1 <?xml version="1.0"?> 2 <!---------------------------------------------------------------------------- 3 Smile detector 4 Contributed by Oscar Deniz Suarez 5 More information can be found at http://visilab.etsii.uclm.es/personas/oscar/oscar.html 6 7 ////////////////////////////////////////////////////////////////////////// 8 | Contributors License Agreement 9 | IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 10 | By downloading, copying, installing or using the software you agree 11 | to this license. 12 | If you do not agree to this license, do not download, install, 13 | copy or use the software. 14 | 15 | Copyright (c) 2011, Modesto Castrillon-Santana (IUSIANI, Universidad de 16 | Las Palmas de Gran Canaria, Spain). 17 | All rights reserved. 18 | 19 | Redistribution and use in source and binary forms, with or without 20 | modification, are permitted provided that the following conditions are 21 | met: 22 | 23 | * Redistributions of source code must retain the above copyright 24 | notice, this list of conditions and the following disclaimer. 25 | * Redistributions in binary form must reproduce the above 26 | copyright notice, this list of conditions and the following 27 | disclaimer in the documentation and/or other materials provided 28 | with the distribution. 29 | * The name of Contributor may not used to endorse or promote products 30 | derived from this software without specific prior written permission. 31 | 32 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 33 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 34 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 35 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 36 | CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 37 | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 38 | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 39 | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 40 | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 41 | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 42 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Back to 43 | Top 44 ////////////////////////////////////////////////////////////////////////// 45 46 ------------------------------------------------------------------------> 47 <opencv_storage> 48 <!-- Automatically converted from data/classifier, window size = 36x18 --> 49 <SmileDetector type_id="opencv-haar-classifier"> 50 <size> 51 36 18</size> 52 <stages> 53 <_> 54 <!-- stage 0 --> 55 <trees> 56 <_> 57 <!-- tree 0 --> 58 <_> 59 <!-- root node --> 60 <feature> 61 <rects> 62 <_> 63 0 0 2 4 -1.</_> 64 <_> 65 0 2 2 2 2.</_></rects> 66 <tilted>0</tilted></feature> 67 <threshold>-4.8783610691316426e-004</threshold> 68 <left_val>0.5921934843063355</left_val> 69 <right_val>-0.4416360855102539</right_val></_></_> 70 <_> 71 <!-- tree 1 --> 72 <_> 73 <!-- root node --> 74 <feature> 75 <rects> 76 <_> 77 34 10 2 8 -1.</_> 78 <_> 79 34 14 2 4 2.</_></rects> 80 <tilted>0</tilted></feature> 81 <threshold>-4.2209611274302006e-004</threshold> 82 <left_val>0.3031865060329437</left_val> 83 <right_val>-0.3291291892528534</right_val></_></_> 84 <_> 85 <!-- tree 2 --> 86 <_> 87 <!-- root node --> 88 <feature> 89 <rects> 90 <_> 91 0 10 2 8 -1.</_> 92 <_> 93 0 14 2 4 2.</_></rects> 94 <tilted>0</tilted></feature> 95 <threshold>-4.9940118333324790e-004</threshold> 96 <left_val>0.4856331050395966</left_val> 97 <right_val>-0.4292306005954742</right_val></_></_> 98 <_> 99 <!-- tree 3 --> 100 <_> 101 <!-- root node --> 102 <feature> 103 <rects> 104 <_> 105 15 0 18 10 -1.</_> 106 <_> 107 24 0 9 5 2.</_> 108 <_> 109 15 5 9 5 2.</_></rects> 110 <tilted>0</tilted></feature> 111 <threshold>0.0372891984879971</threshold> 112 <left_val>-0.2866730093955994</left_val> 113 <right_val>0.5997999906539917</right_val></_></_> 114 <_> 115 <!-- tree 4 --> 116 <_> 117 <!-- root node --> 118 <feature> 119 <rects> 120 <_> 121 7 0 4 4 -1.</_> 122 <_> 123 7 0 2 4 2.</_></rects> 124 <tilted>1</tilted></feature> 125 <threshold>1.4334049774333835e-003</threshold> 126 <left_val>-0.3489313125610352</left_val> 127 <right_val>0.4048275053501129</right_val></_></_> 128 <_> 129 <!-- tree 5 --> 130 <_> 131 <!-- root node --> 132 <feature> 133 <rects> 134 <_> 135 15 5 6 4 -1.</_> 136 <_> 137 15 6 6 2 2.</_></rects> 138 <tilted>0</tilted></feature> 139 <threshold>-7.7213020995259285e-003</threshold> 140 <left_val>0.7571418881416321</left_val> 141 <right_val>-0.1222594976425171</right_val></_></_> 142 <_> 143 <!-- tree 6 --> 144 <_> 145 <!-- root node --> 146 <feature> 147 <rects> 148 <_> 149 13 6 8 3 -1.</_> 150 <_> 151 13 7 8 1 3.</_></rects> 152 <tilted>0</tilted></feature> 153 <threshold>8.1067271530628204e-003</threshold> 154 <left_val>-0.1665772050619125</left_val> 155 <right_val>0.7509614825248718</right_val></_></_> 156 <_> 157 <!-- tree 7 --> 158 <_> 159 <!-- root node --> 160 <feature> 161 <rects> 162 <_> 163 14 6 8 4 -1.</_> 164 <_> 165 14 7 8 2 2.</_></rects> 166 <tilted>0</tilted></feature> 167 <threshold>-7.7238711528480053e-003</threshold> 168 <left_val>0.6266279220581055</left_val> 169 <right_val>-0.1912745982408524</right_val></_></_> 170 <_> 171 <!-- tree 8 --> 172 <_> 173 <!-- root node --> 174 <feature> 175 <rects> 176 <_> 177 0 10 2 8 -1.</_> 178 <_> 179 0 14 2 4 2.</_></rects> 180 <tilted>0</tilted></feature> 181 <threshold>4.4225031160749495e-004</threshold> 182 <left_val>-0.2394447028636932</left_val> 183 <right_val>0.4484061896800995</right_val></_></_> 184 <_> 185 <!-- tree 9 --> 186 <_> 187 <!-- root node --> 188 <feature> 189 <rects> 190 <_> 191 34 0 2 16 -1.</_> 192 <_> 193 35 0 1 8 2.</_> 194 <_> 195 34 8 1 8 2.</_></rects> 196 <tilted>0</tilted></feature> 197 <threshold>-1.6867710510268807e-003</threshold> 198 <left_val>-0.1843906939029694</left_val> 199 <right_val>0.0917824134230614</right_val></_></_> 200 <_> 201 <!-- tree 10 --> 202 <_> 203 <!-- root node --> 204 <feature> 205 <rects> 206 <_> 207 1 0 4 7 -1.</_> 208 <_> 209 3 0 2 7 2.</_></rects> 210 <tilted>0</tilted></feature> 211 <threshold>0.0146256200969219</threshold> 212 <left_val>0.1616805940866470</left_val> 213 <right_val>-0.8150117993354797</right_val></_></_></trees> 214 <stage_threshold>-1.2678639888763428</stage_threshold> 215 <parent>-1</parent> 216 <next>-1</next></_> 217 <_> 218 <!-- stage 1 --> 219 <trees> 220 <_> 221 <!-- tree 0 --> 222 <_> 223 <!-- root node --> 224 <feature> 225 <rects> 226 <_> 227 4 7 28 3 -1.</_> 228 <_> 229 11 7 14 3 2.</_></rects> 230 <tilted>0</tilted></feature> 231 <threshold>0.0381411388516426</threshold> 232 <left_val>-0.3327588140964508</left_val> 233 <right_val>0.7783334255218506</right_val></_></_> 234 <_> 235 <!-- tree 1 --> 236 <_> 237 <!-- root node --> 238 <feature> 239 <rects> 240 <_> 241 34 0 2 2 -1.</_> 242 <_> 243 34 1 2 1 2.</_></rects> 244 <tilted>0</tilted></feature> 245 <threshold>-1.3136120105627924e-004</threshold> 246 <left_val>0.3635309040546417</left_val> 247 <right_val>-0.3204346895217896</right_val></_></_> 248 <_> 249 <!-- tree 2 --> 250 <_> 251 <!-- root node --> 252 <feature> 253 <rects> 254 <_> 255 0 12 4 6 -1.</_> 256 <_> 257 0 15 4 3 2.</_></rects> 258 <tilted>0</tilted></feature> 259 <threshold>-3.8757019210606813e-003</threshold> 260 <left_val>0.7135239243507385</left_val> 261 <right_val>-0.3518598973751068</right_val></_></_> 262 <_> 263 <!-- tree 3 --> 264 <_> 265 <!-- root node --> 266 <feature> 267 <rects> 268 <_> 269 34 0 2 2 -1.</_> 270 <_> 271 34 1 2 1 2.</_></rects> 272 <tilted>0</tilted></feature> 273 <threshold>1.4266290236264467e-003</threshold> 274 <left_val>0.0681008473038673</left_val> 275 <right_val>-0.6172732710838318</right_val></_></_> 276 <_> 277 <!-- tree 4 --> 278 <_> 279 <!-- root node --> 280 <feature> 281 <rects> 282 <_> 283 0 0 2 2 -1.</_> 284 <_> 285 0 1 2 1 2.</_></rects> 286 <tilted>0</tilted></feature> 287 <threshold>-2.4605958606116474e-004</threshold> 288 <left_val>0.5727149844169617</left_val> 289 <right_val>-0.3786099851131439</right_val></_></_> 290 <_> 291 <!-- tree 5 --> 292 <_> 293 <!-- root node --> 294 <feature> 295 <rects> 296 <_> 297 17 5 9 12 -1.</_> 298 <_> 299 20 5 3 12 3.</_></rects> 300 <tilted>0</tilted></feature> 301 <threshold>-0.0318226404488087</threshold> 302 <left_val>-0.6348456144332886</left_val> 303 <right_val>0.1164183989167213</right_val></_></_> 304 <_> 305 <!-- tree 6 --> 306 <_> 307 <!-- root node --> 308 <feature> 309 <rects> 310 <_> 311 10 5 9 12 -1.</_> 312 <_> 313 13 5 3 12 3.</_></rects> 314 <tilted>0</tilted></feature> 315 <threshold>-0.0171309504657984</threshold> 316 <left_val>-0.6279314756393433</left_val> 317 <right_val>0.3247947096824646</right_val></_></_> 318 <_> 319 <!-- tree 7 --> 320 <_> 321 <!-- root node --> 322 <feature> 323 <rects> 324 <_> 325 4 0 32 1 -1.</_> 326 <_> 327 4 0 16 1 2.</_></rects> 328 <tilted>0</tilted></feature> 329 <threshold>-9.3903783708810806e-003</threshold> 330 <left_val>-0.2757895886898041</left_val> 331 <right_val>0.2233072966337204</right_val></_></_> 332 <_> 333 <!-- tree 8 --> 334 <_> 335 <!-- root node --> 336 <feature> 337 <rects> 338 <_> 339 0 0 3 3 -1.</_> 340 <_> 341 1 0 1 3 3.</_></rects> 342 <tilted>0</tilted></feature> 343 <threshold>2.2802520543336868e-003</threshold> 344 <left_val>0.1897764056921005</left_val> 345 <right_val>-0.6881762146949768</right_val></_></_> 346 <_> 347 <!-- tree 9 --> 348 <_> 349 <!-- root node --> 350 <feature> 351 <rects> 352 <_> 353 32 7 4 7 -1.</_> 354 <_> 355 33 8 2 7 2.</_></rects> 356 <tilted>1</tilted></feature> 357 <threshold>2.6840099599212408e-003</threshold> 358 <left_val>-0.2235050052404404</left_val> 359 <right_val>0.1372579932212830</right_val></_></_> 360 <_> 361 <!-- tree 10 --> 362 <_> 363 <!-- root node --> 364 <feature> 365 <rects> 366 <_> 367 7 0 8 6 -1.</_> 368 <_> 369 7 0 4 3 2.</_> 370 <_> 371 11 3 4 3 2.</_></rects> 372 <tilted>0</tilted></feature> 373 <threshold>0.0106046395376325</threshold> 374 <left_val>-0.2142623066902161</left_val> 375 <right_val>0.5620787143707275</right_val></_></_></trees> 376 <stage_threshold>-1.5844069719314575</stage_threshold> 377 <parent>0</parent> 378 <next>-1</next></_> 379 <_> 380 <!-- stage 2 --> 381 <trees> 382 <_> 383 <!-- tree 0 --> 384 <_> 385 <!-- root node --> 386 <feature> 387 <rects> 388 <_> 389 0 0 2 2 -1.</_> 390 <_> 391 0 1 2 1 2.</_></rects> 392 <tilted>0</tilted></feature> 393 <threshold>-3.1677199876867235e-004</threshold> 394 <left_val>0.4659548103809357</left_val> 395 <right_val>-0.3742581903934479</right_val></_></_> 396 <_> 397 <!-- tree 1 --> 398 <_> 399 <!-- root node --> 400 <feature> 401 <rects> 402 <_> 403 27 1 8 9 -1.</_> 404 <_> 405 29 3 4 9 2.</_></rects> 406 <tilted>1</tilted></feature> 407 <threshold>-0.0551206283271313</threshold> 408 <left_val>0.5417978763580322</left_val> 409 <right_val>-0.2265765070915222</right_val></_></_> 410 <_> 411 <!-- tree 2 --> 412 <_> 413 <!-- root node --> 414 <feature> 415 <rects> 416 <_> 417 1 10 1 8 -1.</_> 418 <_> 419 1 14 1 4 2.</_></rects> 420 <tilted>0</tilted></feature> 421 <threshold>-6.4742640824988484e-004</threshold> 422 <left_val>0.3770307004451752</left_val> 423 <right_val>-0.3348644077777863</right_val></_></_> 424 <_> 425 <!-- tree 3 --> 426 <_> 427 <!-- root node --> 428 <feature> 429 <rects> 430 <_> 431 3 6 30 9 -1.</_> 432 <_> 433 13 9 10 3 9.</_></rects> 434 <tilted>0</tilted></feature> 435 <threshold>0.3950783908367157</threshold> 436 <left_val>-0.1814441978931427</left_val> 437 <right_val>0.8132591843605042</right_val></_></_> 438 <_> 439 <!-- tree 4 --> 440 <_> 441 <!-- root node --> 442 <feature> 443 <rects> 444 <_> 445 12 5 8 6 -1.</_> 446 <_> 447 12 7 8 2 3.</_></rects> 448 <tilted>0</tilted></feature> 449 <threshold>0.0405094102025032</threshold> 450 <left_val>-0.0953694134950638</left_val> 451 <right_val>0.8059561848640442</right_val></_></_> 452 <_> 453 <!-- tree 5 --> 454 <_> 455 <!-- root node --> 456 <feature> 457 <rects> 458 <_> 459 16 4 6 3 -1.</_> 460 <_> 461 16 5 6 1 3.</_></rects> 462 <tilted>0</tilted></feature> 463 <threshold>4.8735421150922775e-003</threshold> 464 <left_val>-0.1402366012334824</left_val> 465 <right_val>0.6164302825927734</right_val></_></_> 466 <_> 467 <!-- tree 6 --> 468 <_> 469 <!-- root node --> 470 <feature> 471 <rects> 472 <_> 473 0 0 2 18 -1.</_> 474 <_> 475 0 0 1 9 2.</_> 476 <_> 477 1 9 1 9 2.</_></rects> 478 <tilted>0</tilted></feature> 479 <threshold>0.0105780400335789</threshold> 480 <left_val>0.1293267011642456</left_val> 481 <right_val>-0.7482334971427918</right_val></_></_> 482 <_> 483 <!-- tree 7 --> 484 <_> 485 <!-- root node --> 486 <feature> 487 <rects> 488 <_> 489 34 2 2 14 -1.</_> 490 <_> 491 35 2 1 7 2.</_> 492 <_> 493 34 9 1 7 2.</_></rects> 494 <tilted>0</tilted></feature> 495 <threshold>9.2986393719911575e-003</threshold> 496 <left_val>0.0589406006038189</left_val> 497 <right_val>-0.4410730004310608</right_val></_></_> 498 <_> 499 <!-- tree 8 --> 500 <_> 501 <!-- root node --> 502 <feature> 503 <rects> 504 <_> 505 0 2 2 14 -1.</_> 506 <_> 507 0 2 1 7 2.</_> 508 <_> 509 1 9 1 7 2.</_></rects> 510 <tilted>0</tilted></feature> 511 <threshold>-5.0301607698202133e-003</threshold> 512 <left_val>-0.6630973219871521</left_val> 513 <right_val>0.1810476928949356</right_val></_></_> 514 <_> 515 <!-- tree 9 --> 516 <_> 517 <!-- root node --> 518 <feature> 519 <rects> 520 <_> 521 35 0 1 4 -1.</_> 522 <_> 523 35 2 1 2 2.</_></rects> 524 <tilted>0</tilted></feature> 525 <threshold>-1.0947990085696802e-004</threshold> 526 <left_val>0.2211259007453919</left_val> 527 <right_val>-0.2730903923511505</right_val></_></_> 528 <_> 529 <!-- tree 10 --> 530 <_> 531 <!-- root node --> 532 <feature> 533 <rects> 534 <_> 535 5 0 24 18 -1.</_> 536 <_> 537 5 0 12 9 2.</_> 538 <_> 539 17 9 12 9 2.</_></rects> 540 <tilted>0</tilted></feature> 541 <threshold>-0.1168550997972488</threshold> 542 <left_val>-0.7720596790313721</left_val> 543 <right_val>0.1248165965080261</right_val></_></_> 544 <_> 545 <!-- tree 11 --> 546 <_> 547 <!-- root node --> 548 <feature> 549 <rects> 550 <_> 551 35 16 1 2 -1.</_> 552 <_> 553 35 17 1 1 2.</_></rects> 554 <tilted>0</tilted></feature> 555 <threshold>-4.3603649828583002e-005</threshold> 556 <left_val>0.1367060989141464</left_val> 557 <right_val>-0.1612793952226639</right_val></_></_> 558 <_> 559 <!-- tree 12 --> 560 <_> 561 <!-- root node --> 562 <feature> 563 <rects> 564 <_> 565 0 16 1 2 -1.</_> 566 <_> 567 0 17 1 1 2.</_></rects> 568 <tilted>0</tilted></feature> 569 <threshold>-1.5056360280141234e-004</threshold> 570 <left_val>0.4486046135425568</left_val> 571 <right_val>-0.2171128988265991</right_val></_></_> 572 <_> 573 <!-- tree 13 --> 574 <_> 575 <!-- root node --> 576 <feature> 577 <rects> 578 <_> 579 17 6 8 12 -1.</_> 580 <_> 581 19 6 4 12 2.