0.0285576190799475</right_val></_></_> 14672 <_> 14673 <!-- tree 81 --> 14674 <_> 14675 <!-- root node --> 14676 <feature> 14677 <rects> 14678 <_>6 7 3 15 -1.</_> 14679 <_>7 7 1 15 3.</_></rects> 14680 <tilted>0</tilted></feature> 14681 <threshold>5.6516240874771029e-005</threshold> 14682 <left_val>-0.1348548978567123</left_val> 14683 <right_val>0.1108092963695526</right_val></_></_> 14684 <_> 14685 <!-- tree 82 --> 14686 <_> 14687 <!-- root node --> 14688 <feature> 14689 <rects> 14690 <_>0 1 14 15 -1.</_> 14691 <_>0 6 14 5 3.</_></rects> 14692 <tilted>0</tilted></feature> 14693 <threshold>1.3419260503724217e-003</threshold> 14694 <left_val>0.0983250066637993</left_val> 14695 <right_val>-0.1688349992036820</right_val></_></_> 14696 <_> 14697 <!-- tree 83 --> 14698 <_> 14699 <!-- root node --> 14700 <feature> 14701 <rects> 14702 <_>6 4 8 8 -1.</_> 14703 <_>6 6 8 4 2.</_></rects> 14704 <tilted>0</tilted></feature> 14705 <threshold>-0.0218897294253111</threshold> 14706 <left_val>-0.2188055068254471</left_val> 14707 <right_val>0.0296206790953875</right_val></_></_> 14708 <_> 14709 <!-- tree 84 --> 14710 <_> 14711 <!-- root node --> 14712 <feature> 14713 <rects> 14714 <_>0 10 12 8 -1.</_> 14715 <_>0 12 12 4 2.</_></rects> 14716 <tilted>0</tilted></feature> 14717 <threshold>-1.9670790061354637e-003</threshold> 14718 <left_val>0.0976428091526031</left_val> 14719 <right_val>-0.1806287020444870</right_val></_></_> 14720 <_> 14721 <!-- tree 85 --> 14722 <_> 14723 <!-- root node --> 14724 <feature> 14725 <rects> 14726 <_>8 1 6 6 -1.</_> 14727 <_>8 3 6 2 3.</_></rects> 14728 <tilted>0</tilted></feature> 14729 <threshold>-0.0761965215206146</threshold> 14730 <left_val>-0.8638762235641480</left_val> 14731 <right_val>7.3730680160224438e-003</right_val></_></_> 14732 <_> 14733 <!-- tree 86 --> 14734 <_> 14735 <!-- root node --> 14736 <feature> 14737 <rects> 14738 <_>0 1 6 6 -1.</_> 14739 <_>0 3 6 2 3.</_></rects> 14740 <tilted>0</tilted></feature> 14741 <threshold>-7.9841358819976449e-004</threshold> 14742 <left_val>0.1535367965698242</left_val> 14743 <right_val>-0.1210580989718437</right_val></_></_> 14744 <_> 14745 <!-- tree 87 --> 14746 <_> 14747 <!-- root node --> 14748 <feature> 14749 <rects> 14750 <_>5 25 8 3 -1.</_> 14751 <_>5 25 4 3 2.</_></rects> 14752 <tilted>0</tilted></feature> 14753 <threshold>-8.2246732199564576e-004</threshold> 14754 <left_val>0.0407943390309811</left_val> 14755 <right_val>-0.1373779028654099</right_val></_></_> 14756 <_> 14757 <!-- tree 88 --> 14758 <_> 14759 <!-- root node --> 14760 <feature> 14761 <rects> 14762 <_>4 0 6 6 -1.</_> 14763 <_>6 0 2 6 3.</_></rects> 14764 <tilted>0</tilted></feature> 14765 <threshold>-3.0324649997055531e-003</threshold> 14766 <left_val>0.1208821013569832</left_val> 14767 <right_val>-0.1408873051404953</right_val></_></_></trees> 14768 <stage_threshold>-30.7607002258300780</stage_threshold> 14769 <parent>25</parent> 14770 <next>-1</next></_> 14771 <_> 14772 <!-- stage 27 --> 14773 <trees> 14774 <_> 14775 <!-- tree 0 --> 14776 <_> 14777 <!-- root node --> 14778 <feature> 14779 <rects> 14780 <_>1 16 12 4 -1.</_> 14781 <_>4 16 6 4 2.</_></rects> 14782 <tilted>0</tilted></feature> 14783 <threshold>-0.0527186505496502</threshold> 14784 <left_val>0.2598567903041840</left_val> 14785 <right_val>-0.1572197973728180</right_val></_></_> 14786 <_> 14787 <!-- tree 1 --> 14788 <_> 14789 <!-- root node --> 14790 <feature> 14791 <rects> 14792 <_>8 4 6 4 -1.</_> 14793 <_>8 4 6 2 2.</_></rects> 14794 <tilted>1</tilted></feature> 14795 <threshold>5.1614670082926750e-003</threshold> 14796 <left_val>-0.1027185991406441</left_val> 14797 <right_val>0.0593469813466072</right_val></_></_> 14798 <_> 14799 <!-- tree 2 --> 14800 <_> 14801 <!-- root node --> 14802 <feature> 14803 <rects> 14804 <_>6 4 4 6 -1.</_> 14805 <_>6 4 2 6 2.</_></rects> 14806 <tilted>1</tilted></feature> 14807 <threshold>0.0676990672945976</threshold> 14808 <left_val>-0.0773112624883652</left_val> 14809 <right_val>0.2860201001167297</right_val></_></_> 14810 <_> 14811 <!-- tree 3 --> 14812 <_> 14813 <!-- root node --> 14814 <feature> 14815 <rects> 14816 <_>4 4 6 4 -1.</_> 14817 <_>4 6 6 2 2.</_></rects> 14818 <tilted>0</tilted></feature> 14819 <threshold>-0.0338220112025738</threshold> 14820 <left_val>-0.5699905753135681</left_val> 14821 <right_val>0.0406845286488533</right_val></_></_> 14822 <_> 14823 <!-- tree 4 --> 14824 <_> 14825 <!-- root node --> 14826 <feature> 14827 <rects> 14828 <_>6 15 7 4 -1.</_> 14829 <_>6 15 7 2 2.</_></rects> 14830 <tilted>1</tilted></feature> 14831 <threshold>-0.0537463985383511</threshold> 14832 <left_val>-0.4742139875888825</left_val> 14833 <right_val>0.0627515912055969</right_val></_></_> 14834 <_> 14835 <!-- tree 5 --> 14836 <_> 14837 <!-- root node --> 14838 <feature> 14839 <rects> 14840 <_>4 4 6 4 -1.</_> 14841 <_>4 6 6 2 2.</_></rects> 14842 <tilted>0</tilted></feature> 14843 <threshold>-0.0305595602840185</threshold> 14844 <left_val>0.7163878083229065</left_val> 14845 <right_val>-0.0174239501357079</right_val></_></_> 14846 <_> 14847 <!-- tree 6 --> 14848 <_> 14849 <!-- root node --> 14850 <feature> 14851 <rects> 14852 <_>4 4 6 4 -1.</_> 14853 <_>4 6 6 2 2.</_></rects> 14854 <tilted>0</tilted></feature> 14855 <threshold>-0.0338220112025738</threshold> 14856 <left_val>-0.6728317737579346</left_val> 14857 <right_val>-1.2177439639344811e-003</right_val></_></_> 14858 <_> 14859 <!-- tree 7 --> 14860 <_> 14861 <!-- root node --> 14862 <feature> 14863 <rects> 14864 <_>8 2 3 12 -1.</_> 14865 <_>9 2 1 12 3.</_></rects> 14866 <tilted>0</tilted></feature> 14867 <threshold>2.7876009698957205e-004</threshold> 14868 <left_val>-0.0702052265405655</left_val> 14869 <right_val>0.1164873018860817</right_val></_></_> 14870 <_> 14871 <!-- tree 8 --> 14872 <_> 14873 <!-- root node --> 14874 <feature> 14875 <rects> 14876 <_>3 2 3 12 -1.</_> 14877 <_>4 2 1 12 3.</_></rects> 14878 <tilted>0</tilted></feature> 14879 <threshold>-2.5016230065375566e-003</threshold> 14880 <left_val>0.1291521042585373</left_val> 14881 <right_val>-0.1357607990503311</right_val></_></_> 14882 <_> 14883 <!-- tree 9 --> 14884 <_> 14885 <!-- root node --> 14886 <feature> 14887 <rects> 14888 <_>4 0 8 28 -1.</_> 14889 <_>6 0 4 28 2.</_></rects> 14890 <tilted>0</tilted></feature> 14891 <threshold>0.0908358395099640</threshold> 14892 <left_val>4.1303969919681549e-003</left_val> 14893 <right_val>0.4011166095733643</right_val></_></_> 14894 <_> 14895 <!-- tree 10 --> 14896 <_> 14897 <!-- root node --> 14898 <feature> 14899 <rects> 14900 <_>2 0 8 28 -1.</_> 14901 <_>4 0 4 28 2.</_></rects> 14902 <tilted>0</tilted></feature> 14903 <threshold>-0.0256032608449459</threshold> 14904 <left_val>-0.1005948036909103</left_val> 14905 <right_val>0.1881915926933289</right_val></_></_> 14906 <_> 14907 <!-- tree 11 --> 14908 <_> 14909 <!-- root node --> 14910 <feature> 14911 <rects> 14912 <_>8 15 4 8 -1.</_> 14913 <_>8 15 2 8 2.</_></rects> 14914 <tilted>0</tilted></feature> 14915 <threshold>-0.0521344617009163</threshold> 14916 <left_val>0.2528272867202759</left_val> 14917 <right_val>-0.1144765987992287</right_val></_></_> 14918 <_> 14919 <!-- tree 12 --> 14920 <_> 14921 <!-- root node --> 14922 <feature> 14923 <rects> 14924 <_>0 22 8 6 -1.</_> 14925 <_>0 22 4 3 2.</_> 14926 <_>4 25 4 3 2.</_></rects> 14927 <tilted>0</tilted></feature> 14928 <threshold>0.0384620688855648</threshold> 14929 <left_val>0.0558288693428040</left_val> 14930 <right_val>-0.5763548016548157</right_val></_></_> 14931 <_> 14932 <!-- tree 13 --> 14933 <_> 14934 <!-- root node --> 14935 <feature> 14936 <rects> 14937 <_>7 20 4 4 -1.</_> 14938 <_>8 21 2 4 2.</_></rects> 14939 <tilted>1</tilted></feature> 14940 <threshold>-1.4195869443938136e-003</threshold> 14941 <left_val>0.0457690991461277</left_val> 14942 <right_val>-0.1600112020969391</right_val></_></_> 14943 <_> 14944 <!-- tree 14 --> 14945 <_> 14946 <!-- root node --> 14947 <feature> 14948 <rects> 14949 <_>4 15 6 6 -1.</_> 14950 <_>6 15 2 6 3.</_></rects> 14951 <tilted>0</tilted></feature> 14952 <threshold>-0.0764881670475006</threshold> 14953 <left_val>-0.5253133773803711</left_val> 14954 <right_val>0.0520116500556469</right_val></_></_> 14955 <_> 14956 <!-- tree 15 --> 14957 <_> 14958 <!-- root node --> 14959 <feature> 14960 <rects> 14961 <_>4 10 6 9 -1.</_> 14962 <_>6 10 2 9 3.</_></rects> 14963 <tilted>0</tilted></feature> 14964 <threshold>1.2786199804395437e-003</threshold> 14965 <left_val>0.0760514065623283</left_val> 14966 <right_val>-0.2510409057140350</right_val></_></_> 14967 <_> 14968 <!-- tree 16 --> 14969 <_> 14970 <!-- root node --> 14971 <feature> 14972 <rects> 14973 <_>5 8 4 17 -1.</_> 14974 <_>6 8 2 17 2.</_></rects> 14975 <tilted>0</tilted></feature> 14976 <threshold>-1.2661969522014260e-003</threshold> 14977 <left_val>-0.1241165027022362</left_val> 14978 <right_val>0.1637594997882843</right_val></_></_> 14979 <_> 14980 <!-- tree 17 --> 14981 <_> 14982 <!-- root node --> 14983 <feature> 14984 <rects> 14985 <_>7 16 2 12 -1.</_> 14986 <_>7 16 1 12 2.</_></rects> 14987 <tilted>0</tilted></feature> 14988 <threshold>-9.0841390192508698e-003</threshold> 14989 <left_val>0.2261393070220947</left_val> 14990 <right_val>-0.0545596182346344</right_val></_></_> 14991 <_> 14992 <!-- tree 18 --> 14993 <_> 14994 <!-- root node --> 14995 <feature> 14996 <rects> 14997 <_>6 11 2 12 -1.</_> 14998 <_>7 11 1 12 2.</_></rects> 14999 <tilted>0</tilted></feature> 15000 <threshold>7.4418167059775442e-005</threshold> 15001 <left_val>-0.1648879945278168</left_val> 15002 <right_val>0.1086440011858940</right_val></_></_> 15003 <_> 15004 <!-- tree 19 --> 15005 <_> 15006 <!-- root node --> 15007 <feature> 15008 <rects> 15009 <_>0 12 14 12 -1.</_> 15010 <_>0 12 7 12 2.</_></rects> 15011 <tilted>0</tilted></feature> 15012 <threshold>-2.5643699336796999e-003</threshold> 15013 <left_val>-0.1893323957920075</left_val> 15014 <right_val>0.1029883027076721</right_val></_></_> 15015 <_> 15016 <!-- tree 20 --> 15017 <_> 15018 <!-- root node --> 15019 <feature> 15020 <rects> 15021 <_>0 4 4 24 -1.</_> 15022 <_>0 10 4 12 2.</_></rects> 15023 <tilted>0</tilted></feature> 15024 <threshold>-0.0349972285330296</threshold> 15025 <left_val>0.2374626994132996</left_val> 15026 <right_val>-0.0823906883597374</right_val></_></_> 15027 <_> 15028 <!-- tree 21 --> 15029 <_> 15030 <!-- root node --> 15031 <feature> 15032 <rects> 15033 <_>8 0 4 8 -1.</_> 15034 <_>8 4 4 4 2.</_></rects> 15035 <tilted>0</tilted></feature> 15036 <threshold>-0.0194228291511536</threshold> 15037 <left_val>-0.0996915400028229</left_val> 15038 <right_val>0.0403765588998795</right_val></_></_> 15039 <_> 15040 <!-- tree 22 --> 15041 <_> 15042 <!-- root node --> 15043 <feature> 15044 <rects> 15045 <_>1 24 12 4 -1.</_> 15046 <_>4 24 6 4 2.</_></rects> 15047 <tilted>0</tilted></feature> 15048 <threshold>-0.0596014782786369</threshold> 15049 <left_val>-0.9116243124008179</left_val> 15050 <right_val>0.0183674208819866</right_val></_></_> 15051 <_> 15052 <!-- tree 23 --> 15053 <_> 15054 <!-- root node --> 15055 <feature> 15056 <rects> 15057 <_>5 9 8 18 -1.</_> 15058 <_>5 18 8 9 2.</_></rects> 15059 <tilted>0</tilted></feature> 15060 <threshold>0.3404640853404999</threshold> 15061 <left_val>6.0519641265273094e-003</left_val> 15062 <right_val>-0.4458416104316711</right_val></_></_> 15063 <_> 15064 <!-- tree 24 --> 15065 <_> 15066 <!-- root node --> 15067 <feature> 15068 <rects> 15069 <_>1 4 3 22 -1.</_> 15070 <_>2 4 1 22 3.</_></rects> 15071 <tilted>0</tilted></feature> 15072 <threshold>6.5878271125257015e-003</threshold> 15073 <left_val>-0.0957677513360977</left_val> 15074 <right_val>0.1808755993843079</right_val></_></_> 15075 <_> 15076 <!-- tree 25 --> 15077 <_> 15078 <!-- root node --> 15079 <feature> 15080 <rects> 15081 <_>11 16 2 12 -1.</_> 15082 <_>11 16 1 12 2.</_></rects> 15083 <tilted>0</tilted></feature> 15084 <threshold>5.3841830231249332e-003</threshold> 15085 <left_val>0.0526585616171360</left_val> 15086 <right_val>-0.4520238935947418</right_val></_></_> 15087 <_> 15088 <!-- tree 26 --> 15089 <_> 15090 <!-- root node --> 15091 <feature> 15092 <rects> 15093 <_>1 16 2 12 -1.</_> 15094 <_>2 16 1 12 2.</_></rects> 15095 <tilted>0</tilted></feature> 15096 <threshold>7.9094972461462021e-003</threshold> 15097 <left_val>0.0380643010139465</left_val> 15098 <right_val>-0.4598438143730164</right_val></_></_> 15099 <_> 15100 <!-- tree 27 --> 15101 <_> 15102 <!