1 <?xml version="1.0"?> 2 <!-- 3 Tree-based 20x20 left eye detector. 4 The detector is trained by 6665 positive samples from FERET, VALID and BioID face databases. 5 Created by Shiqi Yu (http://yushiqi.cn/research/eyedetection). 6 7 //////////////////////////////////////////////////////////////////////////////////////// 8 9 IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 10 11 By downloading, copying, installing or using the software you agree to this license. 12 If you do not agree to this license, do not download, install, 13 copy or use the software. 14 15 16 Intel License Agreement 17 For Open Source Computer Vision Library 18 19 Copyright (C) 2000, Intel Corporation, all rights reserved. 20 Third party copyrights are property of their respective owners. 21 22 Redistribution and use in source and binary forms, with or without modification, 23 are permitted provided that the following conditions are met: 24 25 * Redistribution's of source code must retain the above copyright notice, 26 this list of conditions and the following disclaimer. 27 28 * Redistribution's in binary form must reproduce the above copyright notice, 29 this list of conditions and the following disclaimer in the documentation 30 and/or other materials provided with the distribution. 31 32 * The name of Intel Corporation may not be used to endorse or promote products 33 derived from this software without specific prior written permission. 34 35 This software is provided by the copyright holders and contributors "as is" and 36 any express or implied warranties, including, but not limited to, the implied 37 warranties of merchantability and fitness for a particular purpose are disclaimed. 38 In no event shall the Intel Corporation or contributors be liable for any direct, 39 indirect, incidental, special, exemplary, or consequential damages 40 (including, but not limited to, procurement of substitute goods or services; 41 loss of use, data, or profits; or business interruption) however caused 42 and on any theory of liability, whether in contract, strict liability, 43 or tort (including negligence or otherwise) arising in any way out of 44 the use of this software, even if advised of the possibility of such damage. 45 --> 46 <opencv_storage> 47 <haarcascade_lefteye type_id="opencv-haar-classifier"> 48 <size> 49 20 20</size> 50 <stages> 51 <_> 52 <!-- stage 0 --> 53 <trees> 54 <_> 55 <!-- tree 0 --> 56 <_> 57 <!-- root node --> 58 <feature> 59 <rects> 60 <_> 61 8 12 3 8 -1.</_> 62 <_> 63 8 16 3 4 2.</_></rects> 64 <tilted>0</tilted></feature> 65 <threshold>0.0273259896785021</threshold> 66 <left_val>-0.9060062170028687</left_val> 67 <right_node>1</right_node></_> 68 <_> 69 <!-- node 1 --> 70 <feature> 71 <rects> 72 <_> 73 5 11 8 9 -1.</_> 74 <_> 75 7 11 4 9 2.</_></rects> 76 <tilted>0</tilted></feature> 77 <threshold>-7.0568458177149296e-03</threshold> 78 <left_val>0.9338570833206177</left_val> 79 <right_val>-0.4585995972156525</right_val></_></_> 80 <_> 81 <!-- tree 1 --> 82 <_> 83 <!-- root node --> 84 <feature> 85 <rects> 86 <_> 87 8 7 11 12 -1.</_> 88 <_> 89 8 11 11 4 3.</_></rects> 90 <tilted>0</tilted></feature> 91 <threshold>-0.1253869980573654</threshold> 92 <left_val>0.7246372103691101</left_val> 93 <right_node>1</right_node></_> 94 <_> 95 <!-- node 1 --> 96 <feature> 97 <rects> 98 <_> 99 1 0 7 8 -1.</_> 100 <_> 101 1 4 7 4 2.</_></rects> 102 <tilted>0</tilted></feature> 103 <threshold>-0.1148729994893074</threshold> 104 <left_val>0.5303416848182678</left_val> 105 <right_val>-0.8322122097015381</right_val></_></_> 106 <_> 107 <!-- tree 2 --> 108 <_> 109 <!-- root node --> 110 <feature> 111 <rects> 112 <_> 113 9 7 6 6 -1.</_> 114 <_> 115 7 9 6 2 3.</_></rects> 116 <tilted>1</tilted></feature> 117 <threshold>-0.0583099387586117</threshold> 118 <left_val>0.6540889143943787</left_val> 119 <right_node>1</right_node></_> 120 <_> 121 <!-- node 1 --> 122 <feature> 123 <rects> 124 <_> 125 0 0 7 4 -1.</_> 126 <_> 127 0 2 7 2 2.</_></rects> 128 <tilted>0</tilted></feature> 129 <threshold>-0.0176843702793121</threshold> 130 <left_val>0.2948287129402161</left_val> 131 <right_val>-0.7480958104133606</right_val></_></_> 132 <_> 133 <!-- tree 3 --> 134 <_> 135 <!-- root node --> 136 <feature> 137 <rects> 138 <_> 139 16 13 4 4 -1.</_> 140 <_> 141 18 13 2 4 2.</_></rects> 142 <tilted>0</tilted></feature> 143 <threshold>3.5937170032411814e-03</threshold> 144 <left_val>-0.5030391812324524</left_val> 145 <right_node>1</right_node></_> 146 <_> 147 <!-- node 1 --> 148 <feature> 149 <rects> 150 <_> 151 17 15 2 3 -1.</_> 152 <_> 153 17 15 1 3 2.</_></rects> 154 <tilted>1</tilted></feature> 155 <threshold>-1.3436110457405448e-03</threshold> 156 <left_val>0.6599534153938293</left_val> 157 <right_val>-0.5574085712432861</right_val></_></_> 158 <_> 159 <!-- tree 4 --> 160 <_> 161 <!-- root node --> 162 <feature> 163 <rects> 164 <_> 165 0 13 6 2 -1.</_> 166 <_> 167 2 13 2 2 3.</_></rects> 168 <tilted>0</tilted></feature> 169 <threshold>-2.1795940119773149e-03</threshold> 170 <left_node>1</left_node> 171 <right_val>-0.4201635122299194</right_val></_> 172 <_> 173 <!-- node 1 --> 174 <feature> 175 <rects> 176 <_> 177 5 0 6 6 -1.</_> 178 <_> 179 7 0 2 6 3.</_></rects> 180 <tilted>0</tilted></feature> 181 <threshold>0.0115148704499006</threshold> 182 <left_val>0.5969433188438416</left_val> 183 <right_val>-0.8050804734230042</right_val></_></_></trees> 184 <stage_threshold>-2.3924100399017334</stage_threshold> 185 <parent>-1</parent> 186 <next>-1</next></_> 187 <_> 188 <!-- stage 1 --> 189 <trees> 190 <_> 191 <!-- tree 0 --> 192 <_> 193 <!-- root node --> 194 <feature> 195 <rects> 196 <_> 197 5 7 9 12 -1.</_> 198 <_> 199 8 11 3 4 9.</_></rects> 200 <tilted>0</tilted></feature> 201 <threshold>-0.2248556017875671</threshold> 202 <left_node>1</left_node> 203 <right_val>-0.8136320114135742</right_val></_> 204 <_> 205 <!-- node 1 --> 206 <feature> 207 <rects> 208 <_> 209 5 6 4 10 -1.</_> 210 <_> 211 5 6 2 5 2.</_> 212 <_> 213 7 11 2 5 2.</_></rects> 214 <tilted>0</tilted></feature> 215 <threshold>-9.6008004620671272e-03</threshold> 216 <left_val>0.9086313843727112</left_val> 217 <right_val>-0.3220897018909454</right_val></_></_> 218 <_> 219 <!-- tree 1 --> 220 <_> 221 <!-- root node --> 222 <feature> 223 <rects> 224 <_> 225 8 12 11 8 -1.</_> 226 <_> 227 8 16 11 4 2.</_></rects> 228 <tilted>0</tilted></feature> 229 <threshold>0.0742191672325134</threshold> 230 <left_val>-0.7532945275306702</left_val> 231 <right_node>1</right_node></_> 232 <_> 233 <!-- node 1 --> 234 <feature> 235 <rects> 236 <_> 237 0 0 1 8 -1.</_> 238 <_> 239 0 4 1 4 2.</_></rects> 240 <tilted>0</tilted></feature> 241 <threshold>-5.3165741264820099e-03</threshold> 242 <left_val>0.8633949756622314</left_val> 243 <right_val>-0.0334635712206364</right_val></_></_> 244 <_> 245 <!-- tree 2 --> 246 <_> 247 <!-- root node --> 248 <feature> 249 <rects> 250 <_> 251 0 0 6 6 -1.</_> 252 <_> 253 3 0 3 6 2.</_></rects> 254 <tilted>0</tilted></feature> 255 <threshold>-2.1913449745625257e-03</threshold> 256 <left_node>1</left_node> 257 <right_val>-0.5572034716606140</right_val></_> 258 <_> 259 <!-- node 1 --> 260 <feature> 261 <rects> 262 <_> 263 14 14 6 6 -1.</_> 264 <_> 265 14 17 6 3 2.</_></rects> 266 <tilted>0</tilted></feature> 267 <threshold>0.0118009597063065</threshold> 268 <left_val>-0.3235968053340912</left_val> 269 <right_val>0.6416382193565369</right_val></_></_> 270 <_> 271 <!-- tree 3 --> 272 <_> 273 <!-- root node --> 274 <feature> 275 <rects> 276 <_> 277 5 13 9 7 -1.</_> 278 <_> 279 8 13 3 7 3.</_></rects> 280 <tilted>0</tilted></feature> 281 <threshold>-7.6179709285497665e-03</threshold> 282 <left_node>1</left_node> 283 <right_val>-0.5316786766052246</right_val></_> 284 <_> 285 <!-- node 1 --> 286 <feature> 287 <rects> 288 <_> 289 6 17 6 3 -1.</_> 290 <_> 291 8 17 2 3 3.</_></rects> 292 <tilted>0</tilted></feature> 293 <threshold>-9.0587511658668518e-03</threshold> 294 <left_val>-0.7361145019531250</left_val> 295 <right_val>0.5566077232360840</right_val></_></_> 296 <_> 297 <!-- tree 4 --> 298 <_> 299 <!-- root node --> 300 <feature> 301 <rects> 302 <_> 303 0 0 4 4 -1.</_> 304 <_> 305 0 2 4 2 2.</_></rects> 306 <tilted>0</tilted></feature> 307 <threshold>-4.9959779717028141e-03</threshold> 308 <left_node>1</left_node> 309 <right_val>-0.4147691130638123</right_val></_> 310 <_> 311 <!-- node 1 --> 312 <feature> 313 <rects> 314 <_> 315 1 0 3 3 -1.</_> 316 <_> 317 2 1 1 1 9.</_></rects> 318 <tilted>0</tilted></feature> 319 <threshold>8.0803930759429932e-03</threshold> 320 <left_val>0.5927835702896118</left_val> 321 <right_val>-0.6738492250442505</right_val></_></_> 322 <_> 323 <!-- tree 5 --> 324 <_> 325 <!-- root node --> 326 <feature> 327 <rects> 328 <_> 329 3 18 6 2 -1.</_> 330 <_> 331 3 19 6 1 2.</_></rects> 332 <tilted>0</tilted></feature> 333 <threshold>1.9909010734409094e-03</threshold> 334 <left_val>-0.4214592874050140</left_val> 335 <right_node>1</right_node></_> 336 <_> 337 <!-- node 1 --> 338 <feature> 339 <rects> 340 <_> 341 7 18 4 2 -1.</_> 342 <_> 343 8 18 2 2 2.</_></rects> 344 <tilted>0</tilted></feature> 345 <threshold>1.6845749923959374e-03</threshold> 346 <left_val>0.5467922091484070</left_val> 347 <right_val>-0.7509945034980774</right_val></_></_> 348 <_> 349 <!-- tree 6 --> 350 <_> 351 <!-- root node --> 352 <feature> 353 <rects> 354 <_> 355 6 10 12 2 -1.</_> 356 <_> 357 6 11 12 1 2.</_></rects> 358 <tilted>0</tilted></feature> 359 <threshold>-5.0781872123479843e-03</threshold> 360 <left_node>1</left_node> 361 <right_val>-0.3989954888820648</right_val></_> 362 <_> 363 <!-- node 1 --> 364 <feature> 365 <rects> 366 <_> 367 15 8 3 1 -1.</_> 368 <_> 369 16 9 1 1 3.</_></rects> 370 <tilted>1</tilted></feature> 371 <threshold>2.6645609177649021e-03</threshold> 372 <left_val>0.5894060134887695</left_val> 373 <right_val>-0.4677804112434387</right_val></_></_></trees> 374 <stage_threshold>-2.6498730182647705</stage_threshold> 375 <parent>0</parent> 376 <next>-1</next></_> 377 <_> 378 <!-- stage 2 --> 379 <trees> 380 <_> 381 <!-- tree 0 --> 382 <_> 383 <!-- root node --> 384 <feature> 385 <rects> 386 <_> 387 5 7 9 12 -1.</_> 388 <_> 389 8 11 3 4 9.</_></rects> 390 <tilted>0</tilted></feature> 391 <threshold>-0.2530143857002258</threshold> 392 <left_node>1</left_node> 393 <right_val>-0.7540258765220642</right_val></_> 394 <_> 395 <!-- node 1 --> 396 <feature> 397 <rects> 398 <_> 399 16 13 1 6 -1.</_> 400 <_> 401 16 16 1 3 2.</_></rects> 402 <tilted>0</tilted></feature> 403 <threshold>2.9663778841495514e-03</threshold> 404 <left_val>-0.3527964949607849</left_val> 405 <right_val>0.8799229860305786</right_val></_></_> 406 <_> 407 <!-- tree 1 --> 408 <_> 409 <!-- root node --> 410 <feature> 411 <rects> 412 <_> 413 9 7 5 6 -1.</_> 414 <_> 415 7 9 5 2 3.</_></rects> 416 <tilted>1</tilted></feature> 417 <threshold>-0.0471276491880417</threshold> 418 <left_node>1</left_node> 419 <right_val>-0.5223489999771118</right_val></_> 420 <_> 421 <!-- node 1 --> 422 <feature> 423 <rects> 424 <_> 425 16 12 4 6 -1.</_> 426 <_> 427 18 12 2 6 2.</_></rects> 428 <tilted>0</tilted></feature> 429 <threshold>1.9500750349834561e-03</threshold> 430 <left_val>-0.3037990927696228</left_val> 431 <right_val>0.7520437836647034</right_val></_></_> 432 <_> 433 <!-- tree 2 --> 434 <_> 435 <!-- root node --> 436 <feature> 437 <rects> 438 <_> 439 0 0 6 8 -1.</_> 440 <_> 441 0 4 6 4 2.</_></rects> 442 <tilted>0</tilted></feature> 443 <threshold>-0.0714810267090797</threshold> 444 <left_val>0.6584190130233765</left_val> 445 <right_node>1</right_node></_> 446 <_> 447 <!-- node 1 --> 448 <feature> 449 <rects> 450 <_> 451 3 1 15 12 -1.</_> 452 <_> 453 3 5 15 4 3.</_></rects> 454 <tilted>0</tilted></feature> 455 <threshold>0.2218973040580750</threshold> 456 <left_val>-0.6090720295906067</left_val> 457 <right_val>0.5684216022491455</right_val></_></_> 458 <_> 459 <!-- tree 3 --> 460 <_> 461 <!-- root node --> 462 <feature> 463 <rects> 464 <_> 465 11 12 9 8 -1.</_> 466 <_> 467 11 16 9 4 2.</_></rects> 468 <tilted>0</tilted></feature> 469 <threshold>0.0338428206741810</threshold> 470 <left_val>-0.6431164741516113</left_val> 471 <right_node>1</right_node></_> 472 <_> 473 <!-- node 1 --> 474 <feature> 475 <rects> 476 <_> 477 0 0 12 9 -1.</_> 478 <_> 479 4 0 4 9 3.</_></rects> 480 <tilted>0</tilted></feature> 481 <threshold>-5.1714561413973570e-04</threshold> 482 <left_val>0.5462036132812500</left_val> 483 <right_val>-0.3998414874076843</right_val></_></_> 484 <_> 485 <!-- tree 4 --> 486 <_> 487 <!-- root node --> 488 <feature> 489 <rects> 490 <_> 491 0 12 6 4 -1.</_> 492 <_> 493 2 12 2 4 3.</_></rects> 494 <tilted>0</tilted></feature> 495 <threshold>-3.4458211157470942e-03</threshold> 496 <left_node>1</left_node> 497 <right_val>-0.4563683867454529</right_val></_> 498 <_> 499 <!-- node 1 --> 500 <feature> 501 <rects> 502 <_> 503 10 18 4 2 -1.</_> 504 <_> 505 11 18 2 2 2.</_></rects> 506 <tilted>0</tilted></feature> 507 <threshold>2.4395729415118694e-03</threshold> 508 <left_val>0.4779818952083588</left_val> 509 <right_val>-0.9124708771705627</right_val></_></_> 510 <_> 511 <!-- tree 5 --> 512 <_> 513 <!-- root node --> 514 <feature> 515 <rects> 516 <_> 517 5 2 3 3 -1.</_> 518 <_> 519 6 2 1 3 3.</_></rects> 520 <tilted>0</tilted></feature> 521 <threshold>2.1385070867836475e-03</threshold> 522 <left_node>1</left_node> 523 <right_val>-0.8361775875091553</right_val></_> 524 <_> 525 <!-- node 1 --> 526 <feature> 527 <rects> 528 <_> 529 12 18 3 2 -1.</_> 530 <_> 531 13 18 1 2 3.</_></rects> 532 <tilted>0</tilted></feature> 533 <threshold>1.8324409611523151e-03</threshold> 534 <left_val>0.3346279859542847</left_val> 535 <right_val>-0.7500854730606079</right_val></_></_> 536 <_> 537 <!-- tree 6 --> 538 <_> 539 <!-- root node --> 540 <feature> 541 <rects> 542 <_> 543 0 0 2 8 -1.</_> 544 <_> 545 1 0 1 8 2.</_></rects> 546 <tilted>0</tilted></feature> 547 <threshold>1.1167610064148903e-03</threshold> 548 <left_node>1</left_node> 549 <right_val>-0.6908379793167114</right_val></_> 550 <_> 551 <!-- node 1 --> 552 <feature> 553 <rects> 554 <_> 555 5 18 4 2 -1.</_> 556 <_> 557 5 19 4 1 2.</_></rects> 558 <tilted>0</tilted></feature> 559 <threshold>9.9106997367925942e-05</threshold> 560 <left_val>-0.3456133008003235</left_val> 561 <right_val>0.4118317961692810</right_val></_></_> 562 <_> 563 <!-- tree 7 --> 564 <_> 565 <!-- root node --> 566 <feature> 567 <rects> 568 <_> 569 14 11 6 6 -1.</_> 570 <_> 571 17 11 3 6 2.</_></rects> 572 <tilted>0</tilted></feature> 573 <threshold>0.0154477702453732</threshold> 574 <left_node>1</left_node> 575 <right_val>0.3698019087314606</right_val></_> 576 <_> 577 <!-- node 1 --> 578 <feature> 579 <rects> 580 <_> 581 6 12 8 4 -1.</_> 582 <_> 583 8 12 4 4 2.</_></rects> 584 <tilted>0</tilted></feature> 585 <threshold>-0.0322449393570423</threshold> 586 <left_val>0.6111283898353577</left_val> 587 <right_val>-0.5568534135818481</right_val></_></_></trees> 588 <stage_threshold>-2.3828399181365967</stage_threshold> 589 <parent>1</parent> 590 <next>-1</next></_> 591 <_> 592 <!-- stage 3 --> 593 <trees> 594 <_> 595 <!-- tree 0 --> 596 <_> 597 <!-- root node --> 598 <feature> 599 <rects> 600 <_> 601 12 6 4 9 -1.</_> 602 <_> 603 9 9 4 3 3.</_></rects> 604 <tilted>1</tilted></feature> 605 <threshold>-0.1225112974643707</threshold> 606 <left_node>1</left_node> 607 <right_val>-0.6702662706375122</right_val></_> 608 <_> 609 <!-- node 1 --> 610 <feature> 611 <rects> 612 <_> 613 11 9 4 7 -1.</_> 614 <_> 615 12 10 2 7 2.</_></rects> 616 <tilted>1</tilted></feature> 617 <threshold>-0.0142306098714471</threshold> 618 <left_val>0.8780239224433899</left_val> 619 <right_val>-0.1878418028354645</right_val></_></_> 620 <_> 621 <!-- tree 1 --> 622 <_> 623 <!-- root node --> 624 <feature> 625 <rects> 626 <_> 627 5 8 4 8 -1.</_> 628 <_> 629 5 8 2 4 2.</_> 630 <_> 631 7 12 2 4 2.</_></rects> 632 <tilted>0</tilted></feature> 633 <threshold>-5.9833219274878502e-03</threshold> 634 <left_node>1</left_node> 635 <right_val>-0.5812284946441650</right_val></_> 636 <_> 637 <!-- node 1 --> 638 <feature> 639 <rects> 640 <_> 641 8 12 11 8 -1.</_> 642 <_> 643 8 16 11 4 2.</_></rects> 644 <tilted>0</tilted></feature> 645 <threshold>0.0770851373672485</threshold> 646 <left_val>-0.5039535164833069</left_val> 647 <right_val>0.6738736033439636</right_val></_></_> 648 <_> 649 <!-- tree 2 --> 650 <_> 651 <!-- root node --> 652 <feature> 653 <rects> 654 <_> 655 3 0 14 6 -1.</_> 656 <_> 657 3 3 14 3 2.</_></rects> 658 <tilted>0</tilted></feature> 659 <threshold>-0.1108618974685669</threshold> 660 <left_val>0.6343203783035278</left_val> 661 <right_node>1</right_node></_> 662 <_> 663 <!-- node 1 --> 664 <feature> 665 <rects> 666 <_> 667 7 1 6 12 -1.</_> 668 <_> 669 7 4 6 6 2.</_></rects> 670 <tilted>0</tilted></feature> 671 <threshold>0.0946047604084015</threshold> 672 <left_val>-0.4972639083862305</left_val> 673 <right_val>0.3878743946552277</right_val></_></_> 674 <_> 675 <!-- tree 3 --> 676 <_> 677 <!-- root node --> 678 <feature> 679 <rects> 680 <_> 681 0 18 7 2 -1.</_> 682 <_> 683 0 19 7 1 2.</_></rects> 684 <tilted>0</tilted></feature> 685 <threshold>1.7696130089461803e-04</threshold> 686 <left_val>-0.6393880248069763</left_val> 687 <right_node>1</right_node></_> 688 <_> 689 <!-- node 1 --> 690 <feature> 691 <rects> 692 <_> 693 16 12 4 3 -1.</_> 694 <_> 695 18 12 2 3 2.</_></rects> 696 <tilted>0</tilted></feature> 697 <threshold>2.0120320841670036e-03</threshold> 698 <left_val>-0.3531391024589539</left_val> 699 <right_val>0.5153843760490417</right_val></_></_> 700 <_> 701 <!-- tree 4 --> 702 <_> 703 <!-- root node --> 704 <feature> 705 <rects> 706 <_> 707 0 0 4 8 -1.</_> 708 <_> 709 2 0 2 8 2.</_></rects> 710 <tilted>0</tilted></feature> 711 <threshold>-1.6102839726954699e-03</threshold> 712 <left_node>1</left_node> 713 <right_val>-0.5191590189933777</right_val></_> 714 <_> 715 <!-- node 1 --> 716 <feature> 717 <rects> 718 <_> 719 3 0 4 1 -1.</_> 720 <_> 721 5 0 2 1 2.</_></rects> 722 <tilted>0</tilted></feature> 723 <threshold>1.6666069859638810e-03</threshold> 724 <left_val>0.4047819077968597</left_val> 725 <right_val>-0.6949635744094849</right_val></_></_> 726 <_> 727 <!-- tree 5 --> 728 <_> 729 <!-- root node --> 730 <feature> 731 <rects> 732 <_> 733 3 13 2 2 -1.</_> 734 <_> 735 3 13 2 1 2.</_></rects> 736 <tilted>1</tilted></feature> 737 <threshold>-7.1480998303741217e-04</threshold> 738 <left_node>1</left_node> 739 <right_val>-0.4894518852233887</right_val></_> 740 <_> 741 <!-- node 1 --> 742 <feature> 743 <rects> 744 <_> 745 0 16 19 4 -1.</_> 746 <_> 747 0 18 19 2 2.</_></rects> 748 <tilted>0</tilted></feature> 749 <threshold>-4.7647571191191673e-03</threshold> 750 <left_val>-0.5003775954246521</left_val> 751 <right_val>0.4079605937004089</right_val></_></_> 752 <_> 753 <!-- tree 6 --> 754 <_> 755 <!-- root node --> 756 <feature> 757 <rects> 758 <_> 759 7 13 8 2 -1.</_> 760 <_> 761 11 13 4 2 2.</_></rects> 762 <tilted>0</tilted></feature> 763 <threshold>7.8659597784280777e-03</threshold> 764 <left_val>-0.3363642990589142</left_val> 765 <right_node>1</right_node></_> 766 <_> 767 <!-- node 1 --> 768 <feature> 769 <rects> 770 <_> 771 8 8 4 1 -1.</_> 772 <_> 773 9 8 2 1 2.</_></rects> 774 <tilted>0</tilted></feature> 775 <threshold>-1.2938310392200947e-03</threshold> 776 <left_val>-0.6762138009071350</left_val> 777 <right_val>0.4701024889945984</right_val></_></_> 778 <_> 779 <!-- tree 7 --> 780 <_> 781 <!-- root node --> 782 <feature> 783 <rects> 784 <_> 785 0 1 1 4 -1.</_> 786 <_> 787 0 3 1 2 2.</_></rects> 788 <tilted>0</tilted></feature> 789 <threshold>-3.6533139063976705e-04</threshold> 790 <left_node>1</left_node> 791 <right_val>-0.4707160890102386</right_val></_> 792 <_> 793 <!-- node 1 --> 794 <feature> 795 <rects> 796 <_> 797 0 0 1 4 -1.</_> 798 <_> 799 0 1 1 2 2.</_></rects> 800 <tilted>0</tilted></feature> 801 <threshold>2.0565679296851158e-03</threshold> 802 <left_val>0.4132341146469116</left_val> 803 <right_val>-0.5552641749382019</right_val></_></_> 804 <_> 805 <!-- tree 8 --> 806 <_> 807 <!-- root node --> 808 <feature> 809 <rects> 810 <_> 811 15 15 5 2 -1.</_> 812 <_> 813 15 16 5 1 2.</_></rects> 814 <tilted>0</tilted></feature> 815 <threshold>7.8385717642959207e-05</threshold> 816 <left_val>-0.5152115821838379</left_val> 817 <right_node>1</right_node></_> 818 <_> 819 <!-- node 1 --> 820 <feature> 821 <rects> 822 <_> 823 7 18 3 2 -1.</_> 824 <_> 825 8 18 1 2 3.</_></rects> 826 <tilted>0</tilted></feature> 827 <threshold>1.7511800397187471e-03</threshold> 828 <left_val>0.3341724872589111</left_val> 829 <right_val>-0.7955815792083740</right_val></_></_></trees> 830 <stage_threshold>-2.1312201023101807</stage_threshold> 831 <parent>2</parent> 832 <next>-1</next></_> 833 <_> 834 <!-- stage 4 --> 835 <trees> 836 <_> 837 <!-- tree 0 --> 838 <_> 839 <!-- root node --> 840 <feature> 841 <rects> 842 <_> 843 13 7 3 8 -1.</_> 844 <_> 845 11 9 3 4 2.</_></rects> 846 <tilted>1</tilted></feature> 847 <threshold>-0.0646952390670776</threshold> 848 <left_node>1</left_node> 849 <right_val>-0.6132640242576599</right_val></_> 850 <_> 851 <!-- node 1 --> 852 <feature> 853 <rects> 854 <_> 855 15 12 2 8 -1.</_> 856 <_> 857 15 16 2 4 2.</_></rects> 858 <tilted>0</tilted></feature> 859 <threshold>9.5212170854210854e-03</threshold> 860 <left_val>-0.5483155846595764</left_val> 861 <right_val>0.7865244746208191</right_val></_></_> 862 <_> 863 <!-- tree 1 --> 864 <_> 865 <!-- root node --> 866 <feature> 867 <rects> 868 <_> 869 2 0 10 6 -1.</_> 870 <_> 871 2 3 10 3 2.</_></rects> 872 <tilted>0</tilted></feature> 873 <threshold>-0.0981097668409348</threshold> 874 <left_val>0.6911330819129944</left_val> 875 <right_node>1</right_node></_> 876 <_> 877 <!-- node 1 --> 878 <feature> 879 <rects> 880 <_> 881 0 5 18 15 -1.</_> 882 <_> 883 6 10 6 5 9.</_></rects> 884 <tilted>0</tilted></feature> 885 <threshold>-0.8593845963478088</threshold> 886 <left_val>0.4536468088626862</left_val> 887 <right_val>-0.5002614855766296</right_val></_></_> 888 <_> 889 <!-- tree 2 --> 890 <_> 891 <!-- root node --> 892 <feature> 893 <rects> 894 <_> 895 3 11 12 6 -1.</_> 896 <_> 897 7 13 4 2 9.</_></rects> 898 <tilted>0</tilted></feature> 899 <threshold>-0.0898361727595329</threshold> 900 <left_node>1</left_node> 901 <right_val>-0.5292878150939941</right_val></_> 902 <_> 903 <!-- node 1 --> 904 <feature> 905 <rects> 906 <_> 907 16 12 4 7 -1.</_> 908 <_> 909 18 12 2 7 2.</_></rects> 910 <tilted>0</tilted></feature> 911 <threshold>2.6945930439978838e-03</threshold> 912 <left_val>-0.3819977939128876</left_val> 913 <right_val>0.5782129764556885</right_val></_></_> 914 <_> 915 <!-- tree 3 --> 916 <_> 917 <!-- root node --> 918 <feature> 919 <rects> 920 <_> 921 8 18 4 2 -1.</_> 922 <_> 923 9 18 2 2 2.</_></rects> 924 <tilted>0</tilted></feature> 925 <threshold>2.5973599404096603e-03</threshold> 926 <left_node>1</left_node> 927 <right_val>-0.9192836880683899</right_val></_> 928 <_> 929 <!-- node 1 --> 930 <feature> 931 <rects> 932 <_> 933 8 17 4 3 -1.</_> 934 <_> 935 9 17 2 3 2.</_></rects> 936 <tilted>0</tilted></feature> 937 <threshold>-3.0058110132813454e-03</threshold> 938 <left_val>-0.8021379709243774</left_val> 939 <right_val>0.2925927937030792</right_val></_></_> 940 <_> 941 <!-- tree 4 --> 942 <_> 943 <!-- root node --> 944 <feature> 945 <rects> 946 <_> 947 0 12 6 6 -1.</_> 948 <_> 949 2 12 2 6 3.</_></rects> 950 <tilted>0</tilted></feature> 951 <threshold>-4.5496290549635887e-03</threshold> 952 <left_node>1</left_node> 953 <right_val>-0.4367895126342773</right_val></_> 954 <_> 955 <!-- node 1 --> 956 <feature> 957 <rects> 958 <_> 959 4 16 4 4 -1.</_> 960 <_> 961 5 16 2 4 2.</_></rects> 962 <tilted>0</tilted></feature> 963 <threshold>4.7376728616654873e-03</threshold> 964 <left_val>0.4101088047027588</left_val> 965 <right_val>-0.7269281148910522</right_val></_></_> 966 <_> 967 <!-- tree 5 --> 968 <_> 969 <!-- root node --> 970 <feature> 971 <rects> 972 <_> 973 3 0 4 6 -1.</_> 974 <_> 975 4 0 2 6 2.</_></rects> 976 <tilted>0</tilted></feature> 977 <threshold>4.6190437860786915e-03</threshold> 978 <left_node>1</left_node> 979 <right_val>-0.8489515185356140</right_val></_> 980 <_> 981 <!-- node 1 --> 982 <feature> 983 <rects> 984 <_> 985 1 0 4 7 -1.</_> 986 <_> 987 2 0 2 7 2.</_></rects> 988 <tilted>0</tilted></feature> 989 <threshold>4.5377281494438648e-03</threshold> 990 <left_val>0.3012467920780182</left_val> 991 <right_val>-0.7030177116394043</right_val></_></_> 992 <_> 993 <!-- tree 6 --> 994 <_> 995 <!-- root node --> 996 <feature> 997 <rects> 998 <_> 999 2 0 8 3 -1.</_> 1000 <_> 1001 6 0 4 3 2.</_></rects> 1002 <tilted>0</tilted></feature> 1003 <threshold>-2.4952790699899197e-03</threshold> 1004 <left_node>1</left_node> 1005 <right_val>-0.4678474962711334</right_val></_> 1006 <_> 1007 <!-- node 1 --> 1008 <feature> 1009 <rects> 1010 <_> 1011 8 3 4 6 -1.</_> 1012 <_> 1013 9 3 2 6 2.</_></rects> 1014 <tilted>0</tilted></feature> 1015 <threshold>-5.1753767766058445e-03</threshold> 1016 <left_val>-0.7453035116195679</left_val> 1017 <right_val>0.4001182019710541</right_val></_></_> 1018 <_> 1019 <!-- tree 7 --> 1020 <_> 1021 <!-- root node --> 1022 <feature> 1023 <rects> 1024 <_> 1025 10 10 3 2 -1.</_> 1026 <_> 1027 10 11 3 1 2.</_></rects> 1028 <tilted>0</tilted></feature> 1029 <threshold>-5.2049742080271244e-03</threshold> 1030 <left_val>0.4866926968097687</left_val> 1031 <right_node>1</right_node></_> 1032 <_> 1033 <!-- node 1 --> 1034 <feature> 1035 <rects> 1036 <_> 1037 4 3 7 6 -1.</_> 1038 <_> 1039 4 6 7 3 2.</_></rects> 1040 <tilted>0</tilted></feature> 1041 <threshold>-0.0878920033574104</threshold> 1042 <left_val>0.8349394798278809</left_val> 1043 <right_val>-0.3382771909236908</right_val></_></_> 1044 <_> 1045 <!-- tree 8 --> 1046 <_> 1047 <!-- root node --> 1048 <feature> 1049 <rects> 1050 <_> 1051 10 18 10 2 -1.</_> 1052 <_> 1053 15 18 5 2 2.</_></rects> 1054 <tilted>0</tilted></feature> 1055 <threshold>6.9997250102460384e-03</threshold> 1056 <left_val>-0.2903988957405090</left_val> 1057 <right_node>1</right_node></_> 1058 <_> 1059 <!-- node 1 --> 1060 <feature> 1061 <rects> 1062 <_> 1063 9 13 6 1 -1.</_> 1064 <_> 1065 9 13 3 1 2.</_></rects> 1066 <tilted>1</tilted></feature> 1067 <threshold>-9.0990252792835236e-03</threshold> 1068 <left_val>0.6231582164764404</left_val> 1069 <right_val>-0.3542473018169403</right_val></_></_></trees> 1070 <stage_threshold>-2.0176210403442383</stage_threshold> 1071 <parent>3</parent> 1072 <next>-1</next></_> 1073 <_> 1074 <!-- stage 5 --> 1075 <trees> 1076 <_> 1077 <!-- tree 0 --> 1078 <_> 1079 <!-- root node --> 1080 <feature> 1081 <rects> 1082 <_> 1083 10 8 4 6 -1.</_> 1084 <_> 1085 8 10 4 2 3.</_></rects> 1086 <tilted>1</tilted></feature> 1087 <threshold>-0.0557021014392376</threshold> 1088 <left_node>1</left_node> 1089 <right_val>-0.6984158158302307</right_val></_> 1090 <_> 1091 <!-- node 1 --> 1092 <feature> 1093 <rects> 1094 <_> 1095 14 12 6 8 -1.</_> 1096 <_> 1097 14 16 6 4 2.</_></rects> 1098 <tilted>0</tilted></feature> 1099 <threshold>0.0340332910418510</threshold> 1100 <left_val>-0.3950918912887573</left_val> 1101 <right_val>0.8031312823295593</right_val></_></_> 1102 <_> 1103 <!-- tree 1 --> 1104 <_> 1105 <!-- root node --> 1106 <feature> 1107 <rects> 1108 <_> 1109 10 8 6 4 -1.</_> 1110 <_> 1111 12 10 2 4 3.</_></rects> 1112 <tilted>1</tilted></feature> 1113 <threshold>-0.0461990609765053</threshold> 1114 <left_node>1</left_node> 1115 <right_val>-0.4886038005352020</right_val></_> 1116 <_> 1117 <!-- node 1 --> 1118 <feature> 1119 <rects> 1120 <_> 1121 0 12 6 3 -1.</_> 1122 <_> 1123 2 12 2 3 3.</_></rects> 1124 <tilted>0</tilted></feature> 1125 <threshold>-4.8061669804155827e-03</threshold> 1126 <left_val>0.8077561259269714</left_val> 1127 <right_val>-0.0744908228516579</right_val></_></_> 1128 <_> 1129 <!-- tree 2 --> 1130 <_> 1131 <!-- root node --> 1132 <feature> 1133 <rects> 1134 <_> 1135 18 11 2 6 -1.</_> 1136 <_> 1137 19 11 1 6 2.</_></rects> 1138 <tilted>0</tilted></feature> 1139 <threshold>1.8170489929616451e-03</threshold> 1140 <left_val>-0.3804352879524231</left_val> 1141 <right_node>1</right_node></_> 1142 <_> 1143 <!-- node 1 --> 1144 <feature> 1145 <rects> 1146 <_> 1147 0 0 1 10 -1.</_> 1148 <_> 1149 0 5 1 5 2.</_></rects> 1150 <tilted>0</tilted></feature> 1151 <threshold>-3.6162370815873146e-03</threshold> 1152 <left_val>0.6045172214508057</left_val> 1153 <right_val>-0.2258224040269852</right_val></_></_> 1154 <_> 1155 <!-- tree 3 --> 1156 <_> 1157 <!-- root node --> 1158 <feature> 1159 <rects> 1160 <_> 1161 5 4 8 12 -1.</_> 1162 <_> 1163 7 4 4 12 2.</_></rects> 1164 <tilted>0</tilted></feature> 1165 <threshold>-0.0157069507986307</threshold> 1166 <left_node>1</left_node> 1167 <right_val>-0.3757799863815308</right_val></_> 1168 <_> 1169 <!-- node 1 --> 1170 <feature> 1171 <rects> 1172 <_> 1173 1 3 9 8 -1.</_> 1174 <_> 1175 4 3 3 8 3.</_></rects> 1176 <tilted>0</tilted></feature> 1177 <threshold>4.3929950334131718e-03</threshold> 1178 <left_val>0.5421422123908997</left_val> 1179 <right_val>-0.3738824129104614</right_val></_></_> 1180 <_> 1181 <!-- tree 4 --> 1182 <_> 1183 <!-- root node --> 1184 <feature> 1185 <rects> 1186 <_> 1187 0 0 2 2 -1.</_> 1188 <_> 1189 0 1 2 1 2.</_></rects> 1190 <tilted>0</tilted></feature> 1191 <threshold>-1.0047219984699041e-04</threshold> 1192 <left_node>1</left_node> 1193 <right_val>-0.4743340909481049</right_val></_> 1194 <_> 1195 <!-- node 1 --> 1196 <feature> 1197 <rects> 1198 <_> 1199 12 8 6 12 -1.</_> 1200 <_> 1201 14 12 2 4 9.</_></rects> 1202 <tilted>0</tilted></feature> 1203 <threshold>-0.0864751189947128</threshold> 1204 <left_val>0.5018631815910339</left_val> 1205 <right_val>-0.2113623023033142</right_val></_></_> 1206 <_> 1207 <!-- tree 5 --> 1208 <_> 1209 <!-- root node --> 1210 <feature> 1211 <rects> 1212 <_> 1213 4 2 14 6 -1.</_> 1214 <_> 1215 4 4 14 2 3.</_></rects> 1216 <tilted>0</tilted></feature> 1217 <threshold>-0.0779607668519020</threshold> 1218 <left_val>0.5733734965324402</left_val> 1219 <right_node>1</right_node></_> 1220 <_> 1221 <!