</_></rects> 582 <tilted>0</tilted></feature> 583 <threshold>-0.0163946095854044</threshold> 584 <left_val>-0.6582735180854797</left_val> 585 <right_val>0.1674550026655197</right_val></_></_> 586 <_> 587 <!-- tree 14 --> 588 <_> 589 <!-- root node --> 590 <feature> 591 <rects> 592 <_> 593 11 5 8 13 -1.</_> 594 <_> 595 13 5 4 13 2.</_></rects> 596 <tilted>0</tilted></feature> 597 <threshold>-0.0144828604534268</threshold> 598 <left_val>-0.6834514737129211</left_val> 599 <right_val>0.1345615983009338</right_val></_></_> 600 <_> 601 <!-- tree 15 --> 602 <_> 603 <!-- root node --> 604 <feature> 605 <rects> 606 <_> 607 35 16 1 2 -1.</_> 608 <_> 609 35 17 1 1 2.</_></rects> 610 <tilted>0</tilted></feature> 611 <threshold>3.9269471017178148e-005</threshold> 612 <left_val>-0.1499813944101334</left_val> 613 <right_val>0.1601772010326386</right_val></_></_> 614 <_> 615 <!-- tree 16 --> 616 <_> 617 <!-- root node --> 618 <feature> 619 <rects> 620 <_> 621 10 9 12 3 -1.</_> 622 <_> 623 10 10 12 1 3.</_></rects> 624 <tilted>0</tilted></feature> 625 <threshold>7.4323131702840328e-003</threshold> 626 <left_val>-0.1684845983982086</left_val> 627 <right_val>0.5396398901939392</right_val></_></_></trees> 628 <stage_threshold>-1.3820559978485107</stage_threshold> 629 <parent>1</parent> 630 <next>-1</next></_> 631 <_> 632 <!-- stage 3 --> 633 <trees> 634 <_> 635 <!-- tree 0 --> 636 <_> 637 <!-- root node --> 638 <feature> 639 <rects> 640 <_> 641 0 10 1 8 -1.</_> 642 <_> 643 0 14 1 4 2.</_></rects> 644 <tilted>0</tilted></feature> 645 <threshold>-4.3472499237395823e-004</threshold> 646 <left_val>0.4394924044609070</left_val> 647 <right_val>-0.4224875867366791</right_val></_></_> 648 <_> 649 <!-- tree 1 --> 650 <_> 651 <!-- root node --> 652 <feature> 653 <rects> 654 <_> 655 20 0 10 10 -1.</_> 656 <_> 657 25 0 5 5 2.</_> 658 <_> 659 20 5 5 5 2.</_></rects> 660 <tilted>0</tilted></feature> 661 <threshold>0.0329953208565712</threshold> 662 <left_val>-0.1979825049638748</left_val> 663 <right_val>0.5953487157821655</right_val></_></_> 664 <_> 665 <!-- tree 2 --> 666 <_> 667 <!-- root node --> 668 <feature> 669 <rects> 670 <_> 671 0 0 1 4 -1.</_> 672 <_> 673 0 2 1 2 2.</_></rects> 674 <tilted>0</tilted></feature> 675 <threshold>-4.1011828579939902e-004</threshold> 676 <left_val>0.4440306127071381</left_val> 677 <right_val>-0.3074846863746643</right_val></_></_> 678 <_> 679 <!-- tree 3 --> 680 <_> 681 <!-- root node --> 682 <feature> 683 <rects> 684 <_> 685 19 0 13 18 -1.</_> 686 <_> 687 19 9 13 9 2.</_></rects> 688 <tilted>0</tilted></feature> 689 <threshold>-0.0819697380065918</threshold> 690 <left_val>-0.5333436727523804</left_val> 691 <right_val>0.1671810001134872</right_val></_></_> 692 <_> 693 <!-- tree 4 --> 694 <_> 695 <!-- root node --> 696 <feature> 697 <rects> 698 <_> 699 4 0 14 6 -1.</_> 700 <_> 701 4 0 7 3 2.</_> 702 <_> 703 11 3 7 3 2.</_></rects> 704 <tilted>0</tilted></feature> 705 <threshold>0.0177787002176046</threshold> 706 <left_val>-0.2045017927885056</left_val> 707 <right_val>0.5144413113594055</right_val></_></_> 708 <_> 709 <!-- tree 5 --> 710 <_> 711 <!-- root node --> 712 <feature> 713 <rects> 714 <_> 715 16 5 6 6 -1.</_> 716 <_> 717 16 7 6 2 3.</_></rects> 718 <tilted>0</tilted></feature> 719 <threshold>0.0228346996009350</threshold> 720 <left_val>-0.1484607011079788</left_val> 721 <right_val>0.5624278783798218</right_val></_></_> 722 <_> 723 <!-- tree 6 --> 724 <_> 725 <!-- root node --> 726 <feature> 727 <rects> 728 <_> 729 13 7 7 8 -1.</_> 730 <_> 731 13 9 7 4 2.</_></rects> 732 <tilted>0</tilted></feature> 733 <threshold>0.0386043414473534</threshold> 734 <left_val>-0.1273147016763687</left_val> 735 <right_val>0.8149448037147522</right_val></_></_> 736 <_> 737 <!-- tree 7 --> 738 <_> 739 <!-- root node --> 740 <feature> 741 <rects> 742 <_> 743 33 0 3 1 -1.</_> 744 <_> 745 34 0 1 1 3.</_></rects> 746 <tilted>0</tilted></feature> 747 <threshold>-7.3286908445879817e-004</threshold> 748 <left_val>-0.3719344139099121</left_val> 749 <right_val>0.0676164999604225</right_val></_></_> 750 <_> 751 <!-- tree 8 --> 752 <_> 753 <!-- root node --> 754 <feature> 755 <rects> 756 <_> 757 7 1 10 4 -1.</_> 758 <_> 759 6 2 10 2 2.</_></rects> 760 <tilted>1</tilted></feature> 761 <threshold>-0.0232290402054787</threshold> 762 <left_val>0.7123206257820129</left_val> 763 <right_val>-0.1158939003944397</right_val></_></_> 764 <_> 765 <!-- tree 9 --> 766 <_> 767 <!-- root node --> 768 <feature> 769 <rects> 770 <_> 771 15 2 6 16 -1.</_> 772 <_> 773 18 2 3 8 2.</_> 774 <_> 775 15 10 3 8 2.</_></rects> 776 <tilted>0</tilted></feature> 777 <threshold>-0.0195753592997789</threshold> 778 <left_val>-0.6899073123931885</left_val> 779 <right_val>0.1399950981140137</right_val></_></_> 780 <_> 781 <!-- tree 10 --> 782 <_> 783 <!-- root node --> 784 <feature> 785 <rects> 786 <_> 787 0 10 1 8 -1.</_> 788 <_> 789 0 14 1 4 2.</_></rects> 790 <tilted>0</tilted></feature> 791 <threshold>4.1991271427832544e-004</threshold> 792 <left_val>-0.1835464984178543</left_val> 793 <right_val>0.4943555891513825</right_val></_></_> 794 <_> 795 <!-- tree 11 --> 796 <_> 797 <!-- root node --> 798 <feature> 799 <rects> 800 <_> 801 27 4 6 6 -1.</_> 802 <_> 803 29 6 2 6 3.</_></rects> 804 <tilted>1</tilted></feature> 805 <threshold>-0.0570897497236729</threshold> 806 <left_val>0.6260784864425659</left_val> 807 <right_val>-0.0785768479108810</right_val></_></_> 808 <_> 809 <!-- tree 12 --> 810 <_> 811 <!-- root node --> 812 <feature> 813 <rects> 814 <_> 815 14 5 8 8 -1.</_> 816 <_> 817 16 5 4 8 2.</_></rects> 818 <tilted>0</tilted></feature> 819 <threshold>0.0256996992975473</threshold> 820 <left_val>0.1155714020133019</left_val> 821 <right_val>-0.8193519115447998</right_val></_></_> 822 <_> 823 <!-- tree 13 --> 824 <_> 825 <!-- root node --> 826 <feature> 827 <rects> 828 <_> 829 27 5 6 6 -1.</_> 830 <_> 831 29 7 2 6 3.</_></rects> 832 <tilted>1</tilted></feature> 833 <threshold>0.0325796194374561</threshold> 834 <left_val>-0.1176773980259895</left_val> 835 <right_val>0.4277622103691101</right_val></_></_> 836 <_> 837 <!-- tree 14 --> 838 <_> 839 <!-- root node --> 840 <feature> 841 <rects> 842 <_> 843 9 5 6 6 -1.</_> 844 <_> 845 7 7 6 2 3.</_></rects> 846 <tilted>1</tilted></feature> 847 <threshold>-0.0205922499299049</threshold> 848 <left_val>0.4868524074554443</left_val> 849 <right_val>-0.2131853997707367</right_val></_></_> 850 <_> 851 <!-- tree 15 --> 852 <_> 853 <!-- root node --> 854 <feature> 855 <rects> 856 <_> 857 12 5 12 9 -1.</_> 858 <_> 859 15 5 6 9 2.</_></rects> 860 <tilted>0</tilted></feature> 861 <threshold>-0.0174852795898914</threshold> 862 <left_val>-0.5228734016418457</left_val> 863 <right_val>0.1339704990386963</right_val></_></_> 864 <_> 865 <!-- tree 16 --> 866 <_> 867 <!-- root node --> 868 <feature> 869 <rects> 870 <_> 871 0 0 3 1 -1.</_> 872 <_> 873 1 0 1 1 3.</_></rects> 874 <tilted>0</tilted></feature> 875 <threshold>8.9153228327631950e-004</threshold> 876 <left_val>0.0963044911623001</left_val> 877 <right_val>-0.6886307001113892</right_val></_></_> 878 <_> 879 <!-- tree 17 --> 880 <_> 881 <!-- root node --> 882 <feature> 883 <rects> 884 <_> 885 15 4 18 6 -1.</_> 886 <_> 887 15 6 18 2 3.</_></rects> 888 <tilted>0</tilted></feature> 889 <threshold>0.0575339011847973</threshold> 890 <left_val>-0.0870805233716965</left_val> 891 <right_val>0.4048064947128296</right_val></_></_></trees> 892 <stage_threshold>-1.3879380226135254</stage_threshold> 893 <parent>2</parent> 894 <next>-1</next></_> 895 <_> 896 <!-- stage 4 --> 897 <trees> 898 <_> 899 <!-- tree 0 --> 900 <_> 901 <!-- root node --> 902 <feature> 903 <rects> 904 <_> 905 0 10 1 6 -1.</_> 906 <_> 907 0 13 1 3 2.</_></rects> 908 <tilted>0</tilted></feature> 909 <threshold>-4.6606198884546757e-004</threshold> 910 <left_val>0.4277374148368835</left_val> 911 <right_val>-0.3542076945304871</right_val></_></_> 912 <_> 913 <!-- tree 1 --> 914 <_> 915 <!-- root node --> 916 <feature> 917 <rects> 918 <_> 919 3 6 30 6 -1.</_> 920 <_> 921 13 8 10 2 9.</_></rects> 922 <tilted>0</tilted></feature> 923 <threshold>0.3055455982685089</threshold> 924 <left_val>-0.1639281064271927</left_val> 925 <right_val>0.8606523275375366</right_val></_></_> 926 <_> 927 <!-- tree 2 --> 928 <_> 929 <!-- root node --> 930 <feature> 931 <rects> 932 <_> 933 11 7 12 4 -1.</_> 934 <_> 935 11 8 12 2 2.</_></rects> 936 <tilted>0</tilted></feature> 937 <threshold>-0.0114494003355503</threshold> 938 <left_val>0.5972732901573181</left_val> 939 <right_val>-0.2323434054851532</right_val></_></_> 940 <_> 941 <!-- tree 3 --> 942 <_> 943 <!-- root node --> 944 <feature> 945 <rects> 946 <_> 947 14 8 9 3 -1.</_> 948 <_> 949 14 9 9 1 3.</_></rects> 950 <tilted>0</tilted></feature> 951 <threshold>6.3891541212797165e-003</threshold> 952 <left_val>-0.1291541010141373</left_val> 953 <right_val>0.6105204224586487</right_val></_></_> 954 <_> 955 <!-- tree 4 --> 956 <_> 957 <!-- root node --> 958 <feature> 959 <rects> 960 <_> 961 14 8 7 4 -1.</_> 962 <_> 963 14 9 7 2 2.</_></rects> 964 <tilted>0</tilted></feature> 965 <threshold>-8.4334248676896095e-003</threshold> 966 <left_val>0.4792853891849518</left_val> 967 <right_val>-0.1900272965431213</right_val></_></_> 968 <_> 969 <!-- tree 5 --> 970 <_> 971 <!-- root node --> 972 <feature> 973 <rects> 974 <_> 975 12 7 18 6 -1.</_> 976 <_> 977 12 9 18 2 3.</_></rects> 978 <tilted>0</tilted></feature> 979 <threshold>0.0538089312613010</threshold> 980 <left_val>-0.1149377003312111</left_val> 981 <right_val>0.5339453816413879</right_val></_></_> 982 <_> 983 <!-- tree 6 --> 984 <_> 985 <!-- root node --> 986 <feature> 987 <rects> 988 <_> 989 7 8 3 10 -1.</_> 990 <_> 991 7 13 3 5 2.</_></rects> 992 <tilted>0</tilted></feature> 993 <threshold>-4.7580219688825309e-004</threshold> 994 <left_val>-0.3459854125976563</left_val> 995 <right_val>0.2548804879188538</right_val></_></_> 996 <_> 997 <!-- tree 7 --> 998 <_> 999 <!-- root node --> 1000 <feature> 1001 <rects> 1002 <_> 1003 35 10 1 6 -1.</_> 1004 <_> 1005 35 13 1 3 2.</_></rects> 1006 <tilted>0</tilted></feature> 1007 <threshold>-1.3450840197037905e-004</threshold> 1008 <left_val>0.2241459041833878</left_val> 1009 <right_val>-0.1955007016658783</right_val></_></_> 1010 <_> 1011 <!-- tree 8 --> 1012 <_> 1013 <!-- root node --> 1014 <feature> 1015 <rects> 1016 <_> 1017 0 10 1 6 -1.</_> 1018 <_> 1019 0 13 1 3 2.</_></rects> 1020 <tilted>0</tilted></feature> 1021 <threshold>5.0016911700367928e-004</threshold> 1022 <left_val>-0.1972054988145828</left_val> 1023 <right_val>0.4967764019966126</right_val></_></_> 1024 <_> 1025 <!-- tree 9 --> 1026 <_> 1027 <!-- root node --> 1028 <feature> 1029 <rects> 1030 <_> 1031 18 13 9 5 -1.</_> 1032 <_> 1033 21 13 3 5 3.</_></rects> 1034 <tilted>0</tilted></feature> 1035 <threshold>0.0150632699951530</threshold> 1036 <left_val>0.1063077002763748</left_val> 1037 <right_val>-0.4113821089267731</right_val></_></_> 1038 <_> 1039 <!-- tree 10 --> 1040 <_> 1041 <!-- root node --> 1042 <feature> 1043 <rects> 1044 <_> 1045 15 9 6 4 -1.</_> 1046 <_> 1047 15 10 6 2 2.</_></rects> 1048 <tilted>0</tilted></feature> 1049 <threshold>7.7588870190083981e-003</threshold> 1050 <left_val>-0.1537311971187592</left_val> 1051 <right_val>0.4893161952495575</right_val></_></_> 1052 <_> 1053 <!-- tree 11 --> 1054 <_> 1055 <!-- root node --> 1056 <feature> 1057 <rects> 1058 <_> 1059 16 4 18 8 -1.</_> 1060 <_> 1061 16 6 18 4 2.</_></rects> 1062 <tilted>0</tilted></feature> 1063 <threshold>0.0454101189970970</threshold> 1064 <left_val>-0.0735593065619469</left_val> 1065 <right_val>0.2773792147636414</right_val></_></_> 1066 <_> 1067 <!-- tree 12 --> 1068 <_> 1069 <!-- root node --> 1070 <feature> 1071 <rects> 1072 <_> 1073 9 14 9 3 -1.</_> 1074 <_> 1075 12 14 3 3 3.</_></rects> 1076 <tilted>0</tilted></feature> 1077 <threshold>-0.0145996697247028</threshold> 1078 <left_val>-0.7096682786941528</left_val> 1079 <right_val>0.0975155606865883</right_val></_></_> 1080 <_> 1081 <!-- tree 13 --> 1082 <_> 1083 <!-- root node --> 1084 <feature> 1085 <rects> 1086 <_> 1087 32 0 4 6 -1.</_> 1088 <_> 1089 32 0 2 6 2.</_></rects> 1090 <tilted>0</tilted></feature> 1091 <threshold>0.0172360707074404</threshold> 1092 <left_val>0.0168695393949747</left_val> 1093 <right_val>-0.5738832950592041</right_val></_></_> 1094 <_> 1095 <!-- tree 14 --> 1096 <_> 1097 <!-- root node --> 1098 <feature> 1099 <rects> 1100 <_> 1101 0 0 4 6 -1.</_> 1102 <_> 1103 2 0 2 6 2.</_></rects> 1104 <tilted>0</tilted></feature> 1105 <threshold>0.0142307104542851</threshold> 1106 <left_val>0.0947145000100136</left_val> 1107 <right_val>-0.7839525938034058</right_val></_></_> 1108 <_> 1109 <!-- tree 15 --> 1110 <_> 1111 <!-- root node --> 1112 <feature> 1113 <rects> 1114 <_> 1115 27 0 6 7 -1.</_> 1116 <_> 1117 29 2 2 7 3.</_></rects> 1118 <tilted>1</tilted></feature> 1119 <threshold>-0.0437068603932858</threshold> 1120 <left_val>0.6097965240478516</left_val> 1121 <right_val>-0.1560188978910446</right_val></_></_> 1122 <_> 1123 <!-- tree 16 --> 1124 <_> 1125 <!-- root node --> 1126 <feature> 1127 <rects> 1128 <_> 1129 0 0 1 4 -1.</_> 1130 <_> 1131 0 2 1 2 2.</_></rects> 1132 <tilted>0</tilted></feature> 1133 <threshold>-6.2343222089111805e-004</threshold> 1134 <left_val>0.3485119044780731</left_val> 1135 <right_val>-0.2170491069555283</right_val></_></_> 1136 <_> 1137 <!-- tree 17 --> 1138 <_> 1139 <!-- root node --> 1140 <feature> 1141 <rects> 1142 <_> 1143 27 8 6 4 -1.</_> 1144 <_> 1145 29 10 2 4 3.</_></rects> 1146 <tilted>1</tilted></feature> 1147 <threshold>0.0192450508475304</threshold> 1148 <left_val>-0.1171097978949547</left_val> 1149 <right_val>0.3070116043090820</right_val></_></_> 1150 <_> 1151 <!-- tree 18 --> 1152 <_> 1153 <!-- root node --> 1154 <feature> 1155 <rects> 1156 <_> 1157 4 9 27 6 -1.</_> 1158 <_> 1159 13 11 9 2 9.</_></rects> 1160 <tilted>0</tilted></feature> 1161 <threshold>0.2703577876091003</threshold> 1162 <left_val>-0.0900964364409447</left_val> 1163 <right_val>0.7665696144104004</right_val></_></_> 1164 <_> 1165 <!-- tree 19 --> 1166 <_> 1167 <!-- root node --> 1168 <feature> 1169 <rects> 1170 <_> 1171 31 14 2 3 -1.</_> 1172 <_> 1173 31 14 1 3 2.</_></rects> 1174 <tilted>0</tilted></feature> 1175 <threshold>-3.5394480801187456e-004</threshold> 1176 <left_val>-0.2002478986978531</left_val> 1177 <right_val>0.1249336004257202</right_val></_></_> 1178 <_> 1179 <!-- tree 20 --> 1180 <_> 1181 <!-- root node --> 1182 <feature> 1183 <rects> 1184 <_> 1185 10 0 5 6 -1.</_> 1186 <_> 1187 8 2 5 2 3.</_></rects> 1188 <tilted>1</tilted></feature> 1189 <threshold>-0.0360139608383179</threshold> 1190 <left_val>0.6702855825424194</left_val> 1191 <right_val>-0.1057187989354134</right_val></_></_> 1192 <_> 1193 <!-- tree 21 --> 1194 <_> 1195 <!-- root node --> 1196 <feature> 1197 <rects> 1198 <_> 1199 14 7 11 3 -1.</_> 1200 <_> 1201 14 8 11 1 3.