-- root node --> 15103 <feature> 15104 <rects> 15105 <_>4 1 8 6 -1.</_> 15106 <_>8 1 4 3 2.</_> 15107 <_>4 4 4 3 2.</_></rects> 15108 <tilted>0</tilted></feature> 15109 <threshold>-0.0175665393471718</threshold> 15110 <left_val>0.1113914027810097</left_val> 15111 <right_val>-0.0295645091682673</right_val></_></_> 15112 <_> 15113 <!-- tree 28 --> 15114 <_> 15115 <!-- root node --> 15116 <feature> 15117 <rects> 15118 <_>2 1 8 6 -1.</_> 15119 <_>2 1 4 3 2.</_> 15120 <_>6 4 4 3 2.</_></rects> 15121 <tilted>0</tilted></feature> 15122 <threshold>-1.1352599831297994e-003</threshold> 15123 <left_val>0.1082551032304764</left_val> 15124 <right_val>-0.1835540980100632</right_val></_></_> 15125 <_> 15126 <!-- tree 29 --> 15127 <_> 15128 <!-- root node --> 15129 <feature> 15130 <rects> 15131 <_>4 0 8 20 -1.</_> 15132 <_>4 10 8 10 2.</_></rects> 15133 <tilted>0</tilted></feature> 15134 <threshold>0.1423728018999100</threshold> 15135 <left_val>-0.0319952294230461</left_val> 15136 <right_val>0.3809931874275208</right_val></_></_> 15137 <_> 15138 <!-- tree 30 --> 15139 <_> 15140 <!-- root node --> 15141 <feature> 15142 <rects> 15143 <_>0 5 9 6 -1.</_> 15144 <_>0 8 9 3 2.</_></rects> 15145 <tilted>0</tilted></feature> 15146 <threshold>-0.1002440974116325</threshold> 15147 <left_val>-0.7746186256408691</left_val> 15148 <right_val>0.0239925999194384</right_val></_></_> 15149 <_> 15150 <!-- tree 31 --> 15151 <_> 15152 <!-- root node --> 15153 <feature> 15154 <rects> 15155 <_>3 4 8 16 -1.</_> 15156 <_>3 8 8 8 2.</_></rects> 15157 <tilted>0</tilted></feature> 15158 <threshold>-0.1245379969477654</threshold> 15159 <left_val>0.2125505954027176</left_val> 15160 <right_val>-0.0917487591505051</right_val></_></_> 15161 <_> 15162 <!-- tree 32 --> 15163 <_> 15164 <!-- root node --> 15165 <feature> 15166 <rects> 15167 <_>3 11 6 16 -1.</_> 15168 <_>3 19 6 8 2.</_></rects> 15169 <tilted>0</tilted></feature> 15170 <threshold>0.1964138001203537</threshold> 15171 <left_val>0.0330282710492611</left_val> 15172 <right_val>-0.6022315025329590</right_val></_></_> 15173 <_> 15174 <!-- tree 33 --> 15175 <_> 15176 <!-- root node --> 15177 <feature> 15178 <rects> 15179 <_>4 9 6 12 -1.</_> 15180 <_>7 9 3 6 2.</_> 15181 <_>4 15 3 6 2.</_></rects> 15182 <tilted>0</tilted></feature> 15183 <threshold>-0.0414673388004303</threshold> 15184 <left_val>-0.8826444745063782</left_val> 15185 <right_val>0.0133995404466987</right_val></_></_> 15186 <_> 15187 <!-- tree 34 --> 15188 <_> 15189 <!-- root node --> 15190 <feature> 15191 <rects> 15192 <_>7 20 4 3 -1.</_> 15193 <_>6 21 4 1 3.</_></rects> 15194 <tilted>1</tilted></feature> 15195 <threshold>-0.0300201997160912</threshold> 15196 <left_val>0.5815895199775696</left_val> 15197 <right_val>-0.0398013107478619</right_val></_></_> 15198 <_> 15199 <!-- tree 35 --> 15200 <_> 15201 <!-- root node --> 15202 <feature> 15203 <rects> 15204 <_>2 6 12 2 -1.</_> 15205 <_>2 7 12 1 2.</_></rects> 15206 <tilted>0</tilted></feature> 15207 <threshold>0.0190021507441998</threshold> 15208 <left_val>-0.0245082303881645</left_val> 15209 <right_val>0.3225910067558289</right_val></_></_> 15210 <_> 15211 <!-- tree 36 --> 15212 <_> 15213 <!-- root node --> 15214 <feature> 15215 <rects> 15216 <_>4 2 6 4 -1.</_> 15217 <_>4 2 6 2 2.</_></rects> 15218 <tilted>1</tilted></feature> 15219 <threshold>-0.0108372801914811</threshold> 15220 <left_val>-0.2542868852615356</left_val> 15221 <right_val>0.0733845233917236</right_val></_></_> 15222 <_> 15223 <!-- tree 37 --> 15224 <_> 15225 <!-- root node --> 15226 <feature> 15227 <rects> 15228 <_>8 1 6 5 -1.</_> 15229 <_>8 1 3 5 2.</_></rects> 15230 <tilted>1</tilted></feature> 15231 <threshold>-0.0244938600808382</threshold> 15232 <left_val>0.1488355994224548</left_val> 15233 <right_val>-0.0367299504578114</right_val></_></_> 15234 <_> 15235 <!-- tree 38 --> 15236 <_> 15237 <!-- root node --> 15238 <feature> 15239 <rects> 15240 <_>7 4 4 6 -1.</_> 15241 <_>7 4 4 3 2.</_></rects> 15242 <tilted>1</tilted></feature> 15243 <threshold>4.7652618959546089e-003</threshold> 15244 <left_val>0.1269364058971405</left_val> 15245 <right_val>-0.1915761977434158</right_val></_></_> 15246 <_> 15247 <!-- tree 39 --> 15248 <_> 15249 <!-- root node --> 15250 <feature> 15251 <rects> 15252 <_>4 5 6 20 -1.</_> 15253 <_>4 10 6 10 2.</_></rects> 15254 <tilted>0</tilted></feature> 15255 <threshold>-0.0124380104243755</threshold> 15256 <left_val>0.0717270076274872</left_val> 15257 <right_val>-0.2542191147804260</right_val></_></_> 15258 <_> 15259 <!-- tree 40 --> 15260 <_> 15261 <!-- root node --> 15262 <feature> 15263 <rects> 15264 <_>2 8 4 13 -1.</_> 15265 <_>4 8 2 13 2.</_></rects> 15266 <tilted>0</tilted></feature> 15267 <threshold>0.0212753191590309</threshold> 15268 <left_val>-0.0493925884366035</left_val> 15269 <right_val>0.5271543264389038</right_val></_></_> 15270 <_> 15271 <!-- tree 41 --> 15272 <_> 15273 <!-- root node --> 15274 <feature> 15275 <rects> 15276 <_>0 0 14 8 -1.</_> 15277 <_>7 0 7 4 2.</_> 15278 <_>0 4 7 4 2.</_></rects> 15279 <tilted>0</tilted></feature> 15280 <threshold>-0.0673698335886002</threshold> 15281 <left_val>-0.4689128100872040</left_val> 15282 <right_val>0.0428815484046936</right_val></_></_> 15283 <_> 15284 <!-- tree 42 --> 15285 <_> 15286 <!-- root node --> 15287 <feature> 15288 <rects> 15289 <_>5 0 4 6 -1.</_> 15290 <_>7 0 2 6 2.</_></rects> 15291 <tilted>0</tilted></feature> 15292 <threshold>-1.0925510432571173e-003</threshold> 15293 <left_val>0.1125015020370483</left_val> 15294 <right_val>-0.1368837952613831</right_val></_></_> 15295 <_> 15296 <!-- tree 43 --> 15297 <_> 15298 <!-- root node --> 15299 <feature> 15300 <rects> 15301 <_>6 2 4 12 -1.</_> 15302 <_>6 6 4 4 3.</_></rects> 15303 <tilted>0</tilted></feature> 15304 <threshold>-0.0978634282946587</threshold> 15305 <left_val>-0.8516709208488464</left_val> 15306 <right_val>7.9745445400476456e-003</right_val></_></_> 15307 <_> 15308 <!-- tree 44 --> 15309 <_> 15310 <!-- root node --> 15311 <feature> 15312 <rects> 15313 <_>2 14 4 7 -1.</_> 15314 <_>4 14 2 7 2.</_></rects> 15315 <tilted>0</tilted></feature> 15316 <threshold>-2.0980979315936565e-003</threshold> 15317 <left_val>0.0725561976432800</left_val> 15318 <right_val>-0.2125356048345566</right_val></_></_> 15319 <_> 15320 <!-- tree 45 --> 15321 <_> 15322 <!-- root node --> 15323 <feature> 15324 <rects> 15325 <_>5 4 6 4 -1.</_> 15326 <_>5 4 3 4 2.</_></rects> 15327 <tilted>0</tilted></feature> 15328 <threshold>0.0449756681919098</threshold> 15329 <left_val>-6.4254011958837509e-003</left_val> 15330 <right_val>0.6733464002609253</right_val></_></_> 15331 <_> 15332 <!-- tree 46 --> 15333 <_> 15334 <!-- root node --> 15335 <feature> 15336 <rects> 15337 <_>3 0 8 19 -1.</_> 15338 <_>7 0 4 19 2.</_></rects> 15339 <tilted>0</tilted></feature> 15340 <threshold>-0.0209705308079720</threshold> 15341 <left_val>-0.1534136980772018</left_val> 15342 <right_val>0.1122943982481957</right_val></_></_> 15343 <_> 15344 <!-- tree 47 --> 15345 <_> 15346 <!-- root node --> 15347 <feature> 15348 <rects> 15349 <_>5 5 4 15 -1.</_> 15350 <_>5 5 2 15 2.</_></rects> 15351 <tilted>0</tilted></feature> 15352 <threshold>7.1862142067402601e-004</threshold> 15353 <left_val>-0.1369003951549530</left_val> 15354 <right_val>0.1232310980558395</right_val></_></_> 15355 <_> 15356 <!-- tree 48 --> 15357 <_> 15358 <!-- root node --> 15359 <feature> 15360 <rects> 15361 <_>1 11 12 3 -1.</_> 15362 <_>1 12 12 1 3.</_></rects> 15363 <tilted>0</tilted></feature> 15364 <threshold>0.0119219999760389</threshold> 15365 <left_val>-0.0520369112491608</left_val> 15366 <right_val>0.3509553968906403</right_val></_></_> 15367 <_> 15368 <!-- tree 49 --> 15369 <_> 15370 <!-- root node --> 15371 <feature> 15372 <rects> 15373 <_>5 4 6 4 -1.</_> 15374 <_>5 4 3 4 2.</_></rects> 15375 <tilted>0</tilted></feature> 15376 <threshold>-0.0129568902775645</threshold> 15377 <left_val>0.0878135785460472</left_val> 15378 <right_val>-0.0281739197671413</right_val></_></_> 15379 <_> 15380 <!-- tree 50 --> 15381 <_> 15382 <!-- root node --> 15383 <feature> 15384 <rects> 15385 <_>1 10 5 6 -1.</_> 15386 <_>1 13 5 3 2.</_></rects> 15387 <tilted>0</tilted></feature> 15388 <threshold>-0.0279726497828960</threshold> 15389 <left_val>-0.5901845097541809</left_val> 15390 <right_val>0.0247701294720173</right_val></_></_> 15391 <_> 15392 <!-- tree 51 --> 15393 <_> 15394 <!-- root node --> 15395 <feature> 15396 <rects> 15397 <_>5 4 6 4 -1.</_> 15398 <_>5 4 3 4 2.</_></rects> 15399 <tilted>0</tilted></feature> 15400 <threshold>-6.0088839381933212e-003</threshold> 15401 <left_val>-0.0659633576869965</left_val> 15402 <right_val>0.0362772904336452</right_val></_></_> 15403 <_> 15404 <!-- tree 52 --> 15405 <_> 15406 <!-- root node --> 15407 <feature> 15408 <rects> 15409 <_>0 13 13 3 -1.</_> 15410 <_>0 14 13 1 3.</_></rects> 15411 <tilted>0</tilted></feature> 15412 <threshold>-4.0854439139366150e-003</threshold> 15413 <left_val>0.1821193993091583</left_val> 15414 <right_val>-0.0895676687359810</right_val></_></_> 15415 <_> 15416 <!-- tree 53 --> 15417 <_> 15418 <!-- root node --> 15419 <feature> 15420 <rects> 15421 <_>5 4 6 4 -1.</_> 15422 <_>5 4 3 4 2.</_></rects> 15423 <tilted>0</tilted></feature> 15424 <threshold>6.3200960867106915e-003</threshold> 15425 <left_val>0.0238888505846262</left_val> 15426 <right_val>-0.1060646027326584</right_val></_></_> 15427 <_> 15428 <!-- tree 54 --> 15429 <_> 15430 <!-- root node --> 15431 <feature> 15432 <rects> 15433 <_>3 4 6 4 -1.</_> 15434 <_>6 4 3 4 2.</_></rects> 15435 <tilted>0</tilted></feature> 15436 <threshold>0.0206336192786694</threshold> 15437 <left_val>-0.0381768010556698</left_val> 15438 <right_val>0.5213416218757629</right_val></_></_> 15439 <_> 15440 <!-- tree 55 --> 15441 <_> 15442 <!-- root node --> 15443 <feature> 15444 <rects> 15445 <_>8 22 4 6 -1.</_> 15446 <_>8 22 2 6 2.</_></rects> 15447 <tilted>0</tilted></feature> 15448 <threshold>-2.5221719406545162e-003</threshold> 15449 <left_val>0.0465103685855865</left_val> 15450 <right_val>-0.0939578711986542</right_val></_></_> 15451 <_> 15452 <!-- tree 56 --> 15453 <_> 15454 <!-- root node --> 15455 <feature> 15456 <rects> 15457 <_>2 22 4 6 -1.</_> 15458 <_>4 22 2 6 2.</_></rects> 15459 <tilted>0</tilted></feature> 15460 <threshold>-4.6648699790239334e-003</threshold> 15461 <left_val>-0.2373497933149338</left_val> 15462 <right_val>0.0806084200739861</right_val></_></_> 15463 <_> 15464 <!-- tree 57 --> 15465 <_> 15466 <!-- root node --> 15467 <feature> 15468 <rects> 15469 <_>8 22 4 6 -1.</_> 15470 <_>8 22 2 6 2.</_></rects> 15471 <tilted>0</tilted></feature> 15472 <threshold>2.5844529736787081e-003</threshold> 15473 <left_val>-0.0242755599319935</left_val> 15474 <right_val>0.2288825064897537</right_val></_></_> 15475 <_> 15476 <!-- tree 58 --> 15477 <_> 15478 <!-- root node --> 15479 <feature> 15480 <rects> 15481 <_>2 22 4 6 -1.</_> 15482 <_>4 22 2 6 2.</_></rects> 15483 <tilted>0</tilted></feature> 15484 <threshold>-1.4966880371503066e-005</threshold> 15485 <left_val>0.0993802025914192</left_val> 15486 <right_val>-0.1983017027378082</right_val></_></_> 15487 <_> 15488 <!-- tree 59 --> 15489 <_> 15490 <!-- root node --> 15491 <feature> 15492 <rects> 15493 <_>0 13 14 3 -1.</_> 15494 <_>0 14 14 1 3.</_></rects> 15495 <tilted>0</tilted></feature> 15496 <threshold>6.2676537781953812e-003</threshold> 15497 <left_val>-0.0743672326207161</left_val> 15498 <right_val>0.2279033958911896</right_val></_></_> 15499 <_> 15500 <!-- tree 60 --> 15501 <_> 15502 <!-- root node --> 15503 <feature> 15504 <rects> 15505 <_>7 19 7 2 -1.</_> 15506 <_>7 19 7 1 2.</_></rects> 15507 <tilted>1</tilted></feature> 15508 <threshold>0.0263475496321917</threshold> 15509 <left_val>0.0192854590713978</left_val> 15510 <right_val>-0.8868331909179688</right_val></_></_> 15511 <_> 15512 <!-- tree 61 --> 15513 <_> 15514 <!-- root node --> 15515 <feature> 15516 <rects> 15517 <_>6 9 6 12 -1.</_> 15518 <_>6 13 6 4 3.</_></rects> 15519 <tilted>0</tilted></feature> 15520 <threshold>-0.0602689497172832</threshold> 15521 <left_val>0.1256269067525864</left_val> 15522 <right_val>-0.0337168686091900</right_val></_></_> 15523 <_> 15524 <!-- tree 62 --> 15525 <_> 15526 <!-- root node --> 15527 <feature> 15528 <rects> 15529 <_>0 26 12 2 -1.</_> 15530 <_>6 26 6 2 2.</_></rects> 15531 <tilted>0</tilted></feature> 15532 <threshold>-3.8371770642697811e-003</threshold> 15533 <left_val>-0.1773530989885330</left_val> 15534 <right_val>0.0885887369513512</right_val></_></_> 15535 <_> 15536 <!