-- node 1 --> 1222 <feature> 1223 <rects> 1224 <_> 1225 3 0 12 8 -1.</_> 1226 <_> 1227 3 4 12 4 2.</_></rects> 1228 <tilted>0</tilted></feature> 1229 <threshold>0.0985612869262695</threshold> 1230 <left_val>-0.3251555860042572</left_val> 1231 <right_val>0.5303598046302795</right_val></_></_> 1232 <_> 1233 <!-- tree 6 --> 1234 <_> 1235 <!-- root node --> 1236 <feature> 1237 <rects> 1238 <_> 1239 0 0 17 20 -1.</_> 1240 <_> 1241 0 5 17 10 2.</_></rects> 1242 <tilted>0</tilted></feature> 1243 <threshold>-0.5435916781425476</threshold> 1244 <left_val>0.5946429967880249</left_val> 1245 <right_node>1</right_node></_> 1246 <_> 1247 <!-- node 1 --> 1248 <feature> 1249 <rects> 1250 <_> 1251 4 0 13 6 -1.</_> 1252 <_> 1253 4 2 13 2 3.</_></rects> 1254 <tilted>0</tilted></feature> 1255 <threshold>-0.0441776998341084</threshold> 1256 <left_val>0.2967107892036438</left_val> 1257 <right_val>-0.3847483098506927</right_val></_></_> 1258 <_> 1259 <!-- tree 7 --> 1260 <_> 1261 <!-- root node --> 1262 <feature> 1263 <rects> 1264 <_> 1265 2 10 3 6 -1.</_> 1266 <_> 1267 3 10 1 6 3.</_></rects> 1268 <tilted>0</tilted></feature> 1269 <threshold>-8.8016409426927567e-04</threshold> 1270 <left_node>1</left_node> 1271 <right_val>-0.3200058937072754</right_val></_> 1272 <_> 1273 <!-- node 1 --> 1274 <feature> 1275 <rects> 1276 <_> 1277 4 14 6 4 -1.</_> 1278 <_> 1279 4 14 3 2 2.</_> 1280 <_> 1281 7 16 3 2 2.</_></rects> 1282 <tilted>0</tilted></feature> 1283 <threshold>2.6359390467405319e-03</threshold> 1284 <left_val>-0.1758614033460617</left_val> 1285 <right_val>0.4836035072803497</right_val></_></_> 1286 <_> 1287 <!-- tree 8 --> 1288 <_> 1289 <!-- root node --> 1290 <feature> 1291 <rects> 1292 <_> 1293 8 1 6 8 -1.</_> 1294 <_> 1295 10 1 2 8 3.</_></rects> 1296 <tilted>0</tilted></feature> 1297 <threshold>-0.0142036899924278</threshold> 1298 <left_val>-0.7788208723068237</left_val> 1299 <right_node>1</right_node></_> 1300 <_> 1301 <!-- node 1 --> 1302 <feature> 1303 <rects> 1304 <_> 1305 0 1 2 6 -1.</_> 1306 <_> 1307 1 1 1 6 2.</_></rects> 1308 <tilted>0</tilted></feature> 1309 <threshold>-7.3902818257920444e-05</threshold> 1310 <left_val>0.3061941862106323</left_val> 1311 <right_val>-0.3319604992866516</right_val></_></_> 1312 <_> 1313 <!-- tree 9 --> 1314 <_> 1315 <!-- root node --> 1316 <feature> 1317 <rects> 1318 <_> 1319 8 12 1 3 -1.</_> 1320 <_> 1321 7 13 1 1 3.</_></rects> 1322 <tilted>1</tilted></feature> 1323 <threshold>4.6157240867614746e-03</threshold> 1324 <left_node>1</left_node> 1325 <right_val>0.4968977868556976</right_val></_> 1326 <_> 1327 <!-- node 1 --> 1328 <feature> 1329 <rects> 1330 <_> 1331 5 4 8 4 -1.</_> 1332 <_> 1333 5 4 8 2 2.</_></rects> 1334 <tilted>1</tilted></feature> 1335 <threshold>0.0111523102968931</threshold> 1336 <left_val>-0.5343589186668396</left_val> 1337 <right_val>0.0972294434905052</right_val></_></_> 1338 <_> 1339 <!-- tree 10 --> 1340 <_> 1341 <!-- root node --> 1342 <feature> 1343 <rects> 1344 <_> 1345 0 2 4 5 -1.</_> 1346 <_> 1347 1 2 2 5 2.</_></rects> 1348 <tilted>0</tilted></feature> 1349 <threshold>-6.0547702014446259e-03</threshold> 1350 <left_val>-0.8381121754646301</left_val> 1351 <right_node>1</right_node></_> 1352 <_> 1353 <!-- node 1 --> 1354 <feature> 1355 <rects> 1356 <_> 1357 5 12 3 2 -1.</_> 1358 <_> 1359 6 12 1 2 3.</_></rects> 1360 <tilted>0</tilted></feature> 1361 <threshold>-2.1118740551173687e-03</threshold> 1362 <left_val>0.6361703276634216</left_val> 1363 <right_val>-0.0482991896569729</right_val></_></_></trees> 1364 <stage_threshold>-2.2212049961090088</stage_threshold> 1365 <parent>4</parent> 1366 <next>-1</next></_> 1367 <_> 1368 <!-- stage 6 --> 1369 <trees> 1370 <_> 1371 <!-- tree 0 --> 1372 <_> 1373 <!-- root node --> 1374 <feature> 1375 <rects> 1376 <_> 1377 5 13 8 2 -1.</_> 1378 <_> 1379 7 13 4 2 2.</_></rects> 1380 <tilted>0</tilted></feature> 1381 <threshold>-0.0129568297415972</threshold> 1382 <left_node>1</left_node> 1383 <right_val>-0.6487473249435425</right_val></_> 1384 <_> 1385 <!-- node 1 --> 1386 <feature> 1387 <rects> 1388 <_> 1389 11 9 9 8 -1.</_> 1390 <_> 1391 11 11 9 4 2.</_></rects> 1392 <tilted>0</tilted></feature> 1393 <threshold>-0.0271410197019577</threshold> 1394 <left_val>0.7629305720329285</left_val> 1395 <right_val>-0.3394787013530731</right_val></_></_> 1396 <_> 1397 <!-- tree 1 --> 1398 <_> 1399 <!-- root node --> 1400 <feature> 1401 <rects> 1402 <_> 1403 16 12 4 3 -1.</_> 1404 <_> 1405 18 12 2 3 2.</_></rects> 1406 <tilted>0</tilted></feature> 1407 <threshold>4.5119998976588249e-03</threshold> 1408 <left_val>-0.5005983710289001</left_val> 1409 <right_node>1</right_node></_> 1410 <_> 1411 <!-- node 1 --> 1412 <feature> 1413 <rects> 1414 <_> 1415 16 14 4 6 -1.</_> 1416 <_> 1417 16 17 4 3 2.</_></rects> 1418 <tilted>0</tilted></feature> 1419 <threshold>0.0125166904181242</threshold> 1420 <left_val>-0.3687332868576050</left_val> 1421 <right_val>0.5988863110542297</right_val></_></_> 1422 <_> 1423 <!-- tree 2 --> 1424 <_> 1425 <!-- root node --> 1426 <feature> 1427 <rects> 1428 <_> 1429 0 12 6 3 -1.</_> 1430 <_> 1431 2 12 2 3 3.</_></rects> 1432 <tilted>0</tilted></feature> 1433 <threshold>-6.0557941906154156e-03</threshold> 1434 <left_node>1</left_node> 1435 <right_val>-0.3894093036651611</right_val></_> 1436 <_> 1437 <!-- node 1 --> 1438 <feature> 1439 <rects> 1440 <_> 1441 8 6 7 6 -1.</_> 1442 <_> 1443 6 8 7 2 3.</_></rects> 1444 <tilted>1</tilted></feature> 1445 <threshold>-0.0469237491488457</threshold> 1446 <left_val>0.6326891183853149</left_val> 1447 <right_val>-0.2627002894878387</right_val></_></_> 1448 <_> 1449 <!-- tree 3 --> 1450 <_> 1451 <!-- root node --> 1452 <feature> 1453 <rects> 1454 <_> 1455 0 0 1 6 -1.</_> 1456 <_> 1457 0 3 1 3 2.</_></rects> 1458 <tilted>0</tilted></feature> 1459 <threshold>-2.4018269032239914e-03</threshold> 1460 <left_node>1</left_node> 1461 <right_val>-0.5051792860031128</right_val></_> 1462 <_> 1463 <!-- node 1 --> 1464 <feature> 1465 <rects> 1466 <_> 1467 0 2 15 5 -1.</_> 1468 <_> 1469 5 2 5 5 3.</_></rects> 1470 <tilted>0</tilted></feature> 1471 <threshold>-0.0159360896795988</threshold> 1472 <left_val>0.6552600264549255</left_val> 1473 <right_val>-0.1730810999870300</right_val></_></_> 1474 <_> 1475 <!-- tree 4 --> 1476 <_> 1477 <!-- root node --> 1478 <feature> 1479 <rects> 1480 <_> 1481 8 11 10 3 -1.</_> 1482 <_> 1483 13 11 5 3 2.</_></rects> 1484 <tilted>0</tilted></feature> 1485 <threshold>0.0140002900734544</threshold> 1486 <left_val>-0.4165323078632355</left_val> 1487 <right_node>1</right_node></_> 1488 <_> 1489 <!-- node 1 --> 1490 <feature> 1491 <rects> 1492 <_> 1493 8 11 2 8 -1.</_> 1494 <_> 1495 8 15 2 4 2.</_></rects> 1496 <tilted>0</tilted></feature> 1497 <threshold>0.0132027799263597</threshold> 1498 <left_val>-0.4912196993827820</left_val> 1499 <right_val>0.3739793896675110</right_val></_></_> 1500 <_> 1501 <!-- tree 5 --> 1502 <_> 1503 <!-- root node --> 1504 <feature> 1505 <rects> 1506 <_> 1507 0 1 2 6 -1.</_> 1508 <_> 1509 1 1 1 6 2.</_></rects> 1510 <tilted>0</tilted></feature> 1511 <threshold>-2.7658580802381039e-04</threshold> 1512 <left_node>1</left_node> 1513 <right_val>-0.4538286924362183</right_val></_> 1514 <_> 1515 <!-- node 1 --> 1516 <feature> 1517 <rects> 1518 <_> 1519 0 1 4 4 -1.</_> 1520 <_> 1521 1 1 2 4 2.</_></rects> 1522 <tilted>0</tilted></feature> 1523 <threshold>-4.8634149134159088e-03</threshold> 1524 <left_val>-0.5979688167572021</left_val> 1525 <right_val>0.3121772110462189</right_val></_></_> 1526 <_> 1527 <!-- tree 6 --> 1528 <_> 1529 <!-- root node --> 1530 <feature> 1531 <rects> 1532 <_> 1533 5 16 3 1 -1.</_> 1534 <_> 1535 6 17 1 1 3.</_></rects> 1536 <tilted>1</tilted></feature> 1537 <threshold>2.7654920704662800e-03</threshold> 1538 <left_node>1</left_node> 1539 <right_val>-0.7647656798362732</right_val></_> 1540 <_> 1541 <!-- node 1 --> 1542 <feature> 1543 <rects> 1544 <_> 1545 5 0 7 15 -1.</_> 1546 <_> 1547 5 5 7 5 3.</_></rects> 1548 <tilted>0</tilted></feature> 1549 <threshold>0.2553476989269257</threshold> 1550 <left_val>-0.0342672206461430</left_val> 1551 <right_val>0.7078657746315002</right_val></_></_> 1552 <_> 1553 <!-- tree 7 --> 1554 <_> 1555 <!-- root node --> 1556 <feature> 1557 <rects> 1558 <_> 1559 17 0 3 2 -1.</_> 1560 <_> 1561 18 1 1 2 3.</_></rects> 1562 <tilted>1</tilted></feature> 1563 <threshold>4.6812961809337139e-03</threshold> 1564 <left_node>1</left_node> 1565 <right_val>-0.7879086136817932</right_val></_> 1566 <_> 1567 <!-- node 1 --> 1568 <feature> 1569 <rects> 1570 <_> 1571 4 18 6 2 -1.</_> 1572 <_> 1573 6 18 2 2 3.</_></rects> 1574 <tilted>0</tilted></feature> 1575 <threshold>6.5162130631506443e-03</threshold> 1576 <left_val>0.1887757927179337</left_val> 1577 <right_val>-0.7913225889205933</right_val></_></_> 1578 <_> 1579 <!-- tree 8 --> 1580 <_> 1581 <!-- root node --> 1582 <feature> 1583 <rects> 1584 <_> 1585 7 1 4 5 -1.</_> 1586 <_> 1587 7 1 2 5 2.</_></rects> 1588 <tilted>1</tilted></feature> 1589 <threshold>0.0573253296315670</threshold> 1590 <left_node>1</left_node> 1591 <right_val>0.6234918832778931</right_val></_> 1592 <_> 1593 <!-- node 1 --> 1594 <feature> 1595 <rects> 1596 <_> 1597 14 0 6 8 -1.</_> 1598 <_> 1599 14 0 3 4 2.</_> 1600 <_> 1601 17 4 3 4 2.</_></rects> 1602 <tilted>0</tilted></feature> 1603 <threshold>-0.0127183301374316</threshold> 1604 <left_val>0.3086060881614685</left_val> 1605 <right_val>-0.3278433084487915</right_val></_></_> 1606 <_> 1607 <!-- tree 9 --> 1608 <_> 1609 <!-- root node --> 1610 <feature> 1611 <rects> 1612 <_> 1613 5 2 4 18 -1.</_> 1614 <_> 1615 5 2 2 9 2.</_> 1616 <_> 1617 7 11 2 9 2.</_></rects> 1618 <tilted>0</tilted></feature> 1619 <threshold>-6.7374261561781168e-04</threshold> 1620 <left_node>1</left_node> 1621 <right_val>-0.4545154869556427</right_val></_> 1622 <_> 1623 <!-- node 1 --> 1624 <feature> 1625 <rects> 1626 <_> 1627 7 18 6 2 -1.</_> 1628 <_> 1629 9 18 2 2 3.</_></rects> 1630 <tilted>0</tilted></feature> 1631 <threshold>5.6564649567008018e-03</threshold> 1632 <left_val>0.2743133902549744</left_val> 1633 <right_val>-0.7844793796539307</right_val></_></_> 1634 <_> 1635 <!-- tree 10 --> 1636 <_> 1637 <!-- root node --> 1638 <feature> 1639 <rects> 1640 <_> 1641 10 8 2 3 -1.</_> 1642 <_> 1643 10 9 2 1 3.</_></rects> 1644 <tilted>0</tilted></feature> 1645 <threshold>3.1134090386331081e-03</threshold> 1646 <left_node>1</left_node> 1647 <right_val>0.3973877131938934</right_val></_> 1648 <_> 1649 <!-- node 1 --> 1650 <feature> 1651 <rects> 1652 <_> 1653 10 10 4 2 -1.</_> 1654 <_> 1655 10 10 2 1 2.</_> 1656 <_> 1657 12 11 2 1 2.</_></rects> 1658 <tilted>0</tilted></feature> 1659 <threshold>2.4249779526144266e-03</threshold> 1660 <left_val>-0.3519827127456665</left_val> 1661 <right_val>0.3049009144306183</right_val></_></_> 1662 <_> 1663 <!-- tree 11 --> 1664 <_> 1665 <!-- root node --> 1666 <feature> 1667 <rects> 1668 <_> 1669 4 2 12 6 -1.</_> 1670 <_> 1671 4 4 12 2 3.</_></rects> 1672 <tilted>0</tilted></feature> 1673 <threshold>-0.0556414611637592</threshold> 1674 <left_val>0.4557549059391022</left_val> 1675 <right_node>1</right_node></_> 1676 <_> 1677 <!-- node 1 --> 1678 <feature> 1679 <rects> 1680 <_> 1681 5 1 12 8 -1.</_> 1682 <_> 1683 5 3 12 4 2.</_></rects> 1684 <tilted>0</tilted></feature> 1685 <threshold>0.0435481294989586</threshold> 1686 <left_val>-0.3337092995643616</left_val> 1687 <right_val>0.2950142920017242</right_val></_></_> 1688 <_> 1689 <!-- tree 12 --> 1690 <_> 1691 <!-- root node --> 1692 <feature> 1693 <rects> 1694 <_> 1695 2 18 4 2 -1.</_> 1696 <_> 1697 2 19 4 1 2.</_></rects> 1698 <tilted>0</tilted></feature> 1699 <threshold>8.0783379962667823e-04</threshold> 1700 <left_node>1</left_node> 1701 <right_val>0.2246004045009613</right_val></_> 1702 <_> 1703 <!-- node 1 --> 1704 <feature> 1705 <rects> 1706 <_> 1707 0 18 8 1 -1.</_> 1708 <_> 1709 4 18 4 1 2.</_></rects> 1710 <tilted>0</tilted></feature> 1711 <threshold>1.8713270546868443e-03</threshold> 1712 <left_val>-0.6604840755462646</left_val> 1713 <right_val>0.1503167003393173</right_val></_></_></trees> 1714 <stage_threshold>-2.1328830718994141</stage_threshold> 1715 <parent>5</parent> 1716 <next>-1</next></_> 1717 <_> 1718 <!-- stage 7 --> 1719 <trees> 1720 <_> 1721 <!-- tree 0 --> 1722 <_> 1723 <!-- root node --> 1724 <feature> 1725 <rects> 1726 <_> 1727 4 7 12 12 -1.</_> 1728 <_> 1729 8 11 4 4 9.</_></rects> 1730 <tilted>0</tilted></feature> 1731 <threshold>-0.4351662993431091</threshold> 1732 <left_node>1</left_node> 1733 <right_val>-0.4995929002761841</right_val></_> 1734 <_> 1735 <!-- node 1 --> 1736 <feature> 1737 <rects> 1738 <_> 1739 16 11 4 6 -1.</_> 1740 <_> 1741 18 11 2 6 2.</_></rects> 1742 <tilted>0</tilted></feature> 1743 <threshold>6.2595037743449211e-03</threshold> 1744 <left_val>-0.2363958954811096</left_val> 1745 <right_val>0.7997537851333618</right_val></_></_> 1746 <_> 1747 <!-- tree 1 --> 1748 <_> 1749 <!-- root node --> 1750 <feature> 1751 <rects> 1752 <_> 1753 6 13 6 7 -1.</_> 1754 <_> 1755 8 13 2 7 3.</_></rects> 1756 <tilted>0</tilted></feature> 1757 <threshold>-6.6518150269985199e-03</threshold> 1758 <left_node>1</left_node> 1759 <right_val>-0.5475280880928040</right_val></_> 1760 <_> 1761 <!-- node 1 --> 1762 <feature> 1763 <rects> 1764 <_> 1765 0 0 1 8 -1.</_> 1766 <_> 1767 0 4 1 4 2.</_></rects> 1768 <tilted>0</tilted></feature> 1769 <threshold>-5.7092090137302876e-03</threshold> 1770 <left_val>0.6427332758903503</left_val> 1771 <right_val>-0.2151180952787399</right_val></_></_> 1772 <_> 1773 <!-- tree 2 --> 1774 <_> 1775 <!-- root node --> 1776 <feature> 1777 <rects> 1778 <_> 1779 15 14 5 6 -1.</_> 1780 <_> 1781 15 17 5 3 2.</_></rects> 1782 <tilted>0</tilted></feature> 1783 <threshold>0.0194501802325249</threshold> 1784 <left_val>-0.5360500216484070</left_val> 1785 <right_node>1</right_node></_> 1786 <_> 1787 <!-- node 1 --> 1788 <feature> 1789 <rects> 1790 <_> 1791 0 7 6 9 -1.</_> 1792 <_> 1793 2 7 2 9 3.</_></rects> 1794 <tilted>0</tilted></feature> 1795 <threshold>-5.4476498626172543e-03</threshold> 1796 <left_val>0.5579450130462646</left_val> 1797 <right_val>-0.2147496044635773</right_val></_></_> 1798 <_> 1799 <!-- tree 3 --> 1800 <_> 1801 <!-- root node --> 1802 <feature> 1803 <rects> 1804 <_> 1805 15 11 4 1 -1.</_> 1806 <_> 1807 16 12 2 1 2.</_></rects> 1808 <tilted>1</tilted></feature> 1809 <threshold>-1.6347589553333819e-04</threshold> 1810 <left_node>1</left_node> 1811 <right_val>-0.5596284270286560</right_val></_> 1812 <_> 1813 <!-- node 1 --> 1814 <feature> 1815 <rects> 1816 <_> 1817 11 11 8 2 -1.</_> 1818 <_> 1819 15 11 4 2 2.</_></rects> 1820 <tilted>0</tilted></feature> 1821 <threshold>7.1614650078117847e-03</threshold> 1822 <left_val>-0.1660436987876892</left_val> 1823 <right_val>0.4680525958538055</right_val></_></_> 1824 <_> 1825 <!-- tree 4 --> 1826 <_> 1827 <!-- root node --> 1828 <feature> 1829 <rects> 1830 <_> 1831 0 1 12 11 -1.</_> 1832 <_> 1833 3 1 6 11 2.</_></rects> 1834 <tilted>0</tilted></feature> 1835 <threshold>-0.0131451701745391</threshold> 1836 <left_node>1</left_node> 1837 <right_val>-0.4127990901470184</right_val></_> 1838 <_> 1839 <!-- node 1 --> 1840 <feature> 1841 <rects> 1842 <_> 1843 8 8 6 4 -1.</_> 1844 <_> 1845 7 9 6 2 2.</_></rects> 1846 <tilted>1</tilted></feature> 1847 <threshold>-0.0114368097856641</threshold> 1848 <left_val>0.3790180087089539</left_val> 1849 <right_val>-0.4179157912731171</right_val></_></_> 1850 <_> 1851 <!-- tree 5 --> 1852 <_> 1853 <!-- root node --> 1854 <feature> 1855 <rects> 1856 <_> 1857 6 17 6 3 -1.</_> 1858 <_> 1859 8 17 2 3 3.</_></rects> 1860 <tilted>0</tilted></feature> 1861 <threshold>-7.2912001051008701e-03</threshold> 1862 <left_val>-0.7608966827392578</left_val> 1863 <right_node>1</right_node></_> 1864 <_> 1865 <!-- node 1 --> 1866 <feature> 1867 <rects> 1868 <_> 1869 0 0 1 4 -1.</_> 1870 <_> 1871 0 2 1 2 2.</_></rects> 1872 <tilted>0</tilted></feature> 1873 <threshold>-5.2170921117067337e-04</threshold> 1874 <left_val>0.3252761960029602</left_val> 1875 <right_val>-0.3011097013950348</right_val></_></_> 1876 <_> 1877 <!-- tree 6 --> 1878 <_> 1879 <!-- root node --> 1880 <feature> 1881 <rects> 1882 <_> 1883 3 1 1 3 -1.</_> 1884 <_> 1885 2 2 1 1 3.</_></rects> 1886 <tilted>1</tilted></feature> 1887 <threshold>3.3754010219126940e-03</threshold> 1888 <left_node>1</left_node> 1889 <right_val>-0.7837396264076233</right_val></_> 1890 <_> 1891 <!-- node 1 --> 1892 <feature> 1893 <rects> 1894 <_> 1895 18 11 2 3 -1.</_> 1896 <_> 1897 18 12 2 1 3.</_></rects> 1898 <tilted>0</tilted></feature> 1899 <threshold>2.5100160855799913e-03</threshold> 1900 <left_val>0.1852544993162155</left_val> 1901 <right_val>-0.5808495879173279</right_val></_></_> 1902 <_> 1903 <!-- tree 7 --> 1904 <_> 1905 <!-- root node --> 1906 <feature> 1907 <rects> 1908 <_> 1909 3 12 2 8 -1.</_> 1910 <_> 1911 3 12 1 4 2.</_> 1912 <_> 1913 4 16 1 4 2.</_></rects> 1914 <tilted>0</tilted></feature> 1915 <threshold>-1.2884209863841534e-03</threshold> 1916 <left_val>0.2733950018882751</left_val> 1917 <right_node>1</right_node></_> 1918 <_> 1919 <!-- node 1 --> 1920 <feature> 1921 <rects> 1922 <_> 1923 3 12 3 3 -1.</_> 1924 <_> 1925 4 12 1 3 3.</_></rects> 1926 <tilted>0</tilted></feature> 1927 <threshold>-1.8726480193436146e-03</threshold> 1928 <left_val>0.1681987941265106</left_val> 1929 <right_val>-0.5198690295219421</right_val></_></_> 1930 <_> 1931 <!-- tree 8 --> 1932 <_> 1933 <!-- root node --> 1934 <feature> 1935 <rects> 1936 <_> 1937 11 18 4 2 -1.</_> 1938 <_> 1939 12 18 2 2 2.</_></rects> 1940 <tilted>0</tilted></feature> 1941 <threshold>2.4010189808905125e-03</threshold> 1942 <left_node>1</left_node> 1943 <right_val>-0.8296467065811157</right_val></_> 1944 <_> 1945 <!-- node 1 --> 1946 <feature> 1947 <rects> 1948 <_> 1949 17 10 3 3 -1.</_> 1950 <_> 1951 17 11 3 1 3.</_></rects> 1952 <tilted>0</tilted></feature> 1953 <threshold>4.8938081599771976e-03</threshold> 1954 <left_val>0.1679659932851791</left_val> 1955 <right_val>-0.6553087234497070</right_val></_></_> 1956 <_> 1957 <!-- tree 9 --> 1958 <_> 1959 <!-- root node --> 1960 <feature> 1961 <rects> 1962 <_> 1963 7 14 5 2 -1.</_> 1964 <_> 1965 7 15 5 1 2.</_></rects> 1966 <tilted>0</tilted></feature> 1967 <threshold>3.1223020050674677e-03</threshold> 1968 <left_val>-0.4352130889892578</left_val> 1969 <right_node>1</right_node></_> 1970 <_> 1971 <!-- node 1 --> 1972 <feature> 1973 <rects> 1974 <_> 1975 6 0 4 5 -1.</_> 1976 <_> 1977 6 0 2 5 2.</_></rects> 1978 <tilted>1</tilted></feature> 1979 <threshold>0.0503664910793304</threshold> 1980 <left_val>-5.8327801525592804e-03</left_val> 1981 <right_val>0.7087830901145935</right_val></_></_> 1982 <_> 1983 <!-- tree 10 --> 1984 <_> 1985 <!-- root node --> 1986 <feature> 1987 <rects> 1988 <_> 1989 6 1 5 8 -1.</_> 1990 <_> 1991 6 5 5 4 2.</_></rects> 1992 <tilted>0</tilted></feature> 1993 <threshold>0.0361518003046513</threshold> 1994 <left_node>1</left_node> 1995 <right_val>0.4497916102409363</right_val></_> 1996 <_> 1997 <!-- node 1 --> 1998 <feature> 1999 <rects> 2000 <_> 2001 3 1 9 8 -1.</_> 2002 <_> 2003 3 5 9 4 2.</_></rects> 2004 <tilted>0</tilted></feature> 2005 <threshold>-0.1342658996582031</threshold> 2006 <left_val>0.3947243094444275</left_val> 2007 <right_val>-0.3758862912654877</right_val></_></_> 2008 <_> 2009 <!-- tree 11 --> 2010 <_> 2011 <!-- root node --> 2012 <feature> 2013 <rects> 2014 <_> 2015 2 14 15 6 -1.</_> 2016 <_> 2017 7 14 5 6 3.</_></rects> 2018 <tilted>0</tilted></feature> 2019 <threshold>-0.0277913697063923</threshold> 2020 <left_node>1</left_node> 2021 <right_val>-0.2948872148990631</right_val></_> 2022 <_> 2023 <!-- node 1 --> 2024 <feature> 2025 <rects> 2026 <_> 2027 12 3 6 5 -1.</_> 2028 <_> 2029 14 3 2 5 3.</_></rects> 2030 <tilted>0</tilted></feature> 2031 <threshold>-0.0127121703699231</threshold> 2032 <left_val>-0.7201173901557922</left_val> 2033 <right_val>0.3659502863883972</right_val></_></_> 2034 <_> 2035 <!-- tree 12 --> 2036 <_> 2037 <!-- root node --> 2038 <feature> 2039 <rects> 2040 <_> 2041 5 16 2 2 -1.</_> 2042 <_> 2043 5 16 1 2 2.</_></rects> 2044 <tilted>1</tilted></feature> 2045 <threshold>-3.8276749546639621e-04</threshold> 2046 <left_node>1</left_node> 2047 <right_val>-0.4058133959770203</right_val></_> 2048 <_> 2049 <!-- node 1 --> 2050 <feature> 2051 <rects> 2052 <_> 2053 5 16 2 2 -1.</_> 2054 <_> 2055 5 16 1 2 2.</_></rects> 2056 <tilted>1</tilted></feature> 2057 <threshold>-6.1330529861152172e-03</threshold> 2058 <left_val>-0.5272595882415771</left_val> 2059 <right_val>0.3604049980640411</right_val></_></_></trees> 2060 <stage_threshold>-1.9884539842605591</stage_threshold> 2061 <parent>6</parent> 2062 <next>-1</next></_> 2063 <_> 2064 <!-- stage 8 --> 2065 <trees> 2066 <_> 2067 <!-- tree 0 --> 2068 <_> 2069 <!-- root node --> 2070 <feature> 2071 <rects> 2072 <_> 2073 9 8 6 4 -1.</_> 2074 <_> 2075 11 10 2 4 3.</_></rects> 2076 <tilted>1</tilted></feature> 2077 <threshold>-0.0477486699819565</threshold> 2078 <left_node>1</left_node> 2079 <right_val>-0.5990238785743713</right_val></_> 2080 <_> 2081 <!-- node 1 --> 2082 <feature> 2083 <rects> 2084 <_> 2085 4 11 3 4 -1.</_> 2086 <_> 2087 4 13 3 2 2.</_></rects> 2088 <tilted>0</tilted></feature> 2089 <threshold>4.6201851218938828e-03</threshold> 2090 <left_val>-0.2488749027252197</left_val> 2091 <right_val>0.6920158267021179</right_val></_></_> 2092 <_> 2093 <!-- tree 1 --> 2094 <_> 2095 <!-- root node --> 2096 <feature> 2097 <rects> 2098 <_> 2099 13 8 6 12 -1.</_> 2100 <_> 2101 15 12 2 4 9.</_></rects> 2102 <tilted>0</tilted></feature> 2103 <threshold>-0.0853534564375877</threshold> 2104 <left_node>1</left_node> 2105 <right_val>-0.5171583294868469</right_val></_> 2106 <_> 2107 <!-- node 1 --> 2108 <feature> 2109 <rects> 2110 <_> 2111 0 0 1 10 -1.</_> 2112 <_> 2113 0 5 1 5 2.</_></rects> 2114 <tilted>0</tilted></feature> 2115 <threshold>-7.0110969245433807e-03</threshold> 2116 <left_val>0.5695065259933472</left_val> 2117 <right_val>-0.2474942058324814</right_val></_></_> 2118 <_> 2119 <!-- tree 2 --> 2120 <_> 2121 <!-- root node --> 2122 <feature> 2123 <rects> 2124 <_> 2125 0 12 6 4 -1.</_> 2126 <_> 2127 2 12 2 4 3.</_></rects> 2128 <tilted>0</tilted></feature> 2129 <threshold>-7.6567470096051693e-03</threshold> 2130 <left_node>1</left_node> 2131 <right_val>-0.3731651902198792</right_val></_> 2132 <_> 2133 <!-- node 1 --> 2134 <feature> 2135 <rects> 2136 <_> 2137 7 5 8 6 -1.</_> 2138 <_> 2139 5 7 8 2 3.</_></rects> 2140 <tilted>1</tilted></feature> 2141 <threshold>-0.0359194912016392</threshold> 2142 <left_val>0.4943858087062836</left_val> 2143 <right_val>-0.3958668112754822</right_val></_></_> 2144 <_> 2145 <!-- tree 3 --> 2146 <_> 2147 <!-- root node --> 2148 <feature> 2149 <rects> 2150 <_> 2151 3 1 16 4 -1.</_> 2152 <_> 2153 3 3 16 2 2.</_></rects> 2154 <tilted>0</tilted></feature> 2155 <threshold>-0.0743266269564629</threshold> 2156 <left_val>0.5675597786903381</left_val> 2157 <right_node>1</right_node></_> 2158 <_> 2159 <!-- node 1 --> 2160 <feature> 2161 <rects> 2162 <_> 2163 6 2 10 9 -1.</_> 2164 <_> 2165 6 5 10 3 3.</_></rects> 2166 <tilted>0</tilted></feature> 2167 <threshold>0.0901185870170593</threshold> 2168 <left_val>-0.3892117142677307</left_val> 2169 <right_val>0.3107909858226776</right_val></_></_> 2170 <_> 2171 <!-- tree 4 --> 2172 <_> 2173 <!-- root node --> 2174 <feature> 2175 <rects> 2176 <_> 2177 14 10 6 10 -1.</_> 2178 <_> 2179 17 10 3 10 2.</_></rects> 2180 <tilted>0</tilted></feature> 2181 <threshold>0.0167364608496428</threshold> 2182 <left_val>-0.3667413890361786</left_val> 2183 <right_node>1</right_node></_> 2184 <_> 2185 <!-- node 1 --> 2186 <feature> 2187 <rects> 2188 <_> 2189 5 17 4 3 -1.</_> 2190 <_> 2191 6 17 2 3 2.</_></rects> 2192 <tilted>0</tilted></feature> 2193 <threshold>1.8592580454424024e-03</threshold> 2194 <left_val>0.3487572073936462</left_val> 2195 <right_val>-0.5748311281204224</right_val></_></_> 2196 <_> 2197 <!-- tree 5 --> 2198 <_> 2199 <!-- root node --> 2200 <feature> 2201 <rects> 2202 <_> 2203 5 12 3 2 -1.</_> 2204 <_> 2205 6 12 1 2 3.</_></rects> 2206 <tilted>0</tilted></feature> 2207 <threshold>7.5264140032231808e-03</threshold> 2208 <left_node>1</left_node> 2209 <right_val>0.6787899136543274</right_val></_> 2210 <_> 2211 <!-- node 1 --> 2212 <feature> 2213 <rects> 2214 <_> 2215 5 12 3 2 -1.</_> 2216 <_> 2217 6 12 1 2 3.</_></rects> 2218 <tilted>0</tilted></feature> 2219 <threshold>-3.5309391096234322e-03</threshold> 2220 <left_val>0.4861792027950287</left_val> 2221 <right_val>-0.2566064000129700</right_val></_></_> 2222 <_> 2223 <!-- tree 6 --> 2224 <_> 2225 <!-- root node --> 2226 <feature> 2227 <rects> 2228 <_> 2229 0 0 2 9 -1.</_> 2230 <_> 2231 1 0 1 9 2.</_></rects> 2232 <tilted>0</tilted></feature> 2233 <threshold>-4.9510748795000836e-05</threshold> 2234 <left_node>1</left_node> 2235 <right_val>-0.4566124081611633</right_val></_> 2236 <_> 2237 <!-- node 1 --> 2238 <feature> 2239 <rects> 2240 <_> 2241 2 6 3 2 -1.</_> 2242 <_> 2243 2 6 3 1 2.</_></rects> 2244 <tilted>1</tilted></feature> 2245 <threshold>-6.8923248909413815e-03</threshold> 2246 <left_val>-0.5713472962379456</left_val> 2247 <right_val>0.3292104899883270</right_val></_></_> 2248 <_> 2249 <!-- tree 7 --> 2250 <_> 2251 <!-- root node --> 2252 <feature> 2253 <rects> 2254 <_> 2255 7 16 6 3 -1.</_> 2256 <_> 2257 9 16 2 3 3.</_></rects> 2258 <tilted>0</tilted></feature> 2259 <threshold>6.1156069859862328e-03</threshold> 2260 <left_node>1</left_node> 2261 <right_val>-0.7131536006927490</right_val></_> 2262 <_> 2263 <!-- node 1 --> 2264 <feature> 2265 <rects> 2266 <_> 2267 7 17 6 2 -1.</_> 2268 <_> 2269 9 17 2 2 3.</_></rects> 2270 <tilted>0</tilted></feature> 2271 <threshold>-5.5014882236719131e-03</threshold> 2272 <left_val>-0.5913907885551453</left_val> 2273 <right_val>0.1980594992637634</right_val></_></_> 2274 <_> 2275 <!-- tree 8 --> 2276 <_> 2277 <!-- root node --> 2278 <feature> 2279 <rects> 2280 <_> 2281 6 3 9 6 -1.</_> 2282 <_> 2283 4 5 9 2 3.</_></rects> 2284 <tilted>1</tilted></feature> 2285 <threshold>-0.0423780605196953</threshold> 2286 <left_node>1</left_node> 2287 <right_val>-0.3823930025100708</right_val></_> 2288 <_> 2289 <!-- node 1 --> 2290 <feature> 2291 <rects> 2292 <_> 2293 6 15 3 2 -1.</_> 2294 <_> 2295 7 16 1 2 3.</_></rects> 2296 <tilted>1</tilted></feature> 2297 <threshold>2.2011259570717812e-03</threshold> 2298 <left_val>0.3345701098442078</left_val> 2299 <right_val>-0.4303233921527863</right_val></_></_> 2300 <_> 2301 <!-- tree 9 --> 2302 <_> 2303 <!-- root node --> 2304 <feature> 2305 <rects> 2306 <_> 2307 6 2 3 3 -1.</_> 2308 <_> 2309 7 2 1 3 3.</_></rects> 2310 <tilted>0</tilted></feature> 2311 <threshold>2.1217379253357649e-03</threshold> 2312 <left_node>1</left_node> 2313 <right_val>-0.6831002235412598</right_val></_> 2314 <_> 2315 <!-- node 1 --> 2316 <feature> 2317 <rects> 2318 <_> 2319 2 1 6 4 -1.</_> 2320 <_> 2321 4 1 2 4 3.</_></rects> 2322 <tilted>0</tilted></feature> 2323 <threshold>6.4385468140244484e-03</threshold> 2324 <left_val>0.2047861069440842</left_val> 2325 <right_val>-0.6179394125938416</right_val></_></_> 2326 <_> 2327 <!-- tree 10 --> 2328 <_> 2329 <!-- root node --> 2330 <feature> 2331 <rects> 2332 <_> 2333 13 11 4 2 -1.</_> 2334 <_> 2335 13 11 2 1 2.</_> 2336 <_> 2337 15 12 2 1 2.</_></rects> 2338 <tilted>0</tilted></feature> 2339 <threshold>3.1177410855889320e-03</threshold> 2340 <left_node>1</left_node> 2341 <right_val>0.5113716125488281</right_val></_> 2342 <_> 2343 <!-- node 1 --> 2344 <feature> 2345 <rects> 2346 <_> 2347 14 10 2 2 -1.</_> 2348 <_> 2349 14 10 1 1 2.</_> 2350 <_> 2351 15 11 1 1 2.</_></rects> 2352 <tilted>0</tilted></feature> 2353 <threshold>4.2230269173160195e-04</threshold> 2354 <left_val>-0.3644020855426788</left_val> 2355 <right_val>0.2107304930686951</right_val></_></_> 2356 <_> 2357 <!-- tree 11 --> 2358 <_> 2359 <!-- root node --> 2360 <feature> 2361 <rects> 2362 <_> 2363 17 7 3 3 -1.</_> 2364 <_> 2365 18 8 1 3 3.</_></rects> 2366 <tilted>1</tilted></feature> 2367 <threshold>-6.5657291561365128e-03</threshold> 2368 <left_val>-0.6458150148391724</left_val> 2369 <right_node>1</right_node></_> 2370 <_> 2371 <!-- node 1 --> 2372 <feature> 2373 <rects> 2374 <_> 2375 17 7 3 2 -1.</_> 2376 <_> 2377 18 8 1 2 3.</_></rects> 2378 <tilted>1</tilted></feature> 2379 <threshold>2.5686610024422407e-03</threshold> 2380 <left_val>0.2764356136322021</left_val> 2381 <right_val>-0.3419849872589111</right_val></_></_> 2382 <_> 2383 <!-- tree 12 --> 2384 <_> 2385 <!-- root node --> 2386 <feature> 2387 <rects> 2388 <_> 2389 0 3 1 2 -1.</_> 2390 <_> 2391 0 4 1 1 2.</_></rects> 2392 <tilted>0</tilted></feature> 2393 <threshold>-6.2437567976303399e-05</threshold> 2394 <left_node>1</left_node> 2395 <right_val>-0.3175807893276215</right_val></_> 2396 <_> 2397 <!-- node 1 --> 2398 <feature> 2399 <rects> 2400 <_> 2401 10 1 2 5 -1.</_> 2402 <_> 2403 11 1 1 5 2.</_></rects> 2404 <tilted>0</tilted></feature> 2405 <threshold>-3.6269261036068201e-03</threshold> 2406 <left_val>-0.8105195760726929</left_val> 2407 <right_val>0.2721863090991974</right_val></_></_> 2408 <_> 2409 <!-- tree 13 --> 2410 <_> 2411 <!-- root node --> 2412 <feature> 2413 <rects> 2414 <_> 2415 1 8 3 12 -1.</_> 2416 <_> 2417 1 11 3 6 2.</_></rects> 2418 <tilted>0</tilted></feature> 2419 <threshold>-3.4638389479368925e-03</threshold> 2420 <left_node>1</left_node> 2421 <right_val>-0.3951576948165894</right_val></_> 2422 <_> 2423 <!-- node 1 --> 2424 <feature> 2425 <rects> 2426 <_> 2427 2 10 8 2 -1.</_> 2428 <_> 2429 2 10 4 2 2.</_></rects> 2430 <tilted>1</tilted></feature> 2431 <threshold>-0.0749301910400391</threshold> 2432 <left_val>-0.5435386896133423</left_val> 2433 <right_val>0.2610611915588379</right_val></_></_> 2434 <_> 2435 <!-- tree 14 --> 2436 <_> 2437 <!-- root node --> 2438 <feature> 2439 <rects> 2440 <_> 2441 6 12 3 3 -1.</_> 2442 <_> 2443 7 13 1 1 9.</_></rects> 2444 <tilted>0</tilted></feature> 2445 <threshold>-9.7247250378131866e-03</threshold> 2446 <left_val>0.4112487137317657</left_val> 2447 <right_node>1</right_node></_> 2448 <_> 2449 <!