</_></rects> 1202 <tilted>0</tilted></feature> 1203 <threshold>9.2952791601419449e-003</threshold> 1204 <left_val>-0.1057471036911011</left_val> 1205 <right_val>0.4509387910366058</right_val></_></_> 1206 <_> 1207 <!-- tree 22 --> 1208 <_> 1209 <!-- root node --> 1210 <feature> 1211 <rects> 1212 <_> 1213 0 12 2 6 -1.</_> 1214 <_> 1215 0 15 2 3 2.</_></rects> 1216 <tilted>0</tilted></feature> 1217 <threshold>-3.3304709359072149e-004</threshold> 1218 <left_val>0.2793382108211517</left_val> 1219 <right_val>-0.2457676976919174</right_val></_></_> 1220 <_> 1221 <!-- tree 23 --> 1222 <_> 1223 <!-- root node --> 1224 <feature> 1225 <rects> 1226 <_> 1227 34 13 2 4 -1.</_> 1228 <_> 1229 34 15 2 2 2.</_></rects> 1230 <tilted>0</tilted></feature> 1231 <threshold>-2.9147620807634667e-005</threshold> 1232 <left_val>0.0858138129115105</left_val> 1233 <right_val>-0.0954695865511894</right_val></_></_> 1234 <_> 1235 <!-- tree 24 --> 1236 <_> 1237 <!-- root node --> 1238 <feature> 1239 <rects> 1240 <_> 1241 0 13 2 4 -1.</_> 1242 <_> 1243 0 15 2 2 2.</_></rects> 1244 <tilted>0</tilted></feature> 1245 <threshold>4.4382669148035347e-004</threshold> 1246 <left_val>-0.2022008001804352</left_val> 1247 <right_val>0.5454357862472534</right_val></_></_></trees> 1248 <stage_threshold>-1.3538850545883179</stage_threshold> 1249 <parent>3</parent> 1250 <next>-1</next></_> 1251 <_> 1252 <!-- stage 5 --> 1253 <trees> 1254 <_> 1255 <!-- tree 0 --> 1256 <_> 1257 <!-- root node --> 1258 <feature> 1259 <rects> 1260 <_> 1261 3 6 4 12 -1.</_> 1262 <_> 1263 3 10 4 4 3.</_></rects> 1264 <tilted>0</tilted></feature> 1265 <threshold>7.9610757529735565e-003</threshold> 1266 <left_val>-0.3672207891941071</left_val> 1267 <right_val>0.4315434992313385</right_val></_></_> 1268 <_> 1269 <!-- tree 1 --> 1270 <_> 1271 <!-- root node --> 1272 <feature> 1273 <rects> 1274 <_> 1275 14 0 22 12 -1.</_> 1276 <_> 1277 25 0 11 6 2.</_> 1278 <_> 1279 14 6 11 6 2.</_></rects> 1280 <tilted>0</tilted></feature> 1281 <threshold>0.0633948296308517</threshold> 1282 <left_val>-0.2073971033096314</left_val> 1283 <right_val>0.5742601752281189</right_val></_></_> 1284 <_> 1285 <!-- tree 2 --> 1286 <_> 1287 <!-- root node --> 1288 <feature> 1289 <rects> 1290 <_> 1291 8 1 7 6 -1.</_> 1292 <_> 1293 6 3 7 2 3.</_></rects> 1294 <tilted>1</tilted></feature> 1295 <threshold>-0.0531933493912220</threshold> 1296 <left_val>0.7255092263221741</left_val> 1297 <right_val>-0.1434202045202255</right_val></_></_> 1298 <_> 1299 <!-- tree 3 --> 1300 <_> 1301 <!-- root node --> 1302 <feature> 1303 <rects> 1304 <_> 1305 12 5 14 3 -1.</_> 1306 <_> 1307 12 6 14 1 3.</_></rects> 1308 <tilted>0</tilted></feature> 1309 <threshold>0.0154607696458697</threshold> 1310 <left_val>-0.0960538163781166</left_val> 1311 <right_val>0.7578523755073547</right_val></_></_> 1312 <_> 1313 <!-- tree 4 --> 1314 <_> 1315 <!-- root node --> 1316 <feature> 1317 <rects> 1318 <_> 1319 7 6 7 4 -1.</_> 1320 <_> 1321 6 7 7 2 2.</_></rects> 1322 <tilted>1</tilted></feature> 1323 <threshold>-0.0176431406289339</threshold> 1324 <left_val>0.6681562066078186</left_val> 1325 <right_val>-0.1417672932147980</right_val></_></_> 1326 <_> 1327 <!-- tree 5 --> 1328 <_> 1329 <!-- root node --> 1330 <feature> 1331 <rects> 1332 <_> 1333 18 3 6 4 -1.</_> 1334 <_> 1335 18 4 6 2 2.</_></rects> 1336 <tilted>0</tilted></feature> 1337 <threshold>9.5065636560320854e-003</threshold> 1338 <left_val>-0.0962597429752350</left_val> 1339 <right_val>0.4699633121490479</right_val></_></_> 1340 <_> 1341 <!-- tree 6 --> 1342 <_> 1343 <!-- root node --> 1344 <feature> 1345 <rects> 1346 <_> 1347 4 5 5 6 -1.</_> 1348 <_> 1349 4 7 5 2 3.</_></rects> 1350 <tilted>0</tilted></feature> 1351 <threshold>4.0446049533784389e-003</threshold> 1352 <left_val>-0.1973251998424530</left_val> 1353 <right_val>0.4283801019191742</right_val></_></_> 1354 <_> 1355 <!-- tree 7 --> 1356 <_> 1357 <!-- root node --> 1358 <feature> 1359 <rects> 1360 <_> 1361 33 0 3 4 -1.</_> 1362 <_> 1363 34 0 1 4 3.</_></rects> 1364 <tilted>0</tilted></feature> 1365 <threshold>3.2312041148543358e-003</threshold> 1366 <left_val>0.1186169013381004</left_val> 1367 <right_val>-0.6103963255882263</right_val></_></_> 1368 <_> 1369 <!-- tree 8 --> 1370 <_> 1371 <!-- root node --> 1372 <feature> 1373 <rects> 1374 <_> 1375 9 0 6 18 -1.</_> 1376 <_> 1377 9 9 6 9 2.</_></rects> 1378 <tilted>0</tilted></feature> 1379 <threshold>-0.0401590503752232</threshold> 1380 <left_val>-0.4166434109210968</left_val> 1381 <right_val>0.2167232930660248</right_val></_></_> 1382 <_> 1383 <!-- tree 9 --> 1384 <_> 1385 <!-- root node --> 1386 <feature> 1387 <rects> 1388 <_> 1389 6 6 24 6 -1.</_> 1390 <_> 1391 14 8 8 2 9.</_></rects> 1392 <tilted>0</tilted></feature> 1393 <threshold>0.2852425873279572</threshold> 1394 <left_val>-0.1043575033545494</left_val> 1395 <right_val>0.8573396801948547</right_val></_></_> 1396 <_> 1397 <!-- tree 10 --> 1398 <_> 1399 <!-- root node --> 1400 <feature> 1401 <rects> 1402 <_> 1403 16 8 4 4 -1.</_> 1404 <_> 1405 16 9 4 2 2.</_></rects> 1406 <tilted>0</tilted></feature> 1407 <threshold>-4.9264221452176571e-003</threshold> 1408 <left_val>0.4706046879291534</left_val> 1409 <right_val>-0.1399745941162109</right_val></_></_> 1410 <_> 1411 <!-- tree 11 --> 1412 <_> 1413 <!-- root node --> 1414 <feature> 1415 <rects> 1416 <_> 1417 13 8 13 4 -1.</_> 1418 <_> 1419 13 9 13 2 2.</_></rects> 1420 <tilted>0</tilted></feature> 1421 <threshold>0.0137817002832890</threshold> 1422 <left_val>-0.1271356940269470</left_val> 1423 <right_val>0.4461891949176788</right_val></_></_> 1424 <_> 1425 <!-- tree 12 --> 1426 <_> 1427 <!-- root node --> 1428 <feature> 1429 <rects> 1430 <_> 1431 0 16 2 2 -1.</_> 1432 <_> 1433 0 17 2 1 2.</_></rects> 1434 <tilted>0</tilted></feature> 1435 <threshold>-4.9873598618432879e-004</threshold> 1436 <left_val>0.4702663123607636</left_val> 1437 <right_val>-0.1548373997211456</right_val></_></_> 1438 <_> 1439 <!-- tree 13 --> 1440 <_> 1441 <!-- root node --> 1442 <feature> 1443 <rects> 1444 <_> 1445 35 14 1 4 -1.</_> 1446 <_> 1447 35 15 1 2 2.</_></rects> 1448 <tilted>0</tilted></feature> 1449 <threshold>-1.5621389320585877e-004</threshold> 1450 <left_val>0.1885481029748917</left_val> 1451 <right_val>-0.0778397768735886</right_val></_></_> 1452 <_> 1453 <!-- tree 14 --> 1454 <_> 1455 <!-- root node --> 1456 <feature> 1457 <rects> 1458 <_> 1459 0 14 1 4 -1.</_> 1460 <_> 1461 0 15 1 2 2.</_></rects> 1462 <tilted>0</tilted></feature> 1463 <threshold>-3.7597760092467070e-004</threshold> 1464 <left_val>0.5769770145416260</left_val> 1465 <right_val>-0.1335622072219849</right_val></_></_> 1466 <_> 1467 <!-- tree 15 --> 1468 <_> 1469 <!-- root node --> 1470 <feature> 1471 <rects> 1472 <_> 1473 15 6 9 7 -1.</_> 1474 <_> 1475 18 6 3 7 3.</_></rects> 1476 <tilted>0</tilted></feature> 1477 <threshold>-0.0106659103184938</threshold> 1478 <left_val>-0.4106529951095581</left_val> 1479 <right_val>0.1556212007999420</right_val></_></_> 1480 <_> 1481 <!-- tree 16 --> 1482 <_> 1483 <!-- root node --> 1484 <feature> 1485 <rects> 1486 <_> 1487 0 0 3 4 -1.</_> 1488 <_> 1489 1 0 1 4 3.</_></rects> 1490 <tilted>0</tilted></feature> 1491 <threshold>-3.4135230816900730e-003</threshold> 1492 <left_val>-0.7636343240737915</left_val> 1493 <right_val>0.1020964980125427</right_val></_></_> 1494 <_> 1495 <!-- tree 17 --> 1496 <_> 1497 <!-- root node --> 1498 <feature> 1499 <rects> 1500 <_> 1501 34 16 2 2 -1.</_> 1502 <_> 1503 35 16 1 1 2.</_> 1504 <_> 1505 34 17 1 1 2.</_></rects> 1506 <tilted>0</tilted></feature> 1507 <threshold>5.6471868447260931e-005</threshold> 1508 <left_val>-0.1644393056631088</left_val> 1509 <right_val>0.2290841937065125</right_val></_></_> 1510 <_> 1511 <!-- tree 18 --> 1512 <_> 1513 <!-- root node --> 1514 <feature> 1515 <rects> 1516 <_> 1517 0 16 2 2 -1.</_> 1518 <_> 1519 0 16 1 1 2.</_> 1520 <_> 1521 1 17 1 1 2.</_></rects> 1522 <tilted>0</tilted></feature> 1523 <threshold>2.1611599368043244e-004</threshold> 1524 <left_val>-0.1629032939672470</left_val> 1525 <right_val>0.4575636088848114</right_val></_></_> 1526 <_> 1527 <!-- tree 19 --> 1528 <_> 1529 <!-- root node --> 1530 <feature> 1531 <rects> 1532 <_> 1533 22 0 10 4 -1.</_> 1534 <_> 1535 22 0 5 4 2.</_></rects> 1536 <tilted>1</tilted></feature> 1537 <threshold>-0.0108227198943496</threshold> 1538 <left_val>-0.2446253001689911</left_val> 1539 <right_val>0.1388894021511078</right_val></_></_> 1540 <_> 1541 <!-- tree 20 --> 1542 <_> 1543 <!-- root node --> 1544 <feature> 1545 <rects> 1546 <_> 1547 15 4 6 14 -1.</_> 1548 <_> 1549 15 4 3 7 2.</_> 1550 <_> 1551 18 11 3 7 2.</_></rects> 1552 <tilted>0</tilted></feature> 1553 <threshold>-0.0150849102064967</threshold> 1554 <left_val>-0.5781347751617432</left_val> 1555 <right_val>0.1156411990523338</right_val></_></_> 1556 <_> 1557 <!-- tree 21 --> 1558 <_> 1559 <!-- root node --> 1560 <feature> 1561 <rects> 1562 <_> 1563 15 3 8 10 -1.</_> 1564 <_> 1565 17 3 4 10 2.</_></rects> 1566 <tilted>0</tilted></feature> 1567 <threshold>0.0257159601897001</threshold> 1568 <left_val>0.0396311990916729</left_val> 1569 <right_val>-0.6527001261711121</right_val></_></_> 1570 <_> 1571 <!-- tree 22 --> 1572 <_> 1573 <!-- root node --> 1574 <feature> 1575 <rects> 1576 <_> 1577 0 0 2 5 -1.</_> 1578 <_> 1579 1 0 1 5 2.</_></rects> 1580 <tilted>0</tilted></feature> 1581 <threshold>2.6093570049852133e-003</threshold> 1582 <left_val>0.1142188981175423</left_val> 1583 <right_val>-0.5680108070373535</right_val></_></_></trees> 1584 <stage_threshold>-1.3707510232925415</stage_threshold> 1585 <parent>4</parent> 1586 <next>-1</next></_> 1587 <_> 1588 <!-- stage 6 --> 1589 <trees> 1590 <_> 1591 <!-- tree 0 --> 1592 <_> 1593 <!-- root node --> 1594 <feature> 1595 <rects> 1596 <_> 1597 7 1 8 6 -1.</_> 1598 <_> 1599 5 3 8 2 3.</_></rects> 1600 <tilted>1</tilted></feature> 1601 <threshold>-0.0518619008362293</threshold> 1602 <left_val>0.7043117284774780</left_val> 1603 <right_val>-0.2214370071887970</right_val></_></_> 1604 <_> 1605 <!-- tree 1 --> 1606 <_> 1607 <!-- root node --> 1608 <feature> 1609 <rects> 1610 <_> 1611 19 0 11 18 -1.</_> 1612 <_> 1613 19 9 11 9 2.</_></rects> 1614 <tilted>0</tilted></feature> 1615 <threshold>-0.0503416284918785</threshold> 1616 <left_val>-0.4639782905578613</left_val> 1617 <right_val>0.2804746031761169</right_val></_></_> 1618 <_> 1619 <!-- tree 2 --> 1620 <_> 1621 <!-- root node --> 1622 <feature> 1623 <rects> 1624 <_> 1625 6 8 24 6 -1.</_> 1626 <_> 1627 14 10 8 2 9.</_></rects> 1628 <tilted>0</tilted></feature> 1629 <threshold>0.2570973038673401</threshold> 1630 <left_val>-0.1312427967786789</left_val> 1631 <right_val>0.8239594101905823</right_val></_></_> 1632 <_> 1633 <!-- tree 3 --> 1634 <_> 1635 <!-- root node --> 1636 <feature> 1637 <rects> 1638 <_> 1639 14 6 10 3 -1.</_> 1640 <_> 1641 14 7 10 1 3.</_></rects> 1642 <tilted>0</tilted></feature> 1643 <threshold>0.0110318996012211</threshold> 1644 <left_val>-0.1425814032554627</left_val> 1645 <right_val>0.6382390260696411</right_val></_></_> 1646 <_> 1647 <!-- tree 4 --> 1648 <_> 1649 <!-- root node --> 1650 <feature> 1651 <rects> 1652 <_> 1653 12 7 11 4 -1.</_> 1654 <_> 1655 12 8 11 2 2.</_></rects> 1656 <tilted>0</tilted></feature> 1657 <threshold>0.0185650903731585</threshold> 1658 <left_val>-0.1512387990951538</left_val> 1659 <right_val>0.5988119244575501</right_val></_></_> 1660 <_> 1661 <!-- tree 5 --> 1662 <_> 1663 <!-- root node --> 1664 <feature> 1665 <rects> 1666 <_> 1667 18 0 16 6 -1.</_> 1668 <_> 1669 26 0 8 3 2.</_> 1670 <_> 1671 18 3 8 3 2.</_></rects> 1672 <tilted>0</tilted></feature> 1673 <threshold>0.0175023507326841</threshold> 1674 <left_val>-0.1261979937553406</left_val> 1675 <right_val>0.3817803859710693</right_val></_></_> 1676 <_> 1677 <!-- tree 6 --> 1678 <_> 1679 <!-- root node --> 1680 <feature> 1681 <rects> 1682 <_> 1683 5 3 7 3 -1.</_> 1684 <_> 1685 4 4 7 1 3.</_></rects> 1686 <tilted>1</tilted></feature> 1687 <threshold>7.2723729535937309e-003</threshold> 1688 <left_val>-0.1510328948497772</left_val> 1689 <right_val>0.5812842249870300</right_val></_></_> 1690 <_> 1691 <!-- tree 7 --> 1692 <_> 1693 <!-- root node --> 1694 <feature> 1695 <rects> 1696 <_> 1697 18 4 4 4 -1.</_> 1698 <_> 1699 18 5 4 2 2.</_></rects> 1700 <tilted>0</tilted></feature> 1701 <threshold>8.1504750996828079e-003</threshold> 1702 <left_val>-0.0654647573828697</left_val> 1703 <right_val>0.5639755129814148</right_val></_></_> 1704 <_> 1705 <!-- tree 8 --> 1706 <_> 1707 <!-- root node --> 1708 <feature> 1709 <rects> 1710 <_> 1711 5 3 10 4 -1.</_> 1712 <_> 1713 4 4 10 2 2.</_></rects> 1714 <tilted>1</tilted></feature> 1715 <threshold>-0.0185527391731739</threshold> 1716 <left_val>0.5315709710121155</left_val> 1717 <right_val>-0.1252657026052475</right_val></_></_> 1718 <_> 1719 <!-- tree 9 --> 1720 <_> 1721 <!-- root node --> 1722 <feature> 1723 <rects> 1724 <_> 1725 14 8 8 10 -1.</_> 1726 <_> 1727 18 8 4 5 2.</_> 1728 <_> 1729 14 13 4 5 2.</_></rects> 1730 <tilted>0</tilted></feature> 1731 <threshold>-0.0231014806777239</threshold> 1732 <left_val>-0.6794939041137695</left_val> 1733 <right_val>0.1104625985026360</right_val></_></_> 1734 <_> 1735 <!-- tree 10 --> 1736 <_> 1737 <!-- root node --> 1738 <feature> 1739 <rects> 1740 <_> 1741 3 0 4 1 -1.</_> 1742 <_> 1743 5 0 2 1 2.</_></rects> 1744 <tilted>0</tilted></feature> 1745 <threshold>-1.8539339362177998e-004</threshold> 1746 <left_val>0.3010003864765167</left_val> 1747 <right_val>-0.2120669931173325</right_val></_></_> 1748 <_> 1749 <!-- tree 11 --> 1750 <_> 1751 <!-- root node --> 1752 <feature> 1753 <rects> 1754 <_> 1755 20 0 10 8 -1.</_> 1756 <_> 1757 25 0 5 4 2.</_> 1758 <_> 1759 20 4 5 4 2.</_></rects> 1760 <tilted>0</tilted></feature> 1761 <threshold>0.0173191204667091</threshold> 1762 <left_val>-0.0937381312251091</left_val> 1763 <right_val>0.2100856006145477</right_val></_></_> 1764 <_> 1765 <!-- tree 12 --> 1766 <_> 1767 <!-- root node --> 1768 <feature> 1769 <rects> 1770 <_> 1771 13 0 10 8 -1.</_> 1772 <_> 1773 13 0 5 4 2.</_> 1774 <_> 1775 18 4 5 4 2.</_></rects> 1776 <tilted>0</tilted></feature> 1777 <threshold>0.0143056204542518</threshold> 1778 <left_val>0.1800594925880432</left_val> 1779 <right_val>-0.3977671861648560</right_val></_></_> 1780 <_> 1781 <!-- tree 13 --> 1782 <_> 1783 <!-- root node --> 1784 <feature> 1785 <rects> 1786 <_> 1787 21 5 6 13 -1.</_> 1788 <_> 1789 23 5 2 13 3.</_></rects> 1790 <tilted>0</tilted></feature> 1791 <threshold>0.0257633402943611</threshold> 1792 <left_val>8.7056998163461685e-003</left_val> 1793 <right_val>-0.6289495229721069</right_val></_></_> 1794 <_> 1795 <!-- tree 14 --> 1796 <_> 1797 <!-- root node --> 1798 <feature> 1799 <rects> 1800 <_> 1801 9 5 6 13 -1.</_> 1802 <_> 1803 11 5 2 13 3.