-- tree 63 --> 15537 <_> 15538 <!-- root node --> 15539 <feature> 15540 <rects> 15541 <_>2 25 12 3 -1.</_> 15542 <_>2 25 6 3 2.</_></rects> 15543 <tilted>0</tilted></feature> 15544 <threshold>-3.5063549876213074e-003</threshold> 15545 <left_val>-0.0871009081602097</left_val> 15546 <right_val>0.0566508583724499</right_val></_></_> 15547 <_> 15548 <!-- tree 64 --> 15549 <_> 15550 <!-- root node --> 15551 <feature> 15552 <rects> 15553 <_>0 24 14 4 -1.</_> 15554 <_>0 24 7 2 2.</_> 15555 <_>7 26 7 2 2.</_></rects> 15556 <tilted>0</tilted></feature> 15557 <threshold>-8.1536881625652313e-003</threshold> 15558 <left_val>0.2586381137371063</left_val> 15559 <right_val>-0.0596906095743179</right_val></_></_> 15560 <_> 15561 <!-- tree 65 --> 15562 <_> 15563 <!-- root node --> 15564 <feature> 15565 <rects> 15566 <_>12 3 2 12 -1.</_> 15567 <_>12 3 1 12 2.</_></rects> 15568 <tilted>1</tilted></feature> 15569 <threshold>0.0385741293430328</threshold> 15570 <left_val>8.4148198366165161e-003</left_val> 15571 <right_val>-0.4340906143188477</right_val></_></_> 15572 <_> 15573 <!-- tree 66 --> 15574 <_> 15575 <!-- root node --> 15576 <feature> 15577 <rects> 15578 <_>3 2 4 12 -1.</_> 15579 <_>3 2 2 6 2.</_> 15580 <_>5 8 2 6 2.</_></rects> 15581 <tilted>0</tilted></feature> 15582 <threshold>-0.0392696596682072</threshold> 15583 <left_val>0.3546951115131378</left_val> 15584 <right_val>-0.0432481691241264</right_val></_></_> 15585 <_> 15586 <!-- tree 67 --> 15587 <_> 15588 <!-- root node --> 15589 <feature> 15590 <rects> 15591 <_>6 1 3 17 -1.</_> 15592 <_>7 1 1 17 3.</_></rects> 15593 <tilted>0</tilted></feature> 15594 <threshold>-1.7512469785287976e-003</threshold> 15595 <left_val>0.0868160873651505</left_val> 15596 <right_val>-0.0969246327877045</right_val></_></_> 15597 <_> 15598 <!-- tree 68 --> 15599 <_> 15600 <!-- root node --> 15601 <feature> 15602 <rects> 15603 <_>3 6 8 7 -1.</_> 15604 <_>5 6 4 7 2.</_></rects> 15605 <tilted>0</tilted></feature> 15606 <threshold>-0.0840612500905991</threshold> 15607 <left_val>-0.6525657176971436</left_val> 15608 <right_val>0.0247653201222420</right_val></_></_> 15609 <_> 15610 <!-- tree 69 --> 15611 <_> 15612 <!-- root node --> 15613 <feature> 15614 <rects> 15615 <_>6 0 3 12 -1.</_> 15616 <_>7 0 1 12 3.</_></rects> 15617 <tilted>0</tilted></feature> 15618 <threshold>-0.0434175394475460</threshold> 15619 <left_val>-0.5620542764663696</left_val> 15620 <right_val>9.8713487386703491e-003</right_val></_></_> 15621 <_> 15622 <!-- tree 70 --> 15623 <_> 15624 <!-- root node --> 15625 <feature> 15626 <rects> 15627 <_>5 0 3 12 -1.</_> 15628 <_>6 0 1 12 3.</_></rects> 15629 <tilted>0</tilted></feature> 15630 <threshold>-0.0136431697756052</threshold> 15631 <left_val>0.2456213980913162</left_val> 15632 <right_val>-0.0605527088046074</right_val></_></_> 15633 <_> 15634 <!-- tree 71 --> 15635 <_> 15636 <!-- root node --> 15637 <feature> 15638 <rects> 15639 <_>6 1 3 17 -1.</_> 15640 <_>7 1 1 17 3.</_></rects> 15641 <tilted>0</tilted></feature> 15642 <threshold>0.0164903607219458</threshold> 15643 <left_val>0.0388668887317181</left_val> 15644 <right_val>-0.2771584987640381</right_val></_></_> 15645 <_> 15646 <!-- tree 72 --> 15647 <_> 15648 <!-- root node --> 15649 <feature> 15650 <rects> 15651 <_>3 8 8 8 -1.</_> 15652 <_>3 8 4 4 2.</_> 15653 <_>7 12 4 4 2.</_></rects> 15654 <tilted>0</tilted></feature> 15655 <threshold>-0.0144229000434279</threshold> 15656 <left_val>-0.2282046973705292</left_val> 15657 <right_val>0.0590268410742283</right_val></_></_> 15658 <_> 15659 <!-- tree 73 --> 15660 <_> 15661 <!-- root node --> 15662 <feature> 15663 <rects> 15664 <_>8 15 3 12 -1.</_> 15665 <_>9 15 1 12 3.</_></rects> 15666 <tilted>0</tilted></feature> 15667 <threshold>2.7178740128874779e-003</threshold> 15668 <left_val>-0.1188718006014824</left_val> 15669 <right_val>0.1219222992658615</right_val></_></_> 15670 <_> 15671 <!-- tree 74 --> 15672 <_> 15673 <!-- root node --> 15674 <feature> 15675 <rects> 15676 <_>0 16 10 12 -1.</_> 15677 <_>0 16 5 6 2.</_> 15678 <_>5 22 5 6 2.</_></rects> 15679 <tilted>0</tilted></feature> 15680 <threshold>6.3701239414513111e-003</threshold> 15681 <left_val>-0.1716777980327606</left_val> 15682 <right_val>0.0995554178953171</right_val></_></_> 15683 <_> 15684 <!-- tree 75 --> 15685 <_> 15686 <!-- root node --> 15687 <feature> 15688 <rects> 15689 <_>6 2 8 22 -1.</_> 15690 <_>10 2 4 11 2.</_> 15691 <_>6 13 4 11 2.</_></rects> 15692 <tilted>0</tilted></feature> 15693 <threshold>0.0812902003526688</threshold> 15694 <left_val>-0.0225097406655550</left_val> 15695 <right_val>0.2447286993265152</right_val></_></_> 15696 <_> 15697 <!-- tree 76 --> 15698 <_> 15699 <!-- root node --> 15700 <feature> 15701 <rects> 15702 <_>0 25 12 3 -1.</_> 15703 <_>6 25 6 3 2.</_></rects> 15704 <tilted>0</tilted></feature> 15705 <threshold>-1.4793650188948959e-004</threshold> 15706 <left_val>0.0808456912636757</left_val> 15707 <right_val>-0.2168036997318268</right_val></_></_> 15708 <_> 15709 <!-- tree 77 --> 15710 <_> 15711 <!-- root node --> 15712 <feature> 15713 <rects> 15714 <_>2 14 12 14 -1.</_> 15715 <_>2 14 6 14 2.</_></rects> 15716 <tilted>0</tilted></feature> 15717 <threshold>-6.9097941741347313e-004</threshold> 15718 <left_val>0.0622812397778034</left_val> 15719 <right_val>-0.1408240944147110</right_val></_></_> 15720 <_> 15721 <!-- tree 78 --> 15722 <_> 15723 <!-- root node --> 15724 <feature> 15725 <rects> 15726 <_>2 14 8 10 -1.</_> 15727 <_>4 14 4 10 2.</_></rects> 15728 <tilted>0</tilted></feature> 15729 <threshold>-0.0114553598687053</threshold> 15730 <left_val>-0.1172252967953682</left_val> 15731 <right_val>0.1594851016998291</right_val></_></_> 15732 <_> 15733 <!-- tree 79 --> 15734 <_> 15735 <!-- root node --> 15736 <feature> 15737 <rects> 15738 <_>5 13 6 14 -1.</_> 15739 <_>7 13 2 14 3.</_></rects> 15740 <tilted>0</tilted></feature> 15741 <threshold>-0.1633439958095551</threshold> 15742 <left_val>-0.3472715020179749</left_val> 15743 <right_val>0.0110032502561808</right_val></_></_> 15744 <_> 15745 <!-- tree 80 --> 15746 <_> 15747 <!-- root node --> 15748 <feature> 15749 <rects> 15750 <_>3 13 6 14 -1.</_> 15751 <_>5 13 2 14 3.</_></rects> 15752 <tilted>0</tilted></feature> 15753 <threshold>-0.0686523020267487</threshold> 15754 <left_val>0.2544158101081848</left_val> 15755 <right_val>-0.0787787586450577</right_val></_></_> 15756 <_> 15757 <!-- tree 81 --> 15758 <_> 15759 <!-- root node --> 15760 <feature> 15761 <rects> 15762 <_>4 12 8 13 -1.</_> 15763 <_>6 12 4 13 2.</_></rects> 15764 <tilted>0</tilted></feature> 15765 <threshold>6.9226641207933426e-003</threshold> 15766 <left_val>-0.0298005696386099</left_val> 15767 <right_val>0.2045527994632721</right_val></_></_> 15768 <_> 15769 <!-- tree 82 --> 15770 <_> 15771 <!-- root node --> 15772 <feature> 15773 <rects> 15774 <_>2 12 8 13 -1.</_> 15775 <_>4 12 4 13 2.</_></rects> 15776 <tilted>0</tilted></feature> 15777 <threshold>-0.1085160002112389</threshold> 15778 <left_val>-0.4737502932548523</left_val> 15779 <right_val>0.0407044403254986</right_val></_></_> 15780 <_> 15781 <!-- tree 83 --> 15782 <_> 15783 <!-- root node --> 15784 <feature> 15785 <rects> 15786 <_>3 22 10 6 -1.</_> 15787 <_>8 22 5 3 2.</_> 15788 <_>3 25 5 3 2.</_></rects> 15789 <tilted>0</tilted></feature> 15790 <threshold>0.0588681511580944</threshold> 15791 <left_val>1.3014429714530706e-003</left_val> 15792 <right_val>-1.0001180171966553</right_val></_></_> 15793 <_> 15794 <!-- tree 84 --> 15795 <_> 15796 <!-- root node --> 15797 <feature> 15798 <rects> 15799 <_>1 22 10 6 -1.</_> 15800 <_>1 22 5 3 2.</_> 15801 <_>6 25 5 3 2.</_></rects> 15802 <tilted>0</tilted></feature> 15803 <threshold>1.5332780312746763e-003</threshold> 15804 <left_val>-0.1644199043512344</left_val> 15805 <right_val>0.0994952693581581</right_val></_></_> 15806 <_> 15807 <!-- tree 85 --> 15808 <_> 15809 <!-- root node --> 15810 <feature> 15811 <rects> 15812 <_>8 5 6 9 -1.</_> 15813 <_>8 8 6 3 3.</_></rects> 15814 <tilted>0</tilted></feature> 15815 <threshold>-2.5576220359653234e-003</threshold> 15816 <left_val>0.0814589336514473</left_val> 15817 <right_val>-0.0909456834197044</right_val></_></_> 15818 <_> 15819 <!-- tree 86 --> 15820 <_> 15821 <!-- root node --> 15822 <feature> 15823 <rects> 15824 <_>0 8 12 6 -1.</_> 15825 <_>0 8 6 3 2.</_> 15826 <_>6 11 6 3 2.</_></rects> 15827 <tilted>0</tilted></feature> 15828 <threshold>3.6009950563311577e-003</threshold> 15829 <left_val>0.0867608934640884</left_val> 15830 <right_val>-0.1987220942974091</right_val></_></_> 15831 <_> 15832 <!-- tree 87 --> 15833 <_> 15834 <!-- root node --> 15835 <feature> 15836 <rects> 15837 <_>9 6 3 13 -1.</_> 15838 <_>10 6 1 13 3.</_></rects> 15839 <tilted>0</tilted></feature> 15840 <threshold>0.0109860803931952</threshold> 15841 <left_val>-0.0482303202152252</left_val> 15842 <right_val>0.1926449984312058</right_val></_></_> 15843 <_> 15844 <!-- tree 88 --> 15845 <_> 15846 <!-- root node --> 15847 <feature> 15848 <rects> 15849 <_>0 2 5 24 -1.</_> 15850 <_>0 14 5 12 2.</_></rects> 15851 <tilted>0</tilted></feature> 15852 <threshold>-4.4403300853446126e-004</threshold> 15853 <left_val>0.2011567056179047</left_val> 15854 <right_val>-0.0830598101019859</right_val></_></_> 15855 <_> 15856 <!-- tree 89 --> 15857 <_> 15858 <!-- root node --> 15859 <feature> 15860 <rects> 15861 <_>11 11 3 8 -1.</_> 15862 <_>11 15 3 4 2.</_></rects> 15863 <tilted>0</tilted></feature> 15864 <threshold>2.9464240651577711e-004</threshold> 15865 <left_val>-0.1280869990587235</left_val> 15866 <right_val>0.0666525363922119</right_val></_></_> 15867 <_> 15868 <!-- tree 90 --> 15869 <_> 15870 <!-- root node --> 15871 <feature> 15872 <rects> 15873 <_>5 1 3 17 -1.</_> 15874 <_>6 1 1 17 3.</_></rects> 15875 <tilted>0</tilted></feature> 15876 <threshold>-0.0413200818002224</threshold> 15877 <left_val>-0.5351092219352722</left_val> 15878 <right_val>0.0295785907655954</right_val></_></_> 15879 <_> 15880 <!-- tree 91 --> 15881 <_> 15882 <!-- root node --> 15883 <feature> 15884 <rects> 15885 <_>5 5 8 8 -1.</_> 15886 <_>7 5 4 8 2.</_></rects> 15887 <tilted>0</tilted></feature> 15888 <threshold>0.0819299966096878</threshold> 15889 <left_val>-0.0169396102428436</left_val> 15890 <right_val>0.7652422189712524</right_val></_></_> 15891 <_> 15892 <!-- tree 92 --> 15893 <_> 15894 <!-- root node --> 15895 <feature> 15896 <rects> 15897 <_>3 16 2 12 -1.</_> 15898 <_>4 16 1 12 2.</_></rects> 15899 <tilted>0</tilted></feature> 15900 <threshold>0.0147583996877074</threshold> 15901 <left_val>0.0272067803889513</left_val> 15902 <right_val>-0.6260780096054077</right_val></_></_> 15903 <_> 15904 <!-- tree 93 --> 15905 <_> 15906 <!-- root node --> 15907 <feature> 15908 <rects> 15909 <_>6 3 6 18 -1.</_> 15910 <_>8 9 2 6 9.</_></rects> 15911 <tilted>0</tilted></feature> 15912 <threshold>-0.1757709980010986</threshold> 15913 <left_val>0.1032833009958267</left_val> 15914 <right_val>-0.0518636181950569</right_val></_></_> 15915 <_> 15916 <!-- tree 94 --> 15917 <_> 15918 <!-- root node --> 15919 <feature> 15920 <rects> 15921 <_>4 2 4 12 -1.</_> 15922 <_>4 6 4 4 3.</_></rects> 15923 <tilted>0</tilted></feature> 15924 <threshold>-0.0104924496263266</threshold> 15925 <left_val>-0.1942481994628906</left_val> 15926 <right_val>0.0858353078365326</right_val></_></_> 15927 <_> 15928 <!-- tree 95 --> 15929 <_> 15930 <!-- root node --> 15931 <feature> 15932 <rects> 15933 <_>5 1 4 12 -1.</_> 15934 <_>5 4 4 6 2.</_></rects> 15935 <tilted>0</tilted></feature> 15936 <threshold>-5.6793028488755226e-003</threshold> 15937 <left_val>0.1625234931707382</left_val> 15938 <right_val>-0.1160741001367569</right_val></_></_> 15939 <_> 15940 <!-- tree 96 --> 15941 <_> 15942 <!-- root node --> 15943 <feature> 15944 <rects> 15945 <_>1 0 12 12 -1.</_> 15946 <_>5 4 4 4 9.</_></rects> 15947 <tilted>0</tilted></feature> 15948 <threshold>-0.0770260915160179</threshold> 15949 <left_val>-0.1658536940813065</left_val> 15950 <right_val>0.1048763990402222</right_val></_></_> 15951 <_> 15952 <!-- tree 97 --> 15953 <_> 15954 <!-- root node --> 15955 <feature> 15956 <rects> 15957 <_>6 0 6 5 -1.</_> 15958 <_>6 0 3 5 2.</_></rects> 15959 <tilted>0</tilted></feature> 15960 <threshold>0.0882552415132523</threshold> 15961 <left_val>-4.2857029475271702e-003</left_val> 15962 <right_val>1.0002230405807495</right_val></_></_> 15963 <_> 15964 <!