-- node 1 --> 2450 <feature> 2451 <rects> 2452 <_> 2453 6 11 3 4 -1.</_> 2454 <_> 2455 7 11 1 4 3.</_></rects> 2456 <tilted>0</tilted></feature> 2457 <threshold>4.5450199395418167e-03</threshold> 2458 <left_val>-0.3157655000686646</left_val> 2459 <right_val>0.3904697000980377</right_val></_></_> 2460 <_> 2461 <!-- tree 15 --> 2462 <_> 2463 <!-- root node --> 2464 <feature> 2465 <rects> 2466 <_> 2467 5 17 4 2 -1.</_> 2468 <_> 2469 6 17 2 2 2.</_></rects> 2470 <tilted>0</tilted></feature> 2471 <threshold>-2.7354240883141756e-03</threshold> 2472 <left_val>-0.7490674853324890</left_val> 2473 <right_node>1</right_node></_> 2474 <_> 2475 <!-- node 1 --> 2476 <feature> 2477 <rects> 2478 <_> 2479 0 19 20 1 -1.</_> 2480 <_> 2481 10 19 10 1 2.</_></rects> 2482 <tilted>0</tilted></feature> 2483 <threshold>-0.0169694703072309</threshold> 2484 <left_val>-0.6243721842765808</left_val> 2485 <right_val>0.1838738024234772</right_val></_></_></trees> 2486 <stage_threshold>-2.0902318954467773</stage_threshold> 2487 <parent>7</parent> 2488 <next>-1</next></_> 2489 <_> 2490 <!-- stage 9 --> 2491 <trees> 2492 <_> 2493 <!-- tree 0 --> 2494 <_> 2495 <!-- root node --> 2496 <feature> 2497 <rects> 2498 <_> 2499 5 11 8 5 -1.</_> 2500 <_> 2501 7 11 4 5 2.</_></rects> 2502 <tilted>0</tilted></feature> 2503 <threshold>-0.0249786991626024</threshold> 2504 <left_node>1</left_node> 2505 <right_val>-0.6069788932800293</right_val></_> 2506 <_> 2507 <!-- node 1 --> 2508 <feature> 2509 <rects> 2510 <_> 2511 10 8 8 9 -1.</_> 2512 <_> 2513 10 11 8 3 3.</_></rects> 2514 <tilted>0</tilted></feature> 2515 <threshold>-0.0580078698694706</threshold> 2516 <left_val>0.7147802114486694</left_val> 2517 <right_val>-0.2994323968887329</right_val></_></_> 2518 <_> 2519 <!-- tree 1 --> 2520 <_> 2521 <!-- root node --> 2522 <feature> 2523 <rects> 2524 <_> 2525 0 13 6 2 -1.</_> 2526 <_> 2527 2 13 2 2 3.</_></rects> 2528 <tilted>0</tilted></feature> 2529 <threshold>-5.1753749139606953e-03</threshold> 2530 <left_node>1</left_node> 2531 <right_val>-0.3529798984527588</right_val></_> 2532 <_> 2533 <!-- node 1 --> 2534 <feature> 2535 <rects> 2536 <_> 2537 18 14 2 1 -1.</_> 2538 <_> 2539 18 14 1 1 2.</_></rects> 2540 <tilted>1</tilted></feature> 2541 <threshold>-8.9618662605062127e-04</threshold> 2542 <left_val>0.5441746115684509</left_val> 2543 <right_val>-0.3978995084762573</right_val></_></_> 2544 <_> 2545 <!-- tree 2 --> 2546 <_> 2547 <!-- root node --> 2548 <feature> 2549 <rects> 2550 <_> 2551 1 2 2 4 -1.</_> 2552 <_> 2553 2 2 1 4 2.</_></rects> 2554 <tilted>0</tilted></feature> 2555 <threshold>-2.8718139219563454e-05</threshold> 2556 <left_node>1</left_node> 2557 <right_val>-0.4889818131923676</right_val></_> 2558 <_> 2559 <!-- node 1 --> 2560 <feature> 2561 <rects> 2562 <_> 2563 5 5 8 5 -1.</_> 2564 <_> 2565 9 5 4 5 2.</_></rects> 2566 <tilted>0</tilted></feature> 2567 <threshold>4.7620530240237713e-03</threshold> 2568 <left_val>-0.3114455938339233</left_val> 2569 <right_val>0.4678679108619690</right_val></_></_> 2570 <_> 2571 <!-- tree 3 --> 2572 <_> 2573 <!-- root node --> 2574 <feature> 2575 <rects> 2576 <_> 2577 7 13 5 4 -1.</_> 2578 <_> 2579 7 15 5 2 2.</_></rects> 2580 <tilted>0</tilted></feature> 2581 <threshold>0.0197512805461884</threshold> 2582 <left_val>-0.4302048981189728</left_val> 2583 <right_node>1</right_node></_> 2584 <_> 2585 <!-- node 1 --> 2586 <feature> 2587 <rects> 2588 <_> 2589 17 18 3 2 -1.</_> 2590 <_> 2591 17 19 3 1 2.</_></rects> 2592 <tilted>0</tilted></feature> 2593 <threshold>-1.2683609966188669e-03</threshold> 2594 <left_val>-0.5409085154533386</left_val> 2595 <right_val>0.3979752063751221</right_val></_></_> 2596 <_> 2597 <!-- tree 4 --> 2598 <_> 2599 <!-- root node --> 2600 <feature> 2601 <rects> 2602 <_> 2603 0 2 1 2 -1.</_> 2604 <_> 2605 0 3 1 1 2.</_></rects> 2606 <tilted>0</tilted></feature> 2607 <threshold>-4.5749718992738053e-05</threshold> 2608 <left_node>1</left_node> 2609 <right_val>-0.4451893866062164</right_val></_> 2610 <_> 2611 <!-- node 1 --> 2612 <feature> 2613 <rects> 2614 <_> 2615 3 0 1 3 -1.</_> 2616 <_> 2617 2 1 1 1 3.</_></rects> 2618 <tilted>1</tilted></feature> 2619 <threshold>2.4090509396046400e-03</threshold> 2620 <left_val>0.2882230877876282</left_val> 2621 <right_val>-0.5451431274414062</right_val></_></_> 2622 <_> 2623 <!-- tree 5 --> 2624 <_> 2625 <!-- root node --> 2626 <feature> 2627 <rects> 2628 <_> 2629 10 11 3 4 -1.</_> 2630 <_> 2631 11 11 1 4 3.</_></rects> 2632 <tilted>0</tilted></feature> 2633 <threshold>-4.5728669501841068e-03</threshold> 2634 <left_val>0.5503987073898315</left_val> 2635 <right_node>1</right_node></_> 2636 <_> 2637 <!-- node 1 --> 2638 <feature> 2639 <rects> 2640 <_> 2641 14 11 4 8 -1.</_> 2642 <_> 2643 16 11 2 8 2.</_></rects> 2644 <tilted>0</tilted></feature> 2645 <threshold>8.9018214493989944e-03</threshold> 2646 <left_val>-0.4159888923168182</left_val> 2647 <right_val>0.1746889948844910</right_val></_></_> 2648 <_> 2649 <!-- tree 6 --> 2650 <_> 2651 <!-- root node --> 2652 <feature> 2653 <rects> 2654 <_> 2655 2 2 9 6 -1.</_> 2656 <_> 2657 2 5 9 3 2.</_></rects> 2658 <tilted>0</tilted></feature> 2659 <threshold>-0.1205644980072975</threshold> 2660 <left_val>0.6889057755470276</left_val> 2661 <right_node>1</right_node></_> 2662 <_> 2663 <!-- node 1 --> 2664 <feature> 2665 <rects> 2666 <_> 2667 0 4 17 8 -1.</_> 2668 <_> 2669 0 6 17 4 2.</_></rects> 2670 <tilted>0</tilted></feature> 2671 <threshold>0.0469199307262897</threshold> 2672 <left_val>-0.4226630926132202</left_val> 2673 <right_val>0.1701094061136246</right_val></_></_> 2674 <_> 2675 <!-- tree 7 --> 2676 <_> 2677 <!-- root node --> 2678 <feature> 2679 <rects> 2680 <_> 2681 15 17 5 3 -1.</_> 2682 <_> 2683 15 18 5 1 3.</_></rects> 2684 <tilted>0</tilted></feature> 2685 <threshold>-4.2390259914100170e-03</threshold> 2686 <left_val>-0.6304534077644348</left_val> 2687 <right_node>1</right_node></_> 2688 <_> 2689 <!-- node 1 --> 2690 <feature> 2691 <rects> 2692 <_> 2693 2 11 2 8 -1.</_> 2694 <_> 2695 2 15 2 4 2.</_></rects> 2696 <tilted>0</tilted></feature> 2697 <threshold>3.2174249645322561e-03</threshold> 2698 <left_val>-0.3609794974327087</left_val> 2699 <right_val>0.2493373006582260</right_val></_></_> 2700 <_> 2701 <!-- tree 8 --> 2702 <_> 2703 <!-- root node --> 2704 <feature> 2705 <rects> 2706 <_> 2707 3 12 3 3 -1.</_> 2708 <_> 2709 4 12 1 3 3.</_></rects> 2710 <tilted>0</tilted></feature> 2711 <threshold>-8.5738790221512318e-04</threshold> 2712 <left_val>0.3099347949028015</left_val> 2713 <right_node>1</right_node></_> 2714 <_> 2715 <!-- node 1 --> 2716 <feature> 2717 <rects> 2718 <_> 2719 3 12 9 7 -1.</_> 2720 <_> 2721 6 12 3 7 3.</_></rects> 2722 <tilted>0</tilted></feature> 2723 <threshold>-0.0184324495494366</threshold> 2724 <left_val>0.0977584496140480</left_val> 2725 <right_val>-0.5074235200881958</right_val></_></_> 2726 <_> 2727 <!-- tree 9 --> 2728 <_> 2729 <!-- root node --> 2730 <feature> 2731 <rects> 2732 <_> 2733 13 1 4 7 -1.</_> 2734 <_> 2735 14 1 2 7 2.</_></rects> 2736 <tilted>0</tilted></feature> 2737 <threshold>5.8692828752100468e-03</threshold> 2738 <left_node>1</left_node> 2739 <right_val>-0.7455605864524841</right_val></_> 2740 <_> 2741 <!-- node 1 --> 2742 <feature> 2743 <rects> 2744 <_> 2745 3 16 2 2 -1.</_> 2746 <_> 2747 3 16 1 2 2.</_></rects> 2748 <tilted>1</tilted></feature> 2749 <threshold>-6.8751699291169643e-03</threshold> 2750 <left_val>-0.6745839118957520</left_val> 2751 <right_val>0.1591881066560745</right_val></_></_> 2752 <_> 2753 <!-- tree 10 --> 2754 <_> 2755 <!-- root node --> 2756 <feature> 2757 <rects> 2758 <_> 2759 3 17 2 1 -1.</_> 2760 <_> 2761 3 17 1 1 2.</_></rects> 2762 <tilted>1</tilted></feature> 2763 <threshold>-6.8542227381840348e-05</threshold> 2764 <left_node>1</left_node> 2765 <right_val>-0.4127942025661469</right_val></_> 2766 <_> 2767 <!-- node 1 --> 2768 <feature> 2769 <rects> 2770 <_> 2771 4 9 6 6 -1.</_> 2772 <_> 2773 4 9 3 3 2.</_> 2774 <_> 2775 7 12 3 3 2.</_></rects> 2776 <tilted>0</tilted></feature> 2777 <threshold>-0.0106585798785090</threshold> 2778 <left_val>0.3700270950794220</left_val> 2779 <right_val>-0.2173172980546951</right_val></_></_> 2780 <_> 2781 <!-- tree 11 --> 2782 <_> 2783 <!-- root node --> 2784 <feature> 2785 <rects> 2786 <_> 2787 11 13 3 1 -1.</_> 2788 <_> 2789 12 13 1 1 3.</_></rects> 2790 <tilted>0</tilted></feature> 2791 <threshold>-1.8811509944498539e-03</threshold> 2792 <left_val>0.5790283083915710</left_val> 2793 <right_node>1</right_node></_> 2794 <_> 2795 <!-- node 1 --> 2796 <feature> 2797 <rects> 2798 <_> 2799 0 0 20 3 -1.</_> 2800 <_> 2801 5 0 10 3 2.</_></rects> 2802 <tilted>0</tilted></feature> 2803 <threshold>-0.0223091300576925</threshold> 2804 <left_val>0.1972568035125732</left_val> 2805 <right_val>-0.3247519135475159</right_val></_></_> 2806 <_> 2807 <!-- tree 12 --> 2808 <_> 2809 <!-- root node --> 2810 <feature> 2811 <rects> 2812 <_> 2813 0 0 1 2 -1.</_> 2814 <_> 2815 0 1 1 1 2.</_></rects> 2816 <tilted>0</tilted></feature> 2817 <threshold>6.5826578065752983e-04</threshold> 2818 <left_node>1</left_node> 2819 <right_val>-0.6063023805618286</right_val></_> 2820 <_> 2821 <!-- node 1 --> 2822 <feature> 2823 <rects> 2824 <_> 2825 17 0 3 1 -1.</_> 2826 <_> 2827 18 1 1 1 3.</_></rects> 2828 <tilted>1</tilted></feature> 2829 <threshold>-5.0781588070094585e-03</threshold> 2830 <left_val>-0.7712330222129822</left_val> 2831 <right_val>0.1818612962961197</right_val></_></_> 2832 <_> 2833 <!-- tree 13 --> 2834 <_> 2835 <!-- root node --> 2836 <feature> 2837 <rects> 2838 <_> 2839 4 0 8 9 -1.</_> 2840 <_> 2841 4 3 8 3 3.</_></rects> 2842 <tilted>0</tilted></feature> 2843 <threshold>0.0562150813639164</threshold> 2844 <left_node>1</left_node> 2845 <right_val>0.5056139826774597</right_val></_> 2846 <_> 2847 <!-- node 1 --> 2848 <feature> 2849 <rects> 2850 <_> 2851 6 0 6 4 -1.</_> 2852 <_> 2853 6 2 6 2 2.</_></rects> 2854 <tilted>0</tilted></feature> 2855 <threshold>-0.0377205908298492</threshold> 2856 <left_val>0.3605211079120636</left_val> 2857 <right_val>-0.3274376094341278</right_val></_></_> 2858 <_> 2859 <!-- tree 14 --> 2860 <_> 2861 <!-- root node --> 2862 <feature> 2863 <rects> 2864 <_> 2865 18 0 2 1 -1.</_> 2866 <_> 2867 18 0 1 1 2.</_></rects> 2868 <tilted>1</tilted></feature> 2869 <threshold>3.9480631239712238e-03</threshold> 2870 <left_node>1</left_node> 2871 <right_val>-0.7578818202018738</right_val></_> 2872 <_> 2873 <!-- node 1 --> 2874 <feature> 2875 <rects> 2876 <_> 2877 14 2 6 1 -1.</_> 2878 <_> 2879 17 2 3 1 2.</_></rects> 2880 <tilted>0</tilted></feature> 2881 <threshold>-2.4269670248031616e-03</threshold> 2882 <left_val>0.5207610130310059</left_val> 2883 <right_val>-0.0610213615000248</right_val></_></_></trees> 2884 <stage_threshold>-1.9407310485839844</stage_threshold> 2885 <parent>8</parent> 2886 <next>-1</next></_> 2887 <_> 2888 <!-- stage 10 --> 2889 <trees> 2890 <_> 2891 <!-- tree 0 --> 2892 <_> 2893 <!-- root node --> 2894 <feature> 2895 <rects> 2896 <_> 2897 5 13 8 2 -1.</_> 2898 <_> 2899 7 13 4 2 2.</_></rects> 2900 <tilted>0</tilted></feature> 2901 <threshold>-0.0169066991657019</threshold> 2902 <left_node>1</left_node> 2903 <right_val>-0.4750126898288727</right_val></_> 2904 <_> 2905 <!-- node 1 --> 2906 <feature> 2907 <rects> 2908 <_> 2909 15 12 3 8 -1.</_> 2910 <_> 2911 15 16 3 4 2.</_></rects> 2912 <tilted>0</tilted></feature> 2913 <threshold>0.0253278408199549</threshold> 2914 <left_val>-0.4401676058769226</left_val> 2915 <right_val>0.6088535189628601</right_val></_></_> 2916 <_> 2917 <!-- tree 1 --> 2918 <_> 2919 <!-- root node --> 2920 <feature> 2921 <rects> 2922 <_> 2923 5 10 8 3 -1.</_> 2924 <_> 2925 5 11 8 1 3.</_></rects> 2926 <tilted>0</tilted></feature> 2927 <threshold>-0.0156633201986551</threshold> 2928 <left_val>0.5710005164146423</left_val> 2929 <right_node>1</right_node></_> 2930 <_> 2931 <!-- node 1 --> 2932 <feature> 2933 <rects> 2934 <_> 2935 5 0 11 9 -1.</_> 2936 <_> 2937 5 3 11 3 3.</_></rects> 2938 <tilted>0</tilted></feature> 2939 <threshold>-0.1610189974308014</threshold> 2940 <left_val>0.4098914861679077</left_val> 2941 <right_val>-0.3814237117767334</right_val></_></_> 2942 <_> 2943 <!-- tree 2 --> 2944 <_> 2945 <!-- root node --> 2946 <feature> 2947 <rects> 2948 <_> 2949 18 14 2 2 -1.</_> 2950 <_> 2951 19 14 1 2 2.</_></rects> 2952 <tilted>0</tilted></feature> 2953 <threshold>1.6885380318854004e-04</threshold> 2954 <left_val>-0.4795849025249481</left_val> 2955 <right_node>1</right_node></_> 2956 <_> 2957 <!-- node 1 --> 2958 <feature> 2959 <rects> 2960 <_> 2961 1 3 9 8 -1.</_> 2962 <_> 2963 4 3 3 8 3.</_></rects> 2964 <tilted>0</tilted></feature> 2965 <threshold>-3.0552360694855452e-03</threshold> 2966 <left_val>0.4285230040550232</left_val> 2967 <right_val>-0.2825263142585754</right_val></_></_> 2968 <_> 2969 <!-- tree 3 --> 2970 <_> 2971 <!-- root node --> 2972 <feature> 2973 <rects> 2974 <_> 2975 3 6 2 3 -1.</_> 2976 <_> 2977 2 7 2 1 3.</_></rects> 2978 <tilted>1</tilted></feature> 2979 <threshold>4.8042940907180309e-03</threshold> 2980 <left_node>1</left_node> 2981 <right_val>-0.6865913867950439</right_val></_> 2982 <_> 2983 <!-- node 1 --> 2984 <feature> 2985 <rects> 2986 <_> 2987 3 6 2 3 -1.</_> 2988 <_> 2989 2 7 2 1 3.</_></rects> 2990 <tilted>1</tilted></feature> 2991 <threshold>-5.0092511810362339e-03</threshold> 2992 <left_val>-0.5903354287147522</left_val> 2993 <right_val>0.1973250061273575</right_val></_></_> 2994 <_> 2995 <!-- tree 4 --> 2996 <_> 2997 <!-- root node --> 2998 <feature> 2999 <rects> 3000 <_> 3001 17 7 1 12 -1.</_> 3002 <_> 3003 13 11 1 4 3.</_></rects> 3004 <tilted>1</tilted></feature> 3005 <threshold>-0.0371195189654827</threshold> 3006 <left_node>1</left_node> 3007 <right_val>-0.4313096106052399</right_val></_> 3008 <_> 3009 <!-- node 1 --> 3010 <feature> 3011 <rects> 3012 <_> 3013 0 0 1 15 -1.</_> 3014 <_> 3015 0 5 1 5 3.</_></rects> 3016 <tilted>0</tilted></feature> 3017 <threshold>3.7857799325138330e-03</threshold> 3018 <left_val>0.3359619081020355</left_val> 3019 <right_val>-0.3740172088146210</right_val></_></_> 3020 <_> 3021 <!-- tree 5 --> 3022 <_> 3023 <!-- root node --> 3024 <feature> 3025 <rects> 3026 <_> 3027 6 9 6 3 -1.</_> 3028 <_> 3029 6 10 6 1 3.</_></rects> 3030 <tilted>0</tilted></feature> 3031 <threshold>-0.0108698504045606</threshold> 3032 <left_val>0.5484120845794678</left_val> 3033 <right_node>1</right_node></_> 3034 <_> 3035 <!-- node 1 --> 3036 <feature> 3037 <rects> 3038 <_> 3039 3 18 3 2 -1.</_> 3040 <_> 3041 3 19 3 1 2.</_></rects> 3042 <tilted>0</tilted></feature> 3043 <threshold>4.0577541221864522e-04</threshold> 3044 <left_val>-0.5002269744873047</left_val> 3045 <right_val>0.0514238588511944</right_val></_></_> 3046 <_> 3047 <!-- tree 6 --> 3048 <_> 3049 <!-- root node --> 3050 <feature> 3051 <rects> 3052 <_> 3053 16 17 4 3 -1.</_> 3054 <_> 3055 16 18 4 1 3.</_></rects> 3056 <tilted>0</tilted></feature> 3057 <threshold>5.0201490521430969e-03</threshold> 3058 <left_node>1</left_node> 3059 <right_val>-0.5901622772216797</right_val></_> 3060 <_> 3061 <!-- node 1 --> 3062 <feature> 3063 <rects> 3064 <_> 3065 10 17 4 3 -1.</_> 3066 <_> 3067 11 17 2 3 2.</_></rects> 3068 <tilted>0</tilted></feature> 3069 <threshold>2.5601210072636604e-03</threshold> 3070 <left_val>0.1946980059146881</left_val> 3071 <right_val>-0.6464836001396179</right_val></_></_> 3072 <_> 3073 <!-- tree 7 --> 3074 <_> 3075 <!-- root node --> 3076 <feature> 3077 <rects> 3078 <_> 3079 13 13 4 3 -1.</_> 3080 <_> 3081 14 13 2 3 2.</_></rects> 3082 <tilted>0</tilted></feature> 3083 <threshold>-1.2395749799907207e-03</threshold> 3084 <left_node>1</left_node> 3085 <right_val>-0.2776215970516205</right_val></_> 3086 <_> 3087 <!-- node 1 --> 3088 <feature> 3089 <rects> 3090 <_> 3091 4 15 3 2 -1.</_> 3092 <_> 3093 5 16 1 2 3.</_></rects> 3094 <tilted>1</tilted></feature> 3095 <threshold>-5.1075750961899757e-03</threshold> 3096 <left_val>-0.6114916205406189</left_val> 3097 <right_val>0.3525038957595825</right_val></_></_> 3098 <_> 3099 <!-- tree 8 --> 3100 <_> 3101 <!-- root node --> 3102 <feature> 3103 <rects> 3104 <_> 3105 0 4 2 2 -1.</_> 3106 <_> 3107 1 4 1 2 2.</_></rects> 3108 <tilted>0</tilted></feature> 3109 <threshold>-6.4853738876990974e-05</threshold> 3110 <left_node>1</left_node> 3111 <right_val>-0.3400886058807373</right_val></_> 3112 <_> 3113 <!-- node 1 --> 3114 <feature> 3115 <rects> 3116 <_> 3117 4 0 2 5 -1.</_> 3118 <_> 3119 5 0 1 5 2.</_></rects> 3120 <tilted>0</tilted></feature> 3121 <threshold>2.3282810579985380e-03</threshold> 3122 <left_val>0.2713474929332733</left_val> 3123 <right_val>-0.6691539883613586</right_val></_></_> 3124 <_> 3125 <!-- tree 9 --> 3126 <_> 3127 <!-- root node --> 3128 <feature> 3129 <rects> 3130 <_> 3131 1 9 3 8 -1.</_> 3132 <_> 3133 1 11 3 4 2.</_></rects> 3134 <tilted>0</tilted></feature> 3135 <threshold>-1.5571110416203737e-03</threshold> 3136 <left_node>1</left_node> 3137 <right_val>-0.4114424884319305</right_val></_> 3138 <_> 3139 <!-- node 1 --> 3140 <feature> 3141 <rects> 3142 <_> 3143 5 8 1 3 -1.</_> 3144 <_> 3145 4 9 1 1 3.</_></rects> 3146 <tilted>1</tilted></feature> 3147 <threshold>2.3992219939827919e-03</threshold> 3148 <left_val>0.2593970000743866</left_val> 3149 <right_val>-0.4038029909133911</right_val></_></_> 3150 <_> 3151 <!-- tree 10 --> 3152 <_> 3153 <!-- root node --> 3154 <feature> 3155 <rects> 3156 <_> 3157 4 13 2 1 -1.</_> 3158 <_> 3159 5 13 1 1 2.</_></rects> 3160 <tilted>0</tilted></feature> 3161 <threshold>7.7784422319382429e-04</threshold> 3162 <left_node>1</left_node> 3163 <right_val>0.2952392101287842</right_val></_> 3164 <_> 3165 <!-- node 1 --> 3166 <feature> 3167 <rects> 3168 <_> 3169 9 11 4 9 -1.</_> 3170 <_> 3171 11 11 2 9 2.</_></rects> 3172 <tilted>0</tilted></feature> 3173 <threshold>3.2334199640899897e-03</threshold> 3174 <left_val>-0.5843685269355774</left_val> 3175 <right_val>-0.0179366394877434</right_val></_></_> 3176 <_> 3177 <!-- tree 11 --> 3178 <_> 3179 <!-- root node --> 3180 <feature> 3181 <rects> 3182 <_> 3183 0 1 1 2 -1.</_> 3184 <_> 3185 0 2 1 1 2.</_></rects> 3186 <tilted>0</tilted></feature> 3187 <threshold>-5.6113858590833843e-05</threshold> 3188 <left_node>1</left_node> 3189 <right_val>-0.3502165079116821</right_val></_> 3190 <_> 3191 <!-- node 1 --> 3192 <feature> 3193 <rects> 3194 <_> 3195 0 0 1 3 -1.</_> 3196 <_> 3197 0 1 1 1 3.</_></rects> 3198 <tilted>0</tilted></feature> 3199 <threshold>1.9111000001430511e-03</threshold> 3200 <left_val>0.2631261050701141</left_val> 3201 <right_val>-0.6154934763908386</right_val></_></_> 3202 <_> 3203 <!-- tree 12 --> 3204 <_> 3205 <!-- root node --> 3206 <feature> 3207 <rects> 3208 <_> 3209 12 11 1 4 -1.</_> 3210 <_> 3211 12 12 1 2 2.</_></rects> 3212 <tilted>0</tilted></feature> 3213 <threshold>-3.4321150742471218e-03</threshold> 3214 <left_val>0.3749330043792725</left_val> 3215 <right_node>1</right_node></_> 3216 <_> 3217 <!-- node 1 --> 3218 <feature> 3219 <rects> 3220 <_> 3221 16 10 3 3 -1.</_> 3222 <_> 3223 15 11 3 1 3.</_></rects> 3224 <tilted>1</tilted></feature> 3225 <threshold>-0.0145419696345925</threshold> 3226 <left_val>0.4378893077373505</left_val> 3227 <right_val>-0.3013161122798920</right_val></_></_> 3228 <_> 3229 <!-- tree 13 --> 3230 <_> 3231 <!-- root node --> 3232 <feature> 3233 <rects> 3234 <_> 3235 18 12 1 6 -1.</_> 3236 <_> 3237 18 12 1 3 2.</_></rects> 3238 <tilted>1</tilted></feature> 3239 <threshold>-0.0250270701944828</threshold> 3240 <left_val>-0.5282974839210510</left_val> 3241 <right_node>1</right_node></_> 3242 <_> 3243 <!-- node 1 --> 3244 <feature> 3245 <rects> 3246 <_> 3247 4 17 3 2 -1.</_> 3248 <_> 3249 5 17 1 2 3.</_></rects> 3250 <tilted>0</tilted></feature> 3251 <threshold>-3.1183639075607061e-03</threshold> 3252 <left_val>-0.8133684992790222</left_val> 3253 <right_val>0.1792842000722885</right_val></_></_> 3254 <_> 3255 <!-- tree 14 --> 3256 <_> 3257 <!-- root node --> 3258 <feature> 3259 <rects> 3260 <_> 3261 17 7 3 2 -1.</_> 3262 <_> 3263 18 8 1 2 3.</_></rects> 3264 <tilted>1</tilted></feature> 3265 <threshold>2.9415208846330643e-03</threshold> 3266 <left_node>1</left_node> 3267 <right_val>-0.4724305868148804</right_val></_> 3268 <_> 3269 <!-- node 1 --> 3270 <feature> 3271 <rects> 3272 <_> 3273 18 9 2 1 -1.</_> 3274 <_> 3275 18 9 1 1 2.</_></rects> 3276 <tilted>1</tilted></feature> 3277 <threshold>-2.4807679001241922e-03</threshold> 3278 <left_val>-0.6005833148956299</left_val> 3279 <right_val>0.2149710953235626</right_val></_></_> 3280 <_> 3281 <!-- tree 15 --> 3282 <_> 3283 <!-- root node --> 3284 <feature> 3285 <rects> 3286 <_> 3287 8 11 4 5 -1.</_> 3288 <_> 3289 9 12 2 5 2.</_></rects> 3290 <tilted>1</tilted></feature> 3291 <threshold>-4.2498838156461716e-03</threshold> 3292 <left_node>1</left_node> 3293 <right_val>-0.3323060870170593</right_val></_> 3294 <_> 3295 <!-- node 1 --> 3296 <feature> 3297 <rects> 3298 <_> 3299 7 1 2 7 -1.</_> 3300 <_> 3301 8 1 1 7 2.</_></rects> 3302 <tilted>0</tilted></feature> 3303 <threshold>7.6959328725934029e-03</threshold> 3304 <left_val>0.2124706953763962</left_val> 3305 <right_val>-0.8196725249290466</right_val></_></_> 3306 <_> 3307 <!-- tree 16 --> 3308 <_> 3309 <!-- root node --> 3310 <feature> 3311 <rects> 3312 <_> 3313 4 4 14 6 -1.</_> 3314 <_> 3315 4 6 14 2 3.</_></rects> 3316 <tilted>0</tilted></feature> 3317 <threshold>-0.0614260397851467</threshold> 3318 <left_val>0.5220044851303101</left_val> 3319 <right_node>1</right_node></_> 3320 <_> 3321 <!-- node 1 --> 3322 <feature> 3323 <rects> 3324 <_> 3325 2 2 11 6 -1.</_> 3326 <_> 3327 2 5 11 3 2.</_></rects> 3328 <tilted>0</tilted></feature> 3329 <threshold>0.0531767904758453</threshold> 3330 <left_val>-0.2985176146030426</left_val> 3331 <right_val>0.2865419089794159</right_val></_></_> 3332 <_> 3333 <!-- tree 17 --> 3334 <_> 3335 <!-- root node --> 3336 <feature> 3337 <rects> 3338 <_> 3339 18 16 2 2 -1.</_> 3340 <_> 3341 18 17 2 1 2.</_></rects> 3342 <tilted>0</tilted></feature> 3343 <threshold>2.5695779186207801e-05</threshold> 3344 <left_val>-0.3471929132938385</left_val> 3345 <right_node>1</right_node></_> 3346 <_> 3347 <!-- node 1 --> 3348 <feature> 3349 <rects> 3350 <_> 3351 17 11 2 6 -1.</_> 3352 <_> 3353 18 11 1 6 2.</_></rects> 3354 <tilted>0</tilted></feature> 3355 <threshold>2.4311970919370651e-03</threshold> 3356 <left_val>-0.1213349029421806</left_val> 3357 <right_val>0.3896535038948059</right_val></_></_> 3358 <_> 3359 <!-- tree 18 --> 3360 <_> 3361 <!-- root node --> 3362 <feature> 3363 <rects> 3364 <_> 3365 17 0 3 3 -1.</_> 3366 <_> 3367 18 1 1 3 3.</_></rects> 3368 <tilted>1</tilted></feature> 3369 <threshold>5.6956289336085320e-03</threshold> 3370 <left_node>1</left_node> 3371 <right_val>-0.6636403203010559</right_val></_> 3372 <_> 3373 <!-- node 1 --> 3374 <feature> 3375 <rects> 3376 <_> 3377 18 0 2 6 -1.</_> 3378 <_> 3379 18 3 2 3 2.</_></rects> 3380 <tilted>0</tilted></feature> 3381 <threshold>-6.6630227956920862e-04</threshold> 3382 <left_val>0.2792190909385681</left_val> 3383 <right_val>-0.2162484973669052</right_val></_></_></trees> 3384 <stage_threshold>-2.1061589717864990</stage_threshold> 3385 <parent>9</parent> 3386 <next>-1</next></_> 3387 <_> 3388 <!-- stage 11 --> 3389 <trees> 3390 <_> 3391 <!-- tree 0 --> 3392 <_> 3393 <!-- root node --> 3394 <feature> 3395 <rects> 3396 <_> 3397 4 7 6 8 -1.</_> 3398 <_> 3399 4 7 3 4 2.</_> 3400 <_> 3401 7 11 3 4 2.</_></rects> 3402 <tilted>0</tilted></feature> 3403 <threshold>-0.0285095497965813</threshold> 3404 <left_node>1</left_node> 3405 <right_val>-0.5513324141502380</right_val></_> 3406 <_> 3407 <!-- node 1 --> 3408 <feature> 3409 <rects> 3410 <_> 3411 11 11 4 2 -1.</_> 3412 <_> 3413 11 11 2 2 2.</_></rects> 3414 <tilted>1</tilted></feature> 3415 <threshold>-0.0164291094988585</threshold> 3416 <left_val>0.6032876968383789</left_val> 3417 <right_val>-0.3000960052013397</right_val></_></_> 3418 <_> 3419 <!-- tree 1 --> 3420 <_> 3421 <!-- root node --> 3422 <feature> 3423 <rects> 3424 <_> 3425 0 0 6 7 -1.</_> 3426 <_> 3427 3 0 3 7 2.</_></rects> 3428 <tilted>0</tilted></feature> 3429 <threshold>-5.8078952133655548e-03</threshold> 3430 <left_node>1</left_node> 3431 <right_val>-0.4864051938056946</right_val></_> 3432 <_> 3433 <!-- node 1 --> 3434 <feature> 3435 <rects> 3436 <_> 3437 15 10 5 8 -1.</_> 3438 <_> 3439 15 12 5 4 2.</_></rects> 3440 <tilted>0</tilted></feature> 3441 <threshold>-0.0146703496575356</threshold> 3442 <left_val>0.4478665888309479</left_val> 3443 <right_val>-0.3544836044311523</right_val></_></_> 3444 <_> 3445 <!-- tree 2 --> 3446 <_> 3447 <!-- root node --> 3448 <feature> 3449 <rects> 3450 <_> 3451 2 10 3 8 -1.</_> 3452 <_> 3453 3 10 1 8 3.</_></rects> 3454 <tilted>0</tilted></feature> 3455 <threshold>-1.0694459779188037e-03</threshold> 3456 <left_node>1</left_node> 3457 <right_val>-0.3859311938285828</right_val></_> 3458 <_> 3459 <!-- node 1 --> 3460 <feature> 3461 <rects> 3462 <_> 3463 9 7 6 6 -1.</_> 3464 <_> 3465 7 9 6 2 3.</_></rects> 3466 <tilted>1</tilted></feature> 3467 <threshold>-0.0506975390017033</threshold> 3468 <left_val>0.4386560022830963</left_val> 3469 <right_val>-0.3113405108451843</right_val></_></_> 3470 <_> 3471 <!-- tree 3 --> 3472 <_> 3473 <!-- root node --> 3474 <feature> 3475 <rects> 3476 <_> 3477 4 1 6 6 -1.</_> 3478 <_> 3479 4 4 6 3 2.</_></rects> 3480 <tilted>0</tilted></feature> 3481 <threshold>-0.0723180174827576</threshold> 3482 <left_val>0.5569549202919006</left_val> 3483 <right_node>1</right_node></_> 3484 <_> 3485 <!-- node 1 --> 3486 <feature> 3487 <rects> 3488 <_> 3489 4 0 16 2 -1.</_> 3490 <_> 3491 4 1 16 1 2.</_></rects> 3492 <tilted>0</tilted></feature> 3493 <threshold>-0.0167407598346472</threshold> 3494 <left_val>0.3403693139553070</left_val> 3495 <right_val>-0.3771306872367859</right_val></_></_> 3496 <_> 3497 <!-- tree 4 --> 3498 <_> 3499 <!-- root node --> 3500 <feature> 3501 <rects> 3502 <_> 3503 14 8 6 6 -1.</_> 3504 <_> 3505 14 8 3 3 2.</_> 3506 <_> 3507 17 11 3 3 2.</_></rects> 3508 <tilted>0</tilted></feature> 3509 <threshold>0.0129232602193952</threshold> 3510 <left_node>1</left_node> 3511 <right_val>0.2698718011379242</right_val></_> 3512 <_> 3513 <!-- node 1 --> 3514 <feature> 3515 <rects> 3516 <_> 3517 4 12 2 8 -1.</_> 3518 <_> 3519 4 12 1 4 2.</_> 3520 <_> 3521 5 16 1 4 2.</_></rects> 3522 <tilted>0</tilted></feature> 3523 <threshold>-2.0832989830523729e-03</threshold> 3524 <left_val>0.0722172632813454</left_val> 3525 <right_val>-0.5061725974082947</right_val></_></_> 3526 <_> 3527 <!-- tree 5 --> 3528 <_> 3529 <!-- root node --> 3530 <feature> 3531 <rects> 3532 <_> 3533 0 18 7 2 -1.</_> 3534 <_> 3535 0 19 7 1 2.</_></rects> 3536 <tilted>0</tilted></feature> 3537 <threshold>2.9217539122328162e-04</threshold> 3538 <left_val>-0.4719946980476379</left_val> 3539 <right_node>1</right_node></_> 3540 <_> 3541 <!-- node 1 --> 3542 <feature> 3543 <rects> 3544 <_> 3545 9 13 1 4 -1.</_> 3546 <_> 3547 9 15 1 2 2.</_></rects> 3548 <tilted>0</tilted></feature> 3549 <threshold>4.6477448195219040e-03</threshold> 3550 <left_val>-0.2023364007472992</left_val> 3551 <right_val>0.3668462038040161</right_val></_></_> 3552 <_> 3553 <!-- tree 6 --> 3554 <_> 3555 <!-- root node --> 3556 <feature> 3557 <rects> 3558 <_> 3559 18 10 2 8 -1.</_> 3560 <_> 3561 19 10 1 8 2.</_></rects> 3562 <tilted>0</tilted></feature> 3563 <threshold>1.6355320112779737e-03</threshold> 3564 <left_val>-0.3336915075778961</left_val> 3565 <right_node>1</right_node></_> 3566 <_> 3567 <!-- node 1 --> 3568 <feature> 3569 <rects> 3570 <_> 3571 6 0 4 8 -1.</_> 3572 <_> 3573 7 0 2 8 2.</_></rects> 3574 <tilted>0</tilted></feature> 3575 <threshold>6.0143060982227325e-03</threshold> 3576 <left_val>0.2633537054061890</left_val> 3577 <right_val>-0.7531512975692749</right_val></_></_> 3578 <_> 3579 <!-- tree 7 --> 3580 <_> 3581 <!-- root node --> 3582 <feature> 3583 <rects> 3584 <_> 3585 1 2 6 6 -1.</_> 3586 <_> 3587 3 2 2 6 3.</_></rects> 3588 <tilted>0</tilted></feature> 3589 <threshold>-0.0197680406272411</threshold> 3590 <left_val>-0.7339664101600647</left_val> 3591 <right_node>1</right_node></_> 3592 <_> 3593 <!-- node 1 --> 3594 <feature> 3595 <rects> 3596 <_> 3597 10 10 8 2 -1.</_> 3598 <_> 3599 10 10 4 1 2.</_> 3600 <_> 3601 14 11 4 1 2.</_></rects> 3602 <tilted>0</tilted></feature> 3603 <threshold>5.0995801575481892e-03</threshold> 3604 <left_val>-0.1062633022665977</left_val> 3605 <right_val>0.3787747919559479</right_val></_></_> 3606 <_> 3607 <!-- tree 8 --> 3608 <_> 3609 <!-- root node --> 3610 <feature> 3611 <rects> 3612 <_> 3613 3 9 2 3 -1.</_> 3614 <_> 3615 2 10 2 1 3.</_></rects> 3616 <tilted>1</tilted></feature> 3617 <threshold>2.1737320348620415e-03</threshold> 3618 <left_node>1</left_node> 3619 <right_val>-0.4587362110614777</right_val></_> 3620 <_> 3621 <!-- node 1 --> 3622 <feature> 3623 <rects> 3624 <_> 3625 5 1 13 6 -1.</_> 3626 <_> 3627 5 3 13 2 3.</_></rects> 3628 <tilted>0</tilted></feature> 3629 <threshold>0.0236210599541664</threshold> 3630 <left_val>-0.0373419895768166</left_val> 3631 <right_val>0.5031296014785767</right_val></_></_> 3632 <_> 3633 <!-- tree 9 --> 3634 <_> 3635 <!-- root node --> 3636 <feature> 3637 <rects> 3638 <_> 3639 4 4 13 6 -1.</_> 3640 <_> 3641 4 6 13 2 3.</_></rects> 3642 <tilted>0</tilted></feature> 3643 <threshold>0.0470704399049282</threshold> 3644 <left_node>1</left_node> 3645 <right_val>0.3915967047214508</right_val></_> 3646 <_> 3647 <!-- node 1 --> 3648 <feature> 3649 <rects> 3650 <_> 3651 8 1 4 5 -1.</_> 3652 <_> 3653 8 1 2 5 2.</_></rects> 3654 <tilted>1</tilted></feature> 3655 <threshold>0.0484291613101959</threshold> 3656 <left_val>-0.2750763893127441</left_val> 3657 <right_val>0.3692345023155212</right_val></_></_> 3658 <_> 3659 <!-- tree 10 --> 3660 <_> 3661 <!-- root node --> 3662 <feature> 3663 <rects> 3664 <_> 3665 7 7 2 1 -1.</_> 3666 <_> 3667 8 7 1 1 2.</_></rects> 3668 <tilted>0</tilted></feature> 3669 <threshold>7.1763257437851280e-05</threshold> 3670 <left_val>-0.2613370120525360</left_val> 3671 <right_node>1</right_node></_> 3672 <_> 3673 <!