</_></rects> 1804 <tilted>0</tilted></feature> 1805 <threshold>-0.0153833404183388</threshold> 1806 <left_val>-0.5341547131538391</left_val> 1807 <right_val>0.1038073003292084</right_val></_></_> 1808 <_> 1809 <!-- tree 15 --> 1810 <_> 1811 <!-- root node --> 1812 <feature> 1813 <rects> 1814 <_> 1815 27 5 5 3 -1.</_> 1816 <_> 1817 27 6 5 1 3.</_></rects> 1818 <tilted>0</tilted></feature> 1819 <threshold>1.0605469578877091e-003</threshold> 1820 <left_val>-0.0901285186409950</left_val> 1821 <right_val>0.1679212003946304</right_val></_></_> 1822 <_> 1823 <!-- tree 16 --> 1824 <_> 1825 <!-- root node --> 1826 <feature> 1827 <rects> 1828 <_> 1829 10 0 3 6 -1.</_> 1830 <_> 1831 10 2 3 2 3.</_></rects> 1832 <tilted>0</tilted></feature> 1833 <threshold>3.5230729263275862e-003</threshold> 1834 <left_val>-0.1711069047451019</left_val> 1835 <right_val>0.3259654045104981</right_val></_></_> 1836 <_> 1837 <!-- tree 17 --> 1838 <_> 1839 <!-- root node --> 1840 <feature> 1841 <rects> 1842 <_> 1843 26 6 3 6 -1.</_> 1844 <_> 1845 26 8 3 2 3.</_></rects> 1846 <tilted>0</tilted></feature> 1847 <threshold>-0.0107892798259854</threshold> 1848 <left_val>0.3610992133617401</left_val> 1849 <right_val>-0.0663391500711441</right_val></_></_> 1850 <_> 1851 <!-- tree 18 --> 1852 <_> 1853 <!-- root node --> 1854 <feature> 1855 <rects> 1856 <_> 1857 0 11 36 7 -1.</_> 1858 <_> 1859 18 11 18 7 2.</_></rects> 1860 <tilted>0</tilted></feature> 1861 <threshold>0.2795093953609467</threshold> 1862 <left_val>-0.0746058970689774</left_val> 1863 <right_val>0.7336987853050232</right_val></_></_> 1864 <_> 1865 <!-- tree 19 --> 1866 <_> 1867 <!-- root node --> 1868 <feature> 1869 <rects> 1870 <_> 1871 27 5 5 3 -1.</_> 1872 <_> 1873 27 6 5 1 3.</_></rects> 1874 <tilted>0</tilted></feature> 1875 <threshold>3.8369540125131607e-003</threshold> 1876 <left_val>0.0448735393583775</left_val> 1877 <right_val>-0.1860270053148270</right_val></_></_> 1878 <_> 1879 <!-- tree 20 --> 1880 <_> 1881 <!-- root node --> 1882 <feature> 1883 <rects> 1884 <_> 1885 4 5 5 3 -1.</_> 1886 <_> 1887 4 6 5 1 3.</_></rects> 1888 <tilted>0</tilted></feature> 1889 <threshold>1.6195949865505099e-003</threshold> 1890 <left_val>-0.1392249017953873</left_val> 1891 <right_val>0.4343700110912323</right_val></_></_> 1892 <_> 1893 <!-- tree 21 --> 1894 <_> 1895 <!-- root node --> 1896 <feature> 1897 <rects> 1898 <_> 1899 28 6 4 4 -1.</_> 1900 <_> 1901 29 7 2 4 2.</_></rects> 1902 <tilted>1</tilted></feature> 1903 <threshold>0.0116479499265552</threshold> 1904 <left_val>-0.0743575915694237</left_val> 1905 <right_val>0.5420144200325012</right_val></_></_> 1906 <_> 1907 <!-- tree 22 --> 1908 <_> 1909 <!-- root node --> 1910 <feature> 1911 <rects> 1912 <_> 1913 14 15 8 2 -1.</_> 1914 <_> 1915 16 15 4 2 2.</_></rects> 1916 <tilted>0</tilted></feature> 1917 <threshold>-5.9066400863230228e-003</threshold> 1918 <left_val>-0.7055758833885193</left_val> 1919 <right_val>0.0864336192607880</right_val></_></_> 1920 <_> 1921 <!-- tree 23 --> 1922 <_> 1923 <!-- root node --> 1924 <feature> 1925 <rects> 1926 <_> 1927 3 5 30 6 -1.</_> 1928 <_> 1929 13 7 10 2 9.</_></rects> 1930 <tilted>0</tilted></feature> 1931 <threshold>0.3968684077262878</threshold> 1932 <left_val>-0.0748983696103096</left_val> 1933 <right_val>0.9406285881996155</right_val></_></_> 1934 <_> 1935 <!-- tree 24 --> 1936 <_> 1937 <!-- root node --> 1938 <feature> 1939 <rects> 1940 <_> 1941 6 7 16 6 -1.</_> 1942 <_> 1943 6 9 16 2 3.</_></rects> 1944 <tilted>0</tilted></feature> 1945 <threshold>0.0576637797057629</threshold> 1946 <left_val>-0.0965584069490433</left_val> 1947 <right_val>0.5418242812156677</right_val></_></_> 1948 <_> 1949 <!-- tree 25 --> 1950 <_> 1951 <!-- root node --> 1952 <feature> 1953 <rects> 1954 <_> 1955 14 10 12 6 -1.</_> 1956 <_> 1957 14 12 12 2 3.</_></rects> 1958 <tilted>0</tilted></feature> 1959 <threshold>0.0603195689618587</threshold> 1960 <left_val>-0.0665010735392571</left_val> 1961 <right_val>0.6402354836463928</right_val></_></_></trees> 1962 <stage_threshold>-1.3303329944610596</stage_threshold> 1963 <parent>5</parent> 1964 <next>-1</next></_> 1965 <_> 1966 <!-- stage 7 --> 1967 <trees> 1968 <_> 1969 <!-- tree 0 --> 1970 <_> 1971 <!-- root node --> 1972 <feature> 1973 <rects> 1974 <_> 1975 6 0 12 10 -1.</_> 1976 <_> 1977 6 0 6 5 2.</_> 1978 <_> 1979 12 5 6 5 2.</_></rects> 1980 <tilted>0</tilted></feature> 1981 <threshold>0.0190502498298883</threshold> 1982 <left_val>-0.4443340897560120</left_val> 1983 <right_val>0.4394856989383698</right_val></_></_> 1984 <_> 1985 <!-- tree 1 --> 1986 <_> 1987 <!-- root node --> 1988 <feature> 1989 <rects> 1990 <_> 1991 25 2 7 16 -1.</_> 1992 <_> 1993 25 10 7 8 2.</_></rects> 1994 <tilted>0</tilted></feature> 1995 <threshold>-0.0201983004808426</threshold> 1996 <left_val>-0.3170621991157532</left_val> 1997 <right_val>0.1043293029069901</right_val></_></_> 1998 <_> 1999 <!-- tree 2 --> 2000 <_> 2001 <!-- root node --> 2002 <feature> 2003 <rects> 2004 <_> 2005 9 6 18 7 -1.</_> 2006 <_> 2007 15 6 6 7 3.</_></rects> 2008 <tilted>0</tilted></feature> 2009 <threshold>0.0214780308306217</threshold> 2010 <left_val>-0.3502483963966370</left_val> 2011 <right_val>0.2635537087917328</right_val></_></_> 2012 <_> 2013 <!-- tree 3 --> 2014 <_> 2015 <!-- root node --> 2016 <feature> 2017 <rects> 2018 <_> 2019 5 0 26 18 -1.</_> 2020 <_> 2021 18 0 13 9 2.</_> 2022 <_> 2023 5 9 13 9 2.</_></rects> 2024 <tilted>0</tilted></feature> 2025 <threshold>-0.1018775999546051</threshold> 2026 <left_val>-0.5988957881927490</left_val> 2027 <right_val>0.1768579930067062</right_val></_></_> 2028 <_> 2029 <!-- tree 4 --> 2030 <_> 2031 <!-- root node --> 2032 <feature> 2033 <rects> 2034 <_> 2035 10 6 10 3 -1.</_> 2036 <_> 2037 10 7 10 1 3.</_></rects> 2038 <tilted>0</tilted></feature> 2039 <threshold>0.0109741603955626</threshold> 2040 <left_val>-0.1489523947238922</left_val> 2041 <right_val>0.6011521816253662</right_val></_></_> 2042 <_> 2043 <!-- tree 5 --> 2044 <_> 2045 <!-- root node --> 2046 <feature> 2047 <rects> 2048 <_> 2049 17 6 6 4 -1.</_> 2050 <_> 2051 17 7 6 2 2.</_></rects> 2052 <tilted>0</tilted></feature> 2053 <threshold>-0.0114767104387283</threshold> 2054 <left_val>0.4066570997238159</left_val> 2055 <right_val>-0.1240468993782997</right_val></_></_> 2056 <_> 2057 <!-- tree 6 --> 2058 <_> 2059 <!-- root node --> 2060 <feature> 2061 <rects> 2062 <_> 2063 15 6 6 7 -1.</_> 2064 <_> 2065 18 6 3 7 2.</_></rects> 2066 <tilted>0</tilted></feature> 2067 <threshold>-0.0234311502426863</threshold> 2068 <left_val>-0.7148783206939697</left_val> 2069 <right_val>0.1427811980247498</right_val></_></_> 2070 <_> 2071 <!-- tree 7 --> 2072 <_> 2073 <!-- root node --> 2074 <feature> 2075 <rects> 2076 <_> 2077 26 6 5 4 -1.</_> 2078 <_> 2079 26 7 5 2 2.</_></rects> 2080 <tilted>0</tilted></feature> 2081 <threshold>1.4963559806346893e-003</threshold> 2082 <left_val>-0.1704585999250412</left_val> 2083 <right_val>0.1719308048486710</right_val></_></_> 2084 <_> 2085 <!-- tree 8 --> 2086 <_> 2087 <!-- root node --> 2088 <feature> 2089 <rects> 2090 <_> 2091 0 12 1 6 -1.</_> 2092 <_> 2093 0 15 1 3 2.</_></rects> 2094 <tilted>0</tilted></feature> 2095 <threshold>-5.4855772759765387e-004</threshold> 2096 <left_val>0.3155323863029480</left_val> 2097 <right_val>-0.2144445031881332</right_val></_></_> 2098 <_> 2099 <!-- tree 9 --> 2100 <_> 2101 <!-- root node --> 2102 <feature> 2103 <rects> 2104 <_> 2105 9 4 18 14 -1.</_> 2106 <_> 2107 18 4 9 7 2.</_> 2108 <_> 2109 9 11 9 7 2.</_></rects> 2110 <tilted>0</tilted></feature> 2111 <threshold>0.0749126300215721</threshold> 2112 <left_val>0.0912405624985695</left_val> 2113 <right_val>-0.6395121216773987</right_val></_></_> 2114 <_> 2115 <!-- tree 10 --> 2116 <_> 2117 <!-- root node --> 2118 <feature> 2119 <rects> 2120 <_> 2121 7 5 6 3 -1.</_> 2122 <_> 2123 6 6 6 1 3.</_></rects> 2124 <tilted>1</tilted></feature> 2125 <threshold>6.8816398270428181e-003</threshold> 2126 <left_val>-0.1490440964698792</left_val> 2127 <right_val>0.4795236885547638</right_val></_></_> 2128 <_> 2129 <!-- tree 11 --> 2130 <_> 2131 <!-- root node --> 2132 <feature> 2133 <rects> 2134 <_> 2135 27 5 6 3 -1.</_> 2136 <_> 2137 29 7 2 3 3.</_></rects> 2138 <tilted>1</tilted></feature> 2139 <threshold>-0.0382125787436962</threshold> 2140 <left_val>0.5288773775100708</left_val> 2141 <right_val>-0.0618947297334671</right_val></_></_> 2142 <_> 2143 <!-- tree 12 --> 2144 <_> 2145 <!-- root node --> 2146 <feature> 2147 <rects> 2148 <_> 2149 7 8 3 3 -1.</_> 2150 <_> 2151 6 9 3 1 3.</_></rects> 2152 <tilted>1</tilted></feature> 2153 <threshold>4.4051730073988438e-003</threshold> 2154 <left_val>-0.1193412989377976</left_val> 2155 <right_val>0.5061342120170593</right_val></_></_> 2156 <_> 2157 <!-- tree 13 --> 2158 <_> 2159 <!-- root node --> 2160 <feature> 2161 <rects> 2162 <_> 2163 28 5 6 5 -1.</_> 2164 <_> 2165 30 7 2 5 3.</_></rects> 2166 <tilted>1</tilted></feature> 2167 <threshold>0.0239668991416693</threshold> 2168 <left_val>-0.0897205099463463</left_val> 2169 <right_val>0.3315277993679047</right_val></_></_> 2170 <_> 2171 <!-- tree 14 --> 2172 <_> 2173 <!-- root node --> 2174 <feature> 2175 <rects> 2176 <_> 2177 8 5 5 6 -1.</_> 2178 <_> 2179 6 7 5 2 3.</_></rects> 2180 <tilted>1</tilted></feature> 2181 <threshold>-0.0341629907488823</threshold> 2182 <left_val>0.5313478112220764</left_val> 2183 <right_val>-0.1466650068759918</right_val></_></_> 2184 <_> 2185 <!-- tree 15 --> 2186 <_> 2187 <!-- root node --> 2188 <feature> 2189 <rects> 2190 <_> 2191 31 0 4 1 -1.</_> 2192 <_> 2193 31 0 2 1 2.</_></rects> 2194 <tilted>0</tilted></feature> 2195 <threshold>1.9642219413071871e-003</threshold> 2196 <left_val>0.0907835885882378</left_val> 2197 <right_val>-0.4303255975246429</right_val></_></_> 2198 <_> 2199 <!-- tree 16 --> 2200 <_> 2201 <!-- root node --> 2202 <feature> 2203 <rects> 2204 <_> 2205 1 0 4 1 -1.</_> 2206 <_> 2207 3 0 2 1 2.</_></rects> 2208 <tilted>0</tilted></feature> 2209 <threshold>9.6757910796441138e-005</threshold> 2210 <left_val>0.2255253940820694</left_val> 2211 <right_val>-0.2822071015834808</right_val></_></_> 2212 <_> 2213 <!-- tree 17 --> 2214 <_> 2215 <!-- root node --> 2216 <feature> 2217 <rects> 2218 <_> 2219 17 11 4 3 -1.</_> 2220 <_> 2221 17 12 4 1 3.</_></rects> 2222 <tilted>0</tilted></feature> 2223 <threshold>-3.2862399239093065e-003</threshold> 2224 <left_val>0.4051502048969269</left_val> 2225 <right_val>-0.1177619993686676</right_val></_></_> 2226 <_> 2227 <!-- tree 18 --> 2228 <_> 2229 <!-- root node --> 2230 <feature> 2231 <rects> 2232 <_> 2233 12 3 7 4 -1.</_> 2234 <_> 2235 12 4 7 2 2.</_></rects> 2236 <tilted>0</tilted></feature> 2237 <threshold>0.0116883097216487</threshold> 2238 <left_val>-0.0918571278452873</left_val> 2239 <right_val>0.6283488869667053</right_val></_></_> 2240 <_> 2241 <!-- tree 19 --> 2242 <_> 2243 <!-- root node --> 2244 <feature> 2245 <rects> 2246 <_> 2247 14 9 9 3 -1.</_> 2248 <_> 2249 14 10 9 1 3.</_></rects> 2250 <tilted>0</tilted></feature> 2251 <threshold>-6.0287420637905598e-003</threshold> 2252 <left_val>0.3926180899143219</left_val> 2253 <right_val>-0.1228715032339096</right_val></_></_> 2254 <_> 2255 <!-- tree 20 --> 2256 <_> 2257 <!-- root node --> 2258 <feature> 2259 <rects> 2260 <_> 2261 1 17 21 1 -1.</_> 2262 <_> 2263 8 17 7 1 3.</_></rects> 2264 <tilted>0</tilted></feature> 2265 <threshold>-0.0137213403359056</threshold> 2266 <left_val>-0.5529879927635193</left_val> 2267 <right_val>0.0910412818193436</right_val></_></_> 2268 <_> 2269 <!-- tree 21 --> 2270 <_> 2271 <!-- root node --> 2272 <feature> 2273 <rects> 2274 <_> 2275 12 9 20 4 -1.</_> 2276 <_> 2277 12 9 10 4 2.</_></rects> 2278 <tilted>0</tilted></feature> 2279 <threshold>0.0756266415119171</threshold> 2280 <left_val>-0.0449295900762081</left_val> 2281 <right_val>0.1744275987148285</right_val></_></_> 2282 <_> 2283 <!-- tree 22 --> 2284 <_> 2285 <!-- root node --> 2286 <feature> 2287 <rects> 2288 <_> 2289 3 9 22 4 -1.</_> 2290 <_> 2291 14 9 11 4 2.</_></rects> 2292 <tilted>0</tilted></feature> 2293 <threshold>0.0934344828128815</threshold> 2294 <left_val>-0.0845939517021179</left_val> 2295 <right_val>0.6013116240501404</right_val></_></_> 2296 <_> 2297 <!-- tree 23 --> 2298 <_> 2299 <!-- root node --> 2300 <feature> 2301 <rects> 2302 <_> 2303 25 0 3 3 -1.</_> 2304 <_> 2305 26 1 1 3 3.</_></rects> 2306 <tilted>1</tilted></feature> 2307 <threshold>5.8748829178512096e-003</threshold> 2308 <left_val>-0.0441314987838268</left_val> 2309 <right_val>0.3956570923328400</right_val></_></_> 2310 <_> 2311 <!-- tree 24 --> 2312 <_> 2313 <!-- root node --> 2314 <feature> 2315 <rects> 2316 <_> 2317 14 9 4 3 -1.</_> 2318 <_> 2319 14 10 4 1 3.</_></rects> 2320 <tilted>0</tilted></feature> 2321 <threshold>4.0064537897706032e-003</threshold> 2322 <left_val>-0.1141439974308014</left_val> 2323 <right_val>0.3792538046836853</right_val></_></_> 2324 <_> 2325 <!-- tree 25 --> 2326 <_> 2327 <!-- root node --> 2328 <feature> 2329 <rects> 2330 <_> 2331 19 4 9 3 -1.</_> 2332 <_> 2333 22 4 3 3 3.</_></rects> 2334 <tilted>0</tilted></feature> 2335 <threshold>0.0229454599320889</threshold> 2336 <left_val>0.0246731899678707</left_val> 2337 <right_val>-0.4152199923992157</right_val></_></_> 2338 <_> 2339 <!-- tree 26 --> 2340 <_> 2341 <!-- root node --> 2342 <feature> 2343 <rects> 2344 <_> 2345 8 4 9 3 -1.</_> 2346 <_> 2347 11 4 3 3 3.</_></rects> 2348 <tilted>0</tilted></feature> 2349 <threshold>-0.0128104602918029</threshold> 2350 <left_val>-0.5155742764472961</left_val> 2351 <right_val>0.0913196131587029</right_val></_></_> 2352 <_> 2353 <!-- tree 27 --> 2354 <_> 2355 <!-- root node --> 2356 <feature> 2357 <rects> 2358 <_> 2359 0 15 36 3 -1.</_> 2360 <_> 2361 12 16 12 1 9.</_></rects> 2362 <tilted>0</tilted></feature> 2363 <threshold>0.2042552977800369</threshold> 2364 <left_val>-0.0659275427460670</left_val> 2365 <right_val>0.7594249248504639</right_val></_></_> 2366 <_> 2367 <!-- tree 28 --> 2368 <_> 2369 <!-- root node --> 2370 <feature> 2371 <rects> 2372 <_> 2373 2 0 4 2 -1.</_> 2374 <_> 2375 2 0 4 1 2.</_></rects> 2376 <tilted>1</tilted></feature> 2377 <threshold>4.9796327948570251e-003</threshold> 2378 <left_val>0.1080627962946892</left_val> 2379 <right_val>-0.5001627206802368</right_val></_></_> 2380 <_> 2381 <!-- tree 29 --> 2382 <_> 2383 <!-- root node --> 2384 <feature> 2385 <rects> 2386 <_> 2387 19 9 2 9 -1.</_> 2388 <_> 2389 19 12 2 3 3.</_></rects> 2390 <tilted>0</tilted></feature> 2391 <threshold>0.0283976309001446</threshold> 2392 <left_val>-0.0371529608964920</left_val> 2393 <right_val>0.5401064753532410</right_val></_></_> 2394 <_> 2395 <!-- tree 30 --> 2396 <_> 2397 <!-- root node --> 2398 <feature> 2399 <rects> 2400 <_> 2401 13 7 8 3 -1.</_> 2402 <_> 2403 13 8 8 1 3.</_></rects> 2404 <tilted>0</tilted></feature> 2405 <threshold>6.0867150314152241e-003</threshold> 2406 <left_val>-0.1197860985994339</left_val> 2407 <right_val>0.3569226861000061</right_val></_></_> 2408 <_> 2409 <!