-- tree 98 --> 15965 <_> 15966 <!-- root node --> 15967 <feature> 15968 <rects> 15969 <_>2 0 6 5 -1.</_> 15970 <_>5 0 3 5 2.</_></rects> 15971 <tilted>0</tilted></feature> 15972 <threshold>-2.5600788649171591e-004</threshold> 15973 <left_val>0.1321841031312943</left_val> 15974 <right_val>-0.1475474983453751</right_val></_></_> 15975 <_> 15976 <!-- tree 99 --> 15977 <_> 15978 <!-- root node --> 15979 <feature> 15980 <rects> 15981 <_>6 5 3 21 -1.</_> 15982 <_>7 5 1 21 3.</_></rects> 15983 <tilted>0</tilted></feature> 15984 <threshold>0.0345324687659740</threshold> 15985 <left_val>-0.0478740595281124</left_val> 15986 <right_val>0.2770858108997345</right_val></_></_> 15987 <_> 15988 <!-- tree 100 --> 15989 <_> 15990 <!-- root node --> 15991 <feature> 15992 <rects> 15993 <_>1 0 6 24 -1.</_> 15994 <_>1 0 3 12 2.</_> 15995 <_>4 12 3 12 2.</_></rects> 15996 <tilted>0</tilted></feature> 15997 <threshold>0.1097825020551682</threshold> 15998 <left_val>-0.0216063000261784</left_val> 15999 <right_val>0.8505910038948059</right_val></_></_> 16000 <_> 16001 <!-- tree 101 --> 16002 <_> 16003 <!-- root node --> 16004 <feature> 16005 <rects> 16006 <_>8 18 4 6 -1.</_> 16007 <_>9 19 2 6 2.</_></rects> 16008 <tilted>1</tilted></feature> 16009 <threshold>0.0367177687585354</threshold> 16010 <left_val>0.0162764303386211</left_val> 16011 <right_val>-0.8900070786476135</right_val></_></_> 16012 <_> 16013 <!-- tree 102 --> 16014 <_> 16015 <!-- root node --> 16016 <feature> 16017 <rects> 16018 <_>3 0 6 8 -1.</_> 16019 <_>3 0 3 4 2.</_> 16020 <_>6 4 3 4 2.</_></rects> 16021 <tilted>0</tilted></feature> 16022 <threshold>-0.0612067282199860</threshold> 16023 <left_val>0.5483801960945129</left_val> 16024 <right_val>-0.0316251218318939</right_val></_></_> 16025 <_> 16026 <!-- tree 103 --> 16027 <_> 16028 <!-- root node --> 16029 <feature> 16030 <rects> 16031 <_>5 24 9 4 -1.</_> 16032 <_>8 24 3 4 3.</_></rects> 16033 <tilted>0</tilted></feature> 16034 <threshold>2.9046889394521713e-003</threshold> 16035 <left_val>0.0414838008582592</left_val> 16036 <right_val>-0.0860545337200165</right_val></_></_> 16037 <_> 16038 <!-- tree 104 --> 16039 <_> 16040 <!-- root node --> 16041 <feature> 16042 <rects> 16043 <_>0 20 8 6 -1.</_> 16044 <_>2 20 4 6 2.</_></rects> 16045 <tilted>0</tilted></feature> 16046 <threshold>0.0690031796693802</threshold> 16047 <left_val>-0.0265528801828623</left_val> 16048 <right_val>0.6064736843109131</right_val></_></_> 16049 <_> 16050 <!-- tree 105 --> 16051 <_> 16052 <!-- root node --> 16053 <feature> 16054 <rects> 16055 <_>7 22 6 6 -1.</_> 16056 <_>9 22 2 6 3.</_></rects> 16057 <tilted>0</tilted></feature> 16058 <threshold>7.0049421628937125e-004</threshold> 16059 <left_val>-0.1993429958820343</left_val> 16060 <right_val>0.0754432007670403</right_val></_></_> 16061 <_> 16062 <!-- tree 106 --> 16063 <_> 16064 <!-- root node --> 16065 <feature> 16066 <rects> 16067 <_>1 22 6 6 -1.</_> 16068 <_>3 22 2 6 3.</_></rects> 16069 <tilted>0</tilted></feature> 16070 <threshold>0.0348732396960258</threshold> 16071 <left_val>0.0390368700027466</left_val> 16072 <right_val>-0.4225127995014191</right_val></_></_></trees> 16073 <stage_threshold>-30.8383007049560550</stage_threshold> 16074 <parent>26</parent> 16075 <next>-1</next></_> 16076 <_> 16077 <!-- stage 28 --> 16078 <trees> 16079 <_> 16080 <!-- tree 0 --> 16081 <_> 16082 <!-- root node --> 16083 <feature> 16084 <rects> 16085 <_>1 15 6 11 -1.</_> 16086 <_>3 15 2 11 3.</_></rects> 16087 <tilted>0</tilted></feature> 16088 <threshold>0.0544666089117527</threshold> 16089 <left_val>-0.1318282037973404</left_val> 16090 <right_val>0.2766044139862061</right_val></_></_> 16091 <_> 16092 <!-- tree 1 --> 16093 <_> 16094 <!-- root node --> 16095 <feature> 16096 <rects> 16097 <_>4 6 6 4 -1.</_> 16098 <_>4 8 6 2 2.</_></rects> 16099 <tilted>0</tilted></feature> 16100 <threshold>-0.0218566507101059</threshold> 16101 <left_val>0.2547551095485687</left_val> 16102 <right_val>-0.0840456113219261</right_val></_></_> 16103 <_> 16104 <!-- tree 2 --> 16105 <_> 16106 <!-- root node --> 16107 <feature> 16108 <rects> 16109 <_>0 16 4 11 -1.</_> 16110 <_>2 16 2 11 2.</_></rects> 16111 <tilted>0</tilted></feature> 16112 <threshold>6.6198781132698059e-003</threshold> 16113 <left_val>0.0714893937110901</left_val> 16114 <right_val>-0.2630408108234406</right_val></_></_> 16115 <_> 16116 <!-- tree 3 --> 16117 <_> 16118 <!-- root node --> 16119 <feature> 16120 <rects> 16121 <_>8 16 6 6 -1.</_> 16122 <_>10 16 2 6 3.</_></rects> 16123 <tilted>0</tilted></feature> 16124 <threshold>8.8211596012115479e-003</threshold> 16125 <left_val>-0.1339671015739441</left_val> 16126 <right_val>0.1422293037176132</right_val></_></_> 16127 <_> 16128 <!-- tree 4 --> 16129 <_> 16130 <!-- root node --> 16131 <feature> 16132 <rects> 16133 <_>0 16 12 12 -1.</_> 16134 <_>4 20 4 4 9.</_></rects> 16135 <tilted>0</tilted></feature> 16136 <threshold>-0.2325122952461243</threshold> 16137 <left_val>-0.3462874889373779</left_val> 16138 <right_val>0.0567674785852432</right_val></_></_> 16139 <_> 16140 <!-- tree 5 --> 16141 <_> 16142 <!-- root node --> 16143 <feature> 16144 <rects> 16145 <_>8 10 6 18 -1.</_> 16146 <_>8 16 6 6 3.</_></rects> 16147 <tilted>0</tilted></feature> 16148 <threshold>0.2847234904766083</threshold> 16149 <left_val>8.6089121177792549e-003</left_val> 16150 <right_val>-1.0012650489807129</right_val></_></_> 16151 <_> 16152 <!-- tree 6 --> 16153 <_> 16154 <!-- root node --> 16155 <feature> 16156 <rects> 16157 <_>0 12 5 16 -1.</_> 16158 <_>0 20 5 8 2.</_></rects> 16159 <tilted>0</tilted></feature> 16160 <threshold>0.0423035211861134</threshold> 16161 <left_val>-0.0916377529501915</left_val> 16162 <right_val>0.1909047067165375</right_val></_></_> 16163 <_> 16164 <!-- tree 7 --> 16165 <_> 16166 <!-- root node --> 16167 <feature> 16168 <rects> 16169 <_>11 12 3 16 -1.</_> 16170 <_>11 16 3 8 2.</_></rects> 16171 <tilted>0</tilted></feature> 16172 <threshold>0.0497819818556309</threshold> 16173 <left_val>0.0297099892050028</left_val> 16174 <right_val>-0.3596186935901642</right_val></_></_> 16175 <_> 16176 <!-- tree 8 --> 16177 <_> 16178 <!-- root node --> 16179 <feature> 16180 <rects> 16181 <_>0 13 14 12 -1.</_> 16182 <_>0 13 7 6 2.</_> 16183 <_>7 19 7 6 2.</_></rects> 16184 <tilted>0</tilted></feature> 16185 <threshold>-0.0489243008196354</threshold> 16186 <left_val>-0.3838717937469482</left_val> 16187 <right_val>0.0551829896867275</right_val></_></_> 16188 <_> 16189 <!-- tree 9 --> 16190 <_> 16191 <!-- root node --> 16192 <feature> 16193 <rects> 16194 <_>3 12 10 16 -1.</_> 16195 <_>8 12 5 8 2.</_> 16196 <_>3 20 5 8 2.</_></rects> 16197 <tilted>0</tilted></feature> 16198 <threshold>-7.7399803558364511e-005</threshold> 16199 <left_val>-0.1275880038738251</left_val> 16200 <right_val>0.0947935208678246</right_val></_></_> 16201 <_> 16202 <!-- tree 10 --> 16203 <_> 16204 <!-- root node --> 16205 <feature> 16206 <rects> 16207 <_>3 11 5 12 -1.</_> 16208 <_>3 17 5 6 2.</_></rects> 16209 <tilted>0</tilted></feature> 16210 <threshold>-0.0244552902877331</threshold> 16211 <left_val>0.4691182971000671</left_val> 16212 <right_val>-0.0517820715904236</right_val></_></_> 16213 <_> 16214 <!-- tree 11 --> 16215 <_> 16216 <!-- root node --> 16217 <feature> 16218 <rects> 16219 <_>6 0 6 18 -1.</_> 16220 <_>8 6 2 6 9.</_></rects> 16221 <tilted>0</tilted></feature> 16222 <threshold>0.0252108201384544</threshold> 16223 <left_val>0.0440350882709026</left_val> 16224 <right_val>-0.1765304952859879</right_val></_></_> 16225 <_> 16226 <!-- tree 12 --> 16227 <_> 16228 <!-- root node --> 16229 <feature> 16230 <rects> 16231 <_>6 4 2 14 -1.</_> 16232 <_>6 11 2 7 2.</_></rects> 16233 <tilted>0</tilted></feature> 16234 <threshold>-0.0475709103047848</threshold> 16235 <left_val>-0.5333272218704224</left_val> 16236 <right_val>0.0466939099133015</right_val></_></_> 16237 <_> 16238 <!-- tree 13 --> 16239 <_> 16240 <!-- root node --> 16241 <feature> 16242 <rects> 16243 <_>3 15 8 11 -1.</_> 16244 <_>5 15 4 11 2.</_></rects> 16245 <tilted>0</tilted></feature> 16246 <threshold>-0.1404698044061661</threshold> 16247 <left_val>0.3279846012592316</left_val> 16248 <right_val>-0.0656077191233635</right_val></_></_> 16249 <_> 16250 <!-- tree 14 --> 16251 <_> 16252 <!-- root node --> 16253 <feature> 16254 <rects> 16255 <_>3 2 8 11 -1.</_> 16256 <_>5 2 4 11 2.</_></rects> 16257 <tilted>0</tilted></feature> 16258 <threshold>-0.1093242987990379</threshold> 16259 <left_val>-0.5927674770355225</left_val> 16260 <right_val>0.0305432491004467</right_val></_></_> 16261 <_> 16262 <!-- tree 15 --> 16263 <_> 16264 <!-- root node --> 16265 <feature> 16266 <rects> 16267 <_>1 4 12 5 -1.</_> 16268 <_>5 4 4 5 3.</_></rects> 16269 <tilted>0</tilted></feature> 16270 <threshold>-0.0985674709081650</threshold> 16271 <left_val>0.3675389885902405</left_val> 16272 <right_val>-0.0665684267878532</right_val></_></_> 16273 <_> 16274 <!-- tree 16 --> 16275 <_> 16276 <!-- root node --> 16277 <feature> 16278 <rects> 16279 <_>1 3 8 25 -1.</_> 16280 <_>5 3 4 25 2.</_></rects> 16281 <tilted>0</tilted></feature> 16282 <threshold>-0.0768610984086990</threshold> 16283 <left_val>-0.1372255980968475</left_val> 16284 <right_val>0.1780606955289841</right_val></_></_> 16285 <_> 16286 <!-- tree 17 --> 16287 <_> 16288 <!-- root node --> 16289 <feature> 16290 <rects> 16291 <_>8 16 6 6 -1.</_> 16292 <_>10 16 2 6 3.</_></rects> 16293 <tilted>0</tilted></feature> 16294 <threshold>-0.0210353601723909</threshold> 16295 <left_val>0.4363203942775726</left_val> 16296 <right_val>-0.0295247994363308</right_val></_></_> 16297 <_> 16298 <!-- tree 18 --> 16299 <_> 16300 <!-- root node --> 16301 <feature> 16302 <rects> 16303 <_>0 16 6 6 -1.</_> 16304 <_>2 16 2 6 3.</_></rects> 16305 <tilted>0</tilted></feature> 16306 <threshold>1.3428479433059692e-003</threshold> 16307 <left_val>-0.2442066967487335</left_val> 16308 <right_val>0.1196945980191231</right_val></_></_> 16309 <_> 16310 <!-- tree 19 --> 16311 <_> 16312 <!-- root node --> 16313 <feature> 16314 <rects> 16315 <_>7 13 3 14 -1.</_> 16316 <_>8 13 1 14 3.</_></rects> 16317 <tilted>0</tilted></feature> 16318 <threshold>-0.0344331711530685</threshold> 16319 <left_val>0.2711027860641480</left_val> 16320 <right_val>-0.0759504362940788</right_val></_></_> 16321 <_> 16322 <!-- tree 20 --> 16323 <_> 16324 <!-- root node --> 16325 <feature> 16326 <rects> 16327 <_>2 8 4 12 -1.</_> 16328 <_>2 8 2 6 2.</_> 16329 <_>4 14 2 6 2.</_></rects> 16330 <tilted>0</tilted></feature> 16331 <threshold>1.7944410210475326e-003</threshold> 16332 <left_val>-0.1799702048301697</left_val> 16333 <right_val>0.1350875049829483</right_val></_></_> 16334 <_> 16335 <!-- tree 21 --> 16336 <_> 16337 <!-- root node --> 16338 <feature> 16339 <rects> 16340 <_>7 13 3 14 -1.</_> 16341 <_>8 13 1 14 3.</_></rects> 16342 <tilted>0</tilted></feature> 16343 <threshold>-0.0966442674398422</threshold> 16344 <left_val>-0.7668998837471008</left_val> 16345 <right_val>0.0154358698055148</right_val></_></_> 16346 <_> 16347 <!-- tree 22 --> 16348 <_> 16349 <!-- root node --> 16350 <feature> 16351 <rects> 16352 <_>4 13 3 14 -1.</_> 16353 <_>5 13 1 14 3.</_></rects> 16354 <tilted>0</tilted></feature> 16355 <threshold>2.5092919822782278e-003</threshold> 16356 <left_val>-0.1250617951154709</left_val> 16357 <right_val>0.1881415992975235</right_val></_></_> 16358 <_> 16359 <!-- tree 23 --> 16360 <_> 16361 <!-- root node --> 16362 <feature> 16363 <rects> 16364 <_>5 3 9 6 -1.</_> 16365 <_>5 5 9 2 3.</_></rects> 16366 <tilted>0</tilted></feature> 16367 <threshold>-2.2511319257318974e-003</threshold> 16368 <left_val>0.0782688185572624</left_val> 16369 <right_val>-0.0726367533206940</right_val></_></_> 16370 <_> 16371 <!-- tree 24 --> 16372 <_> 16373 <!-- root node --> 16374 <feature> 16375 <rects> 16376 <_>3 8 6 4 -1.</_> 16377 <_>3 10 6 2 2.</_></rects> 16378 <tilted>0</tilted></feature> 16379 <threshold>-7.4670952017186210e-006</threshold> 16380 <left_val>0.0769332274794579</left_val> 16381 <right_val>-0.2614870965480804</right_val></_></_> 16382 <_> 16383 <!-- tree 25 --> 16384 <_> 16385 <!-- root node --> 16386 <feature> 16387 <rects> 16388 <_>11 3 3 12 -1.</_> 16389 <_>11 7 3 4 3.</_></rects> 16390 <tilted>0</tilted></feature> 16391 <threshold>0.0265739597380161</threshold> 16392 <left_val>0.0225346796214581</left_val> 16393 <right_val>-0.1629942953586578</right_val></_></_> 16394 <_> 16395 <!