-- node 1 --> 3674 <feature> 3675 <rects> 3676 <_> 3677 5 5 4 4 -1.</_> 3678 <_> 3679 6 5 2 4 2.</_></rects> 3680 <tilted>0</tilted></feature> 3681 <threshold>-4.0031517855823040e-03</threshold> 3682 <left_val>-0.4611847996711731</left_val> 3683 <right_val>0.3410157859325409</right_val></_></_> 3684 <_> 3685 <!-- tree 11 --> 3686 <_> 3687 <!-- root node --> 3688 <feature> 3689 <rects> 3690 <_> 3691 14 12 4 2 -1.</_> 3692 <_> 3693 14 12 2 1 2.</_> 3694 <_> 3695 16 13 2 1 2.</_></rects> 3696 <tilted>0</tilted></feature> 3697 <threshold>2.5536299217492342e-03</threshold> 3698 <left_node>1</left_node> 3699 <right_val>0.4423784911632538</right_val></_> 3700 <_> 3701 <!-- node 1 --> 3702 <feature> 3703 <rects> 3704 <_> 3705 13 11 4 2 -1.</_> 3706 <_> 3707 13 11 2 1 2.</_> 3708 <_> 3709 15 12 2 1 2.</_></rects> 3710 <tilted>0</tilted></feature> 3711 <threshold>-2.5720898993313313e-03</threshold> 3712 <left_val>0.4306653141975403</left_val> 3713 <right_val>-0.2836068868637085</right_val></_></_> 3714 <_> 3715 <!-- tree 12 --> 3716 <_> 3717 <!-- root node --> 3718 <feature> 3719 <rects> 3720 <_> 3721 16 10 4 3 -1.</_> 3722 <_> 3723 16 11 4 1 3.</_></rects> 3724 <tilted>0</tilted></feature> 3725 <threshold>8.7512210011482239e-03</threshold> 3726 <left_node>1</left_node> 3727 <right_val>-0.7764763236045837</right_val></_> 3728 <_> 3729 <!-- node 1 --> 3730 <feature> 3731 <rects> 3732 <_> 3733 10 0 4 5 -1.</_> 3734 <_> 3735 11 0 2 5 2.</_></rects> 3736 <tilted>0</tilted></feature> 3737 <threshold>5.7346918620169163e-03</threshold> 3738 <left_val>0.1455115973949432</left_val> 3739 <right_val>-0.7507416009902954</right_val></_></_> 3740 <_> 3741 <!-- tree 13 --> 3742 <_> 3743 <!-- root node --> 3744 <feature> 3745 <rects> 3746 <_> 3747 8 11 1 3 -1.</_> 3748 <_> 3749 7 12 1 1 3.</_></rects> 3750 <tilted>1</tilted></feature> 3751 <threshold>-6.6438838839530945e-03</threshold> 3752 <left_val>0.4035055041313171</left_val> 3753 <right_node>1</right_node></_> 3754 <_> 3755 <!-- node 1 --> 3756 <feature> 3757 <rects> 3758 <_> 3759 6 12 3 2 -1.</_> 3760 <_> 3761 7 12 1 2 3.</_></rects> 3762 <tilted>0</tilted></feature> 3763 <threshold>-3.4590701106935740e-03</threshold> 3764 <left_val>0.2876971960067749</left_val> 3765 <right_val>-0.2802160084247589</right_val></_></_> 3766 <_> 3767 <!-- tree 14 --> 3768 <_> 3769 <!-- root node --> 3770 <feature> 3771 <rects> 3772 <_> 3773 17 8 2 3 -1.</_> 3774 <_> 3775 17 8 1 3 2.</_></rects> 3776 <tilted>1</tilted></feature> 3777 <threshold>9.9742468446493149e-03</threshold> 3778 <left_node>1</left_node> 3779 <right_val>-0.6067702174186707</right_val></_> 3780 <_> 3781 <!-- node 1 --> 3782 <feature> 3783 <rects> 3784 <_> 3785 11 0 6 5 -1.</_> 3786 <_> 3787 13 0 2 5 3.</_></rects> 3788 <tilted>0</tilted></feature> 3789 <threshold>0.0132336597889662</threshold> 3790 <left_val>0.1547808051109314</left_val> 3791 <right_val>-0.7075914740562439</right_val></_></_> 3792 <_> 3793 <!-- tree 15 --> 3794 <_> 3795 <!-- root node --> 3796 <feature> 3797 <rects> 3798 <_> 3799 0 0 3 3 -1.</_> 3800 <_> 3801 0 1 3 1 3.</_></rects> 3802 <tilted>0</tilted></feature> 3803 <threshold>-5.0271311774849892e-03</threshold> 3804 <left_val>-0.7389777898788452</left_val> 3805 <right_node>1</right_node></_> 3806 <_> 3807 <!-- node 1 --> 3808 <feature> 3809 <rects> 3810 <_> 3811 2 0 1 2 -1.</_> 3812 <_> 3813 2 1 1 1 2.</_></rects> 3814 <tilted>0</tilted></feature> 3815 <threshold>-1.2092100223526359e-04</threshold> 3816 <left_val>0.2347300052642822</left_val> 3817 <right_val>-0.2440057992935181</right_val></_></_> 3818 <_> 3819 <!-- tree 16 --> 3820 <_> 3821 <!-- root node --> 3822 <feature> 3823 <rects> 3824 <_> 3825 13 11 7 2 -1.</_> 3826 <_> 3827 13 12 7 1 2.</_></rects> 3828 <tilted>0</tilted></feature> 3829 <threshold>-1.2881499715149403e-03</threshold> 3830 <left_node>1</left_node> 3831 <right_val>-0.2890166938304901</right_val></_> 3832 <_> 3833 <!-- node 1 --> 3834 <feature> 3835 <rects> 3836 <_> 3837 17 8 3 3 -1.</_> 3838 <_> 3839 18 9 1 3 3.</_></rects> 3840 <tilted>1</tilted></feature> 3841 <threshold>6.2854858115315437e-03</threshold> 3842 <left_val>0.2810086905956268</left_val> 3843 <right_val>-0.5693385004997253</right_val></_></_> 3844 <_> 3845 <!-- tree 17 --> 3846 <_> 3847 <!-- root node --> 3848 <feature> 3849 <rects> 3850 <_> 3851 15 15 1 3 -1.</_> 3852 <_> 3853 14 16 1 1 3.</_></rects> 3854 <tilted>1</tilted></feature> 3855 <threshold>5.6929360143840313e-03</threshold> 3856 <left_node>1</left_node> 3857 <right_val>-0.7845693230628967</right_val></_> 3858 <_> 3859 <!-- node 1 --> 3860 <feature> 3861 <rects> 3862 <_> 3863 6 13 6 2 -1.</_> 3864 <_> 3865 8 13 2 2 3.</_></rects> 3866 <tilted>0</tilted></feature> 3867 <threshold>-5.3880861960351467e-03</threshold> 3868 <left_val>0.2620132863521576</left_val> 3869 <right_val>-0.2223203033208847</right_val></_></_> 3870 <_> 3871 <!-- tree 18 --> 3872 <_> 3873 <!-- root node --> 3874 <feature> 3875 <rects> 3876 <_> 3877 8 10 3 4 -1.</_> 3878 <_> 3879 9 10 1 4 3.</_></rects> 3880 <tilted>0</tilted></feature> 3881 <threshold>4.8205819912254810e-03</threshold> 3882 <left_node>1</left_node> 3883 <right_val>0.5679597258567810</right_val></_> 3884 <_> 3885 <!-- node 1 --> 3886 <feature> 3887 <rects> 3888 <_> 3889 7 0 12 19 -1.</_> 3890 <_> 3891 13 0 6 19 2.</_></rects> 3892 <tilted>0</tilted></feature> 3893 <threshold>0.3427918851375580</threshold> 3894 <left_val>-0.1831423044204712</left_val> 3895 <right_val>0.5410807132720947</right_val></_></_> 3896 <_> 3897 <!-- tree 19 --> 3898 <_> 3899 <!-- root node --> 3900 <feature> 3901 <rects> 3902 <_> 3903 12 16 8 4 -1.</_> 3904 <_> 3905 12 18 8 2 2.</_></rects> 3906 <tilted>0</tilted></feature> 3907 <threshold>5.1370919682085514e-03</threshold> 3908 <left_val>-0.3911676108837128</left_val> 3909 <right_node>1</right_node></_> 3910 <_> 3911 <!-- node 1 --> 3912 <feature> 3913 <rects> 3914 <_> 3915 8 5 12 2 -1.</_> 3916 <_> 3917 14 5 6 2 2.</_></rects> 3918 <tilted>0</tilted></feature> 3919 <threshold>-9.1285221278667450e-03</threshold> 3920 <left_val>0.5307633876800537</left_val> 3921 <right_val>-0.0300193093717098</right_val></_></_></trees> 3922 <stage_threshold>-2.0051579475402832</stage_threshold> 3923 <parent>10</parent> 3924 <next>-1</next></_> 3925 <_> 3926 <!-- stage 12 --> 3927 <trees> 3928 <_> 3929 <!-- tree 0 --> 3930 <_> 3931 <!-- root node --> 3932 <feature> 3933 <rects> 3934 <_> 3935 10 8 6 4 -1.</_> 3936 <_> 3937 12 10 2 4 3.</_></rects> 3938 <tilted>1</tilted></feature> 3939 <threshold>-0.0513861291110516</threshold> 3940 <left_node>1</left_node> 3941 <right_val>-0.5314878225326538</right_val></_> 3942 <_> 3943 <!-- node 1 --> 3944 <feature> 3945 <rects> 3946 <_> 3947 4 11 3 4 -1.</_> 3948 <_> 3949 4 13 3 2 2.</_></rects> 3950 <tilted>0</tilted></feature> 3951 <threshold>5.1850839518010616e-03</threshold> 3952 <left_val>-0.2474454045295715</left_val> 3953 <right_val>0.6118162274360657</right_val></_></_> 3954 <_> 3955 <!-- tree 1 --> 3956 <_> 3957 <!-- root node --> 3958 <feature> 3959 <rects> 3960 <_> 3961 0 2 12 7 -1.</_> 3962 <_> 3963 3 2 6 7 2.</_></rects> 3964 <tilted>0</tilted></feature> 3965 <threshold>-0.0152594000101089</threshold> 3966 <left_node>1</left_node> 3967 <right_val>-0.4330362975597382</right_val></_> 3968 <_> 3969 <!-- node 1 --> 3970 <feature> 3971 <rects> 3972 <_> 3973 8 0 4 2 -1.</_> 3974 <_> 3975 8 0 2 2 2.</_></rects> 3976 <tilted>1</tilted></feature> 3977 <threshold>0.0259951502084732</threshold> 3978 <left_val>0.0439799018204212</left_val> 3979 <right_val>0.7382913827896118</right_val></_></_> 3980 <_> 3981 <!-- tree 2 --> 3982 <_> 3983 <!-- root node --> 3984 <feature> 3985 <rects> 3986 <_> 3987 13 11 6 6 -1.</_> 3988 <_> 3989 15 13 2 2 9.</_></rects> 3990 <tilted>0</tilted></feature> 3991 <threshold>-0.0323123708367348</threshold> 3992 <left_node>1</left_node> 3993 <right_val>-0.3960975110530853</right_val></_> 3994 <_> 3995 <!-- node 1 --> 3996 <feature> 3997 <rects> 3998 <_> 3999 7 11 10 4 -1.</_> 4000 <_> 4001 12 11 5 4 2.</_></rects> 4002 <tilted>0</tilted></feature> 4003 <threshold>0.0137007003650069</threshold> 4004 <left_val>-0.2764388024806976</left_val> 4005 <right_val>0.4253535866737366</right_val></_></_> 4006 <_> 4007 <!-- tree 3 --> 4008 <_> 4009 <!-- root node --> 4010 <feature> 4011 <rects> 4012 <_> 4013 1 11 4 5 -1.</_> 4014 <_> 4015 2 11 2 5 2.</_></rects> 4016 <tilted>0</tilted></feature> 4017 <threshold>-2.2647869773209095e-03</threshold> 4018 <left_node>1</left_node> 4019 <right_val>-0.3200556933879852</right_val></_> 4020 <_> 4021 <!-- node 1 --> 4022 <feature> 4023 <rects> 4024 <_> 4025 2 14 4 2 -1.</_> 4026 <_> 4027 3 15 2 2 2.</_></rects> 4028 <tilted>1</tilted></feature> 4029 <threshold>-6.8290620110929012e-03</threshold> 4030 <left_val>-0.5168297290802002</left_val> 4031 <right_val>0.3697570860385895</right_val></_></_> 4032 <_> 4033 <!-- tree 4 --> 4034 <_> 4035 <!-- root node --> 4036 <feature> 4037 <rects> 4038 <_> 4039 0 0 1 6 -1.</_> 4040 <_> 4041 0 3 1 3 2.</_></rects> 4042 <tilted>0</tilted></feature> 4043 <threshold>-2.2481549531221390e-03</threshold> 4044 <left_node>1</left_node> 4045 <right_val>-0.3624435067176819</right_val></_> 4046 <_> 4047 <!-- node 1 --> 4048 <feature> 4049 <rects> 4050 <_> 4051 6 2 6 6 -1.</_> 4052 <_> 4053 6 5 6 3 2.</_></rects> 4054 <tilted>0</tilted></feature> 4055 <threshold>0.0459445491433144</threshold> 4056 <left_val>-1.3187309959903359e-03</left_val> 4057 <right_val>0.6321768164634705</right_val></_></_> 4058 <_> 4059 <!-- tree 5 --> 4060 <_> 4061 <!-- root node --> 4062 <feature> 4063 <rects> 4064 <_> 4065 6 18 4 2 -1.</_> 4066 <_> 4067 7 18 2 2 2.</_></rects> 4068 <tilted>0</tilted></feature> 4069 <threshold>1.8755620112642646e-03</threshold> 4070 <left_node>1</left_node> 4071 <right_val>-0.7140339016914368</right_val></_> 4072 <_> 4073 <!-- node 1 --> 4074 <feature> 4075 <rects> 4076 <_> 4077 6 18 4 2 -1.</_> 4078 <_> 4079 7 18 2 2 2.</_></rects> 4080 <tilted>0</tilted></feature> 4081 <threshold>-1.9700559787452221e-03</threshold> 4082 <left_val>-0.5873066186904907</left_val> 4083 <right_val>0.1759281009435654</right_val></_></_> 4084 <_> 4085 <!-- tree 6 --> 4086 <_> 4087 <!-- root node --> 4088 <feature> 4089 <rects> 4090 <_> 4091 4 4 7 4 -1.</_> 4092 <_> 4093 3 5 7 2 2.</_></rects> 4094 <tilted>1</tilted></feature> 4095 <threshold>-6.5721389837563038e-03</threshold> 4096 <left_node>1</left_node> 4097 <right_val>-0.3634751141071320</right_val></_> 4098 <_> 4099 <!-- node 1 --> 4100 <feature> 4101 <rects> 4102 <_> 4103 5 8 8 12 -1.</_> 4104 <_> 4105 7 8 4 12 2.</_></rects> 4106 <tilted>0</tilted></feature> 4107 <threshold>-0.0117461802437901</threshold> 4108 <left_val>0.3144079148769379</left_val> 4109 <right_val>-0.4011111855506897</right_val></_></_> 4110 <_> 4111 <!-- tree 7 --> 4112 <_> 4113 <!-- root node --> 4114 <feature> 4115 <rects> 4116 <_> 4117 5 17 2 1 -1.</_> 4118 <_> 4119 5 17 1 1 2.</_></rects> 4120 <tilted>1</tilted></feature> 4121 <threshold>-1.6494120063725859e-04</threshold> 4122 <left_node>1</left_node> 4123 <right_val>-0.3779259026050568</right_val></_> 4124 <_> 4125 <!-- node 1 --> 4126 <feature> 4127 <rects> 4128 <_> 4129 4 18 2 1 -1.</_> 4130 <_> 4131 5 18 1 1 2.</_></rects> 4132 <tilted>0</tilted></feature> 4133 <threshold>-7.2169408667832613e-05</threshold> 4134 <left_val>0.5279111266136169</left_val> 4135 <right_val>-0.1079031974077225</right_val></_></_> 4136 <_> 4137 <!-- tree 8 --> 4138 <_> 4139 <!-- root node --> 4140 <feature> 4141 <rects> 4142 <_> 4143 13 16 7 2 -1.</_> 4144 <_> 4145 13 17 7 1 2.</_></rects> 4146 <tilted>0</tilted></feature> 4147 <threshold>1.9697639800142497e-04</threshold> 4148 <left_val>-0.4709764122962952</left_val> 4149 <right_node>1</right_node></_> 4150 <_> 4151 <!-- node 1 --> 4152 <feature> 4153 <rects> 4154 <_> 4155 7 15 2 3 -1.</_> 4156 <_> 4157 7 15 1 3 2.</_></rects> 4158 <tilted>1</tilted></feature> 4159 <threshold>-0.0114235095679760</threshold> 4160 <left_val>-0.8520929217338562</left_val> 4161 <right_val>0.1766286939382553</right_val></_></_> 4162 <_> 4163 <!-- tree 9 --> 4164 <_> 4165 <!-- root node --> 4166 <feature> 4167 <rects> 4168 <_> 4169 9 2 4 5 -1.</_> 4170 <_> 4171 10 2 2 5 2.</_></rects> 4172 <tilted>0</tilted></feature> 4173 <threshold>-4.5562228187918663e-03</threshold> 4174 <left_val>-0.8060116171836853</left_val> 4175 <right_node>1</right_node></_> 4176 <_> 4177 <!-- node 1 --> 4178 <feature> 4179 <rects> 4180 <_> 4181 7 2 4 6 -1.</_> 4182 <_> 4183 8 2 2 6 2.</_></rects> 4184 <tilted>0</tilted></feature> 4185 <threshold>-4.4720191508531570e-03</threshold> 4186 <left_val>-0.6150020956993103</left_val> 4187 <right_val>0.1290830969810486</right_val></_></_> 4188 <_> 4189 <!-- tree 10 --> 4190 <_> 4191 <!-- root node --> 4192 <feature> 4193 <rects> 4194 <_> 4195 3 12 3 3 -1.</_> 4196 <_> 4197 4 12 1 3 3.</_></rects> 4198 <tilted>0</tilted></feature> 4199 <threshold>-1.7765410011634231e-03</threshold> 4200 <left_val>0.3138259947299957</left_val> 4201 <right_node>1</right_node></_> 4202 <_> 4203 <!-- node 1 --> 4204 <feature> 4205 <rects> 4206 <_> 4207 5 12 3 3 -1.</_> 4208 <_> 4209 6 13 1 1 9.</_></rects> 4210 <tilted>0</tilted></feature> 4211 <threshold>-7.8799277544021606e-03</threshold> 4212 <left_val>0.3039462864398956</left_val> 4213 <right_val>-0.3720492124557495</right_val></_></_> 4214 <_> 4215 <!-- tree 11 --> 4216 <_> 4217 <!-- root node --> 4218 <feature> 4219 <rects> 4220 <_> 4221 4 12 3 2 -1.</_> 4222 <_> 4223 5 12 1 2 3.</_></rects> 4224 <tilted>0</tilted></feature> 4225 <threshold>-1.4284689677879214e-03</threshold> 4226 <left_val>0.5041303038597107</left_val> 4227 <right_node>1</right_node></_> 4228 <_> 4229 <!-- node 1 --> 4230 <feature> 4231 <rects> 4232 <_> 4233 10 13 3 1 -1.</_> 4234 <_> 4235 11 13 1 1 3.</_></rects> 4236 <tilted>0</tilted></feature> 4237 <threshold>-1.8939910223707557e-03</threshold> 4238 <left_val>0.3482376039028168</left_val> 4239 <right_val>-0.2367382049560547</right_val></_></_> 4240 <_> 4241 <!-- tree 12 --> 4242 <_> 4243 <!-- root node --> 4244 <feature> 4245 <rects> 4246 <_> 4247 11 5 4 3 -1.</_> 4248 <_> 4249 12 5 2 3 2.</_></rects> 4250 <tilted>0</tilted></feature> 4251 <threshold>-3.1496640294790268e-03</threshold> 4252 <left_val>-0.6681237816810608</left_val> 4253 <right_node>1</right_node></_> 4254 <_> 4255 <!-- node 1 --> 4256 <feature> 4257 <rects> 4258 <_> 4259 19 7 1 10 -1.</_> 4260 <_> 4261 19 12 1 5 2.</_></rects> 4262 <tilted>0</tilted></feature> 4263 <threshold>-0.0107161197811365</threshold> 4264 <left_val>-0.4851551949977875</left_val> 4265 <right_val>0.1903641968965530</right_val></_></_> 4266 <_> 4267 <!-- tree 13 --> 4268 <_> 4269 <!-- root node --> 4270 <feature> 4271 <rects> 4272 <_> 4273 4 8 2 3 -1.</_> 4274 <_> 4275 3 9 2 1 3.</_></rects> 4276 <tilted>1</tilted></feature> 4277 <threshold>-6.8033537827432156e-03</threshold> 4278 <left_val>-0.5697926878929138</left_val> 4279 <right_node>1</right_node></_> 4280 <_> 4281 <!-- node 1 --> 4282 <feature> 4283 <rects> 4284 <_> 4285 7 0 6 5 -1.</_> 4286 <_> 4287 9 0 2 5 3.</_></rects> 4288 <tilted>0</tilted></feature> 4289 <threshold>0.0149023197591305</threshold> 4290 <left_val>0.1309825032949448</left_val> 4291 <right_val>-0.7144827246665955</right_val></_></_> 4292 <_> 4293 <!-- tree 14 --> 4294 <_> 4295 <!-- root node --> 4296 <feature> 4297 <rects> 4298 <_> 4299 5 0 6 2 -1.</_> 4300 <_> 4301 5 0 3 2 2.</_></rects> 4302 <tilted>1</tilted></feature> 4303 <threshold>-0.0341702289879322</threshold> 4304 <left_val>0.5057513117790222</left_val> 4305 <right_node>1</right_node></_> 4306 <_> 4307 <!-- node 1 --> 4308 <feature> 4309 <rects> 4310 <_> 4311 5 0 13 9 -1.</_> 4312 <_> 4313 5 3 13 3 3.</_></rects> 4314 <tilted>0</tilted></feature> 4315 <threshold>-0.1477925032377243</threshold> 4316 <left_val>0.2823326885700226</left_val> 4317 <right_val>-0.2720532119274139</right_val></_></_> 4318 <_> 4319 <!-- tree 15 --> 4320 <_> 4321 <!-- root node --> 4322 <feature> 4323 <rects> 4324 <_> 4325 0 6 1 2 -1.</_> 4326 <_> 4327 0 7 1 1 2.</_></rects> 4328 <tilted>0</tilted></feature> 4329 <threshold>-5.5842810979811475e-05</threshold> 4330 <left_node>1</left_node> 4331 <right_val>-0.2693673074245453</right_val></_> 4332 <_> 4333 <!-- node 1 --> 4334 <feature> 4335 <rects> 4336 <_> 4337 1 0 16 6 -1.</_> 4338 <_> 4339 1 2 16 2 3.</_></rects> 4340 <tilted>0</tilted></feature> 4341 <threshold>0.0398850813508034</threshold> 4342 <left_val>5.6696129031479359e-03</left_val> 4343 <right_val>0.6397516131401062</right_val></_></_> 4344 <_> 4345 <!-- tree 16 --> 4346 <_> 4347 <!-- root node --> 4348 <feature> 4349 <rects> 4350 <_> 4351 18 0 2 4 -1.</_> 4352 <_> 4353 18 0 1 4 2.</_></rects> 4354 <tilted>1</tilted></feature> 4355 <threshold>0.0124831302091479</threshold> 4356 <left_node>1</left_node> 4357 <right_val>-0.7453374266624451</right_val></_> 4358 <_> 4359 <!-- node 1 --> 4360 <feature> 4361 <rects> 4362 <_> 4363 4 13 2 2 -1.</_> 4364 <_> 4365 4 13 1 1 2.</_> 4366 <_> 4367 5 14 1 1 2.</_></rects> 4368 <tilted>0</tilted></feature> 4369 <threshold>-3.2864511013031006e-04</threshold> 4370 <left_val>0.3644962012767792</left_val> 4371 <right_val>-0.0964988172054291</right_val></_></_> 4372 <_> 4373 <!-- tree 17 --> 4374 <_> 4375 <!-- root node --> 4376 <feature> 4377 <rects> 4378 <_> 4379 0 3 4 1 -1.</_> 4380 <_> 4381 2 3 2 1 2.</_></rects> 4382 <tilted>0</tilted></feature> 4383 <threshold>-1.4710469986312091e-04</threshold> 4384 <left_val>0.1406044065952301</left_val> 4385 <right_node>1</right_node></_> 4386 <_> 4387 <!-- node 1 --> 4388 <feature> 4389 <rects> 4390 <_> 4391 3 0 8 12 -1.</_> 4392 <_> 4393 3 6 8 6 2.</_></rects> 4394 <tilted>0</tilted></feature> 4395 <threshold>-0.2781434059143066</threshold> 4396 <left_val>0.5700283050537109</left_val> 4397 <right_val>-0.4875547885894775</right_val></_></_> 4398 <_> 4399 <!-- tree 18 --> 4400 <_> 4401 <!-- root node --> 4402 <feature> 4403 <rects> 4404 <_> 4405 12 13 4 1 -1.</_> 4406 <_> 4407 13 13 2 1 2.</_></rects> 4408 <tilted>0</tilted></feature> 4409 <threshold>-1.3452640268951654e-03</threshold> 4410 <left_val>0.3925583064556122</left_val> 4411 <right_node>1</right_node></_> 4412 <_> 4413 <!-- node 1 --> 4414 <feature> 4415 <rects> 4416 <_> 4417 12 12 2 2 -1.</_> 4418 <_> 4419 12 12 1 1 2.</_> 4420 <_> 4421 13 13 1 1 2.</_></rects> 4422 <tilted>0</tilted></feature> 4423 <threshold>9.1500842245295644e-04</threshold> 4424 <left_val>-0.3021517097949982</left_val> 4425 <right_val>0.3669803142547607</right_val></_></_> 4426 <_> 4427 <!-- tree 19 --> 4428 <_> 4429 <!-- root node --> 4430 <feature> 4431 <rects> 4432 <_> 4433 5 16 3 1 -1.</_> 4434 <_> 4435 6 17 1 1 3.</_></rects> 4436 <tilted>1</tilted></feature> 4437 <threshold>-3.4133149310946465e-03</threshold> 4438 <left_val>-0.6408581733703613</left_val> 4439 <right_node>1</right_node></_> 4440 <_> 4441 <!-- node 1 --> 4442 <feature> 4443 <rects> 4444 <_> 4445 3 13 8 4 -1.</_> 4446 <_> 4447 3 13 4 2 2.</_> 4448 <_> 4449 7 15 4 2 2.</_></rects> 4450 <tilted>0</tilted></feature> 4451 <threshold>5.1169008947908878e-03</threshold> 4452 <left_val>-0.2305258065462112</left_val> 4453 <right_val>0.2428591996431351</right_val></_></_> 4454 <_> 4455 <!-- tree 20 --> 4456 <_> 4457 <!-- root node --> 4458 <feature> 4459 <rects> 4460 <_> 4461 0 8 18 3 -1.</_> 4462 <_> 4463 6 9 6 1 9.</_></rects> 4464 <tilted>0</tilted></feature> 4465 <threshold>0.0888466984033585</threshold> 4466 <left_node>1</left_node> 4467 <right_val>0.4538188874721527</right_val></_> 4468 <_> 4469 <!-- node 1 --> 4470 <feature> 4471 <rects> 4472 <_> 4473 8 4 6 5 -1.</_> 4474 <_> 4475 11 4 3 5 2.</_></rects> 4476 <tilted>0</tilted></feature> 4477 <threshold>6.1080828309059143e-03</threshold> 4478 <left_val>-0.3588008880615234</left_val> 4479 <right_val>0.1320938020944595</right_val></_></_></trees> 4480 <stage_threshold>-2.1121981143951416</stage_threshold> 4481 <parent>11</parent> 4482 <next>-1</next></_> 4483 <_> 4484 <!-- stage 13 --> 4485 <trees> 4486 <_> 4487 <!-- tree 0 --> 4488 <_> 4489 <!-- root node --> 4490 <feature> 4491 <rects> 4492 <_> 4493 5 14 9 1 -1.</_> 4494 <_> 4495 8 14 3 1 3.</_></rects> 4496 <tilted>0</tilted></feature> 4497 <threshold>-0.0159300006926060</threshold> 4498 <left_node>1</left_node> 4499 <right_val>-0.3524534106254578</right_val></_> 4500 <_> 4501 <!-- node 1 --> 4502 <feature> 4503 <rects> 4504 <_> 4505 4 0 4 4 -1.</_> 4506 <_> 4507 4 0 2 4 2.</_></rects> 4508 <tilted>1</tilted></feature> 4509 <threshold>0.0274074506014585</threshold> 4510 <left_val>-0.0602367892861366</left_val> 4511 <right_val>0.7271584868431091</right_val></_></_> 4512 <_> 4513 <!-- tree 1 --> 4514 <_> 4515 <!-- root node --> 4516 <feature> 4517 <rects> 4518 <_> 4519 7 9 12 8 -1.</_> 4520 <_> 4521 7 11 12 4 2.</_></rects> 4522 <tilted>0</tilted></feature> 4523 <threshold>-0.0850376784801483</threshold> 4524 <left_node>1</left_node> 4525 <right_val>-0.4357671141624451</right_val></_> 4526 <_> 4527 <!-- node 1 --> 4528 <feature> 4529 <rects> 4530 <_> 4531 18 15 2 1 -1.</_> 4532 <_> 4533 18 15 1 1 2.</_></rects> 4534 <tilted>1</tilted></feature> 4535 <threshold>-1.1508919997140765e-03</threshold> 4536 <left_val>0.4647167921066284</left_val> 4537 <right_val>-0.3589689135551453</right_val></_></_> 4538 <_> 4539 <!-- tree 2 --> 4540 <_> 4541 <!-- root node --> 4542 <feature> 4543 <rects> 4544 <_> 4545 3 13 2 4 -1.</_> 4546 <_> 4547 3 13 1 2 2.</_> 4548 <_> 4549 4 15 1 2 2.</_></rects> 4550 <tilted>0</tilted></feature> 4551 <threshold>-6.4599298639222980e-04</threshold> 4552 <left_node>1</left_node> 4553 <right_val>-0.3137106001377106</right_val></_> 4554 <_> 4555 <!-- node 1 --> 4556 <feature> 4557 <rects> 4558 <_> 4559 4 7 3 3 -1.</_> 4560 <_> 4561 3 8 3 1 3.</_></rects> 4562 <tilted>1</tilted></feature> 4563 <threshold>5.5495807901024818e-03</threshold> 4564 <left_val>0.4122591912746429</left_val> 4565 <right_val>-0.4940044879913330</right_val></_></_> 4566 <_> 4567 <!-- tree 3 --> 4568 <_> 4569 <!-- root node --> 4570 <feature> 4571 <rects> 4572 <_> 4573 0 1 2 7 -1.</_> 4574 <_> 4575 1 1 1 7 2.</_></rects> 4576 <tilted>0</tilted></feature> 4577 <threshold>-1.1472150217741728e-03</threshold> 4578 <left_node>1</left_node> 4579 <right_val>-0.3919258117675781</right_val></_> 4580 <_> 4581 <!-- node 1 --> 4582 <feature> 4583 <rects> 4584 <_> 4585 4 0 3 9 -1.</_> 4586 <_> 4587 5 0 1 9 3.</_></rects> 4588 <tilted>0</tilted></feature> 4589 <threshold>-6.4546810463070869e-03</threshold> 4590 <left_val>-0.6919782757759094</left_val> 4591 <right_val>0.2610394060611725</right_val></_></_> 4592 <_> 4593 <!-- tree 4 --> 4594 <_> 4595 <!-- root node --> 4596 <feature> 4597 <rects> 4598 <_> 4599 15 10 3 3 -1.</_> 4600 <_> 4601 14 11 3 1 3.</_></rects> 4602 <tilted>1</tilted></feature> 4603 <threshold>-0.0114142503589392</threshold> 4604 <left_val>0.3236142098903656</left_val> 4605 <right_node>1</right_node></_> 4606 <_> 4607 <!-- node 1 --> 4608 <feature> 4609 <rects> 4610 <_> 4611 12 11 2 2 -1.</_> 4612 <_> 4613 12 11 1 1 2.</_> 4614 <_> 4615 13 12 1 1 2.</_></rects> 4616 <tilted>0</tilted></feature> 4617 <threshold>1.1582579463720322e-03</threshold> 4618 <left_val>-0.3830499947071075</left_val> 4619 <right_val>0.2801598012447357</right_val></_></_> 4620 <_> 4621 <!-- tree 5 --> 4622 <_> 4623 <!-- root node --> 4624 <feature> 4625 <rects> 4626 <_> 4627 0 0 1 4 -1.</_> 4628 <_> 4629 0 2 1 2 2.</_></rects> 4630 <tilted>0</tilted></feature> 4631 <threshold>-6.1077292775735259e-04</threshold> 4632 <left_node>1</left_node> 4633 <right_val>-0.3747107982635498</right_val></_> 4634 <_> 4635 <!-- node 1 --> 4636 <feature> 4637 <rects> 4638 <_> 4639 12 18 8 2 -1.</_> 4640 <_> 4641 12 19 8 1 2.</_></rects> 4642 <tilted>0</tilted></feature> 4643 <threshold>1.1812780285254121e-03</threshold> 4644 <left_val>-0.1768521964550018</left_val> 4645 <right_val>0.3549810945987701</right_val></_></_> 4646 <_> 4647 <!-- tree 6 --> 4648 <_> 4649 <!-- root node --> 4650 <feature> 4651 <rects> 4652 <_> 4653 17 9 2 2 -1.</_> 4654 <_> 4655 17 9 1 2 2.</_></rects> 4656 <tilted>1</tilted></feature> 4657 <threshold>7.9117231070995331e-03</threshold> 4658 <left_node>1</left_node> 4659 <right_val>-0.6968191862106323</right_val></_> 4660 <_> 4661 <!-- node 1 --> 4662 <feature> 4663 <rects> 4664 <_> 4665 16 10 4 2 -1.</_> 4666 <_> 4667 17 11 2 2 2.</_></rects> 4668 <tilted>1</tilted></feature> 4669 <threshold>-9.0904926764778793e-05</threshold> 4670 <left_val>0.2075673937797546</left_val> 4671 <right_val>-0.4428209066390991</right_val></_></_> 4672 <_> 4673 <!-- tree 7 --> 4674 <_> 4675 <!-- root node --> 4676 <feature> 4677 <rects> 4678 <_> 4679 7 13 10 1 -1.</_> 4680 <_> 4681 12 13 5 1 2.</_></rects> 4682 <tilted>0</tilted></feature> 4683 <threshold>2.8638960793614388e-03</threshold> 4684 <left_val>-0.4136478900909424</left_val> 4685 <right_node>1</right_node></_> 4686 <_> 4687 <!-- node 1 --> 4688 <feature> 4689 <rects> 4690 <_> 4691 7 7 4 3 -1.</_> 4692 <_> 4693 9 7 2 3 2.</_></rects> 4694 <tilted>0</tilted></feature> 4695 <threshold>1.2769990134984255e-03</threshold> 4696 <left_val>-0.2115702033042908</left_val> 4697 <right_val>0.3191956877708435</right_val></_></_> 4698 <_> 4699 <!-- tree 8 --> 4700 <_> 4701 <!-- root node --> 4702 <feature> 4703 <rects> 4704 <_> 4705 9 18 6 2 -1.</_> 4706 <_> 4707 11 18 2 2 3.</_></rects> 4708 <tilted>0</tilted></feature> 4709 <threshold>-7.5440858490765095e-03</threshold> 4710 <left_val>-0.7549569010734558</left_val> 4711 <right_node>1</right_node></_> 4712 <_> 4713 <!-- node 1 --> 4714 <feature> 4715 <rects> 4716 <_> 4717 8 18 6 2 -1.</_> 4718 <_> 4719 10 18 2 2 3.</_></rects> 4720 <tilted>0</tilted></feature> 4721 <threshold>5.4467269219458103e-03</threshold> 4722 <left_val>0.1322987973690033</left_val> 4723 <right_val>-0.6769589185714722</right_val></_></_> 4724 <_> 4725 <!-- tree 9 --> 4726 <_> 4727 <!-- root node --> 4728 <feature> 4729 <rects> 4730 <_> 4731 17 9 3 1 -1.</_> 4732 <_> 4733 18 10 1 1 3.</_></rects> 4734 <tilted>1</tilted></feature> 4735 <threshold>1.3641830300912261e-03</threshold> 4736 <left_node>1</left_node> 4737 <right_val>-0.4216814935207367</right_val></_> 4738 <_> 4739 <!-- node 1 --> 4740 <feature> 4741 <rects> 4742 <_> 4743 17 7 2 11 -1.</_> 4744 <_> 4745 18 7 1 11 2.</_></rects> 4746 <tilted>0</tilted></feature> 4747 <threshold>0.0138107798993587</threshold> 4748 <left_val>0.1571936011314392</left_val> 4749 <right_val>-0.6796516776084900</right_val></_></_> 4750 <_> 4751 <!-- tree 10 --> 4752 <_> 4753 <!-- root node --> 4754 <feature> 4755 <rects> 4756 <_> 4757 8 2 4 4 -1.</_> 4758 <_> 4759 8 2 2 4 2.</_></rects> 4760 <tilted>1</tilted></feature> 4761 <threshold>0.0502656400203705</threshold> 4762 <left_node>1</left_node> 4763 <right_val>0.7436913847923279</right_val></_> 4764 <_> 4765 <!-- node 1 --> 4766 <feature> 4767 <rects> 4768 <_> 4769 6 6 2 3 -1.</_> 4770 <_> 4771 7 6 1 3 2.</_></rects> 4772 <tilted>0</tilted></feature> 4773 <threshold>4.7765119234099984e-05</threshold> 4774 <left_val>-0.3810234963893890</left_val> 4775 <right_val>0.1060535013675690</right_val></_></_> 4776 <_> 4777 <!-- tree 11 --> 4778 <_> 4779 <!-- root node --> 4780 <feature> 4781 <rects> 4782 <_> 4783 7 0 9 5 -1.</_> 4784 <_> 4785 10 3 3 5 3.</_></rects> 4786 <tilted>1</tilted></feature> 4787 <threshold>0.1466668993234634</threshold> 4788 <left_node>1</left_node> 4789 <right_val>0.5340983271598816</right_val></_> 4790 <_> 4791 <!-- node 1 --> 4792 <feature> 4793 <rects> 4794 <_> 4795 1 0 15 9 -1.</_> 4796 <_> 4797 6 3 5 3 9.</_></rects> 4798 <tilted>0</tilted></feature> 4799 <threshold>-0.3042683005332947</threshold> 4800 <left_val>0.3778361082077026</left_val> 4801 <right_val>-0.2153462022542953</right_val></_></_> 4802 <_> 4803 <!-- tree 12 --> 4804 <_> 4805 <!-- root node --> 4806 <feature> 4807 <rects> 4808 <_> 4809 2 12 4 3 -1.</_> 4810 <_> 4811 3 12 2 3 2.</_></rects> 4812 <tilted>0</tilted></feature> 4813 <threshold>-3.2244708854705095e-03</threshold> 4814 <left_val>0.2827424108982086</left_val> 4815 <right_node>1</right_node></_> 4816 <_> 4817 <!-- node 1 --> 4818 <feature> 4819 <rects> 4820 <_> 4821 0 12 4 5 -1.</_> 4822 <_> 4823 1 12 2 5 2.</_></rects> 4824 <tilted>0</tilted></feature> 4825 <threshold>-1.7187190242111683e-03</threshold> 4826 <left_val>0.1067710965871811</left_val> 4827 <right_val>-0.4420411884784698</right_val></_></_> 4828 <_> 4829 <!-- tree 13 --> 4830 <_> 4831 <!-- root node --> 4832 <feature> 4833 <rects> 4834 <_> 4835 3 2 2 3 -1.</_> 4836 <_> 4837 2 3 2 1 3.</_></rects> 4838 <tilted>1</tilted></feature> 4839 <threshold>-8.4115704521536827e-03</threshold> 4840 <left_val>-0.8355705142021179</left_val> 4841 <right_node>1</right_node></_> 4842 <_> 4843 <!-- node 1 --> 4844 <feature> 4845 <rects> 4846 <_> 4847 4 13 6 1 -1.</_> 4848 <_> 4849 4 13 3 1 2.</_></rects> 4850 <tilted>1</tilted></feature> 4851 <threshold>-0.0232209190726280</threshold> 4852 <left_val>-0.5193390846252441</left_val> 4853 <right_val>0.1318164020776749</right_val></_></_> 4854 <_> 4855 <!-- tree 14 --> 4856 <_> 4857 <!-- root node --> 4858 <feature> 4859 <rects> 4860 <_> 4861 5 0 4 6 -1.</_> 4862 <_> 4863 6 0 2 6 2.</_></rects> 4864 <tilted>0</tilted></feature> 4865 <threshold>-6.3912221230566502e-03</threshold> 4866 <left_val>-0.6855232119560242</left_val> 4867 <right_node>1</right_node></_> 4868 <_> 4869 <!-- node 1 --> 4870 <feature> 4871 <rects> 4872 <_> 4873 2 17 2 1 -1.</_> 4874 <_> 4875 2 17 1 1 2.</_></rects> 4876 <tilted>1</tilted></feature> 4877 <threshold>-3.0661540222354233e-04</threshold> 4878 <left_val>0.2219285070896149</left_val> 4879 <right_val>-0.2394503057003021</right_val></_></_> 4880 <_> 4881 <!-- tree 15 --> 4882 <_> 4883 <!-- root node --> 4884 <feature> 4885 <rects> 4886 <_> 4887 4 9 1 3 -1.</_> 4888 <_> 4889 3 10 1 1 3.</_></rects> 4890 <tilted>1</tilted></feature> 4891 <threshold>1.8742750398814678e-03</threshold> 4892 <left_node>1</left_node> 4893 <right_val>-0.4721843898296356</right_val></_> 4894 <_> 4895 <!-- node 1 --> 4896 <feature> 4897 <rects> 4898 <_> 4899 0 2 6 9 -1.</_> 4900 <_> 4901 2 2 2 9 3.