-- tree 31 --> 2410 <_> 2411 <!-- root node --> 2412 <feature> 2413 <rects> 2414 <_> 2415 30 4 2 2 -1.</_> 2416 <_> 2417 31 4 1 1 2.</_> 2418 <_> 2419 30 5 1 1 2.</_></rects> 2420 <tilted>0</tilted></feature> 2421 <threshold>-2.1456899412441999e-004</threshold> 2422 <left_val>0.1874015033245087</left_val> 2423 <right_val>-0.0884172022342682</right_val></_></_> 2424 <_> 2425 <!-- tree 32 --> 2426 <_> 2427 <!-- root node --> 2428 <feature> 2429 <rects> 2430 <_> 2431 4 4 2 2 -1.</_> 2432 <_> 2433 4 4 1 1 2.</_> 2434 <_> 2435 5 5 1 1 2.</_></rects> 2436 <tilted>0</tilted></feature> 2437 <threshold>2.8941858909092844e-004</threshold> 2438 <left_val>-0.1259797960519791</left_val> 2439 <right_val>0.3998227119445801</right_val></_></_> 2440 <_> 2441 <!-- tree 33 --> 2442 <_> 2443 <!-- root node --> 2444 <feature> 2445 <rects> 2446 <_> 2447 18 7 4 3 -1.</_> 2448 <_> 2449 18 8 4 1 3.</_></rects> 2450 <tilted>0</tilted></feature> 2451 <threshold>-1.3047619722783566e-003</threshold> 2452 <left_val>0.1549997031688690</left_val> 2453 <right_val>-0.0753860473632813</right_val></_></_> 2454 <_> 2455 <!-- tree 34 --> 2456 <_> 2457 <!-- root node --> 2458 <feature> 2459 <rects> 2460 <_> 2461 9 0 1 8 -1.</_> 2462 <_> 2463 9 0 1 4 2.</_></rects> 2464 <tilted>1</tilted></feature> 2465 <threshold>-0.0129750100895762</threshold> 2466 <left_val>-0.5534411072731018</left_val> 2467 <right_val>0.0823542475700378</right_val></_></_> 2468 <_> 2469 <!-- tree 35 --> 2470 <_> 2471 <!-- root node --> 2472 <feature> 2473 <rects> 2474 <_> 2475 25 6 10 3 -1.</_> 2476 <_> 2477 25 7 10 1 3.</_></rects> 2478 <tilted>0</tilted></feature> 2479 <threshold>7.7442410401999950e-003</threshold> 2480 <left_val>0.0276998002082109</left_val> 2481 <right_val>-0.3483599126338959</right_val></_></_> 2482 <_> 2483 <!-- tree 36 --> 2484 <_> 2485 <!-- root node --> 2486 <feature> 2487 <rects> 2488 <_> 2489 1 6 10 3 -1.</_> 2490 <_> 2491 1 7 10 1 3.</_></rects> 2492 <tilted>0</tilted></feature> 2493 <threshold>2.4850629270076752e-003</threshold> 2494 <left_val>-0.1297612935304642</left_val> 2495 <right_val>0.3790883123874664</right_val></_></_></trees> 2496 <stage_threshold>-1.5300060510635376</stage_threshold> 2497 <parent>6</parent> 2498 <next>-1</next></_> 2499 <_> 2500 <!-- stage 8 --> 2501 <trees> 2502 <_> 2503 <!-- tree 0 --> 2504 <_> 2505 <!-- root node --> 2506 <feature> 2507 <rects> 2508 <_> 2509 6 6 14 12 -1.</_> 2510 <_> 2511 6 6 7 6 2.</_> 2512 <_> 2513 13 12 7 6 2.</_></rects> 2514 <tilted>0</tilted></feature> 2515 <threshold>-0.0403868816792965</threshold> 2516 <left_val>0.5960354804992676</left_val> 2517 <right_val>-0.3574176132678986</right_val></_></_> 2518 <_> 2519 <!-- tree 1 --> 2520 <_> 2521 <!-- root node --> 2522 <feature> 2523 <rects> 2524 <_> 2525 31 14 3 4 -1.</_> 2526 <_> 2527 31 16 3 2 2.</_></rects> 2528 <tilted>0</tilted></feature> 2529 <threshold>-6.6068649175576866e-005</threshold> 2530 <left_val>0.4462898075580597</left_val> 2531 <right_val>-0.3595947027206421</right_val></_></_> 2532 <_> 2533 <!-- tree 2 --> 2534 <_> 2535 <!-- root node --> 2536 <feature> 2537 <rects> 2538 <_> 2539 1 12 2 4 -1.</_> 2540 <_> 2541 1 14 2 2 2.</_></rects> 2542 <tilted>0</tilted></feature> 2543 <threshold>3.7622239906340837e-003</threshold> 2544 <left_val>0.1794701963663101</left_val> 2545 <right_val>-0.7563151121139526</right_val></_></_> 2546 <_> 2547 <!-- tree 3 --> 2548 <_> 2549 <!-- root node --> 2550 <feature> 2551 <rects> 2552 <_> 2553 15 0 12 5 -1.</_> 2554 <_> 2555 19 0 4 5 3.</_></rects> 2556 <tilted>0</tilted></feature> 2557 <threshold>-0.0309677198529243</threshold> 2558 <left_val>-0.2884705066680908</left_val> 2559 <right_val>0.0768705308437347</right_val></_></_> 2560 <_> 2561 <!-- tree 4 --> 2562 <_> 2563 <!-- root node --> 2564 <feature> 2565 <rects> 2566 <_> 2567 10 0 8 14 -1.</_> 2568 <_> 2569 12 0 4 14 2.</_></rects> 2570 <tilted>0</tilted></feature> 2571 <threshold>0.0305665601044893</threshold> 2572 <left_val>0.1400360018014908</left_val> 2573 <right_val>-0.7175536751747131</right_val></_></_> 2574 <_> 2575 <!-- tree 5 --> 2576 <_> 2577 <!-- root node --> 2578 <feature> 2579 <rects> 2580 <_> 2581 28 1 8 7 -1.</_> 2582 <_> 2583 30 3 4 7 2.</_></rects> 2584 <tilted>1</tilted></feature> 2585 <threshold>9.9054910242557526e-004</threshold> 2586 <left_val>0.0829155892133713</left_val> 2587 <right_val>-0.2919717133045197</right_val></_></_> 2588 <_> 2589 <!-- tree 6 --> 2590 <_> 2591 <!-- root node --> 2592 <feature> 2593 <rects> 2594 <_> 2595 8 14 20 4 -1.</_> 2596 <_> 2597 8 14 10 2 2.</_> 2598 <_> 2599 18 16 10 2 2.</_></rects> 2600 <tilted>0</tilted></feature> 2601 <threshold>0.0125777004286647</threshold> 2602 <left_val>0.1538071930408478</left_val> 2603 <right_val>-0.4688293039798737</right_val></_></_> 2604 <_> 2605 <!-- tree 7 --> 2606 <_> 2607 <!-- root node --> 2608 <feature> 2609 <rects> 2610 <_> 2611 6 11 24 3 -1.</_> 2612 <_> 2613 14 12 8 1 9.</_></rects> 2614 <tilted>0</tilted></feature> 2615 <threshold>0.1239292025566101</threshold> 2616 <left_val>-0.0908238589763641</left_val> 2617 <right_val>0.7383757233619690</right_val></_></_> 2618 <_> 2619 <!-- tree 8 --> 2620 <_> 2621 <!-- root node --> 2622 <feature> 2623 <rects> 2624 <_> 2625 4 5 27 6 -1.</_> 2626 <_> 2627 13 7 9 2 9.</_></rects> 2628 <tilted>0</tilted></feature> 2629 <threshold>0.3773748874664307</threshold> 2630 <left_val>-0.0542329512536526</left_val> 2631 <right_val>0.9229121804237366</right_val></_></_> 2632 <_> 2633 <!-- tree 9 --> 2634 <_> 2635 <!-- root node --> 2636 <feature> 2637 <rects> 2638 <_> 2639 7 0 22 18 -1.</_> 2640 <_> 2641 18 0 11 9 2.</_> 2642 <_> 2643 7 9 11 9 2.</_></rects> 2644 <tilted>0</tilted></feature> 2645 <threshold>0.1099637001752853</threshold> 2646 <left_val>0.0915962681174278</left_val> 2647 <right_val>-0.6597716808319092</right_val></_></_> 2648 <_> 2649 <!-- tree 10 --> 2650 <_> 2651 <!-- root node --> 2652 <feature> 2653 <rects> 2654 <_> 2655 16 0 3 2 -1.</_> 2656 <_> 2657 16 1 3 1 2.</_></rects> 2658 <tilted>0</tilted></feature> 2659 <threshold>-1.2721329694613814e-003</threshold> 2660 <left_val>0.3347575068473816</left_val> 2661 <right_val>-0.1829068958759308</right_val></_></_> 2662 <_> 2663 <!-- tree 11 --> 2664 <_> 2665 <!-- root node --> 2666 <feature> 2667 <rects> 2668 <_> 2669 0 17 36 1 -1.</_> 2670 <_> 2671 9 17 18 1 2.</_></rects> 2672 <tilted>0</tilted></feature> 2673 <threshold>0.0469062514603138</threshold> 2674 <left_val>-0.0839710533618927</left_val> 2675 <right_val>0.6984758973121643</right_val></_></_> 2676 <_> 2677 <!-- tree 12 --> 2678 <_> 2679 <!-- root node --> 2680 <feature> 2681 <rects> 2682 <_> 2683 5 5 12 1 -1.</_> 2684 <_> 2685 5 5 6 1 2.</_></rects> 2686 <tilted>1</tilted></feature> 2687 <threshold>3.2869930146262050e-004</threshold> 2688 <left_val>0.1879463046789169</left_val> 2689 <right_val>-0.2929005920886993</right_val></_></_> 2690 <_> 2691 <!-- tree 13 --> 2692 <_> 2693 <!-- root node --> 2694 <feature> 2695 <rects> 2696 <_> 2697 34 15 2 1 -1.</_> 2698 <_> 2699 34 15 1 1 2.</_></rects> 2700 <tilted>1</tilted></feature> 2701 <threshold>1.7333080177195370e-004</threshold> 2702 <left_val>-0.2696416079998016</left_val> 2703 <right_val>0.3494757115840912</right_val></_></_> 2704 <_> 2705 <!-- tree 14 --> 2706 <_> 2707 <!-- root node --> 2708 <feature> 2709 <rects> 2710 <_> 2711 7 8 16 4 -1.</_> 2712 <_> 2713 7 9 16 2 2.</_></rects> 2714 <tilted>0</tilted></feature> 2715 <threshold>0.0198009591549635</threshold> 2716 <left_val>-0.1467922925949097</left_val> 2717 <right_val>0.4399561882019043</right_val></_></_> 2718 <_> 2719 <!-- tree 15 --> 2720 <_> 2721 <!-- root node --> 2722 <feature> 2723 <rects> 2724 <_> 2725 35 10 1 6 -1.</_> 2726 <_> 2727 35 12 1 2 3.</_></rects> 2728 <tilted>0</tilted></feature> 2729 <threshold>2.0056760695297271e-004</threshold> 2730 <left_val>-0.1372741013765335</left_val> 2731 <right_val>0.2221331000328064</right_val></_></_> 2732 <_> 2733 <!-- tree 16 --> 2734 <_> 2735 <!-- root node --> 2736 <feature> 2737 <rects> 2738 <_> 2739 13 8 3 4 -1.</_> 2740 <_> 2741 13 9 3 2 2.</_></rects> 2742 <tilted>0</tilted></feature> 2743 <threshold>-1.4923149719834328e-003</threshold> 2744 <left_val>0.3473525941371918</left_val> 2745 <right_val>-0.1594821065664291</right_val></_></_> 2746 <_> 2747 <!-- tree 17 --> 2748 <_> 2749 <!-- root node --> 2750 <feature> 2751 <rects> 2752 <_> 2753 35 10 1 6 -1.</_> 2754 <_> 2755 35 12 1 2 3.</_></rects> 2756 <tilted>0</tilted></feature> 2757 <threshold>-4.2736999603221193e-005</threshold> 2758 <left_val>0.3152787089347839</left_val> 2759 <right_val>-0.2306694984436035</right_val></_></_> 2760 <_> 2761 <!-- tree 18 --> 2762 <_> 2763 <!-- root node --> 2764 <feature> 2765 <rects> 2766 <_> 2767 12 0 1 4 -1.</_> 2768 <_> 2769 11 1 1 2 2.</_></rects> 2770 <tilted>1</tilted></feature> 2771 <threshold>6.6625140607357025e-004</threshold> 2772 <left_val>-0.2013110071420670</left_val> 2773 <right_val>0.2869189083576202</right_val></_></_> 2774 <_> 2775 <!-- tree 19 --> 2776 <_> 2777 <!-- root node --> 2778 <feature> 2779 <rects> 2780 <_> 2781 35 10 1 6 -1.</_> 2782 <_> 2783 35 12 1 2 3.</_></rects> 2784 <tilted>0</tilted></feature> 2785 <threshold>1.3850460163666867e-005</threshold> 2786 <left_val>-0.2021923959255219</left_val> 2787 <right_val>0.2307330965995789</right_val></_></_> 2788 <_> 2789 <!-- tree 20 --> 2790 <_> 2791 <!-- root node --> 2792 <feature> 2793 <rects> 2794 <_> 2795 18 0 1 14 -1.</_> 2796 <_> 2797 18 0 1 7 2.</_></rects> 2798 <tilted>1</tilted></feature> 2799 <threshold>0.0409726314246655</threshold> 2800 <left_val>0.0795431807637215</left_val> 2801 <right_val>-0.8079563975334168</right_val></_></_></trees> 2802 <stage_threshold>-1.4114329814910889</stage_threshold> 2803 <parent>7</parent> 2804 <next>-1</next></_> 2805 <_> 2806 <!-- stage 9 --> 2807 <trees> 2808 <_> 2809 <!-- tree 0 --> 2810 <_> 2811 <!-- root node --> 2812 <feature> 2813 <rects> 2814 <_> 2815 5 6 16 12 -1.</_> 2816 <_> 2817 5 6 8 6 2.</_> 2818 <_> 2819 13 12 8 6 2.</_></rects> 2820 <tilted>0</tilted></feature> 2821 <threshold>-0.0469829291105270</threshold> 2822 <left_val>0.7082253098487854</left_val> 2823 <right_val>-0.3703424036502838</right_val></_></_> 2824 <_> 2825 <!-- tree 1 --> 2826 <_> 2827 <!-- root node --> 2828 <feature> 2829 <rects> 2830 <_> 2831 18 1 7 8 -1.</_> 2832 <_> 2833 16 3 7 4 2.</_></rects> 2834 <tilted>1</tilted></feature> 2835 <threshold>-7.5753079727292061e-004</threshold> 2836 <left_val>-0.1255030930042267</left_val> 2837 <right_val>0.1394442021846771</right_val></_></_> 2838 <_> 2839 <!-- tree 2 --> 2840 <_> 2841 <!-- root node --> 2842 <feature> 2843 <rects> 2844 <_> 2845 14 4 8 10 -1.</_> 2846 <_> 2847 14 4 4 5 2.</_> 2848 <_> 2849 18 9 4 5 2.</_></rects> 2850 <tilted>0</tilted></feature> 2851 <threshold>0.0153272999450564</threshold> 2852 <left_val>0.2161353975534439</left_val> 2853 <right_val>-0.5629395246505737</right_val></_></_> 2854 <_> 2855 <!-- tree 3 --> 2856 <_> 2857 <!-- root node --> 2858 <feature> 2859 <rects> 2860 <_> 2861 22 0 9 3 -1.</_> 2862 <_> 2863 25 0 3 3 3.</_></rects> 2864 <tilted>0</tilted></feature> 2865 <threshold>0.0181470401585102</threshold> 2866 <left_val>-0.0320796482264996</left_val> 2867 <right_val>0.3234755992889404</right_val></_></_> 2868 <_> 2869 <!-- tree 4 --> 2870 <_> 2871 <!-- root node --> 2872 <feature> 2873 <rects> 2874 <_> 2875 0 10 26 8 -1.</_> 2876 <_> 2877 0 10 13 4 2.</_> 2878 <_> 2879 13 14 13 4 2.</_></rects> 2880 <tilted>0</tilted></feature> 2881 <threshold>0.0473471917212009</threshold> 2882 <left_val>-0.1738158017396927</left_val> 2883 <right_val>0.5758044719696045</right_val></_></_> 2884 <_> 2885 <!-- tree 5 --> 2886 <_> 2887 <!-- root node --> 2888 <feature> 2889 <rects> 2890 <_> 2891 15 10 16 8 -1.</_> 2892 <_> 2893 23 10 8 4 2.</_> 2894 <_> 2895 15 14 8 4 2.</_></rects> 2896 <tilted>0</tilted></feature> 2897 <threshold>-0.0598379410803318</threshold> 2898 <left_val>0.4779787063598633</left_val> 2899 <right_val>-0.1026028022170067</right_val></_></_> 2900 <_> 2901 <!-- tree 6 --> 2902 <_> 2903 <!-- root node --> 2904 <feature> 2905 <rects> 2906 <_> 2907 6 0 24 18 -1.</_> 2908 <_> 2909 6 0 12 9 2.</_> 2910 <_> 2911 18 9 12 9 2.</_></rects> 2912 <tilted>0</tilted></feature> 2913 <threshold>-0.0527967996895313</threshold> 2914 <left_val>-0.4798848927021027</left_val> 2915 <right_val>0.1878775954246521</right_val></_></_> 2916 <_> 2917 <!-- tree 7 --> 2918 <_> 2919 <!-- root node --> 2920 <feature> 2921 <rects> 2922 <_> 2923 18 0 9 6 -1.</_> 2924 <_> 2925 21 0 3 6 3.</_></rects> 2926 <tilted>0</tilted></feature> 2927 <threshold>-0.0243854299187660</threshold> 2928 <left_val>-0.3084166944026947</left_val> 2929 <right_val>8.7605630978941917e-003</right_val></_></_> 2930 <_> 2931 <!-- tree 8 --> 2932 <_> 2933 <!-- root node --> 2934 <feature> 2935 <rects> 2936 <_> 2937 9 0 9 6 -1.</_> 2938 <_> 2939 12 0 3 6 3.</_></rects> 2940 <tilted>0</tilted></feature> 2941 <threshold>0.0252883005887270</threshold> 2942 <left_val>0.1391403973102570</left_val> 2943 <right_val>-0.7109494209289551</right_val></_></_> 2944 <_> 2945 <!-- tree 9 --> 2946 <_> 2947 <!-- root node --> 2948 <feature> 2949 <rects> 2950 <_> 2951 30 1 5 14 -1.</_> 2952 <_> 2953 30 8 5 7 2.</_></rects> 2954 <tilted>0</tilted></feature> 2955 <threshold>-0.0216124504804611</threshold> 2956 <left_val>-0.2328253984451294</left_val> 2957 <right_val>0.0809946805238724</right_val></_></_> 2958 <_> 2959 <!-- tree 10 --> 2960 <_> 2961 <!-- root node --> 2962 <feature> 2963 <rects> 2964 <_> 2965 1 1 5 14 -1.</_> 2966 <_> 2967 1 8 5 7 2.</_></rects> 2968 <tilted>0</tilted></feature> 2969 <threshold>3.4023479092866182e-003</threshold> 2970 <left_val>-0.2298990041017532</left_val> 2971 <right_val>0.3788951039314270</right_val></_></_> 2972 <_> 2973 <!-- tree 11 --> 2974 <_> 2975 <!-- root node --> 2976 <feature> 2977 <rects> 2978 <_> 2979 10 8 26 6 -1.</_> 2980 <_> 2981 23 8 13 3 2.</_> 2982 <_> 2983 10 11 13 3 2.</_></rects> 2984 <tilted>0</tilted></feature> 2985 <threshold>0.1127460002899170</threshold> 2986 <left_val>-0.0154747096821666</left_val> 2987 <right_val>0.5703054070472717</right_val></_></_> 2988 <_> 2989 <!-- tree 12 --> 2990 <_> 2991 <!-- root node --> 2992 <feature> 2993 <rects> 2994 <_> 2995 0 8 28 6 -1.</_> 2996 <_> 2997 0 8 14 3 2.</_> 2998 <_> 2999 14 11 14 3 2.</_></rects> 3000 <tilted>0</tilted></feature> 3001 <threshold>0.0345168709754944</threshold> 3002 <left_val>-0.1230008006095886</left_val> 3003 <right_val>0.5677536725997925</right_val></_></_> 3004 <_> 3005 <!-- tree 13 --> 3006 <_> 3007 <!-- root node --> 3008 <feature> 3009 <rects> 3010 <_> 3011 12 0 24 12 -1.</_> 3012 <_> 3013 24 0 12 6 2.</_> 3014 <_> 3015 12 6 12 6 2.