-- tree 26 --> 16396 <_> 16397 <!-- root node --> 16398 <feature> 16399 <rects> 16400 <_>0 8 8 3 -1.</_> 16401 <_>4 8 4 3 2.</_></rects> 16402 <tilted>0</tilted></feature> 16403 <threshold>0.0170864704996347</threshold> 16404 <left_val>-0.0582328289747238</left_val> 16405 <right_val>0.3609594106674194</right_val></_></_> 16406 <_> 16407 <!-- tree 27 --> 16408 <_> 16409 <!-- root node --> 16410 <feature> 16411 <rects> 16412 <_>1 13 12 8 -1.</_> 16413 <_>7 13 6 4 2.</_> 16414 <_>1 17 6 4 2.</_></rects> 16415 <tilted>0</tilted></feature> 16416 <threshold>3.0147018842399120e-003</threshold> 16417 <left_val>0.1281758993864059</left_val> 16418 <right_val>-0.1823015958070755</right_val></_></_> 16419 <_> 16420 <!-- tree 28 --> 16421 <_> 16422 <!-- root node --> 16423 <feature> 16424 <rects> 16425 <_>2 18 10 10 -1.</_> 16426 <_>7 18 5 10 2.</_></rects> 16427 <tilted>0</tilted></feature> 16428 <threshold>9.4206426292657852e-003</threshold> 16429 <left_val>0.0898257866501808</left_val> 16430 <right_val>-0.2687729895114899</right_val></_></_> 16431 <_> 16432 <!-- tree 29 --> 16433 <_> 16434 <!-- root node --> 16435 <feature> 16436 <rects> 16437 <_>5 8 4 6 -1.</_> 16438 <_>5 8 2 6 2.</_></rects> 16439 <tilted>0</tilted></feature> 16440 <threshold>7.5143040157854557e-004</threshold> 16441 <left_val>0.0882954075932503</left_val> 16442 <right_val>-0.2330484986305237</right_val></_></_> 16443 <_> 16444 <!-- tree 30 --> 16445 <_> 16446 <!-- root node --> 16447 <feature> 16448 <rects> 16449 <_>0 0 13 3 -1.</_> 16450 <_>0 1 13 1 3.</_></rects> 16451 <tilted>0</tilted></feature> 16452 <threshold>-0.0106879696249962</threshold> 16453 <left_val>0.3061277866363525</left_val> 16454 <right_val>-0.0657603666186333</right_val></_></_> 16455 <_> 16456 <!-- tree 31 --> 16457 <_> 16458 <!-- root node --> 16459 <feature> 16460 <rects> 16461 <_>8 1 6 8 -1.</_> 16462 <_>11 1 3 4 2.</_> 16463 <_>8 5 3 4 2.</_></rects> 16464 <tilted>0</tilted></feature> 16465 <threshold>0.0750016868114471</threshold> 16466 <left_val>4.3955240398645401e-003</left_val> 16467 <right_val>-0.7509499192237854</right_val></_></_> 16468 <_> 16469 <!-- tree 32 --> 16470 <_> 16471 <!-- root node --> 16472 <feature> 16473 <rects> 16474 <_>0 1 6 8 -1.</_> 16475 <_>0 1 3 4 2.</_> 16476 <_>3 5 3 4 2.</_></rects> 16477 <tilted>0</tilted></feature> 16478 <threshold>0.0508490204811096</threshold> 16479 <left_val>0.0205245595425367</left_val> 16480 <right_val>-0.8340644240379334</right_val></_></_> 16481 <_> 16482 <!-- tree 33 --> 16483 <_> 16484 <!-- root node --> 16485 <feature> 16486 <rects> 16487 <_>7 18 2 7 -1.</_> 16488 <_>7 18 1 7 2.</_></rects> 16489 <tilted>1</tilted></feature> 16490 <threshold>0.0235556308180094</threshold> 16491 <left_val>3.6320169456303120e-003</left_val> 16492 <right_val>-0.8832278251647949</right_val></_></_> 16493 <_> 16494 <!-- tree 34 --> 16495 <_> 16496 <!-- root node --> 16497 <feature> 16498 <rects> 16499 <_>7 18 7 2 -1.</_> 16500 <_>7 18 7 1 2.</_></rects> 16501 <tilted>1</tilted></feature> 16502 <threshold>-0.0168274808675051</threshold> 16503 <left_val>-0.6569777131080627</left_val> 16504 <right_val>0.0231386590749025</right_val></_></_> 16505 <_> 16506 <!-- tree 35 --> 16507 <_> 16508 <!-- root node --> 16509 <feature> 16510 <rects> 16511 <_>4 22 9 4 -1.</_> 16512 <_>7 22 3 4 3.</_></rects> 16513 <tilted>0</tilted></feature> 16514 <threshold>0.0199773497879505</threshold> 16515 <left_val>-0.0238473303616047</left_val> 16516 <right_val>0.3263647854328156</right_val></_></_> 16517 <_> 16518 <!-- tree 36 --> 16519 <_> 16520 <!-- root node --> 16521 <feature> 16522 <rects> 16523 <_>0 4 5 6 -1.</_> 16524 <_>0 7 5 3 2.</_></rects> 16525 <tilted>0</tilted></feature> 16526 <threshold>0.0313975289463997</threshold> 16527 <left_val>-0.0363436117768288</left_val> 16528 <right_val>0.4479264020919800</right_val></_></_> 16529 <_> 16530 <!-- tree 37 --> 16531 <_> 16532 <!-- root node --> 16533 <feature> 16534 <rects> 16535 <_>11 3 3 12 -1.</_> 16536 <_>11 7 3 4 3.</_></rects> 16537 <tilted>0</tilted></feature> 16538 <threshold>-0.0932827591896057</threshold> 16539 <left_val>-0.5294207930564880</left_val> 16540 <right_val>6.3824458047747612e-003</right_val></_></_> 16541 <_> 16542 <!-- tree 38 --> 16543 <_> 16544 <!-- root node --> 16545 <feature> 16546 <rects> 16547 <_>0 3 3 12 -1.</_> 16548 <_>0 7 3 4 3.</_></rects> 16549 <tilted>0</tilted></feature> 16550 <threshold>-7.7012612018734217e-004</threshold> 16551 <left_val>0.1542045027017593</left_val> 16552 <right_val>-0.1575141996145248</right_val></_></_> 16553 <_> 16554 <!-- tree 39 --> 16555 <_> 16556 <!-- root node --> 16557 <feature> 16558 <rects> 16559 <_>5 0 6 8 -1.</_> 16560 <_>8 0 3 4 2.</_> 16561 <_>5 4 3 4 2.</_></rects> 16562 <tilted>0</tilted></feature> 16563 <threshold>0.0468914918601513</threshold> 16564 <left_val>0.0118022998794913</left_val> 16565 <right_val>-0.7309272885322571</right_val></_></_> 16566 <_> 16567 <!-- tree 40 --> 16568 <_> 16569 <!-- root node --> 16570 <feature> 16571 <rects> 16572 <_>3 0 6 8 -1.</_> 16573 <_>3 0 3 4 2.</_> 16574 <_>6 4 3 4 2.</_></rects> 16575 <tilted>0</tilted></feature> 16576 <threshold>-3.4607138950377703e-003</threshold> 16577 <left_val>0.1156596019864082</left_val> 16578 <right_val>-0.1756841987371445</right_val></_></_> 16579 <_> 16580 <!-- tree 41 --> 16581 <_> 16582 <!-- root node --> 16583 <feature> 16584 <rects> 16585 <_>8 3 2 12 -1.</_> 16586 <_>8 3 1 12 2.</_></rects> 16587 <tilted>0</tilted></feature> 16588 <threshold>-0.0334934182465076</threshold> 16589 <left_val>-0.6804947257041931</left_val> 16590 <right_val>5.1433579064905643e-003</right_val></_></_> 16591 <_> 16592 <!-- tree 42 --> 16593 <_> 16594 <!-- root node --> 16595 <feature> 16596 <rects> 16597 <_>0 6 9 8 -1.</_> 16598 <_>0 8 9 4 2.</_></rects> 16599 <tilted>0</tilted></feature> 16600 <threshold>-0.0557939186692238</threshold> 16601 <left_val>-0.5390889048576355</left_val> 16602 <right_val>0.0320088304579258</right_val></_></_> 16603 <_> 16604 <!-- tree 43 --> 16605 <_> 16606 <!-- root node --> 16607 <feature> 16608 <rects> 16609 <_>4 2 6 4 -1.</_> 16610 <_>4 4 6 2 2.</_></rects> 16611 <tilted>0</tilted></feature> 16612 <threshold>5.1339478231966496e-003</threshold> 16613 <left_val>-0.0661146268248558</left_val> 16614 <right_val>0.3176003098487854</right_val></_></_> 16615 <_> 16616 <!-- tree 44 --> 16617 <_> 16618 <!-- root node --> 16619 <feature> 16620 <rects> 16621 <_>1 18 4 10 -1.</_> 16622 <_>3 18 2 10 2.</_></rects> 16623 <tilted>0</tilted></feature> 16624 <threshold>3.0386429280042648e-003</threshold> 16625 <left_val>0.0814627185463905</left_val> 16626 <right_val>-0.2429192066192627</right_val></_></_> 16627 <_> 16628 <!-- tree 45 --> 16629 <_> 16630 <!-- root node --> 16631 <feature> 16632 <rects> 16633 <_>9 18 4 6 -1.</_> 16634 <_>9 18 2 6 2.</_></rects> 16635 <tilted>0</tilted></feature> 16636 <threshold>-3.1149981077760458e-004</threshold> 16637 <left_val>0.0467233918607235</left_val> 16638 <right_val>-0.0845426768064499</right_val></_></_> 16639 <_> 16640 <!-- tree 46 --> 16641 <_> 16642 <!-- root node --> 16643 <feature> 16644 <rects> 16645 <_>1 2 12 3 -1.</_> 16646 <_>1 3 12 1 3.</_></rects> 16647 <tilted>0</tilted></feature> 16648 <threshold>1.8326110439375043e-003</threshold> 16649 <left_val>-0.1283030062913895</left_val> 16650 <right_val>0.1512715071439743</right_val></_></_> 16651 <_> 16652 <!-- tree 47 --> 16653 <_> 16654 <!-- root node --> 16655 <feature> 16656 <rects> 16657 <_>9 18 4 6 -1.</_> 16658 <_>9 18 2 6 2.</_></rects> 16659 <tilted>0</tilted></feature> 16660 <threshold>-0.0258788801729679</threshold> 16661 <left_val>-0.2116069942712784</left_val> 16662 <right_val>0.0298112593591213</right_val></_></_> 16663 <_> 16664 <!-- tree 48 --> 16665 <_> 16666 <!-- root node --> 16667 <feature> 16668 <rects> 16669 <_>0 2 14 3 -1.</_> 16670 <_>0 3 14 1 3.</_></rects> 16671 <tilted>0</tilted></feature> 16672 <threshold>-1.3985199620947242e-003</threshold> 16673 <left_val>0.1980108022689819</left_val> 16674 <right_val>-0.1036868989467621</right_val></_></_> 16675 <_> 16676 <!-- tree 49 --> 16677 <_> 16678 <!-- root node --> 16679 <feature> 16680 <rects> 16681 <_>9 19 4 6 -1.</_> 16682 <_>9 19 2 6 2.</_></rects> 16683 <tilted>0</tilted></feature> 16684 <threshold>2.4663188960403204e-003</threshold> 16685 <left_val>0.0245548691600561</left_val> 16686 <right_val>-0.1083042994141579</right_val></_></_> 16687 <_> 16688 <!-- tree 50 --> 16689 <_> 16690 <!-- root node --> 16691 <feature> 16692 <rects> 16693 <_>1 19 4 6 -1.</_> 16694 <_>3 19 2 6 2.</_></rects> 16695 <tilted>0</tilted></feature> 16696 <threshold>-1.3155230553820729e-003</threshold> 16697 <left_val>-0.2198446989059448</left_val> 16698 <right_val>0.0939659774303436</right_val></_></_> 16699 <_> 16700 <!-- tree 51 --> 16701 <_> 16702 <!-- root node --> 16703 <feature> 16704 <rects> 16705 <_>8 7 3 15 -1.</_> 16706 <_>8 12 3 5 3.</_></rects> 16707 <tilted>0</tilted></feature> 16708 <threshold>-0.1056244000792503</threshold> 16709 <left_val>-0.7974779009819031</left_val> 16710 <right_val>8.9689819142222404e-003</right_val></_></_> 16711 <_> 16712 <!-- tree 52 --> 16713 <_> 16714 <!-- root node --> 16715 <feature> 16716 <rects> 16717 <_>7 20 4 4 -1.</_> 16718 <_>6 21 4 2 2.</_></rects> 16719 <tilted>1</tilted></feature> 16720 <threshold>-3.0508160125464201e-003</threshold> 16721 <left_val>0.1326649039983749</left_val> 16722 <right_val>-0.1373468041419983</right_val></_></_> 16723 <_> 16724 <!-- tree 53 --> 16725 <_> 16726 <!-- root node --> 16727 <feature> 16728 <rects> 16729 <_>9 3 4 6 -1.</_> 16730 <_>9 3 2 6 2.</_></rects> 16731 <tilted>0</tilted></feature> 16732 <threshold>0.0298572797328234</threshold> 16733 <left_val>9.6069881692528725e-003</left_val> 16734 <right_val>-0.3011654019355774</right_val></_></_> 16735 <_> 16736 <!-- tree 54 --> 16737 <_> 16738 <!-- root node --> 16739 <feature> 16740 <rects> 16741 <_>1 3 4 6 -1.</_> 16742 <_>3 3 2 6 2.</_></rects> 16743 <tilted>0</tilted></feature> 16744 <threshold>0.0309721194207668</threshold> 16745 <left_val>0.0300913508981466</left_val> 16746 <right_val>-0.5727983117103577</right_val></_></_> 16747 <_> 16748 <!-- tree 55 --> 16749 <_> 16750 <!-- root node --> 16751 <feature> 16752 <rects> 16753 <_>8 7 3 15 -1.</_> 16754 <_>8 12 3 5 3.</_></rects> 16755 <tilted>0</tilted></feature> 16756 <threshold>0.1077274978160858</threshold> 16757 <left_val>-1.1804240057244897e-003</left_val> 16758 <right_val>-0.9998757839202881</right_val></_></_> 16759 <_> 16760 <!-- tree 56 --> 16761 <_> 16762 <!-- root node --> 16763 <feature> 16764 <rects> 16765 <_>3 7 3 15 -1.</_> 16766 <_>3 12 3 5 3.</_></rects> 16767 <tilted>0</tilted></feature> 16768 <threshold>-0.0515018813312054</threshold> 16769 <left_val>0.2718138098716736</left_val> 16770 <right_val>-0.0681615024805069</right_val></_></_> 16771 <_> 16772 <!-- tree 57 --> 16773 <_> 16774 <!-- root node --> 16775 <feature> 16776 <rects> 16777 <_>9 12 2 12 -1.</_> 16778 <_>9 18 2 6 2.</_></rects> 16779 <tilted>0</tilted></feature> 16780 <threshold>-0.0252882894128561</threshold> 16781 <left_val>0.4506731033325195</left_val> 16782 <right_val>-0.0165209807455540</right_val></_></_> 16783 <_> 16784 <!-- tree 58 --> 16785 <_> 16786 <!-- root node --> 16787 <feature> 16788 <rects> 16789 <_>3 12 2 12 -1.</_> 16790 <_>3 18 2 6 2.</_></rects> 16791 <tilted>0</tilted></feature> 16792 <threshold>-4.2859618552029133e-003</threshold> 16793 <left_val>0.3721388876438141</left_val> 16794 <right_val>-0.0497617386281490</right_val></_></_> 16795 <_> 16796 <!-- tree 59 --> 16797 <_> 16798 <!-- root node --> 16799 <feature> 16800 <rects> 16801 <_>8 0 5 6 -1.</_> 16802 <_>8 3 5 3 2.</_></rects> 16803 <tilted>0</tilted></feature> 16804 <threshold>-0.0231944601982832</threshold> 16805 <left_val>-0.2069765031337738</left_val> 16806 <right_val>0.0410712100565434</right_val></_></_> 16807 <_> 16808 <!-- tree 60 --> 16809 <_> 16810 <!-- root node --> 16811 <feature> 16812 <rects> 16813 <_>1 0 5 6 -1.</_> 16814 <_>1 3 5 3 2.</_></rects> 16815 <tilted>0</tilted></feature> 16816 <threshold>0.0168785303831100</threshold> 16817 <left_val>0.0564081296324730</left_val> 16818 <right_val>-0.3761448860168457</right_val></_></_> 16819 <_> 16820 <!-- tree 61 --> 16821 <_> 16822 <!-- root node --> 16823 <feature> 16824 <rects> 16825 <_>3 6 8 8 -1.</_> 16826 <_>3 8 8 4 2.