</_></rects> 4902 <tilted>0</tilted></feature> 4903 <threshold>-0.0282995402812958</threshold> 4904 <left_val>-0.6818671822547913</left_val> 4905 <right_val>0.1592379063367844</right_val></_></_> 4906 <_> 4907 <!-- tree 16 --> 4908 <_> 4909 <!-- root node --> 4910 <feature> 4911 <rects> 4912 <_> 4913 16 7 2 2 -1.</_> 4914 <_> 4915 16 7 1 2 2.</_></rects> 4916 <tilted>1</tilted></feature> 4917 <threshold>7.9352483153343201e-03</threshold> 4918 <left_node>1</left_node> 4919 <right_val>-0.7313578128814697</right_val></_> 4920 <_> 4921 <!-- node 1 --> 4922 <feature> 4923 <rects> 4924 <_> 4925 7 2 6 4 -1.</_> 4926 <_> 4927 9 2 2 4 3.</_></rects> 4928 <tilted>0</tilted></feature> 4929 <threshold>-8.7599940598011017e-03</threshold> 4930 <left_val>-0.6001471877098083</left_val> 4931 <right_val>0.1035033017396927</right_val></_></_> 4932 <_> 4933 <!-- tree 17 --> 4934 <_> 4935 <!-- root node --> 4936 <feature> 4937 <rects> 4938 <_> 4939 7 18 6 2 -1.</_> 4940 <_> 4941 9 18 2 2 3.</_></rects> 4942 <tilted>0</tilted></feature> 4943 <threshold>-5.5426149629056454e-03</threshold> 4944 <left_val>-0.5936040878295898</left_val> 4945 <right_node>1</right_node></_> 4946 <_> 4947 <!-- node 1 --> 4948 <feature> 4949 <rects> 4950 <_> 4951 1 14 6 4 -1.</_> 4952 <_> 4953 3 14 2 4 3.</_></rects> 4954 <tilted>0</tilted></feature> 4955 <threshold>-1.8066290067508817e-03</threshold> 4956 <left_val>0.2553352117538452</left_val> 4957 <right_val>-0.1703643947839737</right_val></_></_> 4958 <_> 4959 <!-- tree 18 --> 4960 <_> 4961 <!-- root node --> 4962 <feature> 4963 <rects> 4964 <_> 4965 6 8 7 3 -1.</_> 4966 <_> 4967 5 9 7 1 3.</_></rects> 4968 <tilted>1</tilted></feature> 4969 <threshold>-8.3993803709745407e-03</threshold> 4970 <left_node>1</left_node> 4971 <right_val>-0.2395361065864563</right_val></_> 4972 <_> 4973 <!-- node 1 --> 4974 <feature> 4975 <rects> 4976 <_> 4977 14 12 4 1 -1.</_> 4978 <_> 4979 15 13 2 1 2.</_></rects> 4980 <tilted>1</tilted></feature> 4981 <threshold>-1.9515500171110034e-03</threshold> 4982 <left_val>0.3725241124629974</left_val> 4983 <right_val>-0.1298290044069290</right_val></_></_> 4984 <_> 4985 <!-- tree 19 --> 4986 <_> 4987 <!-- root node --> 4988 <feature> 4989 <rects> 4990 <_> 4991 4 12 3 2 -1.</_> 4992 <_> 4993 5 12 1 2 3.</_></rects> 4994 <tilted>0</tilted></feature> 4995 <threshold>-2.2850139066576958e-03</threshold> 4996 <left_val>0.5022721290588379</left_val> 4997 <right_node>1</right_node></_> 4998 <_> 4999 <!-- node 1 --> 5000 <feature> 5001 <rects> 5002 <_> 5003 5 12 3 3 -1.</_> 5004 <_> 5005 6 12 1 3 3.</_></rects> 5006 <tilted>0</tilted></feature> 5007 <threshold>-6.1910818330943584e-03</threshold> 5008 <left_val>0.4455165863037109</left_val> 5009 <right_val>-0.1630778014659882</right_val></_></_> 5010 <_> 5011 <!-- tree 20 --> 5012 <_> 5013 <!-- root node --> 5014 <feature> 5015 <rects> 5016 <_> 5017 18 2 2 2 -1.</_> 5018 <_> 5019 19 2 1 2 2.</_></rects> 5020 <tilted>0</tilted></feature> 5021 <threshold>1.1659320443868637e-03</threshold> 5022 <left_node>1</left_node> 5023 <right_val>0.3480907976627350</right_val></_> 5024 <_> 5025 <!-- node 1 --> 5026 <feature> 5027 <rects> 5028 <_> 5029 14 0 6 1 -1.</_> 5030 <_> 5031 17 0 3 1 2.</_></rects> 5032 <tilted>0</tilted></feature> 5033 <threshold>-2.1016779355704784e-03</threshold> 5034 <left_val>0.3153137862682343</left_val> 5035 <right_val>-0.3471026122570038</right_val></_></_> 5036 <_> 5037 <!-- tree 21 --> 5038 <_> 5039 <!-- root node --> 5040 <feature> 5041 <rects> 5042 <_> 5043 17 0 3 3 -1.</_> 5044 <_> 5045 18 1 1 3 3.</_></rects> 5046 <tilted>1</tilted></feature> 5047 <threshold>-9.1615924611687660e-03</threshold> 5048 <left_val>-0.6862319707870483</left_val> 5049 <right_node>1</right_node></_> 5050 <_> 5051 <!-- node 1 --> 5052 <feature> 5053 <rects> 5054 <_> 5055 11 4 6 8 -1.</_> 5056 <_> 5057 13 4 2 8 3.</_></rects> 5058 <tilted>0</tilted></feature> 5059 <threshold>-0.0200365409255028</threshold> 5060 <left_val>-0.6899188160896301</left_val> 5061 <right_val>0.1296222060918808</right_val></_></_> 5062 <_> 5063 <!-- tree 22 --> 5064 <_> 5065 <!-- root node --> 5066 <feature> 5067 <rects> 5068 <_> 5069 7 12 3 2 -1.</_> 5070 <_> 5071 8 12 1 2 3.</_></rects> 5072 <tilted>0</tilted></feature> 5073 <threshold>2.7148448862135410e-03</threshold> 5074 <left_node>1</left_node> 5075 <right_val>0.4774574041366577</right_val></_> 5076 <_> 5077 <!-- node 1 --> 5078 <feature> 5079 <rects> 5080 <_> 5081 16 0 3 2 -1.</_> 5082 <_> 5083 16 1 3 1 2.</_></rects> 5084 <tilted>0</tilted></feature> 5085 <threshold>2.2834159899502993e-03</threshold> 5086 <left_val>-0.0133445700630546</left_val> 5087 <right_val>-0.6179587841033936</right_val></_></_></trees> 5088 <stage_threshold>-1.8701590299606323</stage_threshold> 5089 <parent>12</parent> 5090 <next>-1</next></_> 5091 <_> 5092 <!-- stage 14 --> 5093 <trees> 5094 <_> 5095 <!-- tree 0 --> 5096 <_> 5097 <!-- root node --> 5098 <feature> 5099 <rects> 5100 <_> 5101 5 11 9 4 -1.</_> 5102 <_> 5103 8 11 3 4 3.</_></rects> 5104 <tilted>0</tilted></feature> 5105 <threshold>-0.0328384712338448</threshold> 5106 <left_node>1</left_node> 5107 <right_val>-0.5198407173156738</right_val></_> 5108 <_> 5109 <!-- node 1 --> 5110 <feature> 5111 <rects> 5112 <_> 5113 12 9 1 6 -1.</_> 5114 <_> 5115 12 11 1 2 3.</_></rects> 5116 <tilted>0</tilted></feature> 5117 <threshold>-7.5696408748626709e-03</threshold> 5118 <left_val>0.6369025111198425</left_val> 5119 <right_val>-0.1156217008829117</right_val></_></_> 5120 <_> 5121 <!-- tree 1 --> 5122 <_> 5123 <!-- root node --> 5124 <feature> 5125 <rects> 5126 <_> 5127 4 0 4 4 -1.</_> 5128 <_> 5129 4 0 2 4 2.</_></rects> 5130 <tilted>1</tilted></feature> 5131 <threshold>0.0541258715093136</threshold> 5132 <left_node>1</left_node> 5133 <right_val>0.5034024715423584</right_val></_> 5134 <_> 5135 <!-- node 1 --> 5136 <feature> 5137 <rects> 5138 <_> 5139 5 1 11 12 -1.</_> 5140 <_> 5141 5 5 11 4 3.</_></rects> 5142 <tilted>0</tilted></feature> 5143 <threshold>0.2700459957122803</threshold> 5144 <left_val>-0.3464067876338959</left_val> 5145 <right_val>0.3765150904655457</right_val></_></_> 5146 <_> 5147 <!-- tree 2 --> 5148 <_> 5149 <!-- root node --> 5150 <feature> 5151 <rects> 5152 <_> 5153 16 12 4 8 -1.</_> 5154 <_> 5155 18 12 2 8 2.</_></rects> 5156 <tilted>0</tilted></feature> 5157 <threshold>7.0261410437524319e-03</threshold> 5158 <left_val>-0.4104644060134888</left_val> 5159 <right_node>1</right_node></_> 5160 <_> 5161 <!-- node 1 --> 5162 <feature> 5163 <rects> 5164 <_> 5165 18 14 2 6 -1.</_> 5166 <_> 5167 18 17 2 3 2.</_></rects> 5168 <tilted>0</tilted></feature> 5169 <threshold>3.1245660502463579e-03</threshold> 5170 <left_val>-0.4138219058513641</left_val> 5171 <right_val>0.3755074143409729</right_val></_></_> 5172 <_> 5173 <!-- tree 3 --> 5174 <_> 5175 <!-- root node --> 5176 <feature> 5177 <rects> 5178 <_> 5179 1 12 4 4 -1.</_> 5180 <_> 5181 2 12 2 4 2.</_></rects> 5182 <tilted>0</tilted></feature> 5183 <threshold>-1.8708549905568361e-03</threshold> 5184 <left_node>1</left_node> 5185 <right_val>-0.3782733082771301</right_val></_> 5186 <_> 5187 <!-- node 1 --> 5188 <feature> 5189 <rects> 5190 <_> 5191 6 7 6 4 -1.</_> 5192 <_> 5193 5 8 6 2 2.</_></rects> 5194 <tilted>1</tilted></feature> 5195 <threshold>-0.0149690099060535</threshold> 5196 <left_val>0.3994168043136597</left_val> 5197 <right_val>-0.2225451022386551</right_val></_></_> 5198 <_> 5199 <!-- tree 4 --> 5200 <_> 5201 <!-- root node --> 5202 <feature> 5203 <rects> 5204 <_> 5205 5 15 3 2 -1.</_> 5206 <_> 5207 6 16 1 2 3.</_></rects> 5208 <tilted>1</tilted></feature> 5209 <threshold>3.4136420581489801e-03</threshold> 5210 <left_node>1</left_node> 5211 <right_val>-0.5466756820678711</right_val></_> 5212 <_> 5213 <!-- node 1 --> 5214 <feature> 5215 <rects> 5216 <_> 5217 6 16 3 1 -1.</_> 5218 <_> 5219 7 17 1 1 3.</_></rects> 5220 <tilted>1</tilted></feature> 5221 <threshold>2.3454260081052780e-03</threshold> 5222 <left_val>0.1661884039640427</left_val> 5223 <right_val>-0.6320394277572632</right_val></_></_> 5224 <_> 5225 <!-- tree 5 --> 5226 <_> 5227 <!-- root node --> 5228 <feature> 5229 <rects> 5230 <_> 5231 10 14 1 2 -1.</_> 5232 <_> 5233 10 14 1 1 2.</_></rects> 5234 <tilted>1</tilted></feature> 5235 <threshold>-1.1689099483191967e-03</threshold> 5236 <left_node>1</left_node> 5237 <right_val>-0.4497218132019043</right_val></_> 5238 <_> 5239 <!-- node 1 --> 5240 <feature> 5241 <rects> 5242 <_> 5243 4 7 3 3 -1.</_> 5244 <_> 5245 3 8 3 1 3.</_></rects> 5246 <tilted>1</tilted></feature> 5247 <threshold>-7.8206984326243401e-03</threshold> 5248 <left_val>-0.5716611742973328</left_val> 5249 <right_val>0.1859999001026154</right_val></_></_> 5250 <_> 5251 <!-- tree 6 --> 5252 <_> 5253 <!-- root node --> 5254 <feature> 5255 <rects> 5256 <_> 5257 2 0 6 8 -1.</_> 5258 <_> 5259 4 0 2 8 3.</_></rects> 5260 <tilted>0</tilted></feature> 5261 <threshold>-0.0263242591172457</threshold> 5262 <left_val>-0.7804111242294312</left_val> 5263 <right_node>1</right_node></_> 5264 <_> 5265 <!-- node 1 --> 5266 <feature> 5267 <rects> 5268 <_> 5269 2 5 6 3 -1.</_> 5270 <_> 5271 4 5 2 3 3.</_></rects> 5272 <tilted>0</tilted></feature> 5273 <threshold>-9.1647548833861947e-04</threshold> 5274 <left_val>0.2310009002685547</left_val> 5275 <right_val>-0.2122412025928497</right_val></_></_> 5276 <_> 5277 <!-- tree 7 --> 5278 <_> 5279 <!-- root node --> 5280 <feature> 5281 <rects> 5282 <_> 5283 3 11 3 6 -1.</_> 5284 <_> 5285 4 11 1 6 3.</_></rects> 5286 <tilted>0</tilted></feature> 5287 <threshold>-2.3702960461378098e-03</threshold> 5288 <left_val>0.2730421125888824</left_val> 5289 <right_node>1</right_node></_> 5290 <_> 5291 <!-- node 1 --> 5292 <feature> 5293 <rects> 5294 <_> 5295 15 11 2 3 -1.</_> 5296 <_> 5297 14 12 2 1 3.</_></rects> 5298 <tilted>1</tilted></feature> 5299 <threshold>-9.2874821275472641e-03</threshold> 5300 <left_val>0.2320079952478409</left_val> 5301 <right_val>-0.3460255861282349</right_val></_></_> 5302 <_> 5303 <!-- tree 8 --> 5304 <_> 5305 <!-- root node --> 5306 <feature> 5307 <rects> 5308 <_> 5309 11 17 4 3 -1.</_> 5310 <_> 5311 12 17 2 3 2.</_></rects> 5312 <tilted>0</tilted></feature> 5313 <threshold>2.9221060685813427e-03</threshold> 5314 <left_node>1</left_node> 5315 <right_val>-0.6997262835502625</right_val></_> 5316 <_> 5317 <!-- node 1 --> 5318 <feature> 5319 <rects> 5320 <_> 5321 13 11 2 2 -1.</_> 5322 <_> 5323 13 11 1 1 2.</_> 5324 <_> 5325 14 12 1 1 2.</_></rects> 5326 <tilted>0</tilted></feature> 5327 <threshold>-1.4097889652475715e-03</threshold> 5328 <left_val>0.4801935851573944</left_val> 5329 <right_val>-0.0426502004265785</right_val></_></_> 5330 <_> 5331 <!-- tree 9 --> 5332 <_> 5333 <!-- root node --> 5334 <feature> 5335 <rects> 5336 <_> 5337 13 11 2 2 -1.</_> 5338 <_> 5339 13 11 1 1 2.</_> 5340 <_> 5341 14 12 1 1 2.</_></rects> 5342 <tilted>0</tilted></feature> 5343 <threshold>9.3326548812910914e-04</threshold> 5344 <left_node>1</left_node> 5345 <right_val>0.3770847916603088</right_val></_> 5346 <_> 5347 <!-- node 1 --> 5348 <feature> 5349 <rects> 5350 <_> 5351 8 2 5 6 -1.</_> 5352 <_> 5353 8 5 5 3 2.</_></rects> 5354 <tilted>0</tilted></feature> 5355 <threshold>-0.0568373091518879</threshold> 5356 <left_val>0.4637516140937805</left_val> 5357 <right_val>-0.2044157981872559</right_val></_></_> 5358 <_> 5359 <!-- tree 10 --> 5360 <_> 5361 <!-- root node --> 5362 <feature> 5363 <rects> 5364 <_> 5365 0 0 1 2 -1.</_> 5366 <_> 5367 0 1 1 1 2.</_></rects> 5368 <tilted>0</tilted></feature> 5369 <threshold>-9.1405760031193495e-05</threshold> 5370 <left_node>1</left_node> 5371 <right_val>-0.2944777011871338</right_val></_> 5372 <_> 5373 <!-- node 1 --> 5374 <feature> 5375 <rects> 5376 <_> 5377 0 8 10 4 -1.</_> 5378 <_> 5379 0 10 10 2 2.</_></rects> 5380 <tilted>0</tilted></feature> 5381 <threshold>-0.0111477700993419</threshold> 5382 <left_val>0.3657920062541962</left_val> 5383 <right_val>-0.1610623002052307</right_val></_></_> 5384 <_> 5385 <!-- tree 11 --> 5386 <_> 5387 <!-- root node --> 5388 <feature> 5389 <rects> 5390 <_> 5391 17 11 3 1 -1.</_> 5392 <_> 5393 18 12 1 1 3.</_></rects> 5394 <tilted>1</tilted></feature> 5395 <threshold>8.0759642878547311e-04</threshold> 5396 <left_node>1</left_node> 5397 <right_val>-0.3876996934413910</right_val></_> 5398 <_> 5399 <!-- node 1 --> 5400 <feature> 5401 <rects> 5402 <_> 5403 7 18 2 2 -1.</_> 5404 <_> 5405 8 18 1 2 2.</_></rects> 5406 <tilted>0</tilted></feature> 5407 <threshold>1.7215589759871364e-03</threshold> 5408 <left_val>0.1779005974531174</left_val> 5409 <right_val>-0.5967379212379456</right_val></_></_> 5410 <_> 5411 <!-- tree 12 --> 5412 <_> 5413 <!-- root node --> 5414 <feature> 5415 <rects> 5416 <_> 5417 0 6 18 4 -1.</_> 5418 <_> 5419 9 6 9 4 2.</_></rects> 5420 <tilted>0</tilted></feature> 5421 <threshold>0.0143056400120258</threshold> 5422 <left_val>-0.2888791859149933</left_val> 5423 <right_node>1</right_node></_> 5424 <_> 5425 <!-- node 1 --> 5426 <feature> 5427 <rects> 5428 <_> 5429 2 12 12 8 -1.</_> 5430 <_> 5431 6 12 4 8 3.</_></rects> 5432 <tilted>0</tilted></feature> 5433 <threshold>-0.0388850085437298</threshold> 5434 <left_val>0.3649722933769226</left_val> 5435 <right_val>-0.1376271992921829</right_val></_></_> 5436 <_> 5437 <!-- tree 13 --> 5438 <_> 5439 <!-- root node --> 5440 <feature> 5441 <rects> 5442 <_> 5443 1 0 14 1 -1.</_> 5444 <_> 5445 8 0 7 1 2.</_></rects> 5446 <tilted>0</tilted></feature> 5447 <threshold>-3.4479280002415180e-03</threshold> 5448 <left_val>0.1811084002256393</left_val> 5449 <right_node>1</right_node></_> 5450 <_> 5451 <!-- node 1 --> 5452 <feature> 5453 <rects> 5454 <_> 5455 8 0 12 19 -1.</_> 5456 <_> 5457 14 0 6 19 2.</_></rects> 5458 <tilted>0</tilted></feature> 5459 <threshold>0.3016817867755890</threshold> 5460 <left_val>-0.3542549014091492</left_val> 5461 <right_val>0.4295836091041565</right_val></_></_> 5462 <_> 5463 <!-- tree 14 --> 5464 <_> 5465 <!-- root node --> 5466 <feature> 5467 <rects> 5468 <_> 5469 7 12 3 2 -1.</_> 5470 <_> 5471 8 12 1 2 3.</_></rects> 5472 <tilted>0</tilted></feature> 5473 <threshold>2.8582389932125807e-03</threshold> 5474 <left_node>1</left_node> 5475 <right_val>0.5295780897140503</right_val></_> 5476 <_> 5477 <!-- node 1 --> 5478 <feature> 5479 <rects> 5480 <_> 5481 8 11 3 5 -1.</_> 5482 <_> 5483 9 11 1 5 3.</_></rects> 5484 <tilted>0</tilted></feature> 5485 <threshold>1.4091320335865021e-03</threshold> 5486 <left_val>-0.2123443037271500</left_val> 5487 <right_val>0.3142850995063782</right_val></_></_> 5488 <_> 5489 <!-- tree 15 --> 5490 <_> 5491 <!-- root node --> 5492 <feature> 5493 <rects> 5494 <_> 5495 7 18 3 2 -1.</_> 5496 <_> 5497 8 18 1 2 3.</_></rects> 5498 <tilted>0</tilted></feature> 5499 <threshold>-1.6597079811617732e-03</threshold> 5500 <left_val>-0.6334841847419739</left_val> 5501 <right_node>1</right_node></_> 5502 <_> 5503 <!-- node 1 --> 5504 <feature> 5505 <rects> 5506 <_> 5507 5 13 2 2 -1.</_> 5508 <_> 5509 5 13 1 1 2.</_> 5510 <_> 5511 6 14 1 1 2.</_></rects> 5512 <tilted>0</tilted></feature> 5513 <threshold>8.7804382201284170e-04</threshold> 5514 <left_val>-0.0553153008222580</left_val> 5515 <right_val>0.3938995897769928</right_val></_></_> 5516 <_> 5517 <!-- tree 16 --> 5518 <_> 5519 <!-- root node --> 5520 <feature> 5521 <rects> 5522 <_> 5523 16 9 3 1 -1.</_> 5524 <_> 5525 17 10 1 1 3.</_></rects> 5526 <tilted>1</tilted></feature> 5527 <threshold>2.0211800001561642e-03</threshold> 5528 <left_node>1</left_node> 5529 <right_val>-0.4712730944156647</right_val></_> 5530 <_> 5531 <!-- node 1 --> 5532 <feature> 5533 <rects> 5534 <_> 5535 18 0 2 3 -1.</_> 5536 <_> 5537 18 0 1 3 2.</_></rects> 5538 <tilted>1</tilted></feature> 5539 <threshold>-6.8409871309995651e-03</threshold> 5540 <left_val>-0.6406552791595459</left_val> 5541 <right_val>0.1486144065856934</right_val></_></_> 5542 <_> 5543 <!-- tree 17 --> 5544 <_> 5545 <!-- root node --> 5546 <feature> 5547 <rects> 5548 <_> 5549 4 2 15 6 -1.</_> 5550 <_> 5551 4 4 15 2 3.</_></rects> 5552 <tilted>0</tilted></feature> 5553 <threshold>0.0472007617354393</threshold> 5554 <left_node>1</left_node> 5555 <right_val>0.4121640920639038</right_val></_> 5556 <_> 5557 <!-- node 1 --> 5558 <feature> 5559 <rects> 5560 <_> 5561 10 0 10 4 -1.</_> 5562 <_> 5563 10 0 5 2 2.</_> 5564 <_> 5565 15 2 5 2 2.</_></rects> 5566 <tilted>0</tilted></feature> 5567 <threshold>4.9684080295264721e-03</threshold> 5568 <left_val>-0.3240430057048798</left_val> 5569 <right_val>0.1575596034526825</right_val></_></_> 5570 <_> 5571 <!-- tree 18 --> 5572 <_> 5573 <!-- root node --> 5574 <feature> 5575 <rects> 5576 <_> 5577 5 0 12 6 -1.</_> 5578 <_> 5579 5 2 12 2 3.</_></rects> 5580 <tilted>0</tilted></feature> 5581 <threshold>0.0375299118459225</threshold> 5582 <left_node>1</left_node> 5583 <right_val>0.4132845997810364</right_val></_> 5584 <_> 5585 <!-- node 1 --> 5586 <feature> 5587 <rects> 5588 <_> 5589 12 1 8 6 -1.</_> 5590 <_> 5591 12 1 4 3 2.</_> 5592 <_> 5593 16 4 4 3 2.</_></rects> 5594 <tilted>0</tilted></feature> 5595 <threshold>-0.0116650899872184</threshold> 5596 <left_val>0.2546750009059906</left_val> 5597 <right_val>-0.3130356073379517</right_val></_></_> 5598 <_> 5599 <!-- tree 19 --> 5600 <_> 5601 <!-- root node --> 5602 <feature> 5603 <rects> 5604 <_> 5605 0 3 2 1 -1.</_> 5606 <_> 5607 1 3 1 1 2.</_></rects> 5608 <tilted>0</tilted></feature> 5609 <threshold>-6.8298257247079164e-05</threshold> 5610 <left_node>1</left_node> 5611 <right_val>-0.2721207141876221</right_val></_> 5612 <_> 5613 <!-- node 1 --> 5614 <feature> 5615 <rects> 5616 <_> 5617 16 7 2 4 -1.</_> 5618 <_> 5619 16 7 1 4 2.</_></rects> 5620 <tilted>1</tilted></feature> 5621 <threshold>0.0153254298493266</threshold> 5622 <left_val>0.2294660955667496</left_val> 5623 <right_val>-0.6734570860862732</right_val></_></_> 5624 <_> 5625 <!-- tree 20 --> 5626 <_> 5627 <!-- root node --> 5628 <feature> 5629 <rects> 5630 <_> 5631 15 17 5 3 -1.</_> 5632 <_> 5633 15 18 5 1 3.</_></rects> 5634 <tilted>0</tilted></feature> 5635 <threshold>8.5185896605253220e-03</threshold> 5636 <left_node>1</left_node> 5637 <right_val>-0.7111467123031616</right_val></_> 5638 <_> 5639 <!-- node 1 --> 5640 <feature> 5641 <rects> 5642 <_> 5643 6 12 6 8 -1.</_> 5644 <_> 5645 8 12 2 8 3.</_></rects> 5646 <tilted>0</tilted></feature> 5647 <threshold>-2.6828479021787643e-03</threshold> 5648 <left_val>0.1551170051097870</left_val> 5649 <right_val>-0.3544489145278931</right_val></_></_> 5650 <_> 5651 <!-- tree 21 --> 5652 <_> 5653 <!-- root node --> 5654 <feature> 5655 <rects> 5656 <_> 5657 5 12 2 2 -1.</_> 5658 <_> 5659 6 12 1 2 2.</_></rects> 5660 <tilted>0</tilted></feature> 5661 <threshold>1.3791749952360988e-03</threshold> 5662 <left_node>1</left_node> 5663 <right_val>0.3691627085208893</right_val></_> 5664 <_> 5665 <!-- node 1 --> 5666 <feature> 5667 <rects> 5668 <_> 5669 13 12 4 6 -1.</_> 5670 <_> 5671 14 12 2 6 2.</_></rects> 5672 <tilted>0</tilted></feature> 5673 <threshold>-3.3968368370551616e-05</threshold> 5674 <left_val>0.0591509304940701</left_val> 5675 <right_val>-0.4600771963596344</right_val></_></_> 5676 <_> 5677 <!-- tree 22 --> 5678 <_> 5679 <!-- root node --> 5680 <feature> 5681 <rects> 5682 <_> 5683 17 0 3 4 -1.</_> 5684 <_> 5685 18 1 1 4 3.</_></rects> 5686 <tilted>1</tilted></feature> 5687 <threshold>5.8259358629584312e-03</threshold> 5688 <left_node>1</left_node> 5689 <right_val>-0.5498669743537903</right_val></_> 5690 <_> 5691 <!-- node 1 --> 5692 <feature> 5693 <rects> 5694 <_> 5695 4 0 4 10 -1.</_> 5696 <_> 5697 5 0 2 10 2.</_></rects> 5698 <tilted>0</tilted></feature> 5699 <threshold>-8.1688696518540382e-03</threshold> 5700 <left_val>-0.5056741237640381</left_val> 5701 <right_val>0.1518967002630234</right_val></_></_> 5702 <_> 5703 <!-- tree 23 --> 5704 <_> 5705 <!-- root node --> 5706 <feature> 5707 <rects> 5708 <_> 5709 5 12 3 3 -1.</_> 5710 <_> 5711 6 12 1 3 3.</_></rects> 5712 <tilted>0</tilted></feature> 5713 <threshold>-2.3251199163496494e-03</threshold> 5714 <left_val>0.3490481078624725</left_val> 5715 <right_node>1</right_node></_> 5716 <_> 5717 <!-- node 1 --> 5718 <feature> 5719 <rects> 5720 <_> 5721 11 12 3 3 -1.</_> 5722 <_> 5723 12 12 1 3 3.</_></rects> 5724 <tilted>0</tilted></feature> 5725 <threshold>-4.8669208772480488e-03</threshold> 5726 <left_val>0.5313856005668640</left_val> 5727 <right_val>-0.2141346931457520</right_val></_></_> 5728 <_> 5729 <!-- tree 24 --> 5730 <_> 5731 <!-- root node --> 5732 <feature> 5733 <rects> 5734 <_> 5735 3 2 1 3 -1.</_> 5736 <_> 5737 2 3 1 1 3.</_></rects> 5738 <tilted>1</tilted></feature> 5739 <threshold>4.3380381539463997e-03</threshold> 5740 <left_node>1</left_node> 5741 <right_val>-0.7824826240539551</right_val></_> 5742 <_> 5743 <!-- node 1 --> 5744 <feature> 5745 <rects> 5746 <_> 5747 2 1 8 1 -1.</_> 5748 <_> 5749 4 1 4 1 2.</_></rects> 5750 <tilted>0</tilted></feature> 5751 <threshold>3.4176679328083992e-03</threshold> 5752 <left_val>0.1246078982949257</left_val> 5753 <right_val>-0.5529775023460388</right_val></_></_> 5754 <_> 5755 <!-- tree 25 --> 5756 <_> 5757 <!-- root node --> 5758 <feature> 5759 <rects> 5760 <_> 5761 0 3 18 12 -1.</_> 5762 <_> 5763 6 7 6 4 9.</_></rects> 5764 <tilted>0</tilted></feature> 5765 <threshold>0.5530973076820374</threshold> 5766 <left_node>1</left_node> 5767 <right_val>0.4657307863235474</right_val></_> 5768 <_> 5769 <!-- node 1 --> 5770 <feature> 5771 <rects> 5772 <_> 5773 12 18 6 2 -1.</_> 5774 <_> 5775 15 18 3 2 2.</_></rects> 5776 <tilted>0</tilted></feature> 5777 <threshold>2.3636389523744583e-03</threshold> 5778 <left_val>-0.3330905139446259</left_val> 5779 <right_val>0.0943800508975983</right_val></_></_></trees> 5780 <stage_threshold>-1.9807859659194946</stage_threshold> 5781 <parent>13</parent> 5782 <next>-1</next></_> 5783 <_> 5784 <!-- stage 15 --> 5785 <trees> 5786 <_> 5787 <!-- tree 0 --> 5788 <_> 5789 <!-- root node --> 5790 <feature> 5791 <rects> 5792 <_> 5793 11 9 4 7 -1.</_> 5794 <_> 5795 12 10 2 7 2.</_></rects> 5796 <tilted>1</tilted></feature> 5797 <threshold>-0.0229342803359032</threshold> 5798 <left_node>1</left_node> 5799 <right_val>-0.4471629858016968</right_val></_> 5800 <_> 5801 <!-- node 1 --> 5802 <feature> 5803 <rects> 5804 <_> 5805 15 8 3 12 -1.</_> 5806 <_> 5807 16 12 1 4 9.</_></rects> 5808 <tilted>0</tilted></feature> 5809 <threshold>-0.0426658503711224</threshold> 5810 <left_val>0.5408589839935303</left_val> 5811 <right_val>-0.3358927965164185</right_val></_></_> 5812 <_> 5813 <!-- tree 1 --> 5814 <_> 5815 <!-- root node --> 5816 <feature> 5817 <rects> 5818 <_> 5819 6 10 7 3 -1.</_> 5820 <_> 5821 6 11 7 1 3.</_></rects> 5822 <tilted>0</tilted></feature> 5823 <threshold>-9.8418388515710831e-03</threshold> 5824 <left_val>0.3995800018310547</left_val> 5825 <right_node>1</right_node></_> 5826 <_> 5827 <!-- node 1 --> 5828 <feature> 5829 <rects> 5830 <_> 5831 4 9 10 3 -1.</_> 5832 <_> 5833 4 10 10 1 3.</_></rects> 5834 <tilted>0</tilted></feature> 5835 <threshold>-0.0119323497638106</threshold> 5836 <left_val>0.3421911895275116</left_val> 5837 <right_val>-0.4241695106029510</right_val></_></_> 5838 <_> 5839 <!-- tree 2 --> 5840 <_> 5841 <!-- root node --> 5842 <feature> 5843 <rects> 5844 <_> 5845 0 1 15 7 -1.</_> 5846 <_> 5847 5 1 5 7 3.</_></rects> 5848 <tilted>0</tilted></feature> 5849 <threshold>-0.0244370102882385</threshold> 5850 <left_node>1</left_node> 5851 <right_val>-0.3733735978603363</right_val></_> 5852 <_> 5853 <!-- node 1 --> 5854 <feature> 5855 <rects> 5856 <_> 5857 0 0 1 18 -1.</_> 5858 <_> 5859 0 6 1 6 3.</_></rects> 5860 <tilted>0</tilted></feature> 5861 <threshold>-4.9987169913947582e-03</threshold> 5862 <left_val>0.4035832881927490</left_val> 5863 <right_val>-0.3519937098026276</right_val></_></_> 5864 <_> 5865 <!-- tree 3 --> 5866 <_> 5867 <!-- root node --> 5868 <feature> 5869 <rects> 5870 <_> 5871 9 13 2 4 -1.</_> 5872 <_> 5873 8 14 2 2 2.</_></rects> 5874 <tilted>1</tilted></feature> 5875 <threshold>1.8582950579002500e-03</threshold> 5876 <left_val>-0.4415811896324158</left_val> 5877 <right_node>1</right_node></_> 5878 <_> 5879 <!-- node 1 --> 5880 <feature> 5881 <rects> 5882 <_> 5883 16 16 4 4 -1.</_> 5884 <_> 5885 16 18 4 2 2.</_></rects> 5886 <tilted>0</tilted></feature> 5887 <threshold>2.7540219016373158e-03</threshold> 5888 <left_val>-0.2872293889522552</left_val> 5889 <right_val>0.3385724127292633</right_val></_></_> 5890 <_> 5891 <!-- tree 4 --> 5892 <_> 5893 <!-- root node --> 5894 <feature> 5895 <rects> 5896 <_> 5897 1 10 4 8 -1.</_> 5898 <_> 5899 2 10 2 8 2.</_></rects> 5900 <tilted>0</tilted></feature> 5901 <threshold>-3.4452530089765787e-03</threshold> 5902 <left_node>1</left_node> 5903 <right_val>-0.3182198107242584</right_val></_> 5904 <_> 5905 <!-- node 1 --> 5906 <feature> 5907 <rects> 5908 <_> 5909 2 15 3 2 -1.</_> 5910 <_> 5911 3 16 1 2 3.</_></rects> 5912 <tilted>1</tilted></feature> 5913 <threshold>-5.9277489781379700e-03</threshold> 5914 <left_val>-0.6507351994514465</left_val> 5915 <right_val>0.2710922062397003</right_val></_></_> 5916 <_> 5917 <!-- tree 5 --> 5918 <_> 5919 <!-- root node --> 5920 <feature> 5921 <rects> 5922 <_> 5923 2 17 2 1 -1.</_> 5924 <_> 5925 2 17 1 1 2.</_></rects> 5926 <tilted>1</tilted></feature> 5927 <threshold>-1.2391789641696960e-04</threshold> 5928 <left_node>1</left_node> 5929 <right_val>-0.3346720039844513</right_val></_> 5930 <_> 5931 <!-- node 1 --> 5932 <feature> 5933 <rects> 5934 <_> 5935 18 10 2 8 -1.</_> 5936 <_> 5937 18 10 2 4 2.</_></rects> 5938 <tilted>1</tilted></feature> 5939 <threshold>-0.0733271390199661</threshold> 5940 <left_val>-0.5964624881744385</left_val> 5941 <right_val>0.2286181002855301</right_val></_></_> 5942 <_> 5943 <!-- tree 6 --> 5944 <_> 5945 <!-- root node --> 5946 <feature> 5947 <rects> 5948 <_> 5949 0 11 18 3 -1.</_> 5950 <_> 5951 6 12 6 1 9.</_></rects> 5952 <tilted>0</tilted></feature> 5953 <threshold>-0.0839647501707077</threshold> 5954 <left_node>1</left_node> 5955 <right_val>-0.2252518981695175</right_val></_> 5956 <_> 5957 <!-- node 1 --> 5958 <feature> 5959 <rects> 5960 <_> 5961 15 10 4 2 -1.</_> 5962 <_> 5963 16 11 2 2 2.</_></rects> 5964 <tilted>1</tilted></feature> 5965 <threshold>-8.1644707825034857e-04</threshold> 5966 <left_val>0.3821364939212799</left_val> 5967 <right_val>-0.3341045081615448</right_val></_></_> 5968 <_> 5969 <!-- tree 7 --> 5970 <_> 5971 <!-- root node --> 5972 <feature> 5973 <rects> 5974 <_> 5975 9 1 5 4 -1.</_> 5976 <_> 5977 9 3 5 2 2.</_></rects> 5978 <tilted>0</tilted></feature> 5979 <threshold>-0.0152077795937657</threshold> 5980 <left_val>0.3074269890785217</left_val> 5981 <right_node>1</right_node></_> 5982 <_> 5983 <!-- node 1 --> 5984 <feature> 5985 <rects> 5986 <_> 5987 6 1 7 6 -1.</_> 5988 <_> 5989 6 4 7 3 2.</_></rects> 5990 <tilted>0</tilted></feature> 5991 <threshold>0.0468947887420654</threshold> 5992 <left_val>-0.3883388936519623</left_val> 5993 <right_val>0.2317751944065094</right_val></_></_> 5994 <_> 5995 <!-- tree 8 --> 5996 <_> 5997 <!-- root node --> 5998 <feature> 5999 <rects> 6000 <_> 6001 3 3 8 6 -1.</_> 6002 <_> 6003 3 6 8 3 2.</_></rects> 6004 <tilted>0</tilted></feature> 6005 <threshold>-0.1039844006299973</threshold> 6006 <left_val>0.7132114171981812</left_val> 6007 <right_node>1</right_node></_> 6008 <_> 6009 <!-- node 1 --> 6010 <feature> 6011 <rects> 6012 <_> 6013 16 1 4 2 -1.</_> 6014 <_> 6015 18 1 2 2 2.</_></rects> 6016 <tilted>0</tilted></feature> 6017 <threshold>3.9815339259803295e-03</threshold> 6018 <left_val>-0.2331019937992096</left_val> 6019 <right_val>0.2924784123897552</right_val></_></_> 6020 <_> 6021 <!-- tree 9 --> 6022 <_> 6023 <!-- root node --> 6024 <feature> 6025 <rects> 6026 <_> 6027 18 12 2 3 -1.</_> 6028 <_> 6029 18 13 2 1 3.</_></rects> 6030 <tilted>0</tilted></feature> 6031 <threshold>2.5737080723047256e-03</threshold> 6032 <left_node>1</left_node> 6033 <right_val>-0.5501734018325806</right_val></_> 6034 <_> 6035 <!-- node 1 --> 6036 <feature> 6037 <rects> 6038 <_> 6039 17 6 2 8 -1.</_> 6040 <_> 6041 17 6 1 4 2.</_> 6042 <_> 6043 18 10 1 4 2.</_></rects> 6044 <tilted>0</tilted></feature> 6045 <threshold>9.1035291552543640e-04</threshold> 6046 <left_val>-0.1822893023490906</left_val> 6047 <right_val>0.2837032079696655</right_val></_></_> 6048 <_> 6049 <!-- tree 10 --> 6050 <_> 6051 <!-- root node --> 6052 <feature> 6053 <rects> 6054 <_> 6055 17 5 3 4 -1.</_> 6056 <_> 6057 18 6 1 4 3.</_></rects> 6058 <tilted>1</tilted></feature> 6059 <threshold>6.4211348071694374e-03</threshold> 6060 <left_node>1</left_node> 6061 <right_val>-0.4858197867870331</right_val></_> 6062 <_> 6063 <!-- node 1 --> 6064 <feature> 6065 <rects> 6066 <_> 6067 0 9 4 8 -1.</_> 6068 <_> 6069 0 11 4 4 2.</_></rects> 6070 <tilted>0</tilted></feature> 6071 <threshold>-5.8243819512426853e-03</threshold> 6072 <left_val>0.2460819035768509</left_val> 6073 <right_val>-0.2156502008438110</right_val></_></_> 6074 <_> 6075 <!-- tree 11 --> 6076 <_> 6077 <!-- root node --> 6078 <feature> 6079 <rects> 6080 <_> 6081 0 6 3 8 -1.</_> 6082 <_> 6083 0 10 3 4 2.</_></rects> 6084 <tilted>0</tilted></feature> 6085 <threshold>-0.0400436297059059</threshold> 6086 <left_val>-0.6388055086135864</left_val> 6087 <right_node>1</right_node></_> 6088 <_> 6089 <!-- node 1 --> 6090 <feature> 6091 <rects> 6092 <_> 6093 14 11 2 2 -1.</_> 6094 <_> 6095 14 11 1 1 2.</_> 6096 <_> 6097 15 12 1 1 2.</_></rects> 6098 <tilted>0</tilted></feature> 6099 <threshold>8.4683427121490240e-04</threshold> 6100 <left_val>-0.0604355894029140</left_val> 6101 <right_val>0.4371112883090973</right_val></_></_> 6102 <_> 6103 <!-- tree 12 --> 6104 <_> 6105 <!-- root node --> 6106 <feature> 6107 <rects> 6108 <_> 6109 15 11 3 3 -1.</_> 6110 <_> 6111 14 12 3 1 3.</_></rects> 6112 <tilted>1</tilted></feature> 6113 <threshold>0.0129645802080631</threshold> 6114 <left_node>1</left_node> 6115 <right_val>0.5949506163597107</right_val></_> 6116 <_> 6117 <!-- node 1 --> 6118 <feature> 6119 <rects> 6120 <_> 6121 14 12 5 2 -1.</_> 6122 <_> 6123 14 13 5 1 2.