</_></rects> 3016 <tilted>0</tilted></feature> 3017 <threshold>0.0789848119020462</threshold> 3018 <left_val>-0.1424216926097870</left_val> 3019 <right_val>0.4694185853004456</right_val></_></_> 3020 <_> 3021 <!-- tree 14 --> 3022 <_> 3023 <!-- root node --> 3024 <feature> 3025 <rects> 3026 <_> 3027 3 1 14 2 -1.</_> 3028 <_> 3029 3 1 14 1 2.</_></rects> 3030 <tilted>1</tilted></feature> 3031 <threshold>-0.0153778595849872</threshold> 3032 <left_val>0.6394686102867127</left_val> 3033 <right_val>-0.1123619005084038</right_val></_></_> 3034 <_> 3035 <!-- tree 15 --> 3036 <_> 3037 <!-- root node --> 3038 <feature> 3039 <rects> 3040 <_> 3041 33 16 3 2 -1.</_> 3042 <_> 3043 33 17 3 1 2.</_></rects> 3044 <tilted>0</tilted></feature> 3045 <threshold>-2.2373620595317334e-004</threshold> 3046 <left_val>0.5558329820632935</left_val> 3047 <right_val>-0.2724758088588715</right_val></_></_> 3048 <_> 3049 <!-- tree 16 --> 3050 <_> 3051 <!-- root node --> 3052 <feature> 3053 <rects> 3054 <_> 3055 12 0 9 14 -1.</_> 3056 <_> 3057 15 0 3 14 3.</_></rects> 3058 <tilted>0</tilted></feature> 3059 <threshold>-0.0247623901814222</threshold> 3060 <left_val>-0.5040485858917236</left_val> 3061 <right_val>0.1407779008150101</right_val></_></_> 3062 <_> 3063 <!-- tree 17 --> 3064 <_> 3065 <!-- root node --> 3066 <feature> 3067 <rects> 3068 <_> 3069 28 16 8 2 -1.</_> 3070 <_> 3071 32 16 4 1 2.</_> 3072 <_> 3073 28 17 4 1 2.</_></rects> 3074 <tilted>0</tilted></feature> 3075 <threshold>-9.4061157142277807e-005</threshold> 3076 <left_val>0.3719528019428253</left_val> 3077 <right_val>-0.2250299006700516</right_val></_></_> 3078 <_> 3079 <!-- tree 18 --> 3080 <_> 3081 <!-- root node --> 3082 <feature> 3083 <rects> 3084 <_> 3085 15 8 6 6 -1.</_> 3086 <_> 3087 15 10 6 2 3.</_></rects> 3088 <tilted>0</tilted></feature> 3089 <threshold>-0.0202563591301441</threshold> 3090 <left_val>0.5105100870132446</left_val> 3091 <right_val>-0.1429875940084457</right_val></_></_> 3092 <_> 3093 <!-- tree 19 --> 3094 <_> 3095 <!-- root node --> 3096 <feature> 3097 <rects> 3098 <_> 3099 13 6 22 6 -1.</_> 3100 <_> 3101 24 6 11 3 2.</_> 3102 <_> 3103 13 9 11 3 2.</_></rects> 3104 <tilted>0</tilted></feature> 3105 <threshold>0.0481228791177273</threshold> 3106 <left_val>-0.0669795125722885</left_val> 3107 <right_val>0.3662230968475342</right_val></_></_> 3108 <_> 3109 <!-- tree 20 --> 3110 <_> 3111 <!-- root node --> 3112 <feature> 3113 <rects> 3114 <_> 3115 0 10 26 4 -1.</_> 3116 <_> 3117 0 10 13 2 2.</_> 3118 <_> 3119 13 12 13 2 2.</_></rects> 3120 <tilted>0</tilted></feature> 3121 <threshold>-0.0237878002226353</threshold> 3122 <left_val>0.5081325173377991</left_val> 3123 <right_val>-0.1290815025568008</right_val></_></_> 3124 <_> 3125 <!-- tree 21 --> 3126 <_> 3127 <!-- root node --> 3128 <feature> 3129 <rects> 3130 <_> 3131 24 16 4 2 -1.</_> 3132 <_> 3133 24 17 4 1 2.</_></rects> 3134 <tilted>0</tilted></feature> 3135 <threshold>-1.0520319920033216e-003</threshold> 3136 <left_val>-0.1560467034578323</left_val> 3137 <right_val>0.0662133172154427</right_val></_></_> 3138 <_> 3139 <!-- tree 22 --> 3140 <_> 3141 <!-- root node --> 3142 <feature> 3143 <rects> 3144 <_> 3145 9 16 3 2 -1.</_> 3146 <_> 3147 9 17 3 1 2.</_></rects> 3148 <tilted>0</tilted></feature> 3149 <threshold>-2.6640200521796942e-003</threshold> 3150 <left_val>-0.7254558205604553</left_val> 3151 <right_val>0.0823654532432556</right_val></_></_></trees> 3152 <stage_threshold>-1.3777890205383301</stage_threshold> 3153 <parent>8</parent> 3154 <next>-1</next></_> 3155 <_> 3156 <!-- stage 10 --> 3157 <trees> 3158 <_> 3159 <!-- tree 0 --> 3160 <_> 3161 <!-- root node --> 3162 <feature> 3163 <rects> 3164 <_> 3165 3 7 18 8 -1.</_> 3166 <_> 3167 3 7 9 4 2.</_> 3168 <_> 3169 12 11 9 4 2.</_></rects> 3170 <tilted>0</tilted></feature> 3171 <threshold>-0.0502246208488941</threshold> 3172 <left_val>0.7084565758705139</left_val> 3173 <right_val>-0.2558549940586090</right_val></_></_> 3174 <_> 3175 <!-- tree 1 --> 3176 <_> 3177 <!-- root node --> 3178 <feature> 3179 <rects> 3180 <_> 3181 23 0 8 4 -1.</_> 3182 <_> 3183 23 0 4 4 2.</_></rects> 3184 <tilted>0</tilted></feature> 3185 <threshold>0.0140728699043393</threshold> 3186 <left_val>0.0630331784486771</left_val> 3187 <right_val>-0.0598385296761990</right_val></_></_> 3188 <_> 3189 <!-- tree 2 --> 3190 <_> 3191 <!-- root node --> 3192 <feature> 3193 <rects> 3194 <_> 3195 5 0 8 4 -1.</_> 3196 <_> 3197 9 0 4 4 2.</_></rects> 3198 <tilted>0</tilted></feature> 3199 <threshold>0.0178040098398924</threshold> 3200 <left_val>0.1941471993923187</left_val> 3201 <right_val>-0.5844426751136780</right_val></_></_> 3202 <_> 3203 <!-- tree 3 --> 3204 <_> 3205 <!-- root node --> 3206 <feature> 3207 <rects> 3208 <_> 3209 6 10 24 3 -1.</_> 3210 <_> 3211 14 11 8 1 9.</_></rects> 3212 <tilted>0</tilted></feature> 3213 <threshold>0.1304673999547958</threshold> 3214 <left_val>-0.1151698008179665</left_val> 3215 <right_val>0.8504030108451843</right_val></_></_> 3216 <_> 3217 <!-- tree 4 --> 3218 <_> 3219 <!-- root node --> 3220 <feature> 3221 <rects> 3222 <_> 3223 7 5 5 6 -1.</_> 3224 <_> 3225 5 7 5 2 3.</_></rects> 3226 <tilted>1</tilted></feature> 3227 <threshold>0.0175068005919456</threshold> 3228 <left_val>-0.2071896940469742</left_val> 3229 <right_val>0.4643828868865967</right_val></_></_> 3230 <_> 3231 <!-- tree 5 --> 3232 <_> 3233 <!-- root node --> 3234 <feature> 3235 <rects> 3236 <_> 3237 5 16 26 2 -1.</_> 3238 <_> 3239 18 16 13 1 2.</_> 3240 <_> 3241 5 17 13 1 2.</_></rects> 3242 <tilted>0</tilted></feature> 3243 <threshold>-7.4240020476281643e-003</threshold> 3244 <left_val>-0.6656516790390015</left_val> 3245 <right_val>0.1403498947620392</right_val></_></_> 3246 <_> 3247 <!-- tree 6 --> 3248 <_> 3249 <!-- root node --> 3250 <feature> 3251 <rects> 3252 <_> 3253 0 7 24 4 -1.</_> 3254 <_> 3255 0 7 12 2 2.</_> 3256 <_> 3257 12 9 12 2 2.</_></rects> 3258 <tilted>0</tilted></feature> 3259 <threshold>-0.0345711186528206</threshold> 3260 <left_val>0.6511297821998596</left_val> 3261 <right_val>-0.1490191966295242</right_val></_></_> 3262 <_> 3263 <!-- tree 7 --> 3264 <_> 3265 <!-- root node --> 3266 <feature> 3267 <rects> 3268 <_> 3269 23 14 13 4 -1.</_> 3270 <_> 3271 23 15 13 2 2.</_></rects> 3272 <tilted>0</tilted></feature> 3273 <threshold>4.2270249687135220e-003</threshold> 3274 <left_val>-1.6027219826355577e-003</left_val> 3275 <right_val>0.3895606100559235</right_val></_></_> 3276 <_> 3277 <!-- tree 8 --> 3278 <_> 3279 <!-- root node --> 3280 <feature> 3281 <rects> 3282 <_> 3283 2 10 18 8 -1.</_> 3284 <_> 3285 2 10 9 4 2.</_> 3286 <_> 3287 11 14 9 4 2.</_></rects> 3288 <tilted>0</tilted></feature> 3289 <threshold>-0.0506620407104492</threshold> 3290 <left_val>0.5803576707839966</left_val> 3291 <right_val>-0.1514143943786621</right_val></_></_> 3292 <_> 3293 <!-- tree 9 --> 3294 <_> 3295 <!-- root node --> 3296 <feature> 3297 <rects> 3298 <_> 3299 15 10 6 4 -1.</_> 3300 <_> 3301 15 11 6 2 2.</_></rects> 3302 <tilted>0</tilted></feature> 3303 <threshold>-7.0715770125389099e-003</threshold> 3304 <left_val>0.5300896763801575</left_val> 3305 <right_val>-0.1449830979108810</right_val></_></_> 3306 <_> 3307 <!-- tree 10 --> 3308 <_> 3309 <!-- root node --> 3310 <feature> 3311 <rects> 3312 <_> 3313 0 6 24 2 -1.</_> 3314 <_> 3315 0 6 12 1 2.</_> 3316 <_> 3317 12 7 12 1 2.</_></rects> 3318 <tilted>0</tilted></feature> 3319 <threshold>-0.0118635101243854</threshold> 3320 <left_val>0.6729742288589478</left_val> 3321 <right_val>-0.1106354966759682</right_val></_></_> 3322 <_> 3323 <!-- tree 11 --> 3324 <_> 3325 <!-- root node --> 3326 <feature> 3327 <rects> 3328 <_> 3329 17 0 18 18 -1.</_> 3330 <_> 3331 17 9 18 9 2.</_></rects> 3332 <tilted>0</tilted></feature> 3333 <threshold>-0.0605200305581093</threshold> 3334 <left_val>-0.3316448926925659</left_val> 3335 <right_val>0.2119556069374085</right_val></_></_> 3336 <_> 3337 <!-- tree 12 --> 3338 <_> 3339 <!-- root node --> 3340 <feature> 3341 <rects> 3342 <_> 3343 1 0 11 2 -1.</_> 3344 <_> 3345 1 1 11 1 2.</_></rects> 3346 <tilted>0</tilted></feature> 3347 <threshold>-7.7340779826045036e-003</threshold> 3348 <left_val>-0.6941440105438232</left_val> 3349 <right_val>0.0727053135633469</right_val></_></_> 3350 <_> 3351 <!-- tree 13 --> 3352 <_> 3353 <!-- root node --> 3354 <feature> 3355 <rects> 3356 <_> 3357 15 6 8 12 -1.</_> 3358 <_> 3359 19 6 4 6 2.</_> 3360 <_> 3361 15 12 4 6 2.</_></rects> 3362 <tilted>0</tilted></feature> 3363 <threshold>-0.0324861407279968</threshold> 3364 <left_val>-0.5185081958770752</left_val> 3365 <right_val>0.0592126213014126</right_val></_></_> 3366 <_> 3367 <!-- tree 14 --> 3368 <_> 3369 <!-- root node --> 3370 <feature> 3371 <rects> 3372 <_> 3373 2 1 32 12 -1.</_> 3374 <_> 3375 2 1 16 6 2.</_> 3376 <_> 3377 18 7 16 6 2.</_></rects> 3378 <tilted>0</tilted></feature> 3379 <threshold>0.0832797065377235</threshold> 3380 <left_val>0.1206794008612633</left_val> 3381 <right_val>-0.5309563279151917</right_val></_></_> 3382 <_> 3383 <!-- tree 15 --> 3384 <_> 3385 <!-- root node --> 3386 <feature> 3387 <rects> 3388 <_> 3389 29 10 7 8 -1.</_> 3390 <_> 3391 29 12 7 4 2.</_></rects> 3392 <tilted>0</tilted></feature> 3393 <threshold>7.8782817581668496e-004</threshold> 3394 <left_val>-0.2737655937671661</left_val> 3395 <right_val>0.2716251909732819</right_val></_></_> 3396 <_> 3397 <!-- tree 16 --> 3398 <_> 3399 <!-- root node --> 3400 <feature> 3401 <rects> 3402 <_> 3403 12 2 8 10 -1.</_> 3404 <_> 3405 12 2 4 5 2.</_> 3406 <_> 3407 16 7 4 5 2.</_></rects> 3408 <tilted>0</tilted></feature> 3409 <threshold>-0.0175391808152199</threshold> 3410 <left_val>-0.5690230131149292</left_val> 3411 <right_val>0.1228737011551857</right_val></_></_> 3412 <_> 3413 <!-- tree 17 --> 3414 <_> 3415 <!-- root node --> 3416 <feature> 3417 <rects> 3418 <_> 3419 15 12 6 4 -1.</_> 3420 <_> 3421 15 13 6 2 2.</_></rects> 3422 <tilted>0</tilted></feature> 3423 <threshold>-5.8226347900927067e-003</threshold> 3424 <left_val>0.4386585950851440</left_val> 3425 <right_val>-0.1493742018938065</right_val></_></_> 3426 <_> 3427 <!-- tree 18 --> 3428 <_> 3429 <!-- root node --> 3430 <feature> 3431 <rects> 3432 <_> 3433 0 12 8 6 -1.</_> 3434 <_> 3435 0 14 8 2 3.</_></rects> 3436 <tilted>0</tilted></feature> 3437 <threshold>-0.0100575601682067</threshold> 3438 <left_val>-0.6616886258125305</left_val> 3439 <right_val>0.1144542992115021</right_val></_></_> 3440 <_> 3441 <!-- tree 19 --> 3442 <_> 3443 <!-- root node --> 3444 <feature> 3445 <rects> 3446 <_> 3447 10 9 26 8 -1.</_> 3448 <_> 3449 23 9 13 4 2.</_> 3450 <_> 3451 10 13 13 4 2.</_></rects> 3452 <tilted>0</tilted></feature> 3453 <threshold>0.0903454273939133</threshold> 3454 <left_val>-0.0666652470827103</left_val> 3455 <right_val>0.2870647907257080</right_val></_></_> 3456 <_> 3457 <!-- tree 20 --> 3458 <_> 3459 <!-- root node --> 3460 <feature> 3461 <rects> 3462 <_> 3463 7 8 22 10 -1.</_> 3464 <_> 3465 7 8 11 5 2.</_> 3466 <_> 3467 18 13 11 5 2.</_></rects> 3468 <tilted>0</tilted></feature> 3469 <threshold>-0.0675872936844826</threshold> 3470 <left_val>-0.5363761186599731</left_val> 3471 <right_val>0.1123751997947693</right_val></_></_> 3472 <_> 3473 <!-- tree 21 --> 3474 <_> 3475 <!-- root node --> 3476 <feature> 3477 <rects> 3478 <_> 3479 14 9 8 3 -1.</_> 3480 <_> 3481 14 10 8 1 3.</_></rects> 3482 <tilted>0</tilted></feature> 3483 <threshold>-8.1747528165578842e-003</threshold> 3484 <left_val>0.4434241950511932</left_val> 3485 <right_val>-0.1297765970230103</right_val></_></_> 3486 <_> 3487 <!-- tree 22 --> 3488 <_> 3489 <!-- root node --> 3490 <feature> 3491 <rects> 3492 <_> 3493 11 3 4 9 -1.</_> 3494 <_> 3495 11 6 4 3 3.</_></rects> 3496 <tilted>0</tilted></feature> 3497 <threshold>-0.0115505503490567</threshold> 3498 <left_val>0.3273158073425293</left_val> 3499 <right_val>-0.1700761020183563</right_val></_></_> 3500 <_> 3501 <!-- tree 23 --> 3502 <_> 3503 <!-- root node --> 3504 <feature> 3505 <rects> 3506 <_> 3507 29 14 2 2 -1.</_> 3508 <_> 3509 29 14 2 1 2.</_></rects> 3510 <tilted>1</tilted></feature> 3511 <threshold>-1.7406829283572733e-004</threshold> 3512 <left_val>0.1327867954969406</left_val> 3513 <right_val>-0.1081293970346451</right_val></_></_> 3514 <_> 3515 <!-- tree 24 --> 3516 <_> 3517 <!-- root node --> 3518 <feature> 3519 <rects> 3520 <_> 3521 14 13 8 3 -1.</_> 3522 <_> 3523 14 14 8 1 3.</_></rects> 3524 <tilted>0</tilted></feature> 3525 <threshold>4.6040047891438007e-003</threshold> 3526 <left_val>-0.1226582005620003</left_val> 3527 <right_val>0.4412580132484436</right_val></_></_></trees> 3528 <stage_threshold>-1.3266400098800659</stage_threshold> 3529 <parent>9</parent> 3530 <next>-1</next></_> 3531 <_> 3532 <!-- stage 11 --> 3533 <trees> 3534 <_> 3535 <!-- tree 0 --> 3536 <_> 3537 <!-- root node --> 3538 <feature> 3539 <rects> 3540 <_> 3541 11 3 7 8 -1.</_> 3542 <_> 3543 9 5 7 4 2.</_></rects> 3544 <tilted>1</tilted></feature> 3545 <threshold>-0.0469432808458805</threshold> 3546 <left_val>0.6094344258308411</left_val> 3547 <right_val>-0.2637800872325897</right_val></_></_> 3548 <_> 3549 <!-- tree 1 --> 3550 <_> 3551 <!-- root node --> 3552 <feature> 3553 <rects> 3554 <_> 3555 28 13 1 4 -1.</_> 3556 <_> 3557 28 13 1 2 2.</_></rects> 3558 <tilted>1</tilted></feature> 3559 <threshold>-1.6899159527383745e-004</threshold> 3560 <left_val>0.1665875017642975</left_val> 3561 <right_val>-0.1254196017980576</right_val></_></_> 3562 <_> 3563 <!-- tree 2 --> 3564 <_> 3565 <!-- root node --> 3566 <feature> 3567 <rects> 3568 <_> 3569 8 13 4 1 -1.</_> 3570 <_> 3571 8 13 2 1 2.</_></rects> 3572 <tilted>1</tilted></feature> 3573 <threshold>2.7983370237052441e-003</threshold> 3574 <left_val>0.1905744969844818</left_val> 3575 <right_val>-0.6568077206611633</right_val></_></_> 3576 <_> 3577 <!-- tree 3 --> 3578 <_> 3579 <!-- root node --> 3580 <feature> 3581 <rects> 3582 <_> 3583 16 9 4 3 -1.</_> 3584 <_> 3585 16 10 4 1 3.</_></rects> 3586 <tilted>0</tilted></feature> 3587 <threshold>4.0413960814476013e-003</threshold> 3588 <left_val>-0.1731746941804886</left_val> 3589 <right_val>0.6362075209617615</right_val></_></_> 3590 <_> 3591 <!-- tree 4 --> 3592 <_> 3593 <!-- root node --> 3594 <feature> 3595 <rects> 3596 <_> 3597 13 8 10 4 -1.</_> 3598 <_> 3599 13 9 10 2 2.</_></rects> 3600 <tilted>0</tilted></feature> 3601 <threshold>-8.6033362895250320e-003</threshold> 3602 <left_val>0.6025841832160950</left_val> 3603 <right_val>-0.2316936999559403</right_val></_></_> 3604 <_> 3605 <!-- tree 5 --> 3606 <_> 3607 <!-- root node --> 3608 <feature> 3609 <rects> 3610 <_> 3611 14 8 8 3 -1.</_> 3612 <_> 3613 14 9 8 1 3.</_></rects> 3614 <tilted>0</tilted></feature> 3615 <threshold>8.8247945532202721e-003</threshold> 3616 <left_val>-0.1756583005189896</left_val> 3617 <right_val>0.7104166746139526</right_val></_></_> 3618 <_> 3619 <!