</_></rects> 16827 <tilted>0</tilted></feature> 16828 <threshold>-0.0296011697500944</threshold> 16829 <left_val>0.2720799148082733</left_val> 16830 <right_val>-0.0730900764465332</right_val></_></_> 16831 <_> 16832 <!-- tree 62 --> 16833 <_> 16834 <!-- root node --> 16835 <feature> 16836 <rects> 16837 <_>2 4 6 14 -1.</_> 16838 <_>4 4 2 14 3.</_></rects> 16839 <tilted>0</tilted></feature> 16840 <threshold>-0.1079726964235306</threshold> 16841 <left_val>-0.4919354021549225</left_val> 16842 <right_val>0.0361185707151890</right_val></_></_> 16843 <_> 16844 <!-- tree 63 --> 16845 <_> 16846 <!-- root node --> 16847 <feature> 16848 <rects> 16849 <_>5 10 7 16 -1.</_> 16850 <_>5 18 7 8 2.</_></rects> 16851 <tilted>0</tilted></feature> 16852 <threshold>0.2531785070896149</threshold> 16853 <left_val>8.8794529438018799e-003</left_val> 16854 <right_val>-0.3474639058113098</right_val></_></_> 16855 <_> 16856 <!-- tree 64 --> 16857 <_> 16858 <!-- root node --> 16859 <feature> 16860 <rects> 16861 <_>4 10 6 10 -1.</_> 16862 <_>6 10 2 10 3.</_></rects> 16863 <tilted>0</tilted></feature> 16864 <threshold>-0.0759278684854507</threshold> 16865 <left_val>-0.5256810188293457</left_val> 16866 <right_val>0.0300291497260332</right_val></_></_> 16867 <_> 16868 <!-- tree 65 --> 16869 <_> 16870 <!-- root node --> 16871 <feature> 16872 <rects> 16873 <_>5 10 4 12 -1.</_> 16874 <_>5 13 4 6 2.</_></rects> 16875 <tilted>0</tilted></feature> 16876 <threshold>3.5496079362928867e-003</threshold> 16877 <left_val>0.0618173182010651</left_val> 16878 <right_val>-0.2345004975795746</right_val></_></_> 16879 <_> 16880 <!-- tree 66 --> 16881 <_> 16882 <!-- root node --> 16883 <feature> 16884 <rects> 16885 <_>2 0 6 18 -1.</_> 16886 <_>4 6 2 6 9.</_></rects> 16887 <tilted>0</tilted></feature> 16888 <threshold>-0.0104194702580571</threshold> 16889 <left_val>0.0954701825976372</left_val> 16890 <right_val>-0.1976493000984192</right_val></_></_> 16891 <_> 16892 <!-- tree 67 --> 16893 <_> 16894 <!-- root node --> 16895 <feature> 16896 <rects> 16897 <_>1 11 12 4 -1.</_> 16898 <_>1 12 12 2 2.</_></rects> 16899 <tilted>0</tilted></feature> 16900 <threshold>-0.0162421204149723</threshold> 16901 <left_val>0.3585678040981293</left_val> 16902 <right_val>-0.0525104999542236</right_val></_></_> 16903 <_> 16904 <!-- tree 68 --> 16905 <_> 16906 <!-- root node --> 16907 <feature> 16908 <rects> 16909 <_>7 15 5 2 -1.</_> 16910 <_>7 15 5 1 2.</_></rects> 16911 <tilted>1</tilted></feature> 16912 <threshold>-1.4503370039165020e-003</threshold> 16913 <left_val>-0.1800349056720734</left_val> 16914 <right_val>0.0952083319425583</right_val></_></_> 16915 <_> 16916 <!-- tree 69 --> 16917 <_> 16918 <!-- root node --> 16919 <feature> 16920 <rects> 16921 <_>4 24 6 4 -1.</_> 16922 <_>4 24 3 4 2.</_></rects> 16923 <tilted>0</tilted></feature> 16924 <threshold>0.0196962095797062</threshold> 16925 <left_val>0.0375376604497433</left_val> 16926 <right_val>-0.4806590974330902</right_val></_></_> 16927 <_> 16928 <!-- tree 70 --> 16929 <_> 16930 <!-- root node --> 16931 <feature> 16932 <rects> 16933 <_>5 18 5 4 -1.</_> 16934 <_>4 19 5 2 2.</_></rects> 16935 <tilted>1</tilted></feature> 16936 <threshold>3.4964820370078087e-003</threshold> 16937 <left_val>-0.0971873775124550</left_val> 16938 <right_val>0.1756905019283295</right_val></_></_></trees> 16939 <stage_threshold>-30.6401996612548830</stage_threshold> 16940 <parent>27</parent> 16941 <next>-1</next></_> 16942 <_> 16943 <!-- stage 29 --> 16944 <trees> 16945 <_> 16946 <!-- tree 0 --> 16947 <_> 16948 <!-- root node --> 16949 <feature> 16950 <rects> 16951 <_>3 1 6 25 -1.</_> 16952 <_>6 1 3 25 2.</_></rects> 16953 <tilted>0</tilted></feature> 16954 <threshold>-0.1401122957468033</threshold> 16955 <left_val>0.3578777015209198</left_val> 16956 <right_val>-0.1212553009390831</right_val></_></_> 16957 <_> 16958 <!-- tree 1 --> 16959 <_> 16960 <!-- root node --> 16961 <feature> 16962 <rects> 16963 <_>6 13 2 12 -1.</_> 16964 <_>6 13 1 12 2.</_></rects> 16965 <tilted>0</tilted></feature> 16966 <threshold>-0.0100089497864246</threshold> 16967 <left_val>0.2633092999458313</left_val> 16968 <right_val>-0.0890080183744431</right_val></_></_> 16969 <_> 16970 <!-- tree 2 --> 16971 <_> 16972 <!-- root node --> 16973 <feature> 16974 <rects> 16975 <_>6 4 2 13 -1.</_> 16976 <_>7 4 1 13 2.</_></rects> 16977 <tilted>0</tilted></feature> 16978 <threshold>-0.0113941803574562</threshold> 16979 <left_val>0.4322882890701294</left_val> 16980 <right_val>-0.0501591786742210</right_val></_></_> 16981 <_> 16982 <!-- tree 3 --> 16983 <_> 16984 <!-- root node --> 16985 <feature> 16986 <rects> 16987 <_>8 2 6 19 -1.</_> 16988 <_>10 2 2 19 3.</_></rects> 16989 <tilted>0</tilted></feature> 16990 <threshold>0.2313435971736908</threshold> 16991 <left_val>6.3841762021183968e-003</left_val> 16992 <right_val>-0.7029209733009338</right_val></_></_> 16993 <_> 16994 <!-- tree 4 --> 16995 <_> 16996 <!-- root node --> 16997 <feature> 16998 <rects> 16999 <_>0 2 6 19 -1.</_> 17000 <_>2 2 2 19 3.</_></rects> 17001 <tilted>0</tilted></feature> 17002 <threshold>0.1264661997556686</threshold> 17003 <left_val>0.0427680015563965</left_val> 17004 <right_val>-0.4391900002956390</right_val></_></_> 17005 <_> 17006 <!-- tree 5 --> 17007 <_> 17008 <!-- root node --> 17009 <feature> 17010 <rects> 17011 <_>9 1 4 13 -1.</_> 17012 <_>10 1 2 13 2.</_></rects> 17013 <tilted>0</tilted></feature> 17014 <threshold>0.0466162487864494</threshold> 17015 <left_val>0.0192505903542042</left_val> 17016 <right_val>0.5449979901313782</right_val></_></_> 17017 <_> 17018 <!-- tree 6 --> 17019 <_> 17020 <!-- root node --> 17021 <feature> 17022 <rects> 17023 <_>1 1 4 13 -1.</_> 17024 <_>2 1 2 13 2.</_></rects> 17025 <tilted>0</tilted></feature> 17026 <threshold>0.0220378004014492</threshold> 17027 <left_val>-0.0851087495684624</left_val> 17028 <right_val>0.3384878039360046</right_val></_></_> 17029 <_> 17030 <!-- tree 7 --> 17031 <_> 17032 <!-- root node --> 17033 <feature> 17034 <rects> 17035 <_>3 3 8 3 -1.</_> 17036 <_>3 3 4 3 2.</_></rects> 17037 <tilted>0</tilted></feature> 17038 <threshold>0.0313455611467361</threshold> 17039 <left_val>0.0226909406483173</left_val> 17040 <right_val>-0.5167118906974793</right_val></_></_> 17041 <_> 17042 <!-- tree 8 --> 17043 <_> 17044 <!-- root node --> 17045 <feature> 17046 <rects> 17047 <_>2 5 10 18 -1.</_> 17048 <_>2 11 10 6 3.</_></rects> 17049 <tilted>0</tilted></feature> 17050 <threshold>-0.2114063948392868</threshold> 17051 <left_val>0.2941249012947083</left_val> 17052 <right_val>-0.0464795604348183</right_val></_></_> 17053 <_> 17054 <!-- tree 9 --> 17055 <_> 17056 <!-- root node --> 17057 <feature> 17058 <rects> 17059 <_>3 8 9 12 -1.</_> 17060 <_>6 12 3 4 9.</_></rects> 17061 <tilted>0</tilted></feature> 17062 <threshold>-0.0663341134786606</threshold> 17063 <left_val>-0.1344404965639114</left_val> 17064 <right_val>0.1284202039241791</right_val></_></_> 17065 <_> 17066 <!-- tree 10 --> 17067 <_> 17068 <!-- root node --> 17069 <feature> 17070 <rects> 17071 <_>4 4 6 4 -1.</_> 17072 <_>4 6 6 2 2.</_></rects> 17073 <tilted>0</tilted></feature> 17074 <threshold>0.0407386682927608</threshold> 17075 <left_val>0.0234058108180761</left_val> 17076 <right_val>-0.8023356199264526</right_val></_></_> 17077 <_> 17078 <!-- tree 11 --> 17079 <_> 17080 <!-- root node --> 17081 <feature> 17082 <rects> 17083 <_>4 8 10 8 -1.</_> 17084 <_>9 8 5 4 2.</_> 17085 <_>4 12 5 4 2.</_></rects> 17086 <tilted>0</tilted></feature> 17087 <threshold>-0.0414708703756332</threshold> 17088 <left_val>0.1462056934833527</left_val> 17089 <right_val>-0.0195902101695538</right_val></_></_> 17090 <_> 17091 <!-- tree 12 --> 17092 <_> 17093 <!-- root node --> 17094 <feature> 17095 <rects> 17096 <_>2 8 6 6 -1.</_> 17097 <_>4 8 2 6 3.</_></rects> 17098 <tilted>0</tilted></feature> 17099 <threshold>0.0184567905962467</threshold> 17100 <left_val>-0.0361854694783688</left_val> 17101 <right_val>0.5123826861381531</right_val></_></_> 17102 <_> 17103 <!-- tree 13 --> 17104 <_> 17105 <!-- root node --> 17106 <feature> 17107 <rects> 17108 <_>4 10 6 10 -1.</_> 17109 <_>7 10 3 5 2.</_> 17110 <_>4 15 3 5 2.</_></rects> 17111 <tilted>0</tilted></feature> 17112 <threshold>3.7538509350270033e-003</threshold> 17113 <left_val>-0.1558776050806046</left_val> 17114 <right_val>0.1031239032745361</right_val></_></_> 17115 <_> 17116 <!-- tree 14 --> 17117 <_> 17118 <!-- root node --> 17119 <feature> 17120 <rects> 17121 <_>3 9 8 14 -1.</_> 17122 <_>3 9 4 7 2.</_> 17123 <_>7 16 4 7 2.</_></rects> 17124 <tilted>0</tilted></feature> 17125 <threshold>-2.8798980638384819e-003</threshold> 17126 <left_val>-0.1222577020525932</left_val> 17127 <right_val>0.1755176931619644</right_val></_></_> 17128 <_> 17129 <!-- tree 15 --> 17130 <_> 17131 <!-- root node --> 17132 <feature> 17133 <rects> 17134 <_>4 7 6 20 -1.</_> 17135 <_>7 7 3 10 2.</_> 17136 <_>4 17 3 10 2.</_></rects> 17137 <tilted>0</tilted></feature> 17138 <threshold>-0.0327623412013054</threshold> 17139 <left_val>-0.4716975986957550</left_val> 17140 <right_val>0.0303803198039532</right_val></_></_> 17141 <_> 17142 <!-- tree 16 --> 17143 <_> 17144 <!-- root node --> 17145 <feature> 17146 <rects> 17147 <_>3 0 6 8 -1.</_> 17148 <_>3 0 3 4 2.</_> 17149 <_>6 4 3 4 2.</_></rects> 17150 <tilted>0</tilted></feature> 17151 <threshold>-0.0390222109854221</threshold> 17152 <left_val>0.3510676026344299</left_val> 17153 <right_val>-0.0661192610859871</right_val></_></_> 17154 <_> 17155 <!-- tree 17 --> 17156 <_> 17157 <!-- root node --> 17158 <feature> 17159 <rects> 17160 <_>7 5 4 6 -1.</_> 17161 <_>7 5 2 6 2.</_></rects> 17162 <tilted>0</tilted></feature> 17163 <threshold>-0.0446747988462448</threshold> 17164 <left_val>-0.3995831012725830</left_val> 17165 <right_val>0.0210663899779320</right_val></_></_> 17166 <_> 17167 <!-- tree 18 --> 17168 <_> 17169 <!-- root node --> 17170 <feature> 17171 <rects> 17172 <_>3 7 8 8 -1.</_> 17173 <_>3 7 4 4 2.</_> 17174 <_>7 11 4 4 2.</_></rects> 17175 <tilted>0</tilted></feature> 17176 <threshold>5.3343027830123901e-003</threshold> 17177 <left_val>0.0791373774409294</left_val> 17178 <right_val>-0.2117677927017212</right_val></_></_> 17179 <_> 17180 <!-- tree 19 --> 17181 <_> 17182 <!-- root node --> 17183 <feature> 17184 <rects> 17185 <_>5 9 6 4 -1.</_> 17186 <_>5 11 6 2 2.</_></rects> 17187 <tilted>0</tilted></feature> 17188 <threshold>0.0155211696401238</threshold> 17189 <left_val>0.0344389304518700</left_val> 17190 <right_val>-0.5720204710960388</right_val></_></_> 17191 <_> 17192 <!-- tree 20 --> 17193 <_> 17194 <!-- root node --> 17195 <feature> 17196 <rects> 17197 <_>0 9 4 9 -1.</_> 17198 <_>0 12 4 3 3.</_></rects> 17199 <tilted>0</tilted></feature> 17200 <threshold>-8.0842437455430627e-004</threshold> 17201 <left_val>0.1195174977183342</left_val> 17202 <right_val>-0.1432583034038544</right_val></_></_> 17203 <_> 17204 <!-- tree 21 --> 17205 <_> 17206 <!-- root node --> 17207 <feature> 17208 <rects> 17209 <_>8 6 4 12 -1.</_> 17210 <_>8 10 4 4 3.</_></rects> 17211 <tilted>0</tilted></feature> 17212 <threshold>0.0277547407895327</threshold> 17213 <left_val>-0.0324368886649609</left_val> 17214 <right_val>0.3074922859668732</right_val></_></_> 17215 <_> 17216 <!-- tree 22 --> 17217 <_> 17218 <!-- root node --> 17219 <feature> 17220 <rects> 17221 <_>1 7 10 6 -1.</_> 17222 <_>1 9 10 2 3.</_></rects> 17223 <tilted>0</tilted></feature> 17224 <threshold>-3.4786630421876907e-003</threshold> 17225 <left_val>0.1568875014781952</left_val> 17226 <right_val>-0.1564995050430298</right_val></_></_> 17227 <_> 17228 <!-- tree 23 --> 17229 <_> 17230 <!-- root node --> 17231 <feature> 17232 <rects> 17233 <_>0 7 14 12 -1.</_> 17234 <_>0 10 14 6 2.</_></rects> 17235 <tilted>0</tilted></feature> 17236 <threshold>-0.0278409793972969</threshold> 17237 <left_val>-0.1293258070945740</left_val> 17238 <right_val>0.1540801972150803</right_val></_></_> 17239 <_> 17240 <!-- tree 24 --> 17241 <_> 17242 <!-- root node --> 17243 <feature> 17244 <rects> 17245 <_>3 9 6 4 -1.</_> 17246 <_>3 11 6 2 2.</_></rects> 17247 <tilted>0</tilted></feature> 17248 <threshold>-2.0033390319440514e-004</threshold> 17249 <left_val>0.1059113964438438</left_val> 17250 <right_val>-0.2382947951555252</right_val></_></_> 17251 <_> 17252 <!-- tree 25 --> 17253 <_> 17254 <!-- root node --> 17255 <feature> 17256 <rects> 17257 <_>8 1 4 8 -1.</_> 17258 <_>8 1 2 8 2.