</_></rects> 6124 <tilted>0</tilted></feature> 6125 <threshold>-2.2524749510921538e-04</threshold> 6126 <left_val>0.0868314728140831</left_val> 6127 <right_val>-0.3636232018470764</right_val></_></_> 6128 <_> 6129 <!-- tree 13 --> 6130 <_> 6131 <!-- root node --> 6132 <feature> 6133 <rects> 6134 <_> 6135 19 12 1 2 -1.</_> 6136 <_> 6137 19 13 1 1 2.</_></rects> 6138 <tilted>0</tilted></feature> 6139 <threshold>-1.7258729785680771e-03</threshold> 6140 <left_val>-0.6470772027969360</left_val> 6141 <right_node>1</right_node></_> 6142 <_> 6143 <!-- node 1 --> 6144 <feature> 6145 <rects> 6146 <_> 6147 6 0 4 7 -1.</_> 6148 <_> 6149 7 0 2 7 2.</_></rects> 6150 <tilted>0</tilted></feature> 6151 <threshold>-7.2289421223104000e-03</threshold> 6152 <left_val>-0.6877536773681641</left_val> 6153 <right_val>0.1383872032165527</right_val></_></_> 6154 <_> 6155 <!-- tree 14 --> 6156 <_> 6157 <!-- root node --> 6158 <feature> 6159 <rects> 6160 <_> 6161 12 12 3 2 -1.</_> 6162 <_> 6163 12 13 3 1 2.</_></rects> 6164 <tilted>0</tilted></feature> 6165 <threshold>2.5079259648919106e-03</threshold> 6166 <left_node>1</left_node> 6167 <right_val>0.3065930902957916</right_val></_> 6168 <_> 6169 <!-- node 1 --> 6170 <feature> 6171 <rects> 6172 <_> 6173 12 13 4 2 -1.</_> 6174 <_> 6175 12 13 2 1 2.</_> 6176 <_> 6177 14 14 2 1 2.</_></rects> 6178 <tilted>0</tilted></feature> 6179 <threshold>-1.9473560387268662e-03</threshold> 6180 <left_val>0.2296776026487350</left_val> 6181 <right_val>-0.3473764955997467</right_val></_></_> 6182 <_> 6183 <!-- tree 15 --> 6184 <_> 6185 <!-- root node --> 6186 <feature> 6187 <rects> 6188 <_> 6189 16 18 4 2 -1.</_> 6190 <_> 6191 16 19 4 1 2.</_></rects> 6192 <tilted>0</tilted></feature> 6193 <threshold>7.4747111648321152e-03</threshold> 6194 <left_node>1</left_node> 6195 <right_val>-0.6519178748130798</right_val></_> 6196 <_> 6197 <!-- node 1 --> 6198 <feature> 6199 <rects> 6200 <_> 6201 14 18 1 2 -1.</_> 6202 <_> 6203 14 19 1 1 2.</_></rects> 6204 <tilted>0</tilted></feature> 6205 <threshold>1.0328400094294921e-04</threshold> 6206 <left_val>-0.2072588950395584</left_val> 6207 <right_val>0.2240213006734848</right_val></_></_> 6208 <_> 6209 <!-- tree 16 --> 6210 <_> 6211 <!-- root node --> 6212 <feature> 6213 <rects> 6214 <_> 6215 16 0 3 2 -1.</_> 6216 <_> 6217 17 1 1 2 3.</_></rects> 6218 <tilted>1</tilted></feature> 6219 <threshold>-7.8996885567903519e-03</threshold> 6220 <left_val>-0.7247917056083679</left_val> 6221 <right_node>1</right_node></_> 6222 <_> 6223 <!-- node 1 --> 6224 <feature> 6225 <rects> 6226 <_> 6227 16 0 4 2 -1.</_> 6228 <_> 6229 17 1 2 2 2.</_></rects> 6230 <tilted>1</tilted></feature> 6231 <threshold>4.2833909392356873e-03</threshold> 6232 <left_val>0.1395497024059296</left_val> 6233 <right_val>-0.4308606088161469</right_val></_></_> 6234 <_> 6235 <!-- tree 17 --> 6236 <_> 6237 <!-- root node --> 6238 <feature> 6239 <rects> 6240 <_> 6241 12 13 2 2 -1.</_> 6242 <_> 6243 12 13 1 1 2.</_> 6244 <_> 6245 13 14 1 1 2.</_></rects> 6246 <tilted>0</tilted></feature> 6247 <threshold>6.3452741596847773e-04</threshold> 6248 <left_node>1</left_node> 6249 <right_val>0.2979263961315155</right_val></_> 6250 <_> 6251 <!-- node 1 --> 6252 <feature> 6253 <rects> 6254 <_> 6255 7 10 4 2 -1.</_> 6256 <_> 6257 7 10 2 2 2.</_></rects> 6258 <tilted>1</tilted></feature> 6259 <threshold>-5.4966621100902557e-03</threshold> 6260 <left_val>-0.5620539188385010</left_val> 6261 <right_val>-0.0296081192791462</right_val></_></_> 6262 <_> 6263 <!-- tree 18 --> 6264 <_> 6265 <!-- root node --> 6266 <feature> 6267 <rects> 6268 <_> 6269 3 3 1 3 -1.</_> 6270 <_> 6271 2 4 1 1 3.</_></rects> 6272 <tilted>1</tilted></feature> 6273 <threshold>3.1408690847456455e-03</threshold> 6274 <left_node>1</left_node> 6275 <right_val>-0.6132214069366455</right_val></_> 6276 <_> 6277 <!-- node 1 --> 6278 <feature> 6279 <rects> 6280 <_> 6281 3 4 2 3 -1.</_> 6282 <_> 6283 2 5 2 1 3.</_></rects> 6284 <tilted>1</tilted></feature> 6285 <threshold>-5.0443639047443867e-03</threshold> 6286 <left_val>-0.5306010246276855</left_val> 6287 <right_val>0.1250745952129364</right_val></_></_> 6288 <_> 6289 <!-- tree 19 --> 6290 <_> 6291 <!-- root node --> 6292 <feature> 6293 <rects> 6294 <_> 6295 3 0 16 6 -1.</_> 6296 <_> 6297 3 2 16 2 3.</_></rects> 6298 <tilted>0</tilted></feature> 6299 <threshold>0.0459648706018925</threshold> 6300 <left_node>1</left_node> 6301 <right_val>0.3818871974945068</right_val></_> 6302 <_> 6303 <!-- node 1 --> 6304 <feature> 6305 <rects> 6306 <_> 6307 12 2 2 5 -1.</_> 6308 <_> 6309 12 2 1 5 2.</_></rects> 6310 <tilted>1</tilted></feature> 6311 <threshold>-5.3749699145555496e-03</threshold> 6312 <left_val>0.1408901065587997</left_val> 6313 <right_val>-0.3553569018840790</right_val></_></_> 6314 <_> 6315 <!-- tree 20 --> 6316 <_> 6317 <!-- root node --> 6318 <feature> 6319 <rects> 6320 <_> 6321 4 0 1 3 -1.</_> 6322 <_> 6323 3 1 1 1 3.</_></rects> 6324 <tilted>1</tilted></feature> 6325 <threshold>2.9262059833854437e-03</threshold> 6326 <left_node>1</left_node> 6327 <right_val>-0.6088665723800659</right_val></_> 6328 <_> 6329 <!-- node 1 --> 6330 <feature> 6331 <rects> 6332 <_> 6333 13 12 2 2 -1.</_> 6334 <_> 6335 13 12 1 1 2.</_> 6336 <_> 6337 14 13 1 1 2.</_></rects> 6338 <tilted>0</tilted></feature> 6339 <threshold>5.2230368601158261e-04</threshold> 6340 <left_val>-0.0714415684342384</left_val> 6341 <right_val>0.3627525866031647</right_val></_></_> 6342 <_> 6343 <!-- tree 21 --> 6344 <_> 6345 <!-- root node --> 6346 <feature> 6347 <rects> 6348 <_> 6349 5 17 4 3 -1.</_> 6350 <_> 6351 6 17 2 3 2.</_></rects> 6352 <tilted>0</tilted></feature> 6353 <threshold>-4.4181118719279766e-03</threshold> 6354 <left_val>-0.7645800709724426</left_val> 6355 <right_node>1</right_node></_> 6356 <_> 6357 <!-- node 1 --> 6358 <feature> 6359 <rects> 6360 <_> 6361 17 13 3 3 -1.</_> 6362 <_> 6363 17 14 3 1 3.</_></rects> 6364 <tilted>0</tilted></feature> 6365 <threshold>4.3349149636924267e-03</threshold> 6366 <left_val>0.1124641001224518</left_val> 6367 <right_val>-0.5455384850502014</right_val></_></_> 6368 <_> 6369 <!-- tree 22 --> 6370 <_> 6371 <!-- root node --> 6372 <feature> 6373 <rects> 6374 <_> 6375 0 12 2 8 -1.</_> 6376 <_> 6377 0 12 1 4 2.</_> 6378 <_> 6379 1 16 1 4 2.</_></rects> 6380 <tilted>0</tilted></feature> 6381 <threshold>2.6483018882572651e-03</threshold> 6382 <left_node>1</left_node> 6383 <right_val>0.2354231029748917</right_val></_> 6384 <_> 6385 <!-- node 1 --> 6386 <feature> 6387 <rects> 6388 <_> 6389 4 16 1 3 -1.</_> 6390 <_> 6391 3 17 1 1 3.</_></rects> 6392 <tilted>1</tilted></feature> 6393 <threshold>-1.0814110282808542e-03</threshold> 6394 <left_val>0.1442230045795441</left_val> 6395 <right_val>-0.3440195918083191</right_val></_></_> 6396 <_> 6397 <!-- tree 23 --> 6398 <_> 6399 <!-- root node --> 6400 <feature> 6401 <rects> 6402 <_> 6403 0 2 1 2 -1.</_> 6404 <_> 6405 0 3 1 1 2.</_></rects> 6406 <tilted>0</tilted></feature> 6407 <threshold>-5.4296739108394831e-05</threshold> 6408 <left_node>1</left_node> 6409 <right_val>-0.2860746085643768</right_val></_> 6410 <_> 6411 <!-- node 1 --> 6412 <feature> 6413 <rects> 6414 <_> 6415 10 2 4 7 -1.</_> 6416 <_> 6417 11 2 2 7 2.</_></rects> 6418 <tilted>0</tilted></feature> 6419 <threshold>5.5393581278622150e-03</threshold> 6420 <left_val>0.1934528946876526</left_val> 6421 <right_val>-0.5054942965507507</right_val></_></_> 6422 <_> 6423 <!-- tree 24 --> 6424 <_> 6425 <!-- root node --> 6426 <feature> 6427 <rects> 6428 <_> 6429 2 1 6 9 -1.</_> 6430 <_> 6431 2 4 6 3 3.</_></rects> 6432 <tilted>0</tilted></feature> 6433 <threshold>0.0337030999362469</threshold> 6434 <left_node>1</left_node> 6435 <right_val>0.3830255866050720</right_val></_> 6436 <_> 6437 <!-- node 1 --> 6438 <feature> 6439 <rects> 6440 <_> 6441 1 4 2 2 -1.</_> 6442 <_> 6443 2 4 1 2 2.</_></rects> 6444 <tilted>0</tilted></feature> 6445 <threshold>-1.2178930046502501e-04</threshold> 6446 <left_val>0.0664141774177551</left_val> 6447 <right_val>-0.4853005111217499</right_val></_></_> 6448 <_> 6449 <!-- tree 25 --> 6450 <_> 6451 <!-- root node --> 6452 <feature> 6453 <rects> 6454 <_> 6455 13 12 2 2 -1.</_> 6456 <_> 6457 13 12 1 1 2.</_> 6458 <_> 6459 14 13 1 1 2.</_></rects> 6460 <tilted>0</tilted></feature> 6461 <threshold>-1.7803770024329424e-03</threshold> 6462 <left_val>0.4411354959011078</left_val> 6463 <right_node>1</right_node></_> 6464 <_> 6465 <!-- node 1 --> 6466 <feature> 6467 <rects> 6468 <_> 6469 18 0 2 1 -1.</_> 6470 <_> 6471 19 0 1 1 2.</_></rects> 6472 <tilted>0</tilted></feature> 6473 <threshold>-5.6019638577708974e-05</threshold> 6474 <left_val>0.1239674985408783</left_val> 6475 <right_val>-0.2629227042198181</right_val></_></_></trees> 6476 <stage_threshold>-1.9697020053863525</stage_threshold> 6477 <parent>14</parent> 6478 <next>-1</next></_> 6479 <_> 6480 <!-- stage 16 --> 6481 <trees> 6482 <_> 6483 <!-- tree 0 --> 6484 <_> 6485 <!-- root node --> 6486 <feature> 6487 <rects> 6488 <_> 6489 4 13 3 1 -1.</_> 6490 <_> 6491 5 13 1 1 3.</_></rects> 6492 <tilted>0</tilted></feature> 6493 <threshold>3.1982790678739548e-03</threshold> 6494 <left_node>1</left_node> 6495 <right_val>0.5420842170715332</right_val></_> 6496 <_> 6497 <!-- node 1 --> 6498 <feature> 6499 <rects> 6500 <_> 6501 6 13 4 1 -1.</_> 6502 <_> 6503 7 13 2 1 2.</_></rects> 6504 <tilted>0</tilted></feature> 6505 <threshold>-1.5240450156852603e-03</threshold> 6506 <left_val>0.0827848389744759</left_val> 6507 <right_val>-0.5016483068466187</right_val></_></_> 6508 <_> 6509 <!-- tree 1 --> 6510 <_> 6511 <!-- root node --> 6512 <feature> 6513 <rects> 6514 <_> 6515 6 10 6 3 -1.</_> 6516 <_> 6517 6 11 6 1 3.</_></rects> 6518 <tilted>0</tilted></feature> 6519 <threshold>-0.0122844297438860</threshold> 6520 <left_val>0.4417493939399719</left_val> 6521 <right_node>1</right_node></_> 6522 <_> 6523 <!-- node 1 --> 6524 <feature> 6525 <rects> 6526 <_> 6527 7 9 4 3 -1.</_> 6528 <_> 6529 7 10 4 1 3.</_></rects> 6530 <tilted>0</tilted></feature> 6531 <threshold>-8.3555448800325394e-03</threshold> 6532 <left_val>0.3586339950561523</left_val> 6533 <right_val>-0.3625485897064209</right_val></_></_> 6534 <_> 6535 <!-- tree 2 --> 6536 <_> 6537 <!-- root node --> 6538 <feature> 6539 <rects> 6540 <_> 6541 6 0 4 3 -1.</_> 6542 <_> 6543 6 0 2 3 2.</_></rects> 6544 <tilted>1</tilted></feature> 6545 <threshold>0.0413578003644943</threshold> 6546 <left_node>1</left_node> 6547 <right_val>0.4785881042480469</right_val></_> 6548 <_> 6549 <!-- node 1 --> 6550 <feature> 6551 <rects> 6552 <_> 6553 15 15 5 2 -1.</_> 6554 <_> 6555 15 16 5 1 2.</_></rects> 6556 <tilted>0</tilted></feature> 6557 <threshold>2.2308749612420797e-03</threshold> 6558 <left_val>-0.6039034724235535</left_val> 6559 <right_val>-8.7199418339878321e-04</right_val></_></_> 6560 <_> 6561 <!-- tree 3 --> 6562 <_> 6563 <!-- root node --> 6564 <feature> 6565 <rects> 6566 <_> 6567 0 8 18 12 -1.</_> 6568 <_> 6569 6 12 6 4 9.</_></rects> 6570 <tilted>0</tilted></feature> 6571 <threshold>-0.5416054129600525</threshold> 6572 <left_node>1</left_node> 6573 <right_val>-0.3253665864467621</right_val></_> 6574 <_> 6575 <!-- node 1 --> 6576 <feature> 6577 <rects> 6578 <_> 6579 1 6 14 4 -1.</_> 6580 <_> 6581 8 6 7 4 2.</_></rects> 6582 <tilted>0</tilted></feature> 6583 <threshold>7.9009458422660828e-03</threshold> 6584 <left_val>-0.3641510009765625</left_val> 6585 <right_val>0.4050160050392151</right_val></_></_> 6586 <_> 6587 <!-- tree 4 --> 6588 <_> 6589 <!-- root node --> 6590 <feature> 6591 <rects> 6592 <_> 6593 3 11 6 3 -1.</_> 6594 <_> 6595 2 12 6 1 3.</_></rects> 6596 <tilted>1</tilted></feature> 6597 <threshold>-2.7236728928983212e-03</threshold> 6598 <left_node>1</left_node> 6599 <right_val>-0.2764418125152588</right_val></_> 6600 <_> 6601 <!-- node 1 --> 6602 <feature> 6603 <rects> 6604 <_> 6605 5 9 1 3 -1.</_> 6606 <_> 6607 4 10 1 1 3.</_></rects> 6608 <tilted>1</tilted></feature> 6609 <threshold>2.1041880827397108e-03</threshold> 6610 <left_val>0.3406811952590942</left_val> 6611 <right_val>-0.4192248880863190</right_val></_></_> 6612 <_> 6613 <!-- tree 5 --> 6614 <_> 6615 <!-- root node --> 6616 <feature> 6617 <rects> 6618 <_> 6619 17 10 3 3 -1.</_> 6620 <_> 6621 18 11 1 3 3.</_></rects> 6622 <tilted>1</tilted></feature> 6623 <threshold>1.2688159476965666e-03</threshold> 6624 <left_node>1</left_node> 6625 <right_val>-0.5452076792716980</right_val></_> 6626 <_> 6627 <!-- node 1 --> 6628 <feature> 6629 <rects> 6630 <_> 6631 17 11 1 4 -1.</_> 6632 <_> 6633 16 12 1 2 2.</_></rects> 6634 <tilted>1</tilted></feature> 6635 <threshold>-4.2881062254309654e-03</threshold> 6636 <left_val>0.3006008863449097</left_val> 6637 <right_val>-0.1523319035768509</right_val></_></_> 6638 <_> 6639 <!-- tree 6 --> 6640 <_> 6641 <!-- root node --> 6642 <feature> 6643 <rects> 6644 <_> 6645 1 0 12 9 -1.</_> 6646 <_> 6647 4 0 6 9 2.</_></rects> 6648 <tilted>0</tilted></feature> 6649 <threshold>-4.8890449106693268e-03</threshold> 6650 <left_node>1</left_node> 6651 <right_val>-0.3766582012176514</right_val></_> 6652 <_> 6653 <!-- node 1 --> 6654 <feature> 6655 <rects> 6656 <_> 6657 9 3 4 5 -1.</_> 6658 <_> 6659 10 3 2 5 2.</_></rects> 6660 <tilted>0</tilted></feature> 6661 <threshold>5.0922110676765442e-03</threshold> 6662 <left_val>0.2180331945419312</left_val> 6663 <right_val>-0.5712652206420898</right_val></_></_> 6664 <_> 6665 <!-- tree 7 --> 6666 <_> 6667 <!-- root node --> 6668 <feature> 6669 <rects> 6670 <_> 6671 7 8 6 3 -1.</_> 6672 <_> 6673 7 9 6 1 3.</_></rects> 6674 <tilted>0</tilted></feature> 6675 <threshold>-7.0944731123745441e-03</threshold> 6676 <left_val>0.5192192196846008</left_val> 6677 <right_node>1</right_node></_> 6678 <_> 6679 <!-- node 1 --> 6680 <feature> 6681 <rects> 6682 <_> 6683 7 1 9 6 -1.</_> 6684 <_> 6685 7 3 9 2 3.</_></rects> 6686 <tilted>0</tilted></feature> 6687 <threshold>0.0254318900406361</threshold> 6688 <left_val>-0.2126024961471558</left_val> 6689 <right_val>0.3056620061397552</right_val></_></_> 6690 <_> 6691 <!-- tree 8 --> 6692 <_> 6693 <!-- root node --> 6694 <feature> 6695 <rects> 6696 <_> 6697 0 1 2 2 -1.</_> 6698 <_> 6699 0 2 2 1 2.</_></rects> 6700 <tilted>0</tilted></feature> 6701 <threshold>-6.7461907747201622e-05</threshold> 6702 <left_node>1</left_node> 6703 <right_val>-0.3340674936771393</right_val></_> 6704 <_> 6705 <!-- node 1 --> 6706 <feature> 6707 <rects> 6708 <_> 6709 13 8 3 5 -1.</_> 6710 <_> 6711 14 9 1 5 3.</_></rects> 6712 <tilted>1</tilted></feature> 6713 <threshold>-8.5350889712572098e-03</threshold> 6714 <left_val>0.3504346013069153</left_val> 6715 <right_val>-0.0903848335146904</right_val></_></_> 6716 <_> 6717 <!-- tree 9 --> 6718 <_> 6719 <!-- root node --> 6720 <feature> 6721 <rects> 6722 <_> 6723 3 16 3 1 -1.</_> 6724 <_> 6725 4 17 1 1 3.</_></rects> 6726 <tilted>1</tilted></feature> 6727 <threshold>-4.1117807850241661e-03</threshold> 6728 <left_val>-0.6968370079994202</left_val> 6729 <right_node>1</right_node></_> 6730 <_> 6731 <!-- node 1 --> 6732 <feature> 6733 <rects> 6734 <_> 6735 11 1 4 7 -1.</_> 6736 <_> 6737 12 1 2 7 2.</_></rects> 6738 <tilted>0</tilted></feature> 6739 <threshold>6.3964081928133965e-03</threshold> 6740 <left_val>0.1154263988137245</left_val> 6741 <right_val>-0.6664537191390991</right_val></_></_> 6742 <_> 6743 <!-- tree 10 --> 6744 <_> 6745 <!-- root node --> 6746 <feature> 6747 <rects> 6748 <_> 6749 11 13 2 2 -1.</_> 6750 <_> 6751 11 13 1 1 2.</_> 6752 <_> 6753 12 14 1 1 2.</_></rects> 6754 <tilted>0</tilted></feature> 6755 <threshold>9.8322751000523567e-04</threshold> 6756 <left_node>1</left_node> 6757 <right_val>0.3569537997245789</right_val></_> 6758 <_> 6759 <!-- node 1 --> 6760 <feature> 6761 <rects> 6762 <_> 6763 12 14 3 1 -1.</_> 6764 <_> 6765 13 14 1 1 3.</_></rects> 6766 <tilted>0</tilted></feature> 6767 <threshold>-5.5737968068569899e-04</threshold> 6768 <left_val>0.2308111041784286</left_val> 6769 <right_val>-0.2886263132095337</right_val></_></_> 6770 <_> 6771 <!-- tree 11 --> 6772 <_> 6773 <!-- root node --> 6774 <feature> 6775 <rects> 6776 <_> 6777 17 2 3 1 -1.</_> 6778 <_> 6779 18 3 1 1 3.</_></rects> 6780 <tilted>1</tilted></feature> 6781 <threshold>2.8798289131373167e-03</threshold> 6782 <left_node>1</left_node> 6783 <right_val>-0.5992326736450195</right_val></_> 6784 <_> 6785 <!-- node 1 --> 6786 <feature> 6787 <rects> 6788 <_> 6789 14 2 6 6 -1.</_> 6790 <_> 6791 14 2 3 3 2.</_> 6792 <_> 6793 17 5 3 3 2.</_></rects> 6794 <tilted>0</tilted></feature> 6795 <threshold>-7.7164517715573311e-03</threshold> 6796 <left_val>0.3607490062713623</left_val> 6797 <right_val>-0.0818276181817055</right_val></_></_> 6798 <_> 6799 <!-- tree 12 --> 6800 <_> 6801 <!-- root node --> 6802 <feature> 6803 <rects> 6804 <_> 6805 12 16 8 4 -1.</_> 6806 <_> 6807 12 18 8 2 2.</_></rects> 6808 <tilted>0</tilted></feature> 6809 <threshold>3.7285129074007273e-03</threshold> 6810 <left_val>-0.3773201107978821</left_val> 6811 <right_node>1</right_node></_> 6812 <_> 6813 <!-- node 1 --> 6814 <feature> 6815 <rects> 6816 <_> 6817 7 11 3 3 -1.</_> 6818 <_> 6819 6 12 3 1 3.</_></rects> 6820 <tilted>1</tilted></feature> 6821 <threshold>-0.0131611097604036</threshold> 6822 <left_val>0.6702303886413574</left_val> 6823 <right_val>0.0151145495474339</right_val></_></_> 6824 <_> 6825 <!-- tree 13 --> 6826 <_> 6827 <!-- root node --> 6828 <feature> 6829 <rects> 6830 <_> 6831 6 3 8 6 -1.</_> 6832 <_> 6833 4 5 8 2 3.</_></rects> 6834 <tilted>1</tilted></feature> 6835 <threshold>-0.0389661304652691</threshold> 6836 <left_node>1</left_node> 6837 <right_val>-0.3125221133232117</right_val></_> 6838 <_> 6839 <!-- node 1 --> 6840 <feature> 6841 <rects> 6842 <_> 6843 1 8 3 8 -1.</_> 6844 <_> 6845 1 10 3 4 2.</_></rects> 6846 <tilted>0</tilted></feature> 6847 <threshold>-5.7413699105381966e-03</threshold> 6848 <left_val>0.3394747972488403</left_val> 6849 <right_val>-0.1601140946149826</right_val></_></_> 6850 <_> 6851 <!-- tree 14 --> 6852 <_> 6853 <!-- root node --> 6854 <feature> 6855 <rects> 6856 <_> 6857 7 0 8 6 -1.</_> 6858 <_> 6859 9 2 4 6 2.</_></rects> 6860 <tilted>1</tilted></feature> 6861 <threshold>0.1253833025693893</threshold> 6862 <left_node>1</left_node> 6863 <right_val>0.7372115254402161</right_val></_> 6864 <_> 6865 <!-- node 1 --> 6866 <feature> 6867 <rects> 6868 <_> 6869 5 2 7 6 -1.</_> 6870 <_> 6871 5 5 7 3 2.</_></rects> 6872 <tilted>0</tilted></feature> 6873 <threshold>-0.0972431227564812</threshold> 6874 <left_val>0.5028898119926453</left_val> 6875 <right_val>-0.1328437030315399</right_val></_></_> 6876 <_> 6877 <!-- tree 15 --> 6878 <_> 6879 <!-- root node --> 6880 <feature> 6881 <rects> 6882 <_> 6883 10 13 3 1 -1.</_> 6884 <_> 6885 11 13 1 1 3.</_></rects> 6886 <tilted>0</tilted></feature> 6887 <threshold>-2.0128490868955851e-03</threshold> 6888 <left_val>0.4136789143085480</left_val> 6889 <right_node>1</right_node></_> 6890 <_> 6891 <!-- node 1 --> 6892 <feature> 6893 <rects> 6894 <_> 6895 12 12 4 2 -1.</_> 6896 <_> 6897 12 12 2 1 2.</_> 6898 <_> 6899 14 13 2 1 2.</_></rects> 6900 <tilted>0</tilted></feature> 6901 <threshold>3.5349070094525814e-03</threshold> 6902 <left_val>-0.1592327058315277</left_val> 6903 <right_val>0.4405657947063446</right_val></_></_> 6904 <_> 6905 <!-- tree 16 --> 6906 <_> 6907 <!-- root node --> 6908 <feature> 6909 <rects> 6910 <_> 6911 6 1 14 19 -1.</_> 6912 <_> 6913 13 1 7 19 2.</_></rects> 6914 <tilted>0</tilted></feature> 6915 <threshold>0.4484654068946838</threshold> 6916 <left_node>1</left_node> 6917 <right_val>0.5942366123199463</right_val></_> 6918 <_> 6919 <!-- node 1 --> 6920 <feature> 6921 <rects> 6922 <_> 6923 6 9 14 1 -1.</_> 6924 <_> 6925 13 9 7 1 2.</_></rects> 6926 <tilted>0</tilted></feature> 6927 <threshold>-0.0103877801448107</threshold> 6928 <left_val>0.3039911985397339</left_val> 6929 <right_val>-0.1828735023736954</right_val></_></_> 6930 <_> 6931 <!-- tree 17 --> 6932 <_> 6933 <!-- root node --> 6934 <feature> 6935 <rects> 6936 <_> 6937 18 0 2 1 -1.</_> 6938 <_> 6939 18 0 1 1 2.</_></rects> 6940 <tilted>1</tilted></feature> 6941 <threshold>-1.4210389927029610e-03</threshold> 6942 <left_val>-0.4536106884479523</left_val> 6943 <right_node>1</right_node></_> 6944 <_> 6945 <!-- node 1 --> 6946 <feature> 6947 <rects> 6948 <_> 6949 15 0 3 1 -1.</_> 6950 <_> 6951 16 1 1 1 3.</_></rects> 6952 <tilted>1</tilted></feature> 6953 <threshold>3.6446070298552513e-03</threshold> 6954 <left_val>0.1576682031154633</left_val> 6955 <right_val>-0.6260883808135986</right_val></_></_> 6956 <_> 6957 <!-- tree 18 --> 6958 <_> 6959 <!-- root node --> 6960 <feature> 6961 <rects> 6962 <_> 6963 5 7 2 3 -1.</_> 6964 <_> 6965 4 8 2 1 3.</_></rects> 6966 <tilted>1</tilted></feature> 6967 <threshold>3.2253630924969912e-03</threshold> 6968 <left_node>1</left_node> 6969 <right_val>-0.4141024053096771</right_val></_> 6970 <_> 6971 <!-- node 1 --> 6972 <feature> 6973 <rects> 6974 <_> 6975 15 12 3 3 -1.</_> 6976 <_> 6977 14 13 3 1 3.</_></rects> 6978 <tilted>1</tilted></feature> 6979 <threshold>9.8893349058926105e-04</threshold> 6980 <left_val>-0.1075780019164085</left_val> 6981 <right_val>0.3115688860416412</right_val></_></_> 6982 <_> 6983 <!-- tree 19 --> 6984 <_> 6985 <!-- root node --> 6986 <feature> 6987 <rects> 6988 <_> 6989 10 17 4 2 -1.</_> 6990 <_> 6991 11 17 2 2 2.</_></rects> 6992 <tilted>0</tilted></feature> 6993 <threshold>-2.7107829228043556e-03</threshold> 6994 <left_val>-0.7535281777381897</left_val> 6995 <right_node>1</right_node></_> 6996 <_> 6997 <!-- node 1 --> 6998 <feature> 6999 <rects> 7000 <_> 7001 8 12 3 3 -1.</_> 7002 <_> 7003 9 13 1 1 9.</_></rects> 7004 <tilted>0</tilted></feature> 7005 <threshold>-6.9264871999621391e-03</threshold> 7006 <left_val>0.2746442854404449</left_val> 7007 <right_val>-0.1172894984483719</right_val></_></_> 7008 <_> 7009 <!-- tree 20 --> 7010 <_> 7011 <!-- root node --> 7012 <feature> 7013 <rects> 7014 <_> 7015 4 1 7 6 -1.</_> 7016 <_> 7017 4 3 7 2 3.</_></rects> 7018 <tilted>0</tilted></feature> 7019 <threshold>-0.0379427708685398</threshold> 7020 <left_val>0.2693654894828796</left_val> 7021 <right_node>1</right_node></_> 7022 <_> 7023 <!-- node 1 --> 7024 <feature> 7025 <rects> 7026 <_> 7027 11 0 6 6 -1.</_> 7028 <_> 7029 11 2 6 2 3.</_></rects> 7030 <tilted>0</tilted></feature> 7031 <threshold>0.0134864598512650</threshold> 7032 <left_val>-0.3153286874294281</left_val> 7033 <right_val>0.2578544020652771</right_val></_></_> 7034 <_> 7035 <!-- tree 21 --> 7036 <_> 7037 <!-- root node --> 7038 <feature> 7039 <rects> 7040 <_> 7041 0 1 1 4 -1.</_> 7042 <_> 7043 0 2 1 2 2.</_></rects> 7044 <tilted>0</tilted></feature> 7045 <threshold>2.7866458985954523e-03</threshold> 7046 <left_node>1</left_node> 7047 <right_val>-0.6843165755271912</right_val></_> 7048 <_> 7049 <!-- node 1 --> 7050 <feature> 7051 <rects> 7052 <_> 7053 7 5 4 4 -1.</_> 7054 <_> 7055 8 5 2 4 2.</_></rects> 7056 <tilted>0</tilted></feature> 7057 <threshold>3.2895719632506371e-03</threshold> 7058 <left_val>0.1294910013675690</left_val> 7059 <right_val>-0.4447514116764069</right_val></_></_> 7060 <_> 7061 <!-- tree 22 --> 7062 <_> 7063 <!-- root node --> 7064 <feature> 7065 <rects> 7066 <_> 7067 1 0 1 3 -1.</_> 7068 <_> 7069 1 1 1 1 3.</_></rects> 7070 <tilted>0</tilted></feature> 7071 <threshold>1.7910100286826491e-03</threshold> 7072 <left_node>1</left_node> 7073 <right_val>-0.5623742938041687</right_val></_> 7074 <_> 7075 <!-- node 1 --> 7076 <feature> 7077 <rects> 7078 <_> 7079 9 3 4 2 -1.</_> 7080 <_> 7081 9 4 4 1 2.</_></rects> 7082 <tilted>0</tilted></feature> 7083 <threshold>3.3694170415401459e-03</threshold> 7084 <left_val>-0.0619367696344852</left_val> 7085 <right_val>0.3679428994655609</right_val></_></_> 7086 <_> 7087 <!-- tree 23 --> 7088 <_> 7089 <!-- root node --> 7090 <feature> 7091 <rects> 7092 <_> 7093 18 13 2 5 -1.</_> 7094 <_> 7095 19 13 1 5 2.</_></rects> 7096 <tilted>0</tilted></feature> 7097 <threshold>6.5897632157430053e-04</threshold> 7098 <left_val>-0.2770572006702423</left_val> 7099 <right_node>1</right_node></_> 7100 <_> 7101 <!-- node 1 --> 7102 <feature> 7103 <rects> 7104 <_> 7105 2 11 3 6 -1.</_> 7106 <_> 7107 3 11 1 6 3.</_></rects> 7108 <tilted>0</tilted></feature> 7109 <threshold>-3.2603838917566463e-05</threshold> 7110 <left_val>0.2742677927017212</left_val> 7111 <right_val>-0.2236953973770142</right_val></_></_> 7112 <_> 7113 <!-- tree 24 --> 7114 <_> 7115 <!-- root node --> 7116 <feature> 7117 <rects> 7118 <_> 7119 0 5 2 12 -1.</_> 7120 <_> 7121 0 9 2 4 3.</_></rects> 7122 <tilted>0</tilted></feature> 7123 <threshold>-0.0601757206022739</threshold> 7124 <left_val>-0.7417491078376770</left_val> 7125 <right_node>1</right_node></_> 7126 <_> 7127 <!-- node 1 --> 7128 <feature> 7129 <rects> 7130 <_> 7131 11 10 8 5 -1.</_> 7132 <_> 7133 15 10 4 5 2.</_></rects> 7134 <tilted>0</tilted></feature> 7135 <threshold>-0.0212176106870174</threshold> 7136 <left_val>-0.4503475129604340</left_val> 7137 <right_val>0.1142600029706955</right_val></_></_> 7138 <_> 7139 <!-- tree 25 --> 7140 <_> 7141 <!-- root node --> 7142 <feature> 7143 <rects> 7144 <_> 7145 15 11 4 2 -1.</_> 7146 <_> 7147 16 12 2 2 2.</_></rects> 7148 <tilted>1</tilted></feature> 7149 <threshold>-2.2632910404354334e-03</threshold> 7150 <left_node>1</left_node> 7151 <right_val>-0.3053858876228333</right_val></_> 7152 <_> 7153 <!-- node 1 --> 7154 <feature> 7155 <rects> 7156 <_> 7157 15 8 4 2 -1.</_> 7158 <_> 7159 16 9 2 2 2.</_></rects> 7160 <tilted>1</tilted></feature> 7161 <threshold>6.0313078574836254e-03</threshold> 7162 <left_val>0.2056266069412231</left_val> 7163 <right_val>-0.4068979918956757</right_val></_></_> 7164 <_> 7165 <!-- tree 26 --> 7166 <_> 7167 <!-- root node --> 7168 <feature> 7169 <rects> 7170 <_> 7171 5 13 2 1 -1.</_> 7172 <_> 7173 6 13 1 1 2.</_></rects> 7174 <tilted>0</tilted></feature> 7175 <threshold>5.7578482665121555e-04</threshold> 7176 <left_node>1</left_node> 7177 <right_val>0.3509874939918518</right_val></_> 7178 <_> 7179 <!-- node 1 --> 7180 <feature> 7181 <rects> 7182 <_> 7183 12 13 2 2 -1.</_> 7184 <_> 7185 13 13 1 2 2.</_></rects> 7186 <tilted>0</tilted></feature> 7187 <threshold>-9.3677162658423185e-04</threshold> 7188 <left_val>0.2161615937948227</left_val> 7189 <right_val>-0.2441577017307281</right_val></_></_> 7190 <_> 7191 <!-- tree 27 --> 7192 <_> 7193 <!-- root node --> 7194 <feature> 7195 <rects> 7196 <_> 7197 11 12 8 8 -1.</_> 7198 <_> 7199 13 12 4 8 2.</_></rects> 7200 <tilted>0</tilted></feature> 7201 <threshold>-0.0376265682280064</threshold> 7202 <left_val>-0.5911368131637573</left_val> 7203 <right_node>1</right_node></_> 7204 <_> 7205 <!-- node 1 --> 7206 <feature> 7207 <rects> 7208 <_> 7209 3 0 6 10 -1.</_> 7210 <_> 7211 5 0 2 10 3.</_></rects> 7212 <tilted>0</tilted></feature> 7213 <threshold>4.4729812070727348e-03</threshold> 7214 <left_val>0.1579227000474930</left_val> 7215 <right_val>-0.3222627937793732</right_val></_></_> 7216 <_> 7217 <!-- tree 28 --> 7218 <_> 7219 <!-- root node --> 7220 <feature> 7221 <rects> 7222 <_> 7223 6 14 2 2 -1.</_> 7224 <_> 7225 6 14 1 2 2.</_></rects> 7226 <tilted>1</tilted></feature> 7227 <threshold>-7.1853301487863064e-03</threshold> 7228 <left_val>-0.5951905250549316</left_val> 7229 <right_node>1</right_node></_> 7230 <_> 7231 <!-- node 1 --> 7232 <feature> 7233 <rects> 7234 <_> 7235 0 5 19 4 -1.</_> 7236 <_> 7237 0 7 19 2 2.</_></rects> 7238 <tilted>0</tilted></feature> 7239 <threshold>0.0405202284455299</threshold> 7240 <left_val>-0.0666884630918503</left_val> 7241 <right_val>0.3403024971485138</right_val></_></_> 7242 <_> 7243 <!-- tree 29 --> 7244 <_> 7245 <!-- root node --> 7246 <feature> 7247 <rects> 7248 <_> 7249 17 4 3 2 -1.</_> 7250 <_> 7251 18 5 1 2 3.</_></rects> 7252 <tilted>1</tilted></feature> 7253 <threshold>-6.1968388035893440e-03</threshold> 7254 <left_val>-0.6728746294975281</left_val> 7255 <right_node>1</right_node></_> 7256 <_> 7257 <!-- node 1 --> 7258 <feature> 7259 <rects> 7260 <_> 7261 17 3 3 4 -1.</_> 7262 <_> 7263 18 4 1 4 3.</_></rects> 7264 <tilted>1</tilted></feature> 7265 <threshold>0.0103115299716592</threshold> 7266 <left_val>0.1068323999643326</left_val> 7267 <right_val>-0.5482596755027771</right_val></_></_></trees> 7268 <stage_threshold>-2.0330519676208496</stage_threshold> 7269 <parent>15</parent> 7270 <next>-1</next></_> 7271 <_> 7272 <!-- stage 17 --> 7273 <trees> 7274 <_> 7275 <!-- tree 0 --> 7276 <_> 7277 <!-- root node --> 7278 <feature> 7279 <rects> 7280 <_> 7281 5 13 8 2 -1.</_> 7282 <_> 7283 7 13 4 2 2.</_></rects> 7284 <tilted>0</tilted></feature> 7285 <threshold>-0.0193205196410418</threshold> 7286 <left_node>1</left_node> 7287 <right_val>-0.3871257007122040</right_val></_> 7288 <_> 7289 <!-- node 1 --> 7290 <feature> 7291 <rects> 7292 <_> 7293 0 0 2 8 -1.</_> 7294 <_> 7295 0 4 2 4 2.</_></rects> 7296 <tilted>0</tilted></feature> 7297 <threshold>-0.0151264602318406</threshold> 7298 <left_val>0.6446818113327026</left_val> 7299 <right_val>-0.1272711008787155</right_val></_></_> 7300 <_> 7301 <!-- tree 1 --> 7302 <_> 7303 <!-- root node --> 7304 <feature> 7305 <rects> 7306 <_> 7307 0 9 15 6 -1.</_> 7308 <_> 7309 0 11 15 2 3.</_></rects> 7310 <tilted>0</tilted></feature> 7311 <threshold>-0.0601826906204224</threshold> 7312 <left_node>1</left_node> 7313 <right_val>-0.3081910908222198</right_val></_> 7314 <_> 7315 <!-- node 1 --> 7316 <feature> 7317 <rects> 7318 <_> 7319 18 14 2 1 -1.</_> 7320 <_> 7321 18 14 1 1 2.</_></rects> 7322 <tilted>1</tilted></feature> 7323 <threshold>-1.3576049823313951e-03</threshold> 7324 <left_val>0.4802188873291016</left_val> 7325 <right_val>-0.3342868089675903</right_val></_></_> 7326 <_> 7327 <!-- tree 2 --> 7328 <_> 7329 <!-- root node --> 7330 <feature> 7331 <rects> 7332 <_> 7333 0 0 4 8 -1.</_> 7334 <_> 7335 2 0 2 8 2.</_></rects> 7336 <tilted>0</tilted></feature> 7337 <threshold>-5.6930771097540855e-03</threshold> 7338 <left_node>1</left_node> 7339 <right_val>-0.3316608071327209</right_val></_> 7340 <_> 7341 <!-- node 1 --> 7342 <feature> 7343 <rects> 7344 <_> 7345 0 13 6 2 -1.</_> 7346 <_> 7347 2 13 2 2 3.</_></rects> 7348 <tilted>0</tilted></feature> 7349 <threshold>-8.0942036584019661e-03</threshold> 7350 <left_val>0.4751748144626617</left_val> 7351 <right_val>-0.0747615620493889</right_val></_></_> 7352 <_> 7353 <!