-- tree 6 --> 3620 <_> 3621 <!-- root node --> 3622 <feature> 3623 <rects> 3624 <_> 3625 2 10 6 2 -1.</_> 3626 <_> 3627 4 12 2 2 3.</_></rects> 3628 <tilted>1</tilted></feature> 3629 <threshold>-9.2786159366369247e-003</threshold> 3630 <left_val>-0.6890857219696045</left_val> 3631 <right_val>0.1789650022983551</right_val></_></_> 3632 <_> 3633 <!-- tree 7 --> 3634 <_> 3635 <!-- root node --> 3636 <feature> 3637 <rects> 3638 <_> 3639 16 10 6 3 -1.</_> 3640 <_> 3641 16 11 6 1 3.</_></rects> 3642 <tilted>0</tilted></feature> 3643 <threshold>6.0826768167316914e-003</threshold> 3644 <left_val>-0.1706372052431107</left_val> 3645 <right_val>0.5375748276710510</right_val></_></_> 3646 <_> 3647 <!-- tree 8 --> 3648 <_> 3649 <!-- root node --> 3650 <feature> 3651 <rects> 3652 <_> 3653 8 5 8 13 -1.</_> 3654 <_> 3655 12 5 4 13 2.</_></rects> 3656 <tilted>0</tilted></feature> 3657 <threshold>-0.0390073694288731</threshold> 3658 <left_val>-0.6834635734558106</left_val> 3659 <right_val>0.1441708058118820</right_val></_></_> 3660 <_> 3661 <!-- tree 9 --> 3662 <_> 3663 <!-- root node --> 3664 <feature> 3665 <rects> 3666 <_> 3667 0 0 36 8 -1.</_> 3668 <_> 3669 18 0 18 4 2.</_> 3670 <_> 3671 0 4 18 4 2.</_></rects> 3672 <tilted>0</tilted></feature> 3673 <threshold>-0.0703379511833191</threshold> 3674 <left_val>-0.6508566737174988</left_val> 3675 <right_val>0.1008547991514206</right_val></_></_> 3676 <_> 3677 <!-- tree 10 --> 3678 <_> 3679 <!-- root node --> 3680 <feature> 3681 <rects> 3682 <_> 3683 1 5 8 12 -1.</_> 3684 <_> 3685 1 5 4 6 2.</_> 3686 <_> 3687 5 11 4 6 2.</_></rects> 3688 <tilted>0</tilted></feature> 3689 <threshold>0.0331666991114616</threshold> 3690 <left_val>-0.1932571977376938</left_val> 3691 <right_val>0.4779865145683289</right_val></_></_> 3692 <_> 3693 <!-- tree 11 --> 3694 <_> 3695 <!-- root node --> 3696 <feature> 3697 <rects> 3698 <_> 3699 18 8 18 10 -1.</_> 3700 <_> 3701 27 8 9 5 2.</_> 3702 <_> 3703 18 13 9 5 2.</_></rects> 3704 <tilted>0</tilted></feature> 3705 <threshold>0.0752889066934586</threshold> 3706 <left_val>-0.0695677325129509</left_val> 3707 <right_val>0.4125064909458160</right_val></_></_> 3708 <_> 3709 <!-- tree 12 --> 3710 <_> 3711 <!-- root node --> 3712 <feature> 3713 <rects> 3714 <_> 3715 0 8 18 10 -1.</_> 3716 <_> 3717 0 8 9 5 2.</_> 3718 <_> 3719 9 13 9 5 2.</_></rects> 3720 <tilted>0</tilted></feature> 3721 <threshold>-0.0705017298460007</threshold> 3722 <left_val>0.7157300710678101</left_val> 3723 <right_val>-0.1022270023822784</right_val></_></_> 3724 <_> 3725 <!-- tree 13 --> 3726 <_> 3727 <!-- root node --> 3728 <feature> 3729 <rects> 3730 <_> 3731 11 5 14 3 -1.</_> 3732 <_> 3733 11 6 14 1 3.</_></rects> 3734 <tilted>0</tilted></feature> 3735 <threshold>0.0122494902461767</threshold> 3736 <left_val>-0.1061242967844009</left_val> 3737 <right_val>0.6295958161354065</right_val></_></_> 3738 <_> 3739 <!-- tree 14 --> 3740 <_> 3741 <!-- root node --> 3742 <feature> 3743 <rects> 3744 <_> 3745 10 6 16 6 -1.</_> 3746 <_> 3747 10 8 16 2 3.</_></rects> 3748 <tilted>0</tilted></feature> 3749 <threshold>0.0706446766853333</threshold> 3750 <left_val>-0.0973746329545975</left_val> 3751 <right_val>0.6762204170227051</right_val></_></_> 3752 <_> 3753 <!-- tree 15 --> 3754 <_> 3755 <!-- root node --> 3756 <feature> 3757 <rects> 3758 <_> 3759 7 2 24 16 -1.</_> 3760 <_> 3761 19 2 12 8 2.</_> 3762 <_> 3763 7 10 12 8 2.</_></rects> 3764 <tilted>0</tilted></feature> 3765 <threshold>0.1624888032674789</threshold> 3766 <left_val>0.0527133606374264</left_val> 3767 <right_val>-0.8494657278060913</right_val></_></_> 3768 <_> 3769 <!-- tree 16 --> 3770 <_> 3771 <!-- root node --> 3772 <feature> 3773 <rects> 3774 <_> 3775 0 1 18 15 -1.</_> 3776 <_> 3777 6 6 6 5 9.</_></rects> 3778 <tilted>0</tilted></feature> 3779 <threshold>0.1380825042724609</threshold> 3780 <left_val>0.1406479030847549</left_val> 3781 <right_val>-0.4764721095561981</right_val></_></_></trees> 3782 <stage_threshold>-1.4497200250625610</stage_threshold> 3783 <parent>10</parent> 3784 <next>-1</next></_> 3785 <_> 3786 <!-- stage 12 --> 3787 <trees> 3788 <_> 3789 <!-- tree 0 --> 3790 <_> 3791 <!-- root node --> 3792 <feature> 3793 <rects> 3794 <_> 3795 4 5 16 6 -1.</_> 3796 <_> 3797 12 5 8 6 2.</_></rects> 3798 <tilted>0</tilted></feature> 3799 <threshold>-0.0418823398649693</threshold> 3800 <left_val>-0.8077452778816223</left_val> 3801 <right_val>0.2640967071056366</right_val></_></_> 3802 <_> 3803 <!-- tree 1 --> 3804 <_> 3805 <!-- root node --> 3806 <feature> 3807 <rects> 3808 <_> 3809 29 0 6 11 -1.</_> 3810 <_> 3811 31 2 2 11 3.</_></rects> 3812 <tilted>1</tilted></feature> 3813 <threshold>-0.0536229908466339</threshold> 3814 <left_val>0.5580704212188721</left_val> 3815 <right_val>-0.2498968988656998</right_val></_></_> 3816 <_> 3817 <!-- tree 2 --> 3818 <_> 3819 <!-- root node --> 3820 <feature> 3821 <rects> 3822 <_> 3823 2 8 9 1 -1.</_> 3824 <_> 3825 5 11 3 1 3.</_></rects> 3826 <tilted>1</tilted></feature> 3827 <threshold>9.3709938228130341e-003</threshold> 3828 <left_val>0.2650170028209686</left_val> 3829 <right_val>-0.5990694761276245</right_val></_></_> 3830 <_> 3831 <!-- tree 3 --> 3832 <_> 3833 <!-- root node --> 3834 <feature> 3835 <rects> 3836 <_> 3837 10 6 17 3 -1.</_> 3838 <_> 3839 10 7 17 1 3.</_></rects> 3840 <tilted>0</tilted></feature> 3841 <threshold>0.0139097301289439</threshold> 3842 <left_val>-0.1470918059349060</left_val> 3843 <right_val>0.7354667186737061</right_val></_></_> 3844 <_> 3845 <!-- tree 4 --> 3846 <_> 3847 <!-- root node --> 3848 <feature> 3849 <rects> 3850 <_> 3851 18 6 6 2 -1.</_> 3852 <_> 3853 20 8 2 2 3.</_></rects> 3854 <tilted>1</tilted></feature> 3855 <threshold>0.0190035700798035</threshold> 3856 <left_val>-0.1887511014938355</left_val> 3857 <right_val>0.7487422227859497</right_val></_></_> 3858 <_> 3859 <!-- tree 5 --> 3860 <_> 3861 <!-- root node --> 3862 <feature> 3863 <rects> 3864 <_> 3865 13 11 12 3 -1.</_> 3866 <_> 3867 13 12 12 1 3.</_></rects> 3868 <tilted>0</tilted></feature> 3869 <threshold>5.9199850074946880e-003</threshold> 3870 <left_val>-0.1599563956260681</left_val> 3871 <right_val>0.5673577785491943</right_val></_></_> 3872 <_> 3873 <!-- tree 6 --> 3874 <_> 3875 <!-- root node --> 3876 <feature> 3877 <rects> 3878 <_> 3879 2 3 8 8 -1.</_> 3880 <_> 3881 2 3 4 4 2.</_> 3882 <_> 3883 6 7 4 4 2.</_></rects> 3884 <tilted>0</tilted></feature> 3885 <threshold>-0.0247051399201155</threshold> 3886 <left_val>0.7556992173194885</left_val> 3887 <right_val>-0.1235088035464287</right_val></_></_> 3888 <_> 3889 <!-- tree 7 --> 3890 <_> 3891 <!-- root node --> 3892 <feature> 3893 <rects> 3894 <_> 3895 18 12 18 4 -1.</_> 3896 <_> 3897 27 12 9 2 2.</_> 3898 <_> 3899 18 14 9 2 2.</_></rects> 3900 <tilted>0</tilted></feature> 3901 <threshold>0.0160583592951298</threshold> 3902 <left_val>-0.1282460987567902</left_val> 3903 <right_val>0.5129454731941223</right_val></_></_> 3904 <_> 3905 <!-- tree 8 --> 3906 <_> 3907 <!-- root node --> 3908 <feature> 3909 <rects> 3910 <_> 3911 11 5 11 3 -1.</_> 3912 <_> 3913 11 6 11 1 3.</_></rects> 3914 <tilted>0</tilted></feature> 3915 <threshold>8.8288700208067894e-003</threshold> 3916 <left_val>-0.1686663925647736</left_val> 3917 <right_val>0.6152185201644898</right_val></_></_> 3918 <_> 3919 <!-- tree 9 --> 3920 <_> 3921 <!-- root node --> 3922 <feature> 3923 <rects> 3924 <_> 3925 14 7 14 4 -1.</_> 3926 <_> 3927 14 8 14 2 2.</_></rects> 3928 <tilted>0</tilted></feature> 3929 <threshold>0.0175563395023346</threshold> 3930 <left_val>-0.1090169996023178</left_val> 3931 <right_val>0.5803176164627075</right_val></_></_> 3932 <_> 3933 <!-- tree 10 --> 3934 <_> 3935 <!-- root node --> 3936 <feature> 3937 <rects> 3938 <_> 3939 9 8 16 10 -1.</_> 3940 <_> 3941 9 8 8 5 2.</_> 3942 <_> 3943 17 13 8 5 2.</_></rects> 3944 <tilted>0</tilted></feature> 3945 <threshold>0.0421881191432476</threshold> 3946 <left_val>0.1486624032258987</left_val> 3947 <right_val>-0.6922233104705811</right_val></_></_> 3948 <_> 3949 <!-- tree 11 --> 3950 <_> 3951 <!-- root node --> 3952 <feature> 3953 <rects> 3954 <_> 3955 18 17 2 1 -1.</_> 3956 <_> 3957 18 17 1 1 2.</_></rects> 3958 <tilted>0</tilted></feature> 3959 <threshold>5.0687207840383053e-004</threshold> 3960 <left_val>0.0315808691084385</left_val> 3961 <right_val>-0.3700995147228241</right_val></_></_> 3962 <_> 3963 <!-- tree 12 --> 3964 <_> 3965 <!-- root node --> 3966 <feature> 3967 <rects> 3968 <_> 3969 13 10 5 3 -1.</_> 3970 <_> 3971 13 11 5 1 3.</_></rects> 3972 <tilted>0</tilted></feature> 3973 <threshold>2.7651190757751465e-003</threshold> 3974 <left_val>-0.2133754044771195</left_val> 3975 <right_val>0.4704301059246063</right_val></_></_> 3976 <_> 3977 <!-- tree 13 --> 3978 <_> 3979 <!-- root node --> 3980 <feature> 3981 <rects> 3982 <_> 3983 18 17 2 1 -1.</_> 3984 <_> 3985 18 17 1 1 2.</_></rects> 3986 <tilted>0</tilted></feature> 3987 <threshold>-1.2231520377099514e-003</threshold> 3988 <left_val>-0.7818967103958130</left_val> 3989 <right_val>0.0209542606025934</right_val></_></_> 3990 <_> 3991 <!-- tree 14 --> 3992 <_> 3993 <!-- root node --> 3994 <feature> 3995 <rects> 3996 <_> 3997 7 5 8 3 -1.</_> 3998 <_> 3999 6 6 8 1 3.</_></rects> 4000 <tilted>1</tilted></feature> 4001 <threshold>8.5432287305593491e-003</threshold> 4002 <left_val>-0.1455352008342743</left_val> 4003 <right_val>0.6789504289627075</right_val></_></_> 4004 <_> 4005 <!-- tree 15 --> 4006 <_> 4007 <!-- root node --> 4008 <feature> 4009 <rects> 4010 <_> 4011 18 17 2 1 -1.</_> 4012 <_> 4013 18 17 1 1 2.</_></rects> 4014 <tilted>0</tilted></feature> 4015 <threshold>-2.0657219283748418e-004</threshold> 4016 <left_val>0.2437624037265778</left_val> 4017 <right_val>-0.0675588026642799</right_val></_></_> 4018 <_> 4019 <!-- tree 16 --> 4020 <_> 4021 <!-- root node --> 4022 <feature> 4023 <rects> 4024 <_> 4025 10 5 5 3 -1.</_> 4026 <_> 4027 10 6 5 1 3.</_></rects> 4028 <tilted>0</tilted></feature> 4029 <threshold>-4.6798270195722580e-003</threshold> 4030 <left_val>0.6684169769287109</left_val> 4031 <right_val>-0.1388788074254990</right_val></_></_> 4032 <_> 4033 <!-- tree 17 --> 4034 <_> 4035 <!-- root node --> 4036 <feature> 4037 <rects> 4038 <_> 4039 2 5 34 10 -1.</_> 4040 <_> 4041 19 5 17 5 2.</_> 4042 <_> 4043 2 10 17 5 2.</_></rects> 4044 <tilted>0</tilted></feature> 4045 <threshold>0.1220175996422768</threshold> 4046 <left_val>0.1102816015481949</left_val> 4047 <right_val>-0.7530742287635803</right_val></_></_> 4048 <_> 4049 <!-- tree 18 --> 4050 <_> 4051 <!-- root node --> 4052 <feature> 4053 <rects> 4054 <_> 4055 3 2 12 3 -1.</_> 4056 <_> 4057 6 5 6 3 2.</_></rects> 4058 <tilted>1</tilted></feature> 4059 <threshold>0.0204043406993151</threshold> 4060 <left_val>0.1645383983850479</left_val> 4061 <right_val>-0.5223162174224854</right_val></_></_> 4062 <_> 4063 <!-- tree 19 --> 4064 <_> 4065 <!-- root node --> 4066 <feature> 4067 <rects> 4068 <_> 4069 35 6 1 6 -1.</_> 4070 <_> 4071 35 8 1 2 3.</_></rects> 4072 <tilted>0</tilted></feature> 4073 <threshold>8.0343370791524649e-004</threshold> 4074 <left_val>-0.1301285028457642</left_val> 4075 <right_val>0.2635852992534638</right_val></_></_></trees> 4076 <stage_threshold>-1.4622910022735596</stage_threshold> 4077 <parent>11</parent> 4078 <next>-1</next></_> 4079 <_> 4080 <!-- stage 13 --> 4081 <trees> 4082 <_> 4083 <!-- tree 0 --> 4084 <_> 4085 <!-- root node --> 4086 <feature> 4087 <rects> 4088 <_> 4089 10 6 13 6 -1.</_> 4090 <_> 4091 10 8 13 2 3.</_></rects> 4092 <tilted>0</tilted></feature> 4093 <threshold>0.0727917104959488</threshold> 4094 <left_val>-0.1372790038585663</left_val> 4095 <right_val>0.8291574716567993</right_val></_></_> 4096 <_> 4097 <!-- tree 1 --> 4098 <_> 4099 <!-- root node --> 4100 <feature> 4101 <rects> 4102 <_> 4103 15 5 6 4 -1.</_> 4104 <_> 4105 15 6 6 2 2.</_></rects> 4106 <tilted>0</tilted></feature> 4107 <threshold>7.5939209200441837e-003</threshold> 4108 <left_val>-0.1678012013435364</left_val> 4109 <right_val>0.5683972239494324</right_val></_></_> 4110 <_> 4111 <!-- tree 2 --> 4112 <_> 4113 <!-- root node --> 4114 <feature> 4115 <rects> 4116 <_> 4117 5 2 11 4 -1.</_> 4118 <_> 4119 4 3 11 2 2.</_></rects> 4120 <tilted>1</tilted></feature> 4121 <threshold>-0.0235623903572559</threshold> 4122 <left_val>0.6500560045242310</left_val> 4123 <right_val>-0.1424535065889359</right_val></_></_> 4124 <_> 4125 <!-- tree 3 --> 4126 <_> 4127 <!-- root node --> 4128 <feature> 4129 <rects> 4130 <_> 4131 26 6 10 6 -1.</_> 4132 <_> 4133 31 6 5 3 2.</_> 4134 <_> 4135 26 9 5 3 2.</_></rects> 4136 <tilted>0</tilted></feature> 4137 <threshold>0.0173929501324892</threshold> 4138 <left_val>-0.1529144942760468</left_val> 4139 <right_val>0.3425354063510895</right_val></_></_> 4140 <_> 4141 <!-- tree 4 --> 4142 <_> 4143 <!-- root node --> 4144 <feature> 4145 <rects> 4146 <_> 4147 10 7 11 8 -1.</_> 4148 <_> 4149 10 9 11 4 2.</_></rects> 4150 <tilted>0</tilted></feature> 4151 <threshold>0.0718258023262024</threshold> 4152 <left_val>-0.0991311371326447</left_val> 4153 <right_val>0.8279678821563721</right_val></_></_> 4154 <_> 4155 <!-- tree 5 --> 4156 <_> 4157 <!-- root node --> 4158 <feature> 4159 <rects> 4160 <_> 4161 28 2 4 9 -1.</_> 4162 <_> 4163 29 3 2 9 2.</_></rects> 4164 <tilted>1</tilted></feature> 4165 <threshold>0.0136738000437617</threshold> 4166 <left_val>-0.0417872704565525</left_val> 4167 <right_val>0.5078148245811462</right_val></_></_> 4168 <_> 4169 <!-- tree 6 --> 4170 <_> 4171 <!-- root node --> 4172 <feature> 4173 <rects> 4174 <_> 4175 8 2 10 4 -1.</_> 4176 <_> 4177 7 3 10 2 2.</_></rects> 4178 <tilted>1</tilted></feature> 4179 <threshold>-0.0285859592258930</threshold> 4180 <left_val>0.7011532187461853</left_val> 4181 <right_val>-0.1314471065998077</right_val></_></_> 4182 <_> 4183 <!-- tree 7 --> 4184 <_> 4185 <!-- root node --> 4186 <feature> 4187 <rects> 4188 <_> 4189 31 0 5 2 -1.</_> 4190 <_> 4191 31 1 5 1 2.</_></rects> 4192 <tilted>0</tilted></feature> 4193 <threshold>-4.1845720261335373e-004</threshold> 4194 <left_val>0.2845467031002045</left_val> 4195 <right_val>-0.3123202919960022</right_val></_></_> 4196 <_> 4197 <!-- tree 8 --> 4198 <_> 4199 <!-- root node --> 4200 <feature> 4201 <rects> 4202 <_> 4203 10 6 16 12 -1.</_> 4204 <_> 4205 10 10 16 4 3.</_></rects> 4206 <tilted>0</tilted></feature> 4207 <threshold>-0.0520956814289093</threshold> 4208 <left_val>0.4181294143199921</left_val> 4209 <right_val>-0.1699313074350357</right_val></_></_> 4210 <_> 4211 <!-- tree 9 --> 4212 <_> 4213 <!-- root node --> 4214 <feature> 4215 <rects> 4216 <_> 4217 18 4 4 3 -1.</_> 4218 <_> 4219 18 5 4 1 3.</_></rects> 4220 <tilted>0</tilted></feature> 4221 <threshold>3.2256329432129860e-003</threshold> 4222 <left_val>-0.0904662087559700</left_val> 4223 <right_val>0.3008623123168945</right_val></_></_> 4224 <_> 4225 <!