</_></rects> 17259 <tilted>1</tilted></feature> 17260 <threshold>0.0633525326848030</threshold> 17261 <left_val>-0.0350577011704445</left_val> 17262 <right_val>0.1111909002065659</right_val></_></_> 17263 <_> 17264 <!-- tree 26 --> 17265 <_> 17266 <!-- root node --> 17267 <feature> 17268 <rects> 17269 <_>2 6 4 12 -1.</_> 17270 <_>2 10 4 4 3.</_></rects> 17271 <tilted>0</tilted></feature> 17272 <threshold>-0.1063425987958908</threshold> 17273 <left_val>-0.6793817877769470</left_val> 17274 <right_val>0.0274659004062414</right_val></_></_> 17275 <_> 17276 <!-- tree 27 --> 17277 <_> 17278 <!-- root node --> 17279 <feature> 17280 <rects> 17281 <_>2 16 12 4 -1.</_> 17282 <_>8 16 6 2 2.</_> 17283 <_>2 18 6 2 2.</_></rects> 17284 <tilted>0</tilted></feature> 17285 <threshold>1.9035820150747895e-004</threshold> 17286 <left_val>-0.1190816015005112</left_val> 17287 <right_val>0.1133468970656395</right_val></_></_> 17288 <_> 17289 <!-- tree 28 --> 17290 <_> 17291 <!-- root node --> 17292 <feature> 17293 <rects> 17294 <_>7 20 4 4 -1.</_> 17295 <_>6 21 4 2 2.</_></rects> 17296 <tilted>1</tilted></feature> 17297 <threshold>-0.0135642401874065</threshold> 17298 <left_val>0.2750580012798309</left_val> 17299 <right_val>-0.0683159828186035</right_val></_></_> 17300 <_> 17301 <!-- tree 29 --> 17302 <_> 17303 <!-- root node --> 17304 <feature> 17305 <rects> 17306 <_>9 16 2 12 -1.</_> 17307 <_>9 16 1 12 2.</_></rects> 17308 <tilted>0</tilted></feature> 17309 <threshold>0.0210962295532227</threshold> 17310 <left_val>-0.0109879495576024</left_val> 17311 <right_val>0.3993543088436127</right_val></_></_> 17312 <_> 17313 <!-- tree 30 --> 17314 <_> 17315 <!-- root node --> 17316 <feature> 17317 <rects> 17318 <_>5 18 5 4 -1.</_> 17319 <_>4 19 5 2 2.</_></rects> 17320 <tilted>1</tilted></feature> 17321 <threshold>-2.4880920536816120e-003</threshold> 17322 <left_val>-0.2184953987598419</left_val> 17323 <right_val>0.0892938077449799</right_val></_></_> 17324 <_> 17325 <!-- tree 31 --> 17326 <_> 17327 <!-- root node --> 17328 <feature> 17329 <rects> 17330 <_>8 1 4 8 -1.</_> 17331 <_>8 1 2 8 2.</_></rects> 17332 <tilted>1</tilted></feature> 17333 <threshold>0.0123706702142954</threshold> 17334 <left_val>-0.0956454500555992</left_val> 17335 <right_val>0.0566339604556561</right_val></_></_> 17336 <_> 17337 <!-- tree 32 --> 17338 <_> 17339 <!-- root node --> 17340 <feature> 17341 <rects> 17342 <_>2 6 9 7 -1.</_> 17343 <_>5 6 3 7 3.</_></rects> 17344 <tilted>0</tilted></feature> 17345 <threshold>-0.1203635036945343</threshold> 17346 <left_val>-0.5317410230636597</left_val> 17347 <right_val>0.0357750803232193</right_val></_></_> 17348 <_> 17349 <!-- tree 33 --> 17350 <_> 17351 <!-- root node --> 17352 <feature> 17353 <rects> 17354 <_>3 6 8 12 -1.</_> 17355 <_>3 9 8 6 2.</_></rects> 17356 <tilted>0</tilted></feature> 17357 <threshold>-0.0671380609273911</threshold> 17358 <left_val>0.2145684063434601</left_val> 17359 <right_val>-0.0873891264200211</right_val></_></_> 17360 <_> 17361 <!-- tree 34 --> 17362 <_> 17363 <!-- root node --> 17364 <feature> 17365 <rects> 17366 <_>0 0 9 21 -1.</_> 17367 <_>3 7 3 7 9.</_></rects> 17368 <tilted>0</tilted></feature> 17369 <threshold>-0.1216192021965981</threshold> 17370 <left_val>-0.1816080957651138</left_val> 17371 <right_val>0.1457355022430420</right_val></_></_> 17372 <_> 17373 <!-- tree 35 --> 17374 <_> 17375 <!-- root node --> 17376 <feature> 17377 <rects> 17378 <_>8 1 4 8 -1.</_> 17379 <_>8 1 2 8 2.</_></rects> 17380 <tilted>1</tilted></feature> 17381 <threshold>0.0204794593155384</threshold> 17382 <left_val>-0.0557153411209583</left_val> 17383 <right_val>0.0611892193555832</right_val></_></_> 17384 <_> 17385 <!-- tree 36 --> 17386 <_> 17387 <!-- root node --> 17388 <feature> 17389 <rects> 17390 <_>2 1 5 18 -1.</_> 17391 <_>2 10 5 9 2.</_></rects> 17392 <tilted>0</tilted></feature> 17393 <threshold>2.1847079042345285e-003</threshold> 17394 <left_val>-0.0952582135796547</left_val> 17395 <right_val>0.2059109061956406</right_val></_></_> 17396 <_> 17397 <!-- tree 37 --> 17398 <_> 17399 <!-- root node --> 17400 <feature> 17401 <rects> 17402 <_>8 1 6 7 -1.</_> 17403 <_>8 1 3 7 2.</_></rects> 17404 <tilted>1</tilted></feature> 17405 <threshold>4.0952740237116814e-003</threshold> 17406 <left_val>-0.1186736002564430</left_val> 17407 <right_val>0.0466964617371559</right_val></_></_> 17408 <_> 17409 <!-- tree 38 --> 17410 <_> 17411 <!-- root node --> 17412 <feature> 17413 <rects> 17414 <_>0 3 2 16 -1.</_> 17415 <_>1 3 1 16 2.</_></rects> 17416 <tilted>0</tilted></feature> 17417 <threshold>-3.5035728942602873e-003</threshold> 17418 <left_val>0.2332196980714798</left_val> 17419 <right_val>-0.0755375996232033</right_val></_></_> 17420 <_> 17421 <!-- tree 39 --> 17422 <_> 17423 <!-- root node --> 17424 <feature> 17425 <rects> 17426 <_>9 18 4 8 -1.</_> 17427 <_>9 18 2 8 2.</_></rects> 17428 <tilted>0</tilted></feature> 17429 <threshold>-0.0104670198634267</threshold> 17430 <left_val>-0.1244800984859467</left_val> 17431 <right_val>0.0505952611565590</right_val></_></_> 17432 <_> 17433 <!-- tree 40 --> 17434 <_> 17435 <!-- root node --> 17436 <feature> 17437 <rects> 17438 <_>0 18 12 9 -1.</_> 17439 <_>3 18 6 9 2.</_></rects> 17440 <tilted>0</tilted></feature> 17441 <threshold>-0.0150208296254277</threshold> 17442 <left_val>0.0919919088482857</left_val> 17443 <right_val>-0.2207739949226379</right_val></_></_> 17444 <_> 17445 <!-- tree 41 --> 17446 <_> 17447 <!-- root node --> 17448 <feature> 17449 <rects> 17450 <_>1 2 12 3 -1.</_> 17451 <_>5 2 4 3 3.</_></rects> 17452 <tilted>0</tilted></feature> 17453 <threshold>0.0444990508258343</threshold> 17454 <left_val>0.0341018997132778</left_val> 17455 <right_val>-0.5342277288436890</right_val></_></_> 17456 <_> 17457 <!-- tree 42 --> 17458 <_> 17459 <!-- root node --> 17460 <feature> 17461 <rects> 17462 <_>6 1 7 6 -1.</_> 17463 <_>6 1 7 3 2.</_></rects> 17464 <tilted>1</tilted></feature> 17465 <threshold>8.1879837671294808e-004</threshold> 17466 <left_val>-0.1919344067573547</left_val> 17467 <right_val>0.1017773002386093</right_val></_></_> 17468 <_> 17469 <!-- tree 43 --> 17470 <_> 17471 <!-- root node --> 17472 <feature> 17473 <rects> 17474 <_>6 9 3 13 -1.</_> 17475 <_>7 9 1 13 3.</_></rects> 17476 <tilted>0</tilted></feature> 17477 <threshold>-0.0297935493290424</threshold> 17478 <left_val>0.4144274890422821</left_val> 17479 <right_val>-0.0202981494367123</right_val></_></_> 17480 <_> 17481 <!-- tree 44 --> 17482 <_> 17483 <!-- root node --> 17484 <feature> 17485 <rects> 17486 <_>6 1 6 6 -1.</_> 17487 <_>6 1 6 3 2.</_></rects> 17488 <tilted>1</tilted></feature> 17489 <threshold>0.0166143290698528</threshold> 17490 <left_val>0.1045709997415543</left_val> 17491 <right_val>-0.1835236996412277</right_val></_></_> 17492 <_> 17493 <!-- tree 45 --> 17494 <_> 17495 <!-- root node --> 17496 <feature> 17497 <rects> 17498 <_>6 4 4 11 -1.</_> 17499 <_>6 4 2 11 2.</_></rects> 17500 <tilted>0</tilted></feature> 17501 <threshold>-0.0225107893347740</threshold> 17502 <left_val>0.1891123056411743</left_val> 17503 <right_val>-0.0338670387864113</right_val></_></_> 17504 <_> 17505 <!-- tree 46 --> 17506 <_> 17507 <!-- root node --> 17508 <feature> 17509 <rects> 17510 <_>4 4 4 11 -1.</_> 17511 <_>6 4 2 11 2.</_></rects> 17512 <tilted>0</tilted></feature> 17513 <threshold>0.0204072501510382</threshold> 17514 <left_val>-0.0585243701934814</left_val> 17515 <right_val>0.3596762120723724</right_val></_></_> 17516 <_> 17517 <!-- tree 47 --> 17518 <_> 17519 <!-- root node --> 17520 <feature> 17521 <rects> 17522 <_>8 1 4 8 -1.</_> 17523 <_>8 1 2 8 2.</_></rects> 17524 <tilted>1</tilted></feature> 17525 <threshold>3.0294319149106741e-003</threshold> 17526 <left_val>-0.1403163969516754</left_val> 17527 <right_val>0.0548497810959816</right_val></_></_> 17528 <_> 17529 <!-- tree 48 --> 17530 <_> 17531 <!-- root node --> 17532 <feature> 17533 <rects> 17534 <_>1 20 4 8 -1.</_> 17535 <_>3 20 2 8 2.</_></rects> 17536 <tilted>0</tilted></feature> 17537 <threshold>5.8518280275166035e-004</threshold> 17538 <left_val>0.0955235883593559</left_val> 17539 <right_val>-0.1965035945177078</right_val></_></_> 17540 <_> 17541 <!-- tree 49 --> 17542 <_> 17543 <!-- root node --> 17544 <feature> 17545 <rects> 17546 <_>9 22 4 6 -1.</_> 17547 <_>9 22 2 6 2.</_></rects> 17548 <tilted>0</tilted></feature> 17549 <threshold>0.0177563391625881</threshold> 17550 <left_val>0.0161958690732718</left_val> 17551 <right_val>-0.5853430032730103</right_val></_></_> 17552 <_> 17553 <!-- tree 50 --> 17554 <_> 17555 <!-- root node --> 17556 <feature> 17557 <rects> 17558 <_>1 22 4 6 -1.</_> 17559 <_>3 22 2 6 2.</_></rects> 17560 <tilted>0</tilted></feature> 17561 <threshold>-3.2687620259821415e-003</threshold> 17562 <left_val>-0.3080259859561920</left_val> 17563 <right_val>0.0655681118369102</right_val></_></_> 17564 <_> 17565 <!-- tree 51 --> 17566 <_> 17567 <!-- root node --> 17568 <feature> 17569 <rects> 17570 <_>9 0 3 22 -1.</_> 17571 <_>10 0 1 22 3.</_></rects> 17572 <tilted>0</tilted></feature> 17573 <threshold>3.4140530042350292e-003</threshold> 17574 <left_val>-0.0825024172663689</left_val> 17575 <right_val>0.0998902693390846</right_val></_></_> 17576 <_> 17577 <!-- tree 52 --> 17578 <_> 17579 <!-- root node --> 17580 <feature> 17581 <rects> 17582 <_>3 21 8 6 -1.</_> 17583 <_>5 21 4 6 2.</_></rects> 17584 <tilted>0</tilted></feature> 17585 <threshold>6.3527207821607590e-003</threshold> 17586 <left_val>-0.0351637788116932</left_val> 17587 <right_val>0.5423762202262878</right_val></_></_> 17588 <_> 17589 <!-- tree 53 --> 17590 <_> 17591 <!-- root node --> 17592 <feature> 17593 <rects> 17594 <_>6 11 3 15 -1.</_> 17595 <_>7 11 1 15 3.</_></rects> 17596 <tilted>0</tilted></feature> 17597 <threshold>2.0045090932399035e-003</threshold> 17598 <left_val>-0.1008172035217285</left_val> 17599 <right_val>0.0969350412487984</right_val></_></_> 17600 <_> 17601 <!-- tree 54 --> 17602 <_> 17603 <!-- root node --> 17604 <feature> 17605 <rects> 17606 <_>6 1 8 4 -1.</_> 17607 <_>6 1 8 2 2.</_></rects> 17608 <tilted>1</tilted></feature> 17609 <threshold>6.9825910031795502e-003</threshold> 17610 <left_val>-0.1601238995790482</left_val> 17611 <right_val>0.1134850978851318</right_val></_></_> 17612 <_> 17613 <!-- tree 55 --> 17614 <_> 17615 <!-- root node --> 17616 <feature> 17617 <rects> 17618 <_>2 16 12 4 -1.</_> 17619 <_>8 16 6 2 2.</_> 17620 <_>2 18 6 2 2.</_></rects> 17621 <tilted>0</tilted></feature> 17622 <threshold>0.0459630116820335</threshold> 17623 <left_val>6.1929170042276382e-003</left_val> 17624 <right_val>-0.8855175971984863</right_val></_></_> 17625 <_> 17626 <!-- tree 56 --> 17627 <_> 17628 <!-- root node --> 17629 <feature> 17630 <rects> 17631 <_>0 16 12 4 -1.</_> 17632 <_>0 16 6 2 2.</_> 17633 <_>6 18 6 2 2.</_></rects> 17634 <tilted>0</tilted></feature> 17635 <threshold>0.0370623916387558</threshold> 17636 <left_val>0.0201282501220703</left_val> 17637 <right_val>-0.8093351125717163</right_val></_></_> 17638 <_> 17639 <!-- tree 57 --> 17640 <_> 17641 <!-- root node --> 17642 <feature> 17643 <rects> 17644 <_>6 10 3 12 -1.</_> 17645 <_>6 14 3 4 3.</_></rects> 17646 <tilted>0</tilted></feature> 17647 <threshold>-0.0415228083729744</threshold> 17648 <left_val>0.2059791982173920</left_val> 17649 <right_val>-0.0319279395043850</right_val></_></_> 17650 <_> 17651 <!-- tree 58 --> 17652 <_> 17653 <!-- root node --> 17654 <feature> 17655 <rects> 17656 <_>4 13 6 14 -1.</_> 17657 <_>4 20 6 7 2.</_></rects> 17658 <tilted>0</tilted></feature> 17659 <threshold>0.1652186065912247</threshold> 17660 <left_val>0.0255248397588730</left_val> 17661 <right_val>-0.6295161247253418</right_val></_></_> 17662 <_> 17663 <!-- tree 59 --> 17664 <_> 17665 <!-- root node --> 17666 <feature> 17667 <rects> 17668 <_>3 9 9 15 -1.</_> 17669 <_>6 14 3 5 9.</_></rects> 17670 <tilted>0</tilted></feature> 17671 <threshold>-0.2318888008594513</threshold> 17672 <left_val>0.1395397931337357</left_val> 17673 <right_val>-0.0616117902100086</right_val></_></_> 17674 <_> 17675 <!-- tree 60 --> 17676 <_> 17677 <!-- root node --> 17678 <feature> 17679 <rects> 17680 <_>4 10 9 4 -1.</_> 17681 <_>7 13 3 4 3.</_></rects> 17682 <tilted>1</tilted></feature> 17683 <threshold>-0.0281500704586506</threshold> 17684 <left_val>-0.1367637068033218</left_val> 17685 <right_val>0.1167756989598274</right_val></_></_> 17686 <_> 17687 <!-- tree 61 --> 17688 <_> 17689 <!-- root node --> 17690 <feature> 17691 <rects> 17692 <_>3 7 8 7 -1.