-- tree 3 --> 7354 <_> 7355 <!-- root node --> 7356 <feature> 7357 <rects> 7358 <_> 7359 3 18 3 2 -1.</_> 7360 <_> 7361 3 19 3 1 2.</_></rects> 7362 <tilted>0</tilted></feature> 7363 <threshold>6.8413332337513566e-04</threshold> 7364 <left_val>-0.3574196994304657</left_val> 7365 <right_node>1</right_node></_> 7366 <_> 7367 <!-- node 1 --> 7368 <feature> 7369 <rects> 7370 <_> 7371 2 11 15 6 -1.</_> 7372 <_> 7373 7 13 5 2 9.</_></rects> 7374 <tilted>0</tilted></feature> 7375 <threshold>-0.1152058988809586</threshold> 7376 <left_val>0.2610509097576141</left_val> 7377 <right_val>-0.3177380859851837</right_val></_></_> 7378 <_> 7379 <!-- tree 4 --> 7380 <_> 7381 <!-- root node --> 7382 <feature> 7383 <rects> 7384 <_> 7385 7 14 3 3 -1.</_> 7386 <_> 7387 8 15 1 3 3.</_></rects> 7388 <tilted>1</tilted></feature> 7389 <threshold>-9.1124046593904495e-03</threshold> 7390 <left_val>-0.5854070782661438</left_val> 7391 <right_node>1</right_node></_> 7392 <_> 7393 <!-- node 1 --> 7394 <feature> 7395 <rects> 7396 <_> 7397 7 8 2 2 -1.</_> 7398 <_> 7399 8 8 1 2 2.</_></rects> 7400 <tilted>0</tilted></feature> 7401 <threshold>5.4891068430151790e-05</threshold> 7402 <left_val>-0.2298189997673035</left_val> 7403 <right_val>0.2348290979862213</right_val></_></_> 7404 <_> 7405 <!-- tree 5 --> 7406 <_> 7407 <!-- root node --> 7408 <feature> 7409 <rects> 7410 <_> 7411 6 9 6 3 -1.</_> 7412 <_> 7413 6 10 6 1 3.</_></rects> 7414 <tilted>0</tilted></feature> 7415 <threshold>-9.5622539520263672e-03</threshold> 7416 <left_val>0.3915528059005737</left_val> 7417 <right_node>1</right_node></_> 7418 <_> 7419 <!-- node 1 --> 7420 <feature> 7421 <rects> 7422 <_> 7423 5 8 7 3 -1.</_> 7424 <_> 7425 5 9 7 1 3.</_></rects> 7426 <tilted>0</tilted></feature> 7427 <threshold>-8.2032606005668640e-03</threshold> 7428 <left_val>0.4317995011806488</left_val> 7429 <right_val>-0.2317329049110413</right_val></_></_> 7430 <_> 7431 <!-- tree 6 --> 7432 <_> 7433 <!-- root node --> 7434 <feature> 7435 <rects> 7436 <_> 7437 17 9 3 1 -1.</_> 7438 <_> 7439 18 10 1 1 3.</_></rects> 7440 <tilted>1</tilted></feature> 7441 <threshold>-4.0035760030150414e-03</threshold> 7442 <left_val>-0.5870047807693481</left_val> 7443 <right_node>1</right_node></_> 7444 <_> 7445 <!-- node 1 --> 7446 <feature> 7447 <rects> 7448 <_> 7449 17 9 3 2 -1.</_> 7450 <_> 7451 18 10 1 2 3.</_></rects> 7452 <tilted>1</tilted></feature> 7453 <threshold>2.5406230706721544e-03</threshold> 7454 <left_val>0.1799003034830093</left_val> 7455 <right_val>-0.4168156981468201</right_val></_></_> 7456 <_> 7457 <!-- tree 7 --> 7458 <_> 7459 <!-- root node --> 7460 <feature> 7461 <rects> 7462 <_> 7463 11 9 1 3 -1.</_> 7464 <_> 7465 11 10 1 1 3.</_></rects> 7466 <tilted>0</tilted></feature> 7467 <threshold>1.9435470458120108e-03</threshold> 7468 <left_node>1</left_node> 7469 <right_val>0.3034000992774963</right_val></_> 7470 <_> 7471 <!-- node 1 --> 7472 <feature> 7473 <rects> 7474 <_> 7475 12 11 2 2 -1.</_> 7476 <_> 7477 12 11 1 1 2.</_> 7478 <_> 7479 13 12 1 1 2.</_></rects> 7480 <tilted>0</tilted></feature> 7481 <threshold>8.4362342022359371e-04</threshold> 7482 <left_val>-0.3066104054450989</left_val> 7483 <right_val>0.2364699989557266</right_val></_></_> 7484 <_> 7485 <!-- tree 8 --> 7486 <_> 7487 <!-- root node --> 7488 <feature> 7489 <rects> 7490 <_> 7491 3 6 4 5 -1.</_> 7492 <_> 7493 4 6 2 5 2.</_></rects> 7494 <tilted>0</tilted></feature> 7495 <threshold>-5.3103519603610039e-03</threshold> 7496 <left_val>-0.5630481839179993</left_val> 7497 <right_node>1</right_node></_> 7498 <_> 7499 <!-- node 1 --> 7500 <feature> 7501 <rects> 7502 <_> 7503 5 6 4 3 -1.</_> 7504 <_> 7505 6 6 2 3 2.</_></rects> 7506 <tilted>0</tilted></feature> 7507 <threshold>-3.5526719875633717e-03</threshold> 7508 <left_val>-0.5569577217102051</left_val> 7509 <right_val>0.1502279043197632</right_val></_></_> 7510 <_> 7511 <!-- tree 9 --> 7512 <_> 7513 <!-- root node --> 7514 <feature> 7515 <rects> 7516 <_> 7517 0 3 1 6 -1.</_> 7518 <_> 7519 0 5 1 2 3.</_></rects> 7520 <tilted>0</tilted></feature> 7521 <threshold>7.1414401754736900e-03</threshold> 7522 <left_node>1</left_node> 7523 <right_val>-0.6762663722038269</right_val></_> 7524 <_> 7525 <!-- node 1 --> 7526 <feature> 7527 <rects> 7528 <_> 7529 14 12 2 2 -1.</_> 7530 <_> 7531 14 12 1 1 2.</_> 7532 <_> 7533 15 13 1 1 2.</_></rects> 7534 <tilted>0</tilted></feature> 7535 <threshold>-1.1435860069468617e-03</threshold> 7536 <left_val>0.3787387907505035</left_val> 7537 <right_val>-0.0744428932666779</right_val></_></_> 7538 <_> 7539 <!-- tree 10 --> 7540 <_> 7541 <!-- root node --> 7542 <feature> 7543 <rects> 7544 <_> 7545 3 16 3 3 -1.</_> 7546 <_> 7547 4 16 1 3 3.</_></rects> 7548 <tilted>0</tilted></feature> 7549 <threshold>-3.1177429482340813e-03</threshold> 7550 <left_val>-0.6256858706474304</left_val> 7551 <right_node>1</right_node></_> 7552 <_> 7553 <!-- node 1 --> 7554 <feature> 7555 <rects> 7556 <_> 7557 3 1 14 4 -1.</_> 7558 <_> 7559 3 3 14 2 2.</_></rects> 7560 <tilted>0</tilted></feature> 7561 <threshold>-0.0774156227707863</threshold> 7562 <left_val>0.3983941078186035</left_val> 7563 <right_val>-0.0552623197436333</right_val></_></_> 7564 <_> 7565 <!-- tree 11 --> 7566 <_> 7567 <!-- root node --> 7568 <feature> 7569 <rects> 7570 <_> 7571 6 0 14 8 -1.</_> 7572 <_> 7573 6 0 7 4 2.</_> 7574 <_> 7575 13 4 7 4 2.</_></rects> 7576 <tilted>0</tilted></feature> 7577 <threshold>-0.0392529889941216</threshold> 7578 <left_val>0.3409483134746552</left_val> 7579 <right_node>1</right_node></_> 7580 <_> 7581 <!-- node 1 --> 7582 <feature> 7583 <rects> 7584 <_> 7585 4 0 4 8 -1.</_> 7586 <_> 7587 4 2 4 4 2.</_></rects> 7588 <tilted>0</tilted></feature> 7589 <threshold>0.0220499709248543</threshold> 7590 <left_val>-0.2441371977329254</left_val> 7591 <right_val>0.4305087029933929</right_val></_></_> 7592 <_> 7593 <!-- tree 12 --> 7594 <_> 7595 <!-- root node --> 7596 <feature> 7597 <rects> 7598 <_> 7599 9 0 8 1 -1.</_> 7600 <_> 7601 13 0 4 1 2.</_></rects> 7602 <tilted>0</tilted></feature> 7603 <threshold>-2.2205871064215899e-03</threshold> 7604 <left_val>0.2830972075462341</left_val> 7605 <right_node>1</right_node></_> 7606 <_> 7607 <!-- node 1 --> 7608 <feature> 7609 <rects> 7610 <_> 7611 14 1 6 1 -1.</_> 7612 <_> 7613 17 1 3 1 2.</_></rects> 7614 <tilted>0</tilted></feature> 7615 <threshold>2.8649640735238791e-03</threshold> 7616 <left_val>-0.3540188074111938</left_val> 7617 <right_val>0.2105457037687302</right_val></_></_> 7618 <_> 7619 <!-- tree 13 --> 7620 <_> 7621 <!-- root node --> 7622 <feature> 7623 <rects> 7624 <_> 7625 18 18 2 2 -1.</_> 7626 <_> 7627 18 19 2 1 2.</_></rects> 7628 <tilted>0</tilted></feature> 7629 <threshold>5.8806730521610007e-05</threshold> 7630 <left_val>-0.2701404094696045</left_val> 7631 <right_node>1</right_node></_> 7632 <_> 7633 <!-- node 1 --> 7634 <feature> 7635 <rects> 7636 <_> 7637 5 16 2 2 -1.</_> 7638 <_> 7639 5 16 1 2 2.</_></rects> 7640 <tilted>1</tilted></feature> 7641 <threshold>-6.6595021635293961e-03</threshold> 7642 <left_val>-0.5931348204612732</left_val> 7643 <right_val>0.2189286947250366</right_val></_></_> 7644 <_> 7645 <!-- tree 14 --> 7646 <_> 7647 <!-- root node --> 7648 <feature> 7649 <rects> 7650 <_> 7651 2 8 11 3 -1.</_> 7652 <_> 7653 2 9 11 1 3.</_></rects> 7654 <tilted>0</tilted></feature> 7655 <threshold>0.0169316008687019</threshold> 7656 <left_val>-0.1127962023019791</left_val> 7657 <right_node>1</right_node></_> 7658 <_> 7659 <!-- node 1 --> 7660 <feature> 7661 <rects> 7662 <_> 7663 1 8 2 3 -1.</_> 7664 <_> 7665 1 9 2 1 3.</_></rects> 7666 <tilted>0</tilted></feature> 7667 <threshold>4.7026639804244041e-03</threshold> 7668 <left_val>0.4921221137046814</left_val> 7669 <right_val>-0.3970288038253784</right_val></_></_> 7670 <_> 7671 <!-- tree 15 --> 7672 <_> 7673 <!-- root node --> 7674 <feature> 7675 <rects> 7676 <_> 7677 18 12 2 5 -1.</_> 7678 <_> 7679 19 12 1 5 2.</_></rects> 7680 <tilted>0</tilted></feature> 7681 <threshold>1.7478819936513901e-03</threshold> 7682 <left_val>-0.2233936935663223</left_val> 7683 <right_node>1</right_node></_> 7684 <_> 7685 <!-- node 1 --> 7686 <feature> 7687 <rects> 7688 <_> 7689 19 16 1 3 -1.</_> 7690 <_> 7691 18 17 1 1 3.</_></rects> 7692 <tilted>1</tilted></feature> 7693 <threshold>-2.0893230102956295e-03</threshold> 7694 <left_val>-0.4315781891345978</left_val> 7695 <right_val>0.2537313997745514</right_val></_></_> 7696 <_> 7697 <!-- tree 16 --> 7698 <_> 7699 <!-- root node --> 7700 <feature> 7701 <rects> 7702 <_> 7703 14 9 2 2 -1.</_> 7704 <_> 7705 14 9 1 2 2.</_></rects> 7706 <tilted>1</tilted></feature> 7707 <threshold>0.0115348501130939</threshold> 7708 <left_node>1</left_node> 7709 <right_val>-0.7066854238510132</right_val></_> 7710 <_> 7711 <!-- node 1 --> 7712 <feature> 7713 <rects> 7714 <_> 7715 13 11 2 2 -1.</_> 7716 <_> 7717 13 11 1 1 2.</_> 7718 <_> 7719 14 12 1 1 2.</_></rects> 7720 <tilted>0</tilted></feature> 7721 <threshold>8.7350117973983288e-04</threshold> 7722 <left_val>-0.0725091323256493</left_val> 7723 <right_val>0.3997502923011780</right_val></_></_> 7724 <_> 7725 <!-- tree 17 --> 7726 <_> 7727 <!-- root node --> 7728 <feature> 7729 <rects> 7730 <_> 7731 13 12 4 4 -1.</_> 7732 <_> 7733 14 12 2 4 2.</_></rects> 7734 <tilted>0</tilted></feature> 7735 <threshold>-7.2836421895772219e-04</threshold> 7736 <left_node>1</left_node> 7737 <right_val>-0.2356764972209930</right_val></_> 7738 <_> 7739 <!-- node 1 --> 7740 <feature> 7741 <rects> 7742 <_> 7743 19 11 1 3 -1.</_> 7744 <_> 7745 19 12 1 1 3.</_></rects> 7746 <tilted>0</tilted></feature> 7747 <threshold>1.2666890397667885e-03</threshold> 7748 <left_val>0.2258238941431046</left_val> 7749 <right_val>-0.4231734871864319</right_val></_></_> 7750 <_> 7751 <!-- tree 18 --> 7752 <_> 7753 <!-- root node --> 7754 <feature> 7755 <rects> 7756 <_> 7757 0 1 1 4 -1.</_> 7758 <_> 7759 0 3 1 2 2.</_></rects> 7760 <tilted>0</tilted></feature> 7761 <threshold>-8.4794021677225828e-04</threshold> 7762 <left_node>1</left_node> 7763 <right_val>-0.2830702960491180</right_val></_> 7764 <_> 7765 <!-- node 1 --> 7766 <feature> 7767 <rects> 7768 <_> 7769 0 0 20 20 -1.</_> 7770 <_> 7771 0 0 10 10 2.</_> 7772 <_> 7773 10 10 10 10 2.</_></rects> 7774 <tilted>0</tilted></feature> 7775 <threshold>0.3621244132518768</threshold> 7776 <left_val>0.1672423928976059</left_val> 7777 <right_val>-0.7682694792747498</right_val></_></_> 7778 <_> 7779 <!-- tree 19 --> 7780 <_> 7781 <!-- root node --> 7782 <feature> 7783 <rects> 7784 <_> 7785 11 12 3 3 -1.</_> 7786 <_> 7787 10 13 3 1 3.</_></rects> 7788 <tilted>1</tilted></feature> 7789 <threshold>-1.9437649752944708e-03</threshold> 7790 <left_node>1</left_node> 7791 <right_val>-0.2722941935062408</right_val></_> 7792 <_> 7793 <!-- node 1 --> 7794 <feature> 7795 <rects> 7796 <_> 7797 16 17 1 2 -1.</_> 7798 <_> 7799 16 17 1 1 2.</_></rects> 7800 <tilted>1</tilted></feature> 7801 <threshold>-4.1159680113196373e-03</threshold> 7802 <left_val>-0.6421130895614624</left_val> 7803 <right_val>0.1881023049354553</right_val></_></_> 7804 <_> 7805 <!-- tree 20 --> 7806 <_> 7807 <!-- root node --> 7808 <feature> 7809 <rects> 7810 <_> 7811 13 10 4 2 -1.</_> 7812 <_> 7813 13 10 2 1 2.</_> 7814 <_> 7815 15 11 2 1 2.</_></rects> 7816 <tilted>0</tilted></feature> 7817 <threshold>2.3254039697349072e-03</threshold> 7818 <left_node>1</left_node> 7819 <right_val>0.2851688861846924</right_val></_> 7820 <_> 7821 <!-- node 1 --> 7822 <feature> 7823 <rects> 7824 <_> 7825 15 11 2 2 -1.</_> 7826 <_> 7827 15 11 1 1 2.</_> 7828 <_> 7829 16 12 1 1 2.</_></rects> 7830 <tilted>0</tilted></feature> 7831 <threshold>-1.4815620379522443e-03</threshold> 7832 <left_val>0.4257420897483826</left_val> 7833 <right_val>-0.2111361026763916</right_val></_></_> 7834 <_> 7835 <!-- tree 21 --> 7836 <_> 7837 <!-- root node --> 7838 <feature> 7839 <rects> 7840 <_> 7841 2 10 3 6 -1.</_> 7842 <_> 7843 3 10 1 6 3.</_></rects> 7844 <tilted>0</tilted></feature> 7845 <threshold>-6.6233296820428222e-05</threshold> 7846 <left_node>1</left_node> 7847 <right_val>-0.2820585072040558</right_val></_> 7848 <_> 7849 <!-- node 1 --> 7850 <feature> 7851 <rects> 7852 <_> 7853 0 0 6 9 -1.</_> 7854 <_> 7855 2 0 2 9 3.</_></rects> 7856 <tilted>0</tilted></feature> 7857 <threshold>-0.0337564311921597</threshold> 7858 <left_val>-0.8180304169654846</left_val> 7859 <right_val>0.1705366969108582</right_val></_></_> 7860 <_> 7861 <!-- tree 22 --> 7862 <_> 7863 <!-- root node --> 7864 <feature> 7865 <rects> 7866 <_> 7867 8 17 2 1 -1.</_> 7868 <_> 7869 8 17 1 1 2.</_></rects> 7870 <tilted>1</tilted></feature> 7871 <threshold>-9.4350927975028753e-04</threshold> 7872 <left_val>0.1527314037084579</left_val> 7873 <right_node>1</right_node></_> 7874 <_> 7875 <!-- node 1 --> 7876 <feature> 7877 <rects> 7878 <_> 7879 4 18 8 1 -1.</_> 7880 <_> 7881 8 18 4 1 2.</_></rects> 7882 <tilted>0</tilted></feature> 7883 <threshold>1.0650219628587365e-03</threshold> 7884 <left_val>-0.4265049099922180</left_val> 7885 <right_val>0.1523593962192535</right_val></_></_> 7886 <_> 7887 <!-- tree 23 --> 7888 <_> 7889 <!-- root node --> 7890 <feature> 7891 <rects> 7892 <_> 7893 4 11 1 4 -1.</_> 7894 <_> 7895 3 12 1 2 2.</_></rects> 7896 <tilted>1</tilted></feature> 7897 <threshold>-1.2905279872938991e-03</threshold> 7898 <left_val>0.1736539006233215</left_val> 7899 <right_node>1</right_node></_> 7900 <_> 7901 <!-- node 1 --> 7902 <feature> 7903 <rects> 7904 <_> 7905 7 11 3 3 -1.</_> 7906 <_> 7907 6 12 3 1 3.</_></rects> 7908 <tilted>1</tilted></feature> 7909 <threshold>9.6549028530716896e-03</threshold> 7910 <left_val>-0.3972159922122955</left_val> 7911 <right_val>0.1795317977666855</right_val></_></_> 7912 <_> 7913 <!-- tree 24 --> 7914 <_> 7915 <!-- root node --> 7916 <feature> 7917 <rects> 7918 <_> 7919 9 18 4 1 -1.</_> 7920 <_> 7921 10 18 2 1 2.</_></rects> 7922 <tilted>0</tilted></feature> 7923 <threshold>1.3434770517051220e-03</threshold> 7924 <left_node>1</left_node> 7925 <right_val>-0.6960932016372681</right_val></_> 7926 <_> 7927 <!-- node 1 --> 7928 <feature> 7929 <rects> 7930 <_> 7931 0 19 2 1 -1.</_> 7932 <_> 7933 1 19 1 1 2.</_></rects> 7934 <tilted>0</tilted></feature> 7935 <threshold>5.5220007197931409e-04</threshold> 7936 <left_val>-0.0722587704658508</left_val> 7937 <right_val>0.3449329137802124</right_val></_></_> 7938 <_> 7939 <!-- tree 25 --> 7940 <_> 7941 <!-- root node --> 7942 <feature> 7943 <rects> 7944 <_> 7945 11 6 3 5 -1.</_> 7946 <_> 7947 12 6 1 5 3.</_></rects> 7948 <tilted>0</tilted></feature> 7949 <threshold>3.5795350559055805e-03</threshold> 7950 <left_node>1</left_node> 7951 <right_val>-0.4807066917419434</right_val></_> 7952 <_> 7953 <!-- node 1 --> 7954 <feature> 7955 <rects> 7956 <_> 7957 8 0 12 20 -1.</_> 7958 <_> 7959 8 0 6 10 2.</_> 7960 <_> 7961 14 10 6 10 2.</_></rects> 7962 <tilted>0</tilted></feature> 7963 <threshold>-0.0105854999274015</threshold> 7964 <left_val>-0.3297558128833771</left_val> 7965 <right_val>0.1468691974878311</right_val></_></_> 7966 <_> 7967 <!-- tree 26 --> 7968 <_> 7969 <!-- root node --> 7970 <feature> 7971 <rects> 7972 <_> 7973 4 0 1 4 -1.</_> 7974 <_> 7975 3 1 1 2 2.</_></rects> 7976 <tilted>1</tilted></feature> 7977 <threshold>3.5636040847748518e-03</threshold> 7978 <left_node>1</left_node> 7979 <right_val>-0.6141502261161804</right_val></_> 7980 <_> 7981 <!-- node 1 --> 7982 <feature> 7983 <rects> 7984 <_> 7985 4 14 16 4 -1.</_> 7986 <_> 7987 8 14 8 4 2.</_></rects> 7988 <tilted>0</tilted></feature> 7989 <threshold>-0.1029829010367393</threshold> 7990 <left_val>-0.7236648201942444</left_val> 7991 <right_val>0.0844470709562302</right_val></_></_> 7992 <_> 7993 <!-- tree 27 --> 7994 <_> 7995 <!-- root node --> 7996 <feature> 7997 <rects> 7998 <_> 7999 7 9 5 4 -1.</_> 8000 <_> 8001 6 10 5 2 2.</_></rects> 8002 <tilted>1</tilted></feature> 8003 <threshold>-0.0296057593077421</threshold> 8004 <left_val>0.4711360931396484</left_val> 8005 <right_node>1</right_node></_> 8006 <_> 8007 <!-- node 1 --> 8008 <feature> 8009 <rects> 8010 <_> 8011 5 12 6 2 -1.</_> 8012 <_> 8013 5 12 3 2 2.</_></rects> 8014 <tilted>1</tilted></feature> 8015 <threshold>-0.0345805995166302</threshold> 8016 <left_val>-0.4312899112701416</left_val> 8017 <right_val>0.0246234703809023</right_val></_></_> 8018 <_> 8019 <!-- tree 28 --> 8020 <_> 8021 <!-- root node --> 8022 <feature> 8023 <rects> 8024 <_> 8025 1 14 4 1 -1.</_> 8026 <_> 8027 1 14 2 1 2.</_></rects> 8028 <tilted>1</tilted></feature> 8029 <threshold>4.7923368401825428e-03</threshold> 8030 <left_node>1</left_node> 8031 <right_val>-0.4627079963684082</right_val></_> 8032 <_> 8033 <!-- node 1 --> 8034 <feature> 8035 <rects> 8036 <_> 8037 4 10 1 3 -1.</_> 8038 <_> 8039 3 11 1 1 3.</_></rects> 8040 <tilted>1</tilted></feature> 8041 <threshold>1.7058040248230100e-03</threshold> 8042 <left_val>0.1473857015371323</left_val> 8043 <right_val>-0.3781889081001282</right_val></_></_> 8044 <_> 8045 <!-- tree 29 --> 8046 <_> 8047 <!-- root node --> 8048 <feature> 8049 <rects> 8050 <_> 8051 3 10 3 9 -1.</_> 8052 <_> 8053 4 10 1 9 3.</_></rects> 8054 <tilted>0</tilted></feature> 8055 <threshold>-3.3174119889736176e-03</threshold> 8056 <left_val>0.2792986035346985</left_val> 8057 <right_node>1</right_node></_> 8058 <_> 8059 <!-- node 1 --> 8060 <feature> 8061 <rects> 8062 <_> 8063 4 11 3 4 -1.</_> 8064 <_> 8065 5 11 1 4 3.</_></rects> 8066 <tilted>0</tilted></feature> 8067 <threshold>-1.7022279789671302e-03</threshold> 8068 <left_val>0.2632699012756348</left_val> 8069 <right_val>-0.2512921094894409</right_val></_></_> 8070 <_> 8071 <!-- tree 30 --> 8072 <_> 8073 <!-- root node --> 8074 <feature> 8075 <rects> 8076 <_> 8077 5 12 3 2 -1.</_> 8078 <_> 8079 6 12 1 2 3.</_></rects> 8080 <tilted>0</tilted></feature> 8081 <threshold>-8.1695342669263482e-04</threshold> 8082 <left_node>1</left_node> 8083 <right_val>-0.1285964995622635</right_val></_> 8084 <_> 8085 <!-- node 1 --> 8086 <feature> 8087 <rects> 8088 <_> 8089 7 12 3 2 -1.</_> 8090 <_> 8091 8 12 1 2 3.</_></rects> 8092 <tilted>0</tilted></feature> 8093 <threshold>-1.4184829778969288e-03</threshold> 8094 <left_val>0.5885540246963501</left_val> 8095 <right_val>-0.0500851683318615</right_val></_></_> 8096 <_> 8097 <!-- tree 31 --> 8098 <_> 8099 <!-- root node --> 8100 <feature> 8101 <rects> 8102 <_> 8103 1 2 12 6 -1.</_> 8104 <_> 8105 5 2 4 6 3.</_></rects> 8106 <tilted>0</tilted></feature> 8107 <threshold>-0.0104785999283195</threshold> 8108 <left_val>0.1473290026187897</left_val> 8109 <right_node>1</right_node></_> 8110 <_> 8111 <!-- node 1 --> 8112 <feature> 8113 <rects> 8114 <_> 8115 9 0 8 3 -1.</_> 8116 <_> 8117 11 2 4 3 2.</_></rects> 8118 <tilted>1</tilted></feature> 8119 <threshold>0.0319819115102291</threshold> 8120 <left_val>-0.4129954874515533</left_val> 8121 <right_val>0.3444204926490784</right_val></_></_> 8122 <_> 8123 <!-- tree 32 --> 8124 <_> 8125 <!-- root node --> 8126 <feature> 8127 <rects> 8128 <_> 8129 8 1 6 2 -1.</_> 8130 <_> 8131 8 1 3 2 2.</_></rects> 8132 <tilted>1</tilted></feature> 8133 <threshold>0.0455438494682312</threshold> 8134 <left_node>1</left_node> 8135 <right_val>0.4884208142757416</right_val></_> 8136 <_> 8137 <!-- node 1 --> 8138 <feature> 8139 <rects> 8140 <_> 8141 4 4 15 9 -1.</_> 8142 <_> 8143 4 7 15 3 3.</_></rects> 8144 <tilted>0</tilted></feature> 8145 <threshold>0.0235740095376968</threshold> 8146 <left_val>-0.4638321995735168</left_val> 8147 <right_val>0.0374437682330608</right_val></_></_></trees> 8148 <stage_threshold>-1.9516259431838989</stage_threshold> 8149 <parent>16</parent> 8150 <next>-1</next></_> 8151 <_> 8152 <!-- stage 18 --> 8153 <trees> 8154 <_> 8155 <!-- tree 0 --> 8156 <_> 8157 <!-- root node --> 8158 <feature> 8159 <rects> 8160 <_> 8161 5 10 8 6 -1.</_> 8162 <_> 8163 7 10 4 6 2.</_></rects> 8164 <tilted>0</tilted></feature> 8165 <threshold>-0.0323471315205097</threshold> 8166 <left_node>1</left_node> 8167 <right_val>-0.4115316867828369</right_val></_> 8168 <_> 8169 <!-- node 1 --> 8170 <feature> 8171 <rects> 8172 <_> 8173 11 8 9 9 -1.</_> 8174 <_> 8175 11 11 9 3 3.</_></rects> 8176 <tilted>0</tilted></feature> 8177 <threshold>-0.0748554319143295</threshold> 8178 <left_val>0.5440948009490967</left_val> 8179 <right_val>-0.2104308009147644</right_val></_></_> 8180 <_> 8181 <!-- tree 1 --> 8182 <_> 8183 <!-- root node --> 8184 <feature> 8185 <rects> 8186 <_> 8187 7 0 6 4 -1.</_> 8188 <_> 8189 9 2 2 4 3.</_></rects> 8190 <tilted>1</tilted></feature> 8191 <threshold>-0.0591647997498512</threshold> 8192 <left_val>0.4694552123546600</left_val> 8193 <right_node>1</right_node></_> 8194 <_> 8195 <!-- node 1 --> 8196 <feature> 8197 <rects> 8198 <_> 8199 3 11 6 3 -1.</_> 8200 <_> 8201 2 12 6 1 3.</_></rects> 8202 <tilted>1</tilted></feature> 8203 <threshold>-5.0734709948301315e-03</threshold> 8204 <left_val>0.0809333473443985</left_val> 8205 <right_val>-0.4043686985969543</right_val></_></_> 8206 <_> 8207 <!-- tree 2 --> 8208 <_> 8209 <!-- root node --> 8210 <feature> 8211 <rects> 8212 <_> 8213 16 12 4 3 -1.</_> 8214 <_> 8215 18 12 2 3 2.</_></rects> 8216 <tilted>0</tilted></feature> 8217 <threshold>6.6304411739110947e-03</threshold> 8218 <left_val>-0.3194395005702972</left_val> 8219 <right_node>1</right_node></_> 8220 <_> 8221 <!-- node 1 --> 8222 <feature> 8223 <rects> 8224 <_> 8225 10 10 2 10 -1.</_> 8226 <_> 8227 10 15 2 5 2.</_></rects> 8228 <tilted>0</tilted></feature> 8229 <threshold>0.0228042807430029</threshold> 8230 <left_val>-0.3527761101722717</left_val> 8231 <right_val>0.3635815978050232</right_val></_></_> 8232 <_> 8233 <!-- tree 3 --> 8234 <_> 8235 <!-- root node --> 8236 <feature> 8237 <rects> 8238 <_> 8239 5 7 3 4 -1.</_> 8240 <_> 8241 4 8 3 2 2.</_></rects> 8242 <tilted>1</tilted></feature> 8243 <threshold>3.4148059785366058e-03</threshold> 8244 <left_node>1</left_node> 8245 <right_val>-0.4213989973068237</right_val></_> 8246 <_> 8247 <!-- node 1 --> 8248 <feature> 8249 <rects> 8250 <_> 8251 1 9 6 1 -1.</_> 8252 <_> 8253 3 11 2 1 3.</_></rects> 8254 <tilted>1</tilted></feature> 8255 <threshold>-6.0696629807353020e-03</threshold> 8256 <left_val>0.2819094061851501</left_val> 8257 <right_val>-0.2572798132896423</right_val></_></_> 8258 <_> 8259 <!-- tree 4 --> 8260 <_> 8261 <!-- root node --> 8262 <feature> 8263 <rects> 8264 <_> 8265 0 0 1 6 -1.</_> 8266 <_> 8267 0 3 1 3 2.</_></rects> 8268 <tilted>0</tilted></feature> 8269 <threshold>-3.3271780703216791e-03</threshold> 8270 <left_node>1</left_node> 8271 <right_val>-0.3338018059730530</right_val></_> 8272 <_> 8273 <!-- node 1 --> 8274 <feature> 8275 <rects> 8276 <_> 8277 8 10 10 2 -1.</_> 8278 <_> 8279 8 10 5 1 2.</_> 8280 <_> 8281 13 11 5 1 2.</_></rects> 8282 <tilted>0</tilted></feature> 8283 <threshold>0.0123812397941947</threshold> 8284 <left_val>0.0258311200886965</left_val> 8285 <right_val>0.5820063948631287</right_val></_></_> 8286 <_> 8287 <!-- tree 5 --> 8288 <_> 8289 <!-- root node --> 8290 <feature> 8291 <rects> 8292 <_> 8293 5 2 5 6 -1.</_> 8294 <_> 8295 5 5 5 3 2.</_></rects> 8296 <tilted>0</tilted></feature> 8297 <threshold>-0.0785619020462036</threshold> 8298 <left_val>0.5708081722259521</left_val> 8299 <right_node>1</right_node></_> 8300 <_> 8301 <!-- node 1 --> 8302 <feature> 8303 <rects> 8304 <_> 8305 6 1 6 1 -1.</_> 8306 <_> 8307 6 1 3 1 2.</_></rects> 8308 <tilted>1</tilted></feature> 8309 <threshold>-7.6863910071551800e-03</threshold> 8310 <left_val>0.1909738034009933</left_val> 8311 <right_val>-0.2474946975708008</right_val></_></_> 8312 <_> 8313 <!-- tree 6 --> 8314 <_> 8315 <!-- root node --> 8316 <feature> 8317 <rects> 8318 <_> 8319 0 3 1 12 -1.</_> 8320 <_> 8321 0 7 1 4 3.</_></rects> 8322 <tilted>0</tilted></feature> 8323 <threshold>3.9404830895364285e-03</threshold> 8324 <left_node>1</left_node> 8325 <right_val>-0.3529588878154755</right_val></_> 8326 <_> 8327 <!-- node 1 --> 8328 <feature> 8329 <rects> 8330 <_> 8331 0 7 2 1 -1.</_> 8332 <_> 8333 1 7 1 1 2.</_></rects> 8334 <tilted>0</tilted></feature> 8335 <threshold>-7.0624810177832842e-05</threshold> 8336 <left_val>0.2843806147575378</left_val> 8337 <right_val>-0.1646942049264908</right_val></_></_> 8338 <_> 8339 <!-- tree 7 --> 8340 <_> 8341 <!-- root node --> 8342 <feature> 8343 <rects> 8344 <_> 8345 3 5 1 3 -1.</_> 8346 <_> 8347 2 6 1 1 3.</_></rects> 8348 <tilted>1</tilted></feature> 8349 <threshold>-2.2568539716303349e-03</threshold> 8350 <left_val>-0.4618921875953674</left_val> 8351 <right_node>1</right_node></_> 8352 <_> 8353 <!-- node 1 --> 8354 <feature> 8355 <rects> 8356 <_> 8357 11 12 2 3 -1.</_> 8358 <_> 8359 10 13 2 1 3.</_></rects> 8360 <tilted>1</tilted></feature> 8361 <threshold>-3.5595949739217758e-03</threshold> 8362 <left_val>0.2452594041824341</left_val> 8363 <right_val>-0.1898497939109802</right_val></_></_> 8364 <_> 8365 <!-- tree 8 --> 8366 <_> 8367 <!-- root node --> 8368 <feature> 8369 <rects> 8370 <_> 8371 10 12 3 3 -1.</_> 8372 <_> 8373 11 12 1 3 3.</_></rects> 8374 <tilted>0</tilted></feature> 8375 <threshold>-3.0113100074231625e-03</threshold> 8376 <left_val>0.3059439063072205</left_val> 8377 <right_node>1</right_node></_> 8378 <_> 8379 <!-- node 1 --> 8380 <feature> 8381 <rects> 8382 <_> 8383 9 11 3 3 -1.</_> 8384 <_> 8385 10 12 1 1 9.</_></rects> 8386 <tilted>0</tilted></feature> 8387 <threshold>-6.2748990021646023e-03</threshold> 8388 <left_val>0.1471614986658096</left_val> 8389 <right_val>-0.3326522111892700</right_val></_></_> 8390 <_> 8391 <!-- tree 9 --> 8392 <_> 8393 <!-- root node --> 8394 <feature> 8395 <rects> 8396 <_> 8397 6 17 4 2 -1.</_> 8398 <_> 8399 7 17 2 2 2.</_></rects> 8400 <tilted>0</tilted></feature> 8401 <threshold>2.5835279375314713e-03</threshold> 8402 <left_node>1</left_node> 8403 <right_val>-0.7485389113426208</right_val></_> 8404 <_> 8405 <!-- node 1 --> 8406 <feature> 8407 <rects> 8408 <_> 8409 12 18 6 2 -1.</_> 8410 <_> 8411 15 18 3 2 2.</_></rects> 8412 <tilted>0</tilted></feature> 8413 <threshold>3.2576550729572773e-03</threshold> 8414 <left_val>-0.1494961977005005</left_val> 8415 <right_val>0.2629367113113403</right_val></_></_> 8416 <_> 8417 <!-- tree 10 --> 8418 <_> 8419 <!-- root node --> 8420 <feature> 8421 <rects> 8422 <_> 8423 3 17 2 1 -1.</_> 8424 <_> 8425 3 17 1 1 2.</_></rects> 8426 <tilted>1</tilted></feature> 8427 <threshold>-2.6957978843711317e-04</threshold> 8428 <left_node>1</left_node> 8429 <right_val>-0.2946836054325104</right_val></_> 8430 <_> 8431 <!-- node 1 --> 8432 <feature> 8433 <rects> 8434 <_> 8435 1 15 4 1 -1.</_> 8436 <_> 8437 2 16 2 1 2.</_></rects> 8438 <tilted>1</tilted></feature> 8439 <threshold>-4.4593680649995804e-03</threshold> 8440 <left_val>-0.4590528905391693</left_val> 8441 <right_val>0.2223538011312485</right_val></_></_> 8442 <_> 8443 <!-- tree 11 --> 8444 <_> 8445 <!-- root node --> 8446 <feature> 8447 <rects> 8448 <_> 8449 18 0 2 2 -1.</_> 8450 <_> 8451 18 1 2 1 2.</_></rects> 8452 <tilted>0</tilted></feature> 8453 <threshold>2.2841650061309338e-03</threshold> 8454 <left_node>1</left_node> 8455 <right_val>-0.6381593942642212</right_val></_> 8456 <_> 8457 <!-- node 1 --> 8458 <feature> 8459 <rects> 8460 <_> 8461 19 0 1 3 -1.</_> 8462 <_> 8463 19 1 1 1 3.</_></rects> 8464 <tilted>0</tilted></feature> 8465 <threshold>-6.7595718428492546e-04</threshold> 8466 <left_val>-0.3175694048404694</left_val> 8467 <right_val>0.1490307003259659</right_val></_></_> 8468 <_> 8469 <!-- tree 12 --> 8470 <_> 8471 <!-- root node --> 8472 <feature> 8473 <rects> 8474 <_> 8475 16 11 3 2 -1.</_> 8476 <_> 8477 16 11 3 1 2.</_></rects> 8478 <tilted>1</tilted></feature> 8479 <threshold>6.1428439803421497e-03</threshold> 8480 <left_node>1</left_node> 8481 <right_val>0.2418702989816666</right_val></_> 8482 <_> 8483 <!-- node 1 --> 8484 <feature> 8485 <rects> 8486 <_> 8487 16 12 2 3 -1.</_> 8488 <_> 8489 15 13 2 1 3.</_></rects> 8490 <tilted>1</tilted></feature> 8491 <threshold>2.7392068877816200e-03</threshold> 8492 <left_val>-0.3148753941059113</left_val> 8493 <right_val>0.2358912974596024</right_val></_></_> 8494 <_> 8495 <!-- tree 13 --> 8496 <_> 8497 <!-- root node --> 8498 <feature> 8499 <rects> 8500 <_> 8501 12 0 8 1 -1.</_> 8502 <_> 8503 16 0 4 1 2.</_></rects> 8504 <tilted>0</tilted></feature> 8505 <threshold>-2.0209311041980982e-03</threshold> 8506 <left_val>0.2538956105709076</left_val> 8507 <right_node>1</right_node></_> 8508 <_> 8509 <!-- node 1 --> 8510 <feature> 8511 <rects> 8512 <_> 8513 2 1 9 6 -1.</_> 8514 <_> 8515 2 4 9 3 2.</_></rects> 8516 <tilted>0</tilted></feature> 8517 <threshold>0.0268921405076981</threshold> 8518 <left_val>-0.3439103960990906</left_val> 8519 <right_val>0.2301076054573059</right_val></_></_> 8520 <_> 8521 <!-- tree 14 --> 8522 <_> 8523 <!-- root node --> 8524 <feature> 8525 <rects> 8526 <_> 8527 17 1 3 2 -1.</_> 8528 <_> 8529 17 1 3 1 2.</_></rects> 8530 <tilted>1</tilted></feature> 8531 <threshold>0.0146710602566600</threshold> 8532 <left_node>1</left_node> 8533 <right_val>0.5951753854751587</right_val></_> 8534 <_> 8535 <!-- node 1 --> 8536 <feature> 8537 <rects> 8538 <_> 8539 7 5 6 4 -1.</_> 8540 <_> 8541 7 6 6 2 2.</_></rects> 8542 <tilted>0</tilted></feature> 8543 <threshold>-0.0124441199004650</threshold> 8544 <left_val>0.3733592927455902</left_val> 8545 <right_val>-0.1454063951969147</right_val></_></_> 8546 <_> 8547 <!-- tree 15 --> 8548 <_> 8549 <!-- root node --> 8550 <feature> 8551 <rects> 8552 <_> 8553 4 6 6 2 -1.</_> 8554 <_> 8555 7 6 3 2 2.</_></rects> 8556 <tilted>0</tilted></feature> 8557 <threshold>2.0527220331132412e-03</threshold> 8558 <left_val>-0.2113502025604248</left_val> 8559 <right_node>1</right_node></_> 8560 <_> 8561 <!-- node 1 --> 8562 <feature> 8563 <rects> 8564 <_> 8565 11 4 6 6 -1.</_> 8566 <_> 8567 13 4 2 6 3.</_></rects> 8568 <tilted>0</tilted></feature> 8569 <threshold>-0.0170889906585217</threshold> 8570 <left_val>-0.7251623272895813</left_val> 8571 <right_val>0.2335873991250992</right_val></_></_> 8572 <_> 8573 <!-- tree 16 --> 8574 <_> 8575 <!-- root node --> 8576 <feature> 8577 <rects> 8578 <_> 8579 5 7 9 3 -1.