</_> 17693 <_>3 7 4 7 2.</_></rects> 17694 <tilted>0</tilted></feature> 17695 <threshold>2.0499450620263815e-003</threshold> 17696 <left_val>-0.1585503965616226</left_val> 17697 <right_val>0.1351170986890793</right_val></_></_> 17698 <_> 17699 <!-- tree 62 --> 17700 <_> 17701 <!-- root node --> 17702 <feature> 17703 <rects> 17704 <_>4 9 4 6 -1.</_> 17705 <_>6 9 2 6 2.</_></rects> 17706 <tilted>0</tilted></feature> 17707 <threshold>1.2636490282602608e-004</threshold> 17708 <left_val>-0.1502434015274048</left_val> 17709 <right_val>0.1373908966779709</right_val></_></_> 17710 <_> 17711 <!-- tree 63 --> 17712 <_> 17713 <!-- root node --> 17714 <feature> 17715 <rects> 17716 <_>4 9 6 11 -1.</_> 17717 <_>6 9 2 11 3.</_></rects> 17718 <tilted>0</tilted></feature> 17719 <threshold>2.4286638945341110e-003</threshold> 17720 <left_val>0.0792474597692490</left_val> 17721 <right_val>-0.2595944106578827</right_val></_></_> 17722 <_> 17723 <!-- tree 64 --> 17724 <_> 17725 <!-- root node --> 17726 <feature> 17727 <rects> 17728 <_>1 11 4 12 -1.</_> 17729 <_>1 15 4 4 3.</_></rects> 17730 <tilted>0</tilted></feature> 17731 <threshold>-0.0218735896050930</threshold> 17732 <left_val>0.3559050858020783</left_val> 17733 <right_val>-0.0618359185755253</right_val></_></_> 17734 <_> 17735 <!-- tree 65 --> 17736 <_> 17737 <!-- root node --> 17738 <feature> 17739 <rects> 17740 <_>9 0 2 12 -1.</_> 17741 <_>9 0 1 12 2.</_></rects> 17742 <tilted>0</tilted></feature> 17743 <threshold>-5.8419788256287575e-003</threshold> 17744 <left_val>-0.1021912023425102</left_val> 17745 <right_val>0.0399971306324005</right_val></_></_> 17746 <_> 17747 <!-- tree 66 --> 17748 <_> 17749 <!-- root node --> 17750 <feature> 17751 <rects> 17752 <_>2 4 4 16 -1.</_> 17753 <_>2 4 2 8 2.</_> 17754 <_>4 12 2 8 2.</_></rects> 17755 <tilted>0</tilted></feature> 17756 <threshold>-2.6236099656671286e-003</threshold> 17757 <left_val>0.1212999001145363</left_val> 17758 <right_val>-0.1486115008592606</right_val></_></_> 17759 <_> 17760 <!-- tree 67 --> 17761 <_> 17762 <!-- root node --> 17763 <feature> 17764 <rects> 17765 <_>5 8 5 14 -1.</_> 17766 <_>5 15 5 7 2.</_></rects> 17767 <tilted>0</tilted></feature> 17768 <threshold>0.1459041982889175</threshold> 17769 <left_val>-0.0368846505880356</left_val> 17770 <right_val>0.4148491919040680</right_val></_></_> 17771 <_> 17772 <!-- tree 68 --> 17773 <_> 17774 <!-- root node --> 17775 <feature> 17776 <rects> 17777 <_>2 0 3 22 -1.</_> 17778 <_>3 0 1 22 3.</_></rects> 17779 <tilted>0</tilted></feature> 17780 <threshold>-8.6298510432243347e-003</threshold> 17781 <left_val>0.2552245855331421</left_val> 17782 <right_val>-0.0698716267943382</right_val></_></_> 17783 <_> 17784 <!-- tree 69 --> 17785 <_> 17786 <!-- root node --> 17787 <feature> 17788 <rects> 17789 <_>6 25 8 3 -1.</_> 17790 <_>6 25 4 3 2.</_></rects> 17791 <tilted>0</tilted></feature> 17792 <threshold>-0.0391534715890884</threshold> 17793 <left_val>-0.8553311824798584</left_val> 17794 <right_val>0.0146392397582531</right_val></_></_> 17795 <_> 17796 <!-- tree 70 --> 17797 <_> 17798 <!-- root node --> 17799 <feature> 17800 <rects> 17801 <_>1 6 8 22 -1.</_> 17802 <_>1 17 8 11 2.</_></rects> 17803 <tilted>0</tilted></feature> 17804 <threshold>0.3848269879817963</threshold> 17805 <left_val>0.0173611193895340</left_val> 17806 <right_val>-0.7979055047035217</right_val></_></_> 17807 <_> 17808 <!-- tree 71 --> 17809 <_> 17810 <!-- root node --> 17811 <feature> 17812 <rects> 17813 <_>4 15 6 8 -1.</_> 17814 <_>7 15 3 4 2.</_> 17815 <_>4 19 3 4 2.</_></rects> 17816 <tilted>0</tilted></feature> 17817 <threshold>-6.3598138513043523e-004</threshold> 17818 <left_val>0.1151826977729797</left_val> 17819 <right_val>-0.1421640962362289</right_val></_></_> 17820 <_> 17821 <!-- tree 72 --> 17822 <_> 17823 <!-- root node --> 17824 <feature> 17825 <rects> 17826 <_>5 13 4 14 -1.</_> 17827 <_>5 13 2 7 2.</_> 17828 <_>7 20 2 7 2.</_></rects> 17829 <tilted>0</tilted></feature> 17830 <threshold>5.9026381932199001e-003</threshold> 17831 <left_val>0.0705236569046974</left_val> 17832 <right_val>-0.2303119003772736</right_val></_></_> 17833 <_> 17834 <!-- tree 73 --> 17835 <_> 17836 <!-- root node --> 17837 <feature> 17838 <rects> 17839 <_>2 16 10 12 -1.</_> 17840 <_>7 16 5 6 2.</_> 17841 <_>2 22 5 6 2.</_></rects> 17842 <tilted>0</tilted></feature> 17843 <threshold>-1.1841119703603908e-004</threshold> 17844 <left_val>0.1040178984403610</left_val> 17845 <right_val>-0.1712667942047119</right_val></_></_> 17846 <_> 17847 <!-- tree 74 --> 17848 <_> 17849 <!-- root node --> 17850 <feature> 17851 <rects> 17852 <_>4 15 8 3 -1.</_> 17853 <_>4 15 4 3 2.</_></rects> 17854 <tilted>1</tilted></feature> 17855 <threshold>0.0819626599550247</threshold> 17856 <left_val>0.0277990996837616</left_val> 17857 <right_val>-0.5833172202110291</right_val></_></_> 17858 <_> 17859 <!-- tree 75 --> 17860 <_> 17861 <!-- root node --> 17862 <feature> 17863 <rects> 17864 <_>2 0 12 3 -1.</_> 17865 <_>2 1 12 1 3.</_></rects> 17866 <tilted>0</tilted></feature> 17867 <threshold>-7.9551688395440578e-004</threshold> 17868 <left_val>0.1256852000951767</left_val> 17869 <right_val>-0.1031771972775459</right_val></_></_> 17870 <_> 17871 <!-- tree 76 --> 17872 <_> 17873 <!-- root node --> 17874 <feature> 17875 <rects> 17876 <_>0 5 9 22 -1.</_> 17877 <_>3 5 3 22 3.</_></rects> 17878 <tilted>0</tilted></feature> 17879 <threshold>-0.1558894068002701</threshold> 17880 <left_val>0.6289020180702210</left_val> 17881 <right_val>-0.0251919794827700</right_val></_></_> 17882 <_> 17883 <!-- tree 77 --> 17884 <_> 17885 <!-- root node --> 17886 <feature> 17887 <rects> 17888 <_>4 9 6 4 -1.</_> 17889 <_>4 11 6 2 2.</_></rects> 17890 <tilted>0</tilted></feature> 17891 <threshold>-0.0134563101455569</threshold> 17892 <left_val>-0.3247169852256775</left_val> 17893 <right_val>0.0554869212210178</right_val></_></_> 17894 <_> 17895 <!-- tree 78 --> 17896 <_> 17897 <!-- root node --> 17898 <feature> 17899 <rects> 17900 <_>4 14 6 2 -1.</_> 17901 <_>4 14 6 1 2.</_></rects> 17902 <tilted>1</tilted></feature> 17903 <threshold>-0.0215071998536587</threshold> 17904 <left_val>0.2881917953491211</left_val> 17905 <right_val>-0.0611761398613453</right_val></_></_> 17906 <_> 17907 <!-- tree 79 --> 17908 <_> 17909 <!-- root node --> 17910 <feature> 17911 <rects> 17912 <_>8 12 6 4 -1.</_> 17913 <_>8 12 3 4 2.</_></rects> 17914 <tilted>1</tilted></feature> 17915 <threshold>-0.0190420690923929</threshold> 17916 <left_val>-0.0605529099702835</left_val> 17917 <right_val>0.0896290615200996</right_val></_></_> 17918 <_> 17919 <!-- tree 80 --> 17920 <_> 17921 <!-- root node --> 17922 <feature> 17923 <rects> 17924 <_>5 16 8 4 -1.</_> 17925 <_>4 17 8 2 2.</_></rects> 17926 <tilted>1</tilted></feature> 17927 <threshold>-9.1205362696200609e-004</threshold> 17928 <left_val>0.1238545998930931</left_val> 17929 <right_val>-0.1358487010002136</right_val></_></_> 17930 <_> 17931 <!-- tree 81 --> 17932 <_> 17933 <!-- root node --> 17934 <feature> 17935 <rects> 17936 <_>5 15 4 6 -1.</_> 17937 <_>5 15 2 6 2.</_></rects> 17938 <tilted>0</tilted></feature> 17939 <threshold>0.0382026284933090</threshold> 17940 <left_val>0.0192184206098318</left_val> 17941 <right_val>-0.8448883295059204</right_val></_></_> 17942 <_> 17943 <!-- tree 82 --> 17944 <_> 17945 <!-- root node --> 17946 <feature> 17947 <rects> 17948 <_>5 9 2 14 -1.</_> 17949 <_>5 16 2 7 2.</_></rects> 17950 <tilted>0</tilted></feature> 17951 <threshold>0.0517873913049698</threshold> 17952 <left_val>-0.0548306591808796</left_val> 17953 <right_val>0.3335298001766205</right_val></_></_> 17954 <_> 17955 <!-- tree 83 --> 17956 <_> 17957 <!-- root node --> 17958 <feature> 17959 <rects> 17960 <_>6 6 6 12 -1.</_> 17961 <_>6 10 6 4 3.</_></rects> 17962 <tilted>0</tilted></feature> 17963 <threshold>-0.1386034935712814</threshold> 17964 <left_val>-0.2716459929943085</left_val> 17965 <right_val>0.0106801996007562</right_val></_></_> 17966 <_> 17967 <!-- tree 84 --> 17968 <_> 17969 <!-- root node --> 17970 <feature> 17971 <rects> 17972 <_>1 20 12 6 -1.</_> 17973 <_>1 20 6 3 2.</_> 17974 <_>7 23 6 3 2.</_></rects> 17975 <tilted>0</tilted></feature> 17976 <threshold>-0.0393259599804878</threshold> 17977 <left_val>-0.7604343295097351</left_val> 17978 <right_val>0.0193206705152988</right_val></_></_> 17979 <_> 17980 <!-- tree 85 --> 17981 <_> 17982 <!-- root node --> 17983 <feature> 17984 <rects> 17985 <_>4 8 6 4 -1.</_> 17986 <_>4 10 6 2 2.</_></rects> 17987 <tilted>0</tilted></feature> 17988 <threshold>-1.1157010449096560e-003</threshold> 17989 <left_val>0.0694785192608833</left_val> 17990 <right_val>-0.2032717019319534</right_val></_></_> 17991 <_> 17992 <!-- tree 86 --> 17993 <_> 17994 <!-- root node --> 17995 <feature> 17996 <rects> 17997 <_>1 6 9 6 -1.</_> 17998 <_>1 8 9 2 3.</_></rects> 17999 <tilted>0</tilted></feature> 18000 <threshold>-4.2068599723279476e-003</threshold> 18001 <left_val>0.1600721925497055</left_val> 18002 <right_val>-0.1098235026001930</right_val></_></_> 18003 <_> 18004 <!-- tree 87 --> 18005 <_> 18006 <!-- root node --> 18007 <feature> 18008 <rects> 18009 <_>5 6 6 4 -1.</_> 18010 <_>5 8 6 2 2.</_></rects> 18011 <tilted>0</tilted></feature> 18012 <threshold>3.7919029127806425e-003</threshold> 18013 <left_val>-0.0838006436824799</left_val> 18014 <right_val>0.2515478134155273</right_val></_></_> 18015 <_> 18016 <!-- tree 88 --> 18017 <_> 18018 <!-- root node --> 18019 <feature> 18020 <rects> 18021 <_>3 3 8 6 -1.</_> 18022 <_>3 3 4 3 2.</_> 18023 <_>7 6 4 3 2.</_></rects> 18024 <tilted>0</tilted></feature> 18025 <threshold>-0.0314305908977985</threshold> 18026 <left_val>-0.5059031248092651</left_val> 18027 <right_val>0.0376673787832260</right_val></_></_> 18028 <_> 18029 <!-- tree 89 --> 18030 <_> 18031 <!-- root node --> 18032 <feature> 18033 <rects> 18034 <_>6 23 6 5 -1.</_> 18035 <_>6 23 3 5 2.</_></rects> 18036 <tilted>0</tilted></feature> 18037 <threshold>-4.3412651866674423e-003</threshold> 18038 <left_val>0.0585919693112373</left_val> 18039 <right_val>-0.1727126985788345</right_val></_></_> 18040 <_> 18041 <!-- tree 90 --> 18042 <_> 18043 <!-- root node --> 18044 <feature> 18045 <rects> 18046 <_>0 3 12 4 -1.</_> 18047 <_>0 3 6 2 2.</_> 18048 <_>6 5 6 2 2.</_></rects> 18049 <tilted>0</tilted></feature> 18050 <threshold>-5.6401407346129417e-004</threshold> 18051 <left_val>0.1013183966279030</left_val> 18052 <right_val>-0.1673755049705505</right_val></_></_> 18053 <_> 18054 <!-- tree 91 --> 18055 <_> 18056 <!-- root node --> 18057 <feature> 18058 <rects> 18059 <_>7 4 6 18 -1.</_> 18060 <_>7 10 6 6 3.</_></rects> 18061 <tilted>0</tilted></feature> 18062 <threshold>-0.0171399600803852</threshold> 18063 <left_val>0.0496194511651993</left_val> 18064 <right_val>-0.1181275025010109</right_val></_></_> 18065 <_> 18066 <!-- tree 92 --> 18067 <_> 18068 <!-- root node --> 18069 <feature> 18070 <rects> 18071 <_>6 12 4 6 -1.</_> 18072 <_>6 12 4 3 2.</_></rects> 18073 <tilted>1</tilted></feature> 18074 <threshold>-0.0238684900105000</threshold> 18075 <left_val>-0.0958755090832710</left_val> 18076 <right_val>0.1840431988239288</right_val></_></_> 18077 <_> 18078 <!-- tree 93 --> 18079 <_> 18080 <!-- root node --> 18081 <feature> 18082 <rects> 18083 <_>2 15 12 6 -1.</_> 18084 <_>5 15 6 6 2.</_></rects> 18085 <tilted>0</tilted></feature> 18086 <threshold>-0.0874088108539581</threshold> 18087 <left_val>0.1414463073015213</left_val> 18088 <right_val>-0.0577138289809227</right_val></_></_> 18089 <_> 18090 <!-- tree 94 --> 18091 <_> 18092 <!-- root node --> 18093 <feature> 18094 <rects> 18095 <_>0 5 4 12 -1.</_> 18096 <_>0 5 2 6 2.</_> 18097 <_>2 11 2 6 2.</_></rects> 18098 <tilted>0</tilted></feature> 18099 <threshold>-0.0391700901091099</threshold> 18100 <left_val>-0.6103624105453491</left_val> 18101 <right_val>0.0223081093281507</right_val></_></_> 18102 <_> 18103 <!-- tree 95 --> 18104 <_> 18105 <!-- root node --> 18106 <feature> 18107 <rects> 18108 <_>10 4 4 16 -1.</_> 18109 <_>12 4 2 8 2.</_> 18110 <_>10 12 2 8 2.</_></rects> 18111 <tilted>0</tilted></feature> 18112 <threshold>0.0533615797758102</threshold> 18113 <left_val>0.0150276403874159</left_val> 18114 <right_val>-0.6540914177894592</right_val></_></_></trees> 18115 <stage_threshold>-30.8048992156982420</stage_threshold> 18116 <parent>28</parent> 18117 <next>-1</next></_></stages></haarcascade_fullbody> 18118 </opencv_storage> 18119