</_> 8580 <_> 8581 5 8 9 1 3.</_></rects> 8582 <tilted>0</tilted></feature> 8583 <threshold>-9.8585523664951324e-03</threshold> 8584 <left_val>0.4539042115211487</left_val> 8585 <right_node>1</right_node></_> 8586 <_> 8587 <!-- node 1 --> 8588 <feature> 8589 <rects> 8590 <_> 8591 5 8 9 3 -1.</_> 8592 <_> 8593 5 9 9 1 3.</_></rects> 8594 <tilted>0</tilted></feature> 8595 <threshold>-0.0105411903932691</threshold> 8596 <left_val>0.3550005853176117</left_val> 8597 <right_val>-0.1711850017309189</right_val></_></_> 8598 <_> 8599 <!-- tree 17 --> 8600 <_> 8601 <!-- root node --> 8602 <feature> 8603 <rects> 8604 <_> 8605 1 0 4 3 -1.</_> 8606 <_> 8607 2 0 2 3 2.</_></rects> 8608 <tilted>0</tilted></feature> 8609 <threshold>4.0034228004515171e-03</threshold> 8610 <left_node>1</left_node> 8611 <right_val>-0.7043396234512329</right_val></_> 8612 <_> 8613 <!-- node 1 --> 8614 <feature> 8615 <rects> 8616 <_> 8617 9 9 5 4 -1.</_> 8618 <_> 8619 9 10 5 2 2.</_></rects> 8620 <tilted>0</tilted></feature> 8621 <threshold>-0.0118891401216388</threshold> 8622 <left_val>0.4043655991554260</left_val> 8623 <right_val>-0.0462636202573776</right_val></_></_> 8624 <_> 8625 <!-- tree 18 --> 8626 <_> 8627 <!-- root node --> 8628 <feature> 8629 <rects> 8630 <_> 8631 1 0 6 7 -1.</_> 8632 <_> 8633 3 0 2 7 3.</_></rects> 8634 <tilted>0</tilted></feature> 8635 <threshold>-0.0206857006996870</threshold> 8636 <left_val>-0.6434760093688965</left_val> 8637 <right_node>1</right_node></_> 8638 <_> 8639 <!-- node 1 --> 8640 <feature> 8641 <rects> 8642 <_> 8643 16 9 3 2 -1.</_> 8644 <_> 8645 17 10 1 2 3.</_></rects> 8646 <tilted>1</tilted></feature> 8647 <threshold>-7.9243928194046021e-03</threshold> 8648 <left_val>-0.5363292098045349</left_val> 8649 <right_val>0.1100298985838890</right_val></_></_> 8650 <_> 8651 <!-- tree 19 --> 8652 <_> 8653 <!-- root node --> 8654 <feature> 8655 <rects> 8656 <_> 8657 14 12 2 2 -1.</_> 8658 <_> 8659 14 12 1 1 2.</_> 8660 <_> 8661 15 13 1 1 2.</_></rects> 8662 <tilted>0</tilted></feature> 8663 <threshold>1.2431150535121560e-03</threshold> 8664 <left_node>1</left_node> 8665 <right_val>0.4122002124786377</right_val></_> 8666 <_> 8667 <!-- node 1 --> 8668 <feature> 8669 <rects> 8670 <_> 8671 0 0 14 1 -1.</_> 8672 <_> 8673 7 0 7 1 2.</_></rects> 8674 <tilted>0</tilted></feature> 8675 <threshold>-4.2312019504606724e-03</threshold> 8676 <left_val>0.0798876583576202</left_val> 8677 <right_val>-0.3092674016952515</right_val></_></_> 8678 <_> 8679 <!-- tree 20 --> 8680 <_> 8681 <!-- root node --> 8682 <feature> 8683 <rects> 8684 <_> 8685 15 11 2 2 -1.</_> 8686 <_> 8687 15 11 1 2 2.</_></rects> 8688 <tilted>1</tilted></feature> 8689 <threshold>9.8197339102625847e-03</threshold> 8690 <left_node>1</left_node> 8691 <right_val>-0.6097676157951355</right_val></_> 8692 <_> 8693 <!-- node 1 --> 8694 <feature> 8695 <rects> 8696 <_> 8697 3 14 12 4 -1.</_> 8698 <_> 8699 3 14 6 2 2.</_> 8700 <_> 8701 9 16 6 2 2.</_></rects> 8702 <tilted>0</tilted></feature> 8703 <threshold>0.0454554110765457</threshold> 8704 <left_val>0.1062114015221596</left_val> 8705 <right_val>-0.6468737125396729</right_val></_></_> 8706 <_> 8707 <!-- tree 21 --> 8708 <_> 8709 <!-- root node --> 8710 <feature> 8711 <rects> 8712 <_> 8713 5 2 1 3 -1.</_> 8714 <_> 8715 4 3 1 1 3.</_></rects> 8716 <tilted>1</tilted></feature> 8717 <threshold>2.6892758905887604e-03</threshold> 8718 <left_node>1</left_node> 8719 <right_val>-0.4912298917770386</right_val></_> 8720 <_> 8721 <!-- node 1 --> 8722 <feature> 8723 <rects> 8724 <_> 8725 8 12 3 2 -1.</_> 8726 <_> 8727 9 13 1 2 3.</_></rects> 8728 <tilted>1</tilted></feature> 8729 <threshold>-1.5172710409387946e-03</threshold> 8730 <left_val>0.1757874935865402</left_val> 8731 <right_val>-0.2681894004344940</right_val></_></_> 8732 <_> 8733 <!-- tree 22 --> 8734 <_> 8735 <!-- root node --> 8736 <feature> 8737 <rects> 8738 <_> 8739 14 11 2 2 -1.</_> 8740 <_> 8741 14 11 1 1 2.</_> 8742 <_> 8743 15 12 1 1 2.</_></rects> 8744 <tilted>0</tilted></feature> 8745 <threshold>6.2014168361201882e-04</threshold> 8746 <left_node>1</left_node> 8747 <right_val>0.2550072968006134</right_val></_> 8748 <_> 8749 <!-- node 1 --> 8750 <feature> 8751 <rects> 8752 <_> 8753 13 10 7 2 -1.</_> 8754 <_> 8755 13 11 7 1 2.</_></rects> 8756 <tilted>0</tilted></feature> 8757 <threshold>-2.0233519899193197e-04</threshold> 8758 <left_val>7.2745857760310173e-03</left_val> 8759 <right_val>-0.5081527233123779</right_val></_></_> 8760 <_> 8761 <!-- tree 23 --> 8762 <_> 8763 <!-- root node --> 8764 <feature> 8765 <rects> 8766 <_> 8767 7 13 1 2 -1.</_> 8768 <_> 8769 7 13 1 1 2.</_></rects> 8770 <tilted>1</tilted></feature> 8771 <threshold>3.1760020647197962e-03</threshold> 8772 <left_node>1</left_node> 8773 <right_val>0.4384926855564117</right_val></_> 8774 <_> 8775 <!-- node 1 --> 8776 <feature> 8777 <rects> 8778 <_> 8779 5 12 4 3 -1.</_> 8780 <_> 8781 6 12 2 3 2.</_></rects> 8782 <tilted>0</tilted></feature> 8783 <threshold>-1.2668699491769075e-03</threshold> 8784 <left_val>0.1634940057992935</left_val> 8785 <right_val>-0.2912816107273102</right_val></_></_> 8786 <_> 8787 <!-- tree 24 --> 8788 <_> 8789 <!-- root node --> 8790 <feature> 8791 <rects> 8792 <_> 8793 8 2 2 5 -1.</_> 8794 <_> 8795 9 2 1 5 2.</_></rects> 8796 <tilted>0</tilted></feature> 8797 <threshold>5.1056100055575371e-03</threshold> 8798 <left_node>1</left_node> 8799 <right_val>-0.7500135898590088</right_val></_> 8800 <_> 8801 <!-- node 1 --> 8802 <feature> 8803 <rects> 8804 <_> 8805 1 17 4 2 -1.</_> 8806 <_> 8807 3 17 2 2 2.</_></rects> 8808 <tilted>0</tilted></feature> 8809 <threshold>-1.5026510227471590e-03</threshold> 8810 <left_val>0.2719883024692535</left_val> 8811 <right_val>-0.0994867980480194</right_val></_></_> 8812 <_> 8813 <!-- tree 25 --> 8814 <_> 8815 <!-- root node --> 8816 <feature> 8817 <rects> 8818 <_> 8819 12 17 4 3 -1.</_> 8820 <_> 8821 13 17 2 3 2.</_></rects> 8822 <tilted>0</tilted></feature> 8823 <threshold>-3.6238620523363352e-03</threshold> 8824 <left_val>-0.6039624810218811</left_val> 8825 <right_node>1</right_node></_> 8826 <_> 8827 <!-- node 1 --> 8828 <feature> 8829 <rects> 8830 <_> 8831 15 16 5 3 -1.</_> 8832 <_> 8833 15 17 5 1 3.</_></rects> 8834 <tilted>0</tilted></feature> 8835 <threshold>7.6577658765017986e-03</threshold> 8836 <left_val>0.1093837991356850</left_val> 8837 <right_val>-0.5300763845443726</right_val></_></_> 8838 <_> 8839 <!-- tree 26 --> 8840 <_> 8841 <!-- root node --> 8842 <feature> 8843 <rects> 8844 <_> 8845 15 16 4 3 -1.</_> 8846 <_> 8847 15 17 4 1 3.</_></rects> 8848 <tilted>0</tilted></feature> 8849 <threshold>-3.1830249354243279e-03</threshold> 8850 <left_val>-0.4772489070892334</left_val> 8851 <right_node>1</right_node></_> 8852 <_> 8853 <!-- node 1 --> 8854 <feature> 8855 <rects> 8856 <_> 8857 0 17 16 3 -1.</_> 8858 <_> 8859 4 17 8 3 2.</_></rects> 8860 <tilted>0</tilted></feature> 8861 <threshold>0.0109313298016787</threshold> 8862 <left_val>-0.0430658198893070</left_val> 8863 <right_val>0.3894585967063904</right_val></_></_> 8864 <_> 8865 <!-- tree 27 --> 8866 <_> 8867 <!-- root node --> 8868 <feature> 8869 <rects> 8870 <_> 8871 0 14 2 2 -1.</_> 8872 <_> 8873 0 14 1 1 2.</_> 8874 <_> 8875 1 15 1 1 2.</_></rects> 8876 <tilted>0</tilted></feature> 8877 <threshold>-1.0047679534181952e-03</threshold> 8878 <left_val>0.4155359864234924</left_val> 8879 <right_node>1</right_node></_> 8880 <_> 8881 <!-- node 1 --> 8882 <feature> 8883 <rects> 8884 <_> 8885 7 2 6 6 -1.</_> 8886 <_> 8887 7 4 6 2 3.</_></rects> 8888 <tilted>0</tilted></feature> 8889 <threshold>-0.0466604307293892</threshold> 8890 <left_val>0.3015987873077393</left_val> 8891 <right_val>-0.1618438065052032</right_val></_></_> 8892 <_> 8893 <!-- tree 28 --> 8894 <_> 8895 <!-- root node --> 8896 <feature> 8897 <rects> 8898 <_> 8899 3 5 1 3 -1.</_> 8900 <_> 8901 2 6 1 1 3.</_></rects> 8902 <tilted>1</tilted></feature> 8903 <threshold>3.2002381049096584e-03</threshold> 8904 <left_node>1</left_node> 8905 <right_val>-0.5462177991867065</right_val></_> 8906 <_> 8907 <!-- node 1 --> 8908 <feature> 8909 <rects> 8910 <_> 8911 2 7 2 2 -1.</_> 8912 <_> 8913 2 7 2 1 2.</_></rects> 8914 <tilted>1</tilted></feature> 8915 <threshold>-1.7367519903928041e-03</threshold> 8916 <left_val>-0.2198777943849564</left_val> 8917 <right_val>0.1960642039775848</right_val></_></_></trees> 8918 <stage_threshold>-1.7628519535064697</stage_threshold> 8919 <parent>17</parent> 8920 <next>-1</next></_> 8921 <_> 8922 <!-- stage 19 --> 8923 <trees> 8924 <_> 8925 <!-- tree 0 --> 8926 <_> 8927 <!-- root node --> 8928 <feature> 8929 <rects> 8930 <_> 8931 6 11 5 3 -1.</_> 8932 <_> 8933 5 12 5 1 3.</_></rects> 8934 <tilted>1</tilted></feature> 8935 <threshold>0.0171605199575424</threshold> 8936 <left_val>-0.3227300941944122</left_val> 8937 <right_node>1</right_node></_> 8938 <_> 8939 <!-- node 1 --> 8940 <feature> 8941 <rects> 8942 <_> 8943 16 14 4 6 -1.</_> 8944 <_> 8945 16 17 4 3 2.</_></rects> 8946 <tilted>0</tilted></feature> 8947 <threshold>0.0145035600289702</threshold> 8948 <left_val>-0.3943862020969391</left_val> 8949 <right_val>0.5792297720909119</right_val></_></_> 8950 <_> 8951 <!-- tree 1 --> 8952 <_> 8953 <!-- root node --> 8954 <feature> 8955 <rects> 8956 <_> 8957 6 13 6 7 -1.</_> 8958 <_> 8959 8 13 2 7 3.</_></rects> 8960 <tilted>0</tilted></feature> 8961 <threshold>-9.0323518961668015e-03</threshold> 8962 <left_node>1</left_node> 8963 <right_val>-0.4153687059879303</right_val></_> 8964 <_> 8965 <!-- node 1 --> 8966 <feature> 8967 <rects> 8968 <_> 8969 0 1 12 11 -1.</_> 8970 <_> 8971 3 1 6 11 2.</_></rects> 8972 <tilted>0</tilted></feature> 8973 <threshold>-6.9836131297051907e-03</threshold> 8974 <left_val>0.3551585972309113</left_val> 8975 <right_val>-0.3817715048789978</right_val></_></_> 8976 <_> 8977 <!-- tree 2 --> 8978 <_> 8979 <!-- root node --> 8980 <feature> 8981 <rects> 8982 <_> 8983 6 10 7 3 -1.</_> 8984 <_> 8985 6 11 7 1 3.</_></rects> 8986 <tilted>0</tilted></feature> 8987 <threshold>-0.0192209091037512</threshold> 8988 <left_val>0.4531590044498444</left_val> 8989 <right_node>1</right_node></_> 8990 <_> 8991 <!-- node 1 --> 8992 <feature> 8993 <rects> 8994 <_> 8995 8 0 9 4 -1.</_> 8996 <_> 8997 8 2 9 2 2.</_></rects> 8998 <tilted>0</tilted></feature> 8999 <threshold>-0.0400871597230434</threshold> 9000 <left_val>0.1722837984561920</left_val> 9001 <right_val>-0.3111056089401245</right_val></_></_> 9002 <_> 9003 <!-- tree 3 --> 9004 <_> 9005 <!-- root node --> 9006 <feature> 9007 <rects> 9008 <_> 9009 10 14 10 2 -1.</_> 9010 <_> 9011 10 15 10 1 2.</_></rects> 9012 <tilted>0</tilted></feature> 9013 <threshold>5.6549701839685440e-03</threshold> 9014 <left_val>-0.4046160876750946</left_val> 9015 <right_node>1</right_node></_> 9016 <_> 9017 <!-- node 1 --> 9018 <feature> 9019 <rects> 9020 <_> 9021 0 0 1 18 -1.</_> 9022 <_> 9023 0 6 1 6 3.</_></rects> 9024 <tilted>0</tilted></feature> 9025 <threshold>-0.0116112697869539</threshold> 9026 <left_val>0.2903423905372620</left_val> 9027 <right_val>-0.2207850962877274</right_val></_></_> 9028 <_> 9029 <!-- tree 4 --> 9030 <_> 9031 <!-- root node --> 9032 <feature> 9033 <rects> 9034 <_> 9035 4 13 2 2 -1.</_> 9036 <_> 9037 4 13 1 1 2.</_> 9038 <_> 9039 5 14 1 1 2.</_></rects> 9040 <tilted>0</tilted></feature> 9041 <threshold>-1.0576159693300724e-03</threshold> 9042 <left_val>0.3585166931152344</left_val> 9043 <right_node>1</right_node></_> 9044 <_> 9045 <!-- node 1 --> 9046 <feature> 9047 <rects> 9048 <_> 9049 8 11 3 6 -1.</_> 9050 <_> 9051 9 12 1 6 3.</_></rects> 9052 <tilted>1</tilted></feature> 9053 <threshold>-1.3360800221562386e-03</threshold> 9054 <left_val>0.0159689001739025</left_val> 9055 <right_val>-0.4199010133743286</right_val></_></_> 9056 <_> 9057 <!-- tree 5 --> 9058 <_> 9059 <!-- root node --> 9060 <feature> 9061 <rects> 9062 <_> 9063 6 7 2 3 -1.</_> 9064 <_> 9065 5 8 2 1 3.</_></rects> 9066 <tilted>1</tilted></feature> 9067 <threshold>5.2302791737020016e-03</threshold> 9068 <left_node>1</left_node> 9069 <right_val>-0.4966328144073486</right_val></_> 9070 <_> 9071 <!-- node 1 --> 9072 <feature> 9073 <rects> 9074 <_> 9075 4 8 3 3 -1.</_> 9076 <_> 9077 5 8 1 3 3.</_></rects> 9078 <tilted>0</tilted></feature> 9079 <threshold>-2.7848479803651571e-03</threshold> 9080 <left_val>-0.5296021103858948</left_val> 9081 <right_val>0.1553544998168945</right_val></_></_> 9082 <_> 9083 <!-- tree 6 --> 9084 <_> 9085 <!-- root node --> 9086 <feature> 9087 <rects> 9088 <_> 9089 1 4 14 1 -1.</_> 9090 <_> 9091 1 4 7 1 2.</_></rects> 9092 <tilted>1</tilted></feature> 9093 <threshold>-0.0256541296839714</threshold> 9094 <left_val>-0.5930917859077454</left_val> 9095 <right_node>1</right_node></_> 9096 <_> 9097 <!-- node 1 --> 9098 <feature> 9099 <rects> 9100 <_> 9101 12 13 8 3 -1.</_> 9102 <_> 9103 14 13 4 3 2.</_></rects> 9104 <tilted>0</tilted></feature> 9105 <threshold>-6.8942131474614143e-03</threshold> 9106 <left_val>0.2431810945272446</left_val> 9107 <right_val>-0.1823194026947021</right_val></_></_> 9108 <_> 9109 <!-- tree 7 --> 9110 <_> 9111 <!-- root node --> 9112 <feature> 9113 <rects> 9114 <_> 9115 4 17 2 1 -1.</_> 9116 <_> 9117 4 17 1 1 2.</_></rects> 9118 <tilted>1</tilted></feature> 9119 <threshold>-6.9622750743292272e-05</threshold> 9120 <left_node>1</left_node> 9121 <right_val>-0.3271628916263580</right_val></_> 9122 <_> 9123 <!-- node 1 --> 9124 <feature> 9125 <rects> 9126 <_> 9127 6 16 2 2 -1.</_> 9128 <_> 9129 6 16 1 2 2.</_></rects> 9130 <tilted>1</tilted></feature> 9131 <threshold>-6.4154611900448799e-03</threshold> 9132 <left_val>-0.5082166790962219</left_val> 9133 <right_val>0.1954334974288940</right_val></_></_> 9134 <_> 9135 <!-- tree 8 --> 9136 <_> 9137 <!-- root node --> 9138 <feature> 9139 <rects> 9140 <_> 9141 3 17 4 2 -1.</_> 9142 <_> 9143 4 17 2 2 2.</_></rects> 9144 <tilted>0</tilted></feature> 9145 <threshold>-6.7164386564400047e-05</threshold> 9146 <left_val>0.1860219985246658</left_val> 9147 <right_node>1</right_node></_> 9148 <_> 9149 <!-- node 1 --> 9150 <feature> 9151 <rects> 9152 <_> 9153 0 7 20 2 -1.</_> 9154 <_> 9155 5 7 10 2 2.</_></rects> 9156 <tilted>0</tilted></feature> 9157 <threshold>0.0224166903644800</threshold> 9158 <left_val>-0.3928199112415314</left_val> 9159 <right_val>0.1327912956476212</right_val></_></_> 9160 <_> 9161 <!-- tree 9 --> 9162 <_> 9163 <!-- root node --> 9164 <feature> 9165 <rects> 9166 <_> 9167 15 9 2 2 -1.</_> 9168 <_> 9169 15 9 1 2 2.</_></rects> 9170 <tilted>1</tilted></feature> 9171 <threshold>8.4287580102682114e-03</threshold> 9172 <left_node>1</left_node> 9173 <right_val>-0.5544756054878235</right_val></_> 9174 <_> 9175 <!-- node 1 --> 9176 <feature> 9177 <rects> 9178 <_> 9179 3 12 2 2 -1.</_> 9180 <_> 9181 3 12 1 1 2.</_> 9182 <_> 9183 4 13 1 1 2.</_></rects> 9184 <tilted>0</tilted></feature> 9185 <threshold>-8.7357551092281938e-04</threshold> 9186 <left_val>0.4715873003005981</left_val> 9187 <right_val>-0.0384924784302711</right_val></_></_> 9188 <_> 9189 <!-- tree 10 --> 9190 <_> 9191 <!-- root node --> 9192 <feature> 9193 <rects> 9194 <_> 9195 0 5 2 1 -1.</_> 9196 <_> 9197 1 5 1 1 2.</_></rects> 9198 <tilted>0</tilted></feature> 9199 <threshold>-4.7496971092186868e-05</threshold> 9200 <left_node>1</left_node> 9201 <right_val>-0.2519702911376953</right_val></_> 9202 <_> 9203 <!-- node 1 --> 9204 <feature> 9205 <rects> 9206 <_> 9207 17 0 3 2 -1.</_> 9208 <_> 9209 18 1 1 2 3.</_></rects> 9210 <tilted>1</tilted></feature> 9211 <threshold>4.5816078782081604e-03</threshold> 9212 <left_val>0.2025039941072464</left_val> 9213 <right_val>-0.6163808107376099</right_val></_></_> 9214 <_> 9215 <!-- tree 11 --> 9216 <_> 9217 <!-- root node --> 9218 <feature> 9219 <rects> 9220 <_> 9221 2 8 3 9 -1.</_> 9222 <_> 9223 3 11 1 3 9.</_></rects> 9224 <tilted>0</tilted></feature> 9225 <threshold>-0.0111751500517130</threshold> 9226 <left_node>1</left_node> 9227 <right_val>-0.2777119874954224</right_val></_> 9228 <_> 9229 <!-- node 1 --> 9230 <feature> 9231 <rects> 9232 <_> 9233 15 7 4 2 -1.</_> 9234 <_> 9235 16 8 2 2 2.</_></rects> 9236 <tilted>1</tilted></feature> 9237 <threshold>-7.4238609522581100e-03</threshold> 9238 <left_val>-0.5010343790054321</left_val> 9239 <right_val>0.1931852996349335</right_val></_></_> 9240 <_> 9241 <!-- tree 12 --> 9242 <_> 9243 <!-- root node --> 9244 <feature> 9245 <rects> 9246 <_> 9247 4 16 3 3 -1.</_> 9248 <_> 9249 5 16 1 3 3.</_></rects> 9250 <tilted>0</tilted></feature> 9251 <threshold>-3.0201480258256197e-03</threshold> 9252 <left_val>-0.6590424776077271</left_val> 9253 <right_node>1</right_node></_> 9254 <_> 9255 <!-- node 1 --> 9256 <feature> 9257 <rects> 9258 <_> 9259 8 14 6 1 -1.</_> 9260 <_> 9261 10 14 2 1 3.</_></rects> 9262 <tilted>0</tilted></feature> 9263 <threshold>-3.0343679245561361e-03</threshold> 9264 <left_val>0.3196248114109039</left_val> 9265 <right_val>-0.1051291003823280</right_val></_></_> 9266 <_> 9267 <!-- tree 13 --> 9268 <_> 9269 <!-- root node --> 9270 <feature> 9271 <rects> 9272 <_> 9273 14 0 6 6 -1.</_> 9274 <_> 9275 14 0 3 3 2.</_> 9276 <_> 9277 17 3 3 3 2.</_></rects> 9278 <tilted>0</tilted></feature> 9279 <threshold>-0.0109712900593877</threshold> 9280 <left_val>0.3270700871944427</left_val> 9281 <right_node>1</right_node></_> 9282 <_> 9283 <!-- node 1 --> 9284 <feature> 9285 <rects> 9286 <_> 9287 17 2 2 1 -1.</_> 9288 <_> 9289 17 2 1 1 2.</_></rects> 9290 <tilted>1</tilted></feature> 9291 <threshold>1.2000739661743864e-04</threshold> 9292 <left_val>-0.4167926907539368</left_val> 9293 <right_val>0.1164520010352135</right_val></_></_> 9294 <_> 9295 <!-- tree 14 --> 9296 <_> 9297 <!-- root node --> 9298 <feature> 9299 <rects> 9300 <_> 9301 0 19 20 1 -1.</_> 9302 <_> 9303 10 19 10 1 2.</_></rects> 9304 <tilted>0</tilted></feature> 9305 <threshold>2.1552699618041515e-03</threshold> 9306 <left_node>1</left_node> 9307 <right_val>0.1538939028978348</right_val></_> 9308 <_> 9309 <!-- node 1 --> 9310 <feature> 9311 <rects> 9312 <_> 9313 0 19 6 1 -1.</_> 9314 <_> 9315 3 19 3 1 2.</_></rects> 9316 <tilted>0</tilted></feature> 9317 <threshold>1.5970800304785371e-03</threshold> 9318 <left_val>-0.4297927021980286</left_val> 9319 <right_val>0.1919295042753220</right_val></_></_> 9320 <_> 9321 <!-- tree 15 --> 9322 <_> 9323 <!-- root node --> 9324 <feature> 9325 <rects> 9326 <_> 9327 9 17 4 3 -1.</_> 9328 <_> 9329 10 17 2 3 2.</_></rects> 9330 <tilted>0</tilted></feature> 9331 <threshold>-4.3590939603745937e-03</threshold> 9332 <left_val>-0.8661373853683472</left_val> 9333 <right_node>1</right_node></_> 9334 <_> 9335 <!-- node 1 --> 9336 <feature> 9337 <rects> 9338 <_> 9339 4 11 3 3 -1.</_> 9340 <_> 9341 5 12 1 1 9.</_></rects> 9342 <tilted>0</tilted></feature> 9343 <threshold>-6.5752048976719379e-03</threshold> 9344 <left_val>0.3529854118824005</left_val> 9345 <right_val>-0.0726247206330299</right_val></_></_> 9346 <_> 9347 <!-- tree 16 --> 9348 <_> 9349 <!-- root node --> 9350 <feature> 9351 <rects> 9352 <_> 9353 17 7 3 3 -1.</_> 9354 <_> 9355 18 8 1 3 3.</_></rects> 9356 <tilted>1</tilted></feature> 9357 <threshold>3.5486191045492887e-03</threshold> 9358 <left_node>1</left_node> 9359 <right_val>-0.3614104092121124</right_val></_> 9360 <_> 9361 <!-- node 1 --> 9362 <feature> 9363 <rects> 9364 <_> 9365 19 1 1 4 -1.</_> 9366 <_> 9367 18 2 1 2 2.</_></rects> 9368 <tilted>1</tilted></feature> 9369 <threshold>1.7437560018151999e-03</threshold> 9370 <left_val>-0.0402509197592735</left_val> 9371 <right_val>0.4111959040164948</right_val></_></_> 9372 <_> 9373 <!-- tree 17 --> 9374 <_> 9375 <!-- root node --> 9376 <feature> 9377 <rects> 9378 <_> 9379 6 8 2 1 -1.</_> 9380 <_> 9381 7 8 1 1 2.</_></rects> 9382 <tilted>0</tilted></feature> 9383 <threshold>6.5892767452169210e-05</threshold> 9384 <left_node>1</left_node> 9385 <right_val>0.1552398949861526</right_val></_> 9386 <_> 9387 <!-- node 1 --> 9388 <feature> 9389 <rects> 9390 <_> 9391 5 4 4 4 -1.</_> 9392 <_> 9393 6 5 2 4 2.</_></rects> 9394 <tilted>1</tilted></feature> 9395 <threshold>0.0122171696275473</threshold> 9396 <left_val>-0.3656722903251648</left_val> 9397 <right_val>0.2515968978404999</right_val></_></_> 9398 <_> 9399 <!-- tree 18 --> 9400 <_> 9401 <!-- root node --> 9402 <feature> 9403 <rects> 9404 <_> 9405 5 0 8 7 -1.</_> 9406 <_> 9407 9 0 4 7 2.</_></rects> 9408 <tilted>0</tilted></feature> 9409 <threshold>0.0601993091404438</threshold> 9410 <left_node>1</left_node> 9411 <right_val>-0.6895959973335266</right_val></_> 9412 <_> 9413 <!-- node 1 --> 9414 <feature> 9415 <rects> 9416 <_> 9417 0 7 5 9 -1.</_> 9418 <_> 9419 0 10 5 3 3.</_></rects> 9420 <tilted>0</tilted></feature> 9421 <threshold>-0.0916843712329865</threshold> 9422 <left_val>-0.6631187200546265</left_val> 9423 <right_val>0.0948273614048958</right_val></_></_> 9424 <_> 9425 <!-- tree 19 --> 9426 <_> 9427 <!-- root node --> 9428 <feature> 9429 <rects> 9430 <_> 9431 14 10 2 2 -1.</_> 9432 <_> 9433 14 10 1 1 2.</_> 9434 <_> 9435 15 11 1 1 2.</_></rects> 9436 <tilted>0</tilted></feature> 9437 <threshold>8.9392811059951782e-04</threshold> 9438 <left_node>1</left_node> 9439 <right_val>0.2873100936412811</right_val></_> 9440 <_> 9441 <!-- node 1 --> 9442 <feature> 9443 <rects> 9444 <_> 9445 15 11 2 2 -1.</_> 9446 <_> 9447 15 11 1 1 2.</_> 9448 <_> 9449 16 12 1 1 2.</_></rects> 9450 <tilted>0</tilted></feature> 9451 <threshold>-1.1146500473842025e-03</threshold> 9452 <left_val>0.3612706065177917</left_val> 9453 <right_val>-0.2405422925949097</right_val></_></_> 9454 <_> 9455 <!-- tree 20 --> 9456 <_> 9457 <!-- root node --> 9458 <feature> 9459 <rects> 9460 <_> 9461 9 2 6 4 -1.</_> 9462 <_> 9463 11 2 2 4 3.</_></rects> 9464 <tilted>0</tilted></feature> 9465 <threshold>-0.0110427802428603</threshold> 9466 <left_val>-0.7168669104576111</left_val> 9467 <right_node>1</right_node></_> 9468 <_> 9469 <!-- node 1 --> 9470 <feature> 9471 <rects> 9472 <_> 9473 0 12 12 8 -1.</_> 9474 <_> 9475 6 12 6 8 2.</_></rects> 9476 <tilted>0</tilted></feature> 9477 <threshold>0.0377693511545658</threshold> 9478 <left_val>0.1112534999847412</left_val> 9479 <right_val>-0.5632094740867615</right_val></_></_> 9480 <_> 9481 <!-- tree 21 --> 9482 <_> 9483 <!-- root node --> 9484 <feature> 9485 <rects> 9486 <_> 9487 1 0 6 2 -1.</_> 9488 <_> 9489 3 0 2 2 3.</_></rects> 9490 <tilted>0</tilted></feature> 9491 <threshold>5.5979429744184017e-03</threshold> 9492 <left_node>1</left_node> 9493 <right_val>-0.5699890851974487</right_val></_> 9494 <_> 9495 <!-- node 1 --> 9496 <feature> 9497 <rects> 9498 <_> 9499 0 12 4 5 -1.</_> 9500 <_> 9501 1 12 2 5 2.</_></rects> 9502 <tilted>0</tilted></feature> 9503 <threshold>-2.5462140329182148e-03</threshold> 9504 <left_val>0.2673457860946655</left_val> 9505 <right_val>-0.1052770018577576</right_val></_></_> 9506 <_> 9507 <!-- tree 22 --> 9508 <_> 9509 <!-- root node --> 9510 <feature> 9511 <rects> 9512 <_> 9513 2 12 4 4 -1.</_> 9514 <_> 9515 3 12 2 4 2.</_></rects> 9516 <tilted>0</tilted></feature> 9517 <threshold>-1.7929819878190756e-03</threshold> 9518 <left_val>0.1771212071180344</left_val> 9519 <right_node>1</right_node></_> 9520 <_> 9521 <!-- node 1 --> 9522 <feature> 9523 <rects> 9524 <_> 9525 12 11 2 4 -1.</_> 9526 <_> 9527 13 11 1 4 2.</_></rects> 9528 <tilted>0</tilted></feature> 9529 <threshold>-8.9686378487385809e-05</threshold> 9530 <left_val>0.1676241010427475</left_val> 9531 <right_val>-0.4133665859699249</right_val></_></_> 9532 <_> 9533 <!-- tree 23 --> 9534 <_> 9535 <!-- root node --> 9536 <feature> 9537 <rects> 9538 <_> 9539 2 0 1 4 -1.</_> 9540 <_> 9541 2 2 1 2 2.</_></rects> 9542 <tilted>0</tilted></feature> 9543 <threshold>-6.8254990037530661e-04</threshold> 9544 <left_node>1</left_node> 9545 <right_val>-0.3132705092430115</right_val></_> 9546 <_> 9547 <!-- node 1 --> 9548 <feature> 9549 <rects> 9550 <_> 9551 6 1 4 9 -1.</_> 9552 <_> 9553 7 1 2 9 2.</_></rects> 9554 <tilted>0</tilted></feature> 9555 <threshold>4.0599349886178970e-03</threshold> 9556 <left_val>0.2031262964010239</left_val> 9557 <right_val>-0.4636094868183136</right_val></_></_> 9558 <_> 9559 <!-- tree 24 --> 9560 <_> 9561 <!-- root node --> 9562 <feature> 9563 <rects> 9564 <_> 9565 13 10 2 3 -1.</_> 9566 <_> 9567 13 11 2 1 3.</_></rects> 9568 <tilted>0</tilted></feature> 9569 <threshold>1.5843180008232594e-03</threshold> 9570 <left_node>1</left_node> 9571 <right_val>0.2641308903694153</right_val></_> 9572 <_> 9573 <!-- node 1 --> 9574 <feature> 9575 <rects> 9576 <_> 9577 3 9 15 3 -1.</_> 9578 <_> 9579 8 10 5 1 9.</_></rects> 9580 <tilted>0</tilted></feature> 9581 <threshold>-0.0461016409099102</threshold> 9582 <left_val>0.2458764016628265</left_val> 9583 <right_val>-0.3115119934082031</right_val></_></_> 9584 <_> 9585 <!-- tree 25 --> 9586 <_> 9587 <!-- root node --> 9588 <feature> 9589 <rects> 9590 <_> 9591 15 10 3 1 -1.</_> 9592 <_> 9593 16 11 1 1 3.</_></rects> 9594 <tilted>1</tilted></feature> 9595 <threshold>1.5759950038045645e-03</threshold> 9596 <left_node>1</left_node> 9597 <right_val>-0.3659397065639496</right_val></_> 9598 <_> 9599 <!-- node 1 --> 9600 <feature> 9601 <rects> 9602 <_> 9603 1 0 15 8 -1.</_> 9604 <_> 9605 1 2 15 4 2.</_></rects> 9606 <tilted>0</tilted></feature> 9607 <threshold>0.0359046310186386</threshold> 9608 <left_val>-0.0133526204153895</left_val> 9609 <right_val>0.4950073957443237</right_val></_></_> 9610 <_> 9611 <!-- tree 26 --> 9612 <_> 9613 <!-- root node --> 9614 <feature> 9615 <rects> 9616 <_> 9617 2 3 15 6 -1.</_> 9618 <_> 9619 2 6 15 3 2.</_></rects> 9620 <tilted>0</tilted></feature> 9621 <threshold>0.0192305296659470</threshold> 9622 <left_node>1</left_node> 9623 <right_val>0.1860356032848358</right_val></_> 9624 <_> 9625 <!-- node 1 --> 9626 <feature> 9627 <rects> 9628 <_> 9629 6 0 6 6 -1.</_> 9630 <_> 9631 6 2 6 2 3.</_></rects> 9632 <tilted>0</tilted></feature> 9633 <threshold>0.0134618300944567</threshold> 9634 <left_val>-0.4270431101322174</left_val> 9635 <right_val>0.1475695073604584</right_val></_></_> 9636 <_> 9637 <!-- tree 27 --> 9638 <_> 9639 <!-- root node --> 9640 <feature> 9641 <rects> 9642 <_> 9643 16 9 4 3 -1.</_> 9644 <_> 9645 16 10 4 1 3.</_></rects> 9646 <tilted>0</tilted></feature> 9647 <threshold>6.3534970395267010e-03</threshold> 9648 <left_node>1</left_node> 9649 <right_val>-0.5882459282875061</right_val></_> 9650 <_> 9651 <!-- node 1 --> 9652 <feature> 9653 <rects> 9654 <_> 9655 16 7 4 3 -1.</_> 9656 <_> 9657 16 8 4 1 3.</_></rects> 9658 <tilted>0</tilted></feature> 9659 <threshold>4.7998740337789059e-03</threshold> 9660 <left_val>0.1396612972021103</left_val> 9661 <right_val>-0.3694832026958466</right_val></_></_> 9662 <_> 9663 <!-- tree 28 --> 9664 <_> 9665 <!-- root node --> 9666 <feature> 9667 <rects> 9668 <_> 9669 15 10 2 2 -1.</_> 9670 <_> 9671 15 10 1 1 2.</_> 9672 <_> 9673 16 11 1 1 2.</_></rects> 9674 <tilted>0</tilted></feature> 9675 <threshold>-9.7894563805311918e-04</threshold> 9676 <left_val>0.4315659105777740</left_val> 9677 <right_node>1</right_node></_> 9678 <_> 9679 <!-- node 1 --> 9680 <feature> 9681 <rects> 9682 <_> 9683 13 11 2 3 -1.</_> 9684 <_> 9685 13 12 2 1 3.</_></rects> 9686 <tilted>0</tilted></feature> 9687 <threshold>1.8534340197220445e-03</threshold> 9688 <left_val>-0.1905311048030853</left_val> 9689 <right_val>0.2686879932880402</right_val></_></_> 9690 <_> 9691 <!-- tree 29 --> 9692 <_> 9693 <!-- root node --> 9694 <feature> 9695 <rects> 9696 <_> 9697 2 16 2 2 -1.</_> 9698 <_> 9699 2 16 1 2 2.</_></rects> 9700 <tilted>1</tilted></feature> 9701 <threshold>5.5962381884455681e-04</threshold> 9702 <left_node>1</left_node> 9703 <right_val>-0.3054575026035309</right_val></_> 9704 <_> 9705 <!-- node 1 --> 9706 <feature> 9707 <rects> 9708 <_> 9709 3 0 4 7 -1.</_> 9710 <_> 9711 4 0 2 7 2.</_></rects> 9712 <tilted>0</tilted></feature> 9713 <threshold>-8.1787789240479469e-03</threshold> 9714 <left_val>-0.7235335111618042</left_val> 9715 <right_val>0.1619776934385300</right_val></_></_> 9716 <_> 9717 <!-- tree 30 --> 9718 <_> 9719 <!-- root node --> 9720 <feature> 9721 <rects> 9722 <_> 9723 0 16 2 2 -1.</_> 9724 <_> 9725 0 16 1 1 2.</_> 9726 <_> 9727 1 17 1 1 2.</_></rects> 9728 <tilted>0</tilted></feature> 9729 <threshold>-6.4591833506710827e-05</threshold> 9730 <left_node>1</left_node> 9731 <right_val>-0.1612174957990646</right_val></_> 9732 <_> 9733 <!-- node 1 --> 9734 <feature> 9735 <rects> 9736 <_> 9737 2 0 18 3 -1.</_> 9738 <_> 9739 8 0 6 3 3.</_></rects> 9740 <tilted>0</tilted></feature> 9741 <threshold>-4.2282380163669586e-03</threshold> 9742 <left_val>0.4244168102741241</left_val> 9743 <right_val>-0.1148820966482162</right_val></_></_> 9744 <_> 9745 <!-- tree 31 --> 9746 <_> 9747 <!-- root node --> 9748 <feature> 9749 <rects> 9750 <_> 9751 0 1 1 3 -1.</_> 9752 <_> 9753 0 2 1 1 3.</_></rects> 9754 <tilted>0</tilted></feature> 9755 <threshold>-3.2379399053752422e-03</threshold> 9756 <left_val>-0.8281142711639404</left_val> 9757 <right_node>1</right_node></_> 9758 <_> 9759 <!-- node 1 --> 9760 <feature> 9761 <rects> 9762 <_> 9763 10 6 4 4 -1.</_> 9764 <_> 9765 10 7 4 2 2.</_></rects> 9766 <tilted>0</tilted></feature> 9767 <threshold>-4.7763898037374020e-03</threshold> 9768 <left_val>0.3915700912475586</left_val> 9769 <right_val>-0.0376774296164513</right_val></_></_> 9770 <_> 9771 <!-- tree 32 --> 9772 <_> 9773 <!-- root node --> 9774 <feature> 9775 <rects> 9776 <_> 9777 16 4 4 6 -1.</_> 9778 <_> 9779 16 4 2 3 2.</_> 9780 <_> 9781 18 7 2 3 2.</_></rects> 9782 <tilted>0</tilted></feature> 9783 <threshold>-6.1182728968560696e-03</threshold> 9784 <left_val>0.3020882904529572</left_val> 9785 <right_node>1</right_node></_> 9786 <_> 9787 <!-- node 1 --> 9788 <feature> 9789 <rects> 9790 <_> 9791 11 12 4 2 -1.</_> 9792 <_> 9793 11 12 2 1 2.</_> 9794 <_> 9795 13 13 2 1 2.</_></rects> 9796 <tilted>0</tilted></feature> 9797 <threshold>3.1565790995955467e-03</threshold> 9798 <left_val>-0.1904578953981400</left_val> 9799 <right_val>0.3021968901157379</right_val></_></_></trees> 9800 <stage_threshold>-1.8088439702987671</stage_threshold> 9801 <parent>18</parent> 9802 <next>-1</next></_></stages></haarcascade_lefteye> 9803 </opencv_storage> 9804