-- tree 10 --> 4226 <_> 4227 <!-- root node --> 4228 <feature> 4229 <rects> 4230 <_> 4231 11 10 6 6 -1.</_> 4232 <_> 4233 11 12 6 2 3.</_></rects> 4234 <tilted>0</tilted></feature> 4235 <threshold>0.0347716398537159</threshold> 4236 <left_val>-0.0842167884111404</left_val> 4237 <right_val>0.7801663875579834</right_val></_></_> 4238 <_> 4239 <!-- tree 11 --> 4240 <_> 4241 <!-- root node --> 4242 <feature> 4243 <rects> 4244 <_> 4245 35 8 1 10 -1.</_> 4246 <_> 4247 35 13 1 5 2.</_></rects> 4248 <tilted>0</tilted></feature> 4249 <threshold>-1.3356630224734545e-003</threshold> 4250 <left_val>0.3316453099250794</left_val> 4251 <right_val>-0.1696092039346695</right_val></_></_> 4252 <_> 4253 <!-- tree 12 --> 4254 <_> 4255 <!-- root node --> 4256 <feature> 4257 <rects> 4258 <_> 4259 0 10 36 8 -1.</_> 4260 <_> 4261 18 10 18 8 2.</_></rects> 4262 <tilted>0</tilted></feature> 4263 <threshold>0.2510198056697846</threshold> 4264 <left_val>-0.1392046958208084</left_val> 4265 <right_val>0.6633893251419067</right_val></_></_> 4266 <_> 4267 <!-- tree 13 --> 4268 <_> 4269 <!-- root node --> 4270 <feature> 4271 <rects> 4272 <_> 4273 16 7 6 8 -1.</_> 4274 <_> 4275 19 7 3 4 2.</_> 4276 <_> 4277 16 11 3 4 2.</_></rects> 4278 <tilted>0</tilted></feature> 4279 <threshold>-9.9689997732639313e-003</threshold> 4280 <left_val>-0.3713817000389099</left_val> 4281 <right_val>0.1290012001991272</right_val></_></_> 4282 <_> 4283 <!-- tree 14 --> 4284 <_> 4285 <!-- root node --> 4286 <feature> 4287 <rects> 4288 <_> 4289 7 6 8 4 -1.</_> 4290 <_> 4291 7 6 4 4 2.</_></rects> 4292 <tilted>1</tilted></feature> 4293 <threshold>0.0143037298694253</threshold> 4294 <left_val>0.1572919934988022</left_val> 4295 <right_val>-0.5093821287155151</right_val></_></_> 4296 <_> 4297 <!-- tree 15 --> 4298 <_> 4299 <!-- root node --> 4300 <feature> 4301 <rects> 4302 <_> 4303 21 11 4 3 -1.</_> 4304 <_> 4305 21 12 4 1 3.</_></rects> 4306 <tilted>0</tilted></feature> 4307 <threshold>-7.0856059901416302e-003</threshold> 4308 <left_val>0.4656791090965271</left_val> 4309 <right_val>-0.0662708207964897</right_val></_></_> 4310 <_> 4311 <!-- tree 16 --> 4312 <_> 4313 <!-- root node --> 4314 <feature> 4315 <rects> 4316 <_> 4317 0 9 1 8 -1.</_> 4318 <_> 4319 0 13 1 4 2.</_></rects> 4320 <tilted>0</tilted></feature> 4321 <threshold>-4.6260809176601470e-004</threshold> 4322 <left_val>0.2933731079101563</left_val> 4323 <right_val>-0.2333986014127731</right_val></_></_> 4324 <_> 4325 <!-- tree 17 --> 4326 <_> 4327 <!-- root node --> 4328 <feature> 4329 <rects> 4330 <_> 4331 27 7 6 4 -1.</_> 4332 <_> 4333 29 9 2 4 3.</_></rects> 4334 <tilted>1</tilted></feature> 4335 <threshold>-0.0344354808330536</threshold> 4336 <left_val>0.7002474069595337</left_val> 4337 <right_val>-0.1013351008296013</right_val></_></_> 4338 <_> 4339 <!-- tree 18 --> 4340 <_> 4341 <!-- root node --> 4342 <feature> 4343 <rects> 4344 <_> 4345 10 14 8 4 -1.</_> 4346 <_> 4347 12 14 4 4 2.</_></rects> 4348 <tilted>0</tilted></feature> 4349 <threshold>-7.2570890188217163e-003</threshold> 4350 <left_val>-0.5628641247749329</left_val> 4351 <right_val>0.1314862072467804</right_val></_></_> 4352 <_> 4353 <!-- tree 19 --> 4354 <_> 4355 <!-- root node --> 4356 <feature> 4357 <rects> 4358 <_> 4359 18 17 2 1 -1.</_> 4360 <_> 4361 18 17 1 1 2.</_></rects> 4362 <tilted>0</tilted></feature> 4363 <threshold>4.8352940939366817e-004</threshold> 4364 <left_val>0.0262274891138077</left_val> 4365 <right_val>-0.2605080008506775</right_val></_></_> 4366 <_> 4367 <!-- tree 20 --> 4368 <_> 4369 <!-- root node --> 4370 <feature> 4371 <rects> 4372 <_> 4373 10 4 11 4 -1.</_> 4374 <_> 4375 10 5 11 2 2.</_></rects> 4376 <tilted>0</tilted></feature> 4377 <threshold>-0.0129999397322536</threshold> 4378 <left_val>0.5311700105667114</left_val> 4379 <right_val>-0.1202305033802986</right_val></_></_> 4380 <_> 4381 <!-- tree 21 --> 4382 <_> 4383 <!-- root node --> 4384 <feature> 4385 <rects> 4386 <_> 4387 17 12 2 4 -1.</_> 4388 <_> 4389 17 13 2 2 2.</_></rects> 4390 <tilted>0</tilted></feature> 4391 <threshold>-1.0009329998865724e-003</threshold> 4392 <left_val>0.3964129984378815</left_val> 4393 <right_val>-0.1599515974521637</right_val></_></_> 4394 <_> 4395 <!-- tree 22 --> 4396 <_> 4397 <!-- root node --> 4398 <feature> 4399 <rects> 4400 <_> 4401 13 4 5 3 -1.</_> 4402 <_> 4403 13 5 5 1 3.</_></rects> 4404 <tilted>0</tilted></feature> 4405 <threshold>4.1314200498163700e-003</threshold> 4406 <left_val>-0.1492992043495178</left_val> 4407 <right_val>0.4295912086963654</right_val></_></_> 4408 <_> 4409 <!-- tree 23 --> 4410 <_> 4411 <!-- root node --> 4412 <feature> 4413 <rects> 4414 <_> 4415 13 12 11 2 -1.</_> 4416 <_> 4417 13 13 11 1 2.</_></rects> 4418 <tilted>0</tilted></feature> 4419 <threshold>8.7364455685019493e-003</threshold> 4420 <left_val>-0.1127102002501488</left_val> 4421 <right_val>0.4945647120475769</right_val></_></_> 4422 <_> 4423 <!-- tree 24 --> 4424 <_> 4425 <!-- root node --> 4426 <feature> 4427 <rects> 4428 <_> 4429 1 16 2 2 -1.</_> 4430 <_> 4431 1 16 1 1 2.</_> 4432 <_> 4433 2 17 1 1 2.</_></rects> 4434 <tilted>0</tilted></feature> 4435 <threshold>2.6352869463153183e-004</threshold> 4436 <left_val>-0.1212491989135742</left_val> 4437 <right_val>0.4943937957286835</right_val></_></_> 4438 <_> 4439 <!-- tree 25 --> 4440 <_> 4441 <!-- root node --> 4442 <feature> 4443 <rects> 4444 <_> 4445 27 7 6 4 -1.</_> 4446 <_> 4447 29 9 2 4 3.</_></rects> 4448 <tilted>1</tilted></feature> 4449 <threshold>-0.0538859590888023</threshold> 4450 <left_val>0.7035598754882813</left_val> 4451 <right_val>-0.0132305501028895</right_val></_></_> 4452 <_> 4453 <!-- tree 26 --> 4454 <_> 4455 <!-- root node --> 4456 <feature> 4457 <rects> 4458 <_> 4459 4 7 6 6 -1.</_> 4460 <_> 4461 4 9 6 2 3.</_></rects> 4462 <tilted>0</tilted></feature> 4463 <threshold>4.2885672301054001e-003</threshold> 4464 <left_val>-0.1754055023193359</left_val> 4465 <right_val>0.3567946851253510</right_val></_></_> 4466 <_> 4467 <!-- tree 27 --> 4468 <_> 4469 <!-- root node --> 4470 <feature> 4471 <rects> 4472 <_> 4473 30 6 4 5 -1.</_> 4474 <_> 4475 31 7 2 5 2.</_></rects> 4476 <tilted>1</tilted></feature> 4477 <threshold>7.9539399594068527e-003</threshold> 4478 <left_val>-0.0998840034008026</left_val> 4479 <right_val>0.3137167096138001</right_val></_></_></trees> 4480 <stage_threshold>-1.3885619640350342</stage_threshold> 4481 <parent>12</parent> 4482 <next>-1</next></_> 4483 <_> 4484 <!-- stage 14 --> 4485 <trees> 4486 <_> 4487 <!-- tree 0 --> 4488 <_> 4489 <!-- root node --> 4490 <feature> 4491 <rects> 4492 <_> 4493 8 5 20 7 -1.</_> 4494 <_> 4495 13 5 10 7 2.</_></rects> 4496 <tilted>0</tilted></feature> 4497 <threshold>0.0567523688077927</threshold> 4498 <left_val>-0.3257648050785065</left_val> 4499 <right_val>0.3737593889236450</right_val></_></_> 4500 <_> 4501 <!-- tree 1 --> 4502 <_> 4503 <!-- root node --> 4504 <feature> 4505 <rects> 4506 <_> 4507 30 2 3 12 -1.</_> 4508 <_> 4509 30 8 3 6 2.</_></rects> 4510 <tilted>0</tilted></feature> 4511 <threshold>7.0906039327383041e-003</threshold> 4512 <left_val>-0.1391862928867340</left_val> 4513 <right_val>0.1503984034061432</right_val></_></_> 4514 <_> 4515 <!-- tree 2 --> 4516 <_> 4517 <!-- root node --> 4518 <feature> 4519 <rects> 4520 <_> 4521 4 2 12 4 -1.</_> 4522 <_> 4523 4 2 12 2 2.</_></rects> 4524 <tilted>1</tilted></feature> 4525 <threshold>-0.0412988215684891</threshold> 4526 <left_val>0.4702607989311218</left_val> 4527 <right_val>-0.1617936044931412</right_val></_></_> 4528 <_> 4529 <!-- tree 3 --> 4530 <_> 4531 <!-- root node --> 4532 <feature> 4533 <rects> 4534 <_> 4535 0 8 36 6 -1.</_> 4536 <_> 4537 12 10 12 2 9.</_></rects> 4538 <tilted>0</tilted></feature> 4539 <threshold>0.4775018990039825</threshold> 4540 <left_val>-0.1006157994270325</left_val> 4541 <right_val>0.7635074257850647</right_val></_></_> 4542 <_> 4543 <!-- tree 4 --> 4544 <_> 4545 <!-- root node --> 4546 <feature> 4547 <rects> 4548 <_> 4549 3 5 30 6 -1.</_> 4550 <_> 4551 13 7 10 2 9.</_></rects> 4552 <tilted>0</tilted></feature> 4553 <threshold>0.4226649105548859</threshold> 4554 <left_val>-0.0351909101009369</left_val> 4555 <right_val>0.8303126096725464</right_val></_></_> 4556 <_> 4557 <!-- tree 5 --> 4558 <_> 4559 <!-- root node --> 4560 <feature> 4561 <rects> 4562 <_> 4563 14 4 12 9 -1.</_> 4564 <_> 4565 18 4 4 9 3.</_></rects> 4566 <tilted>0</tilted></feature> 4567 <threshold>-0.0330318994820118</threshold> 4568 <left_val>-0.3750554919242859</left_val> 4569 <right_val>0.0489026196300983</right_val></_></_> 4570 <_> 4571 <!-- tree 6 --> 4572 <_> 4573 <!-- root node --> 4574 <feature> 4575 <rects> 4576 <_> 4577 0 17 6 1 -1.</_> 4578 <_> 4579 3 17 3 1 2.</_></rects> 4580 <tilted>0</tilted></feature> 4581 <threshold>1.1923770216526464e-004</threshold> 4582 <left_val>-0.2661466896533966</left_val> 4583 <right_val>0.2234652042388916</right_val></_></_> 4584 <_> 4585 <!-- tree 7 --> 4586 <_> 4587 <!-- root node --> 4588 <feature> 4589 <rects> 4590 <_> 4591 34 0 1 2 -1.</_> 4592 <_> 4593 34 0 1 1 2.</_></rects> 4594 <tilted>1</tilted></feature> 4595 <threshold>4.2101400904357433e-003</threshold> 4596 <left_val>8.7575968354940414e-003</left_val> 4597 <right_val>-0.5938351750373840</right_val></_></_> 4598 <_> 4599 <!-- tree 8 --> 4600 <_> 4601 <!-- root node --> 4602 <feature> 4603 <rects> 4604 <_> 4605 2 0 2 1 -1.</_> 4606 <_> 4607 2 0 1 1 2.</_></rects> 4608 <tilted>1</tilted></feature> 4609 <threshold>3.3337279455736279e-004</threshold> 4610 <left_val>-0.2122765928506851</left_val> 4611 <right_val>0.2473503947257996</right_val></_></_> 4612 <_> 4613 <!-- tree 9 --> 4614 <_> 4615 <!-- root node --> 4616 <feature> 4617 <rects> 4618 <_> 4619 31 3 3 8 -1.</_> 4620 <_> 4621 32 4 1 8 3.</_></rects> 4622 <tilted>1</tilted></feature> 4623 <threshold>0.0117938900366426</threshold> 4624 <left_val>-0.0689979493618011</left_val> 4625 <right_val>0.5898082852363586</right_val></_></_> 4626 <_> 4627 <!-- tree 10 --> 4628 <_> 4629 <!-- root node --> 4630 <feature> 4631 <rects> 4632 <_> 4633 5 6 26 12 -1.</_> 4634 <_> 4635 5 6 13 6 2.</_> 4636 <_> 4637 18 12 13 6 2.</_></rects> 4638 <tilted>0</tilted></feature> 4639 <threshold>-0.1143207997083664</threshold> 4640 <left_val>-0.7733368277549744</left_val> 4641 <right_val>0.0628622919321060</right_val></_></_> 4642 <_> 4643 <!-- tree 11 --> 4644 <_> 4645 <!-- root node --> 4646 <feature> 4647 <rects> 4648 <_> 4649 14 4 12 9 -1.</_> 4650 <_> 4651 18 4 4 9 3.</_></rects> 4652 <tilted>0</tilted></feature> 4653 <threshold>0.0824010074138641</threshold> 4654 <left_val>0.0168252792209387</left_val> 4655 <right_val>-0.6170011758804321</right_val></_></_> 4656 <_> 4657 <!-- tree 12 --> 4658 <_> 4659 <!-- root node --> 4660 <feature> 4661 <rects> 4662 <_> 4663 13 7 10 10 -1.</_> 4664 <_> 4665 13 7 5 5 2.</_> 4666 <_> 4667 18 12 5 5 2.</_></rects> 4668 <tilted>0</tilted></feature> 4669 <threshold>0.0181261505931616</threshold> 4670 <left_val>0.0995334684848785</left_val> 4671 <right_val>-0.3830915987491608</right_val></_></_> 4672 <_> 4673 <!-- tree 13 --> 4674 <_> 4675 <!-- root node --> 4676 <feature> 4677 <rects> 4678 <_> 4679 30 5 4 6 -1.</_> 4680 <_> 4681 31 6 2 6 2.</_></rects> 4682 <tilted>1</tilted></feature> 4683 <threshold>8.9282449334859848e-003</threshold> 4684 <left_val>-0.1010973975062370</left_val> 4685 <right_val>0.2948305010795593</right_val></_></_> 4686 <_> 4687 <!-- tree 14 --> 4688 <_> 4689 <!-- root node --> 4690 <feature> 4691 <rects> 4692 <_> 4693 6 5 6 4 -1.</_> 4694 <_> 4695 5 6 6 2 2.</_></rects> 4696 <tilted>1</tilted></feature> 4697 <threshold>-0.0174371004104614</threshold> 4698 <left_val>0.4614987075328827</left_val> 4699 <right_val>-0.1050636023283005</right_val></_></_> 4700 <_> 4701 <!-- tree 15 --> 4702 <_> 4703 <!-- root node --> 4704 <feature> 4705 <rects> 4706 <_> 4707 29 5 4 5 -1.</_> 4708 <_> 4709 30 6 2 5 2.</_></rects> 4710 <tilted>1</tilted></feature> 4711 <threshold>-0.0112803103402257</threshold> 4712 <left_val>0.4561164975166321</left_val> 4713 <right_val>-0.1013116016983986</right_val></_></_> 4714 <_> 4715 <!-- tree 16 --> 4716 <_> 4717 <!-- root node --> 4718 <feature> 4719 <rects> 4720 <_> 4721 7 5 5 4 -1.</_> 4722 <_> 4723 6 6 5 2 2.</_></rects> 4724 <tilted>1</tilted></feature> 4725 <threshold>7.0190089754760265e-003</threshold> 4726 <left_val>-0.1368626952171326</left_val> 4727 <right_val>0.4173265993595123</right_val></_></_> 4728 <_> 4729 <!-- tree 17 --> 4730 <_> 4731 <!-- root node --> 4732 <feature> 4733 <rects> 4734 <_> 4735 0 0 36 1 -1.</_> 4736 <_> 4737 12 0 12 1 3.</_></rects> 4738 <tilted>0</tilted></feature> 4739 <threshold>-3.2439709175378084e-003</threshold> 4740 <left_val>0.2321648001670837</left_val> 4741 <right_val>-0.1791536957025528</right_val></_></_> 4742 <_> 4743 <!-- tree 18 --> 4744 <_> 4745 <!-- root node --> 4746 <feature> 4747 <rects> 4748 <_> 4749 6 3 24 6 -1.</_> 4750 <_> 4751 14 5 8 2 9.</_></rects> 4752 <tilted>0</tilted></feature> 4753 <threshold>0.3561589121818543</threshold> 4754 <left_val>-0.0486268103122711</left_val> 4755 <right_val>0.9537345767021179</right_val></_></_> 4756 <_> 4757 <!-- tree 19 --> 4758 <_> 4759 <!-- root node --> 4760 <feature> 4761 <rects> 4762 <_> 4763 15 12 6 3 -1.</_> 4764 <_> 4765 15 13 6 1 3.</_></rects> 4766 <tilted>0</tilted></feature> 4767 <threshold>3.8440749049186707e-003</threshold> 4768 <left_val>-0.1028828024864197</left_val> 4769 <right_val>0.3671778142452240</right_val></_></_> 4770 <_> 4771 <!-- tree 20 --> 4772 <_> 4773 <!-- root node --> 4774 <feature> 4775 <rects> 4776 <_> 4777 11 1 9 17 -1.</_> 4778 <_> 4779 14 1 3 17 3.</_></rects> 4780 <tilted>0</tilted></feature> 4781 <threshold>0.0609500296413898</threshold> 4782 <left_val>0.0561417415738106</left_val> 4783 <right_val>-0.6458569765090942</right_val></_></_> 4784 <_> 4785 <!-- tree 21 --> 4786 <_> 4787 <!-- root node --> 4788 <feature> 4789 <rects> 4790 <_> 4791 18 1 18 10 -1.</_> 4792 <_> 4793 18 1 9 10 2.</_></rects> 4794 <tilted>0</tilted></feature> 4795 <threshold>0.1814922988414764</threshold> 4796 <left_val>0.0308063905686140</left_val> 4797 <right_val>-0.4604896008968353</right_val></_></_> 4798 <_> 4799 <!-- tree 22 --> 4800 <_> 4801 <!-- root node --> 4802 <feature> 4803 <rects> 4804 <_> 4805 0 1 18 10 -1.</_> 4806 <_> 4807 9 1 9 10 2.</_></rects> 4808 <tilted>0</tilted></feature> 4809 <threshold>-0.0923592597246170</threshold> 4810 <left_val>-0.4524821043014526</left_val> 4811 <right_val>0.0881522372364998</right_val></_></_> 4812 <_> 4813 <!-- tree 23 --> 4814 <_> 4815 <!-- root node --> 4816 <feature> 4817 <rects> 4818 <_> 4819 30 7 4 5 -1.</_> 4820 <_> 4821 31 8 2 5 2.</_></rects> 4822 <tilted>1</tilted></feature> 4823 <threshold>7.6072998344898224e-003</threshold> 4824 <left_val>-0.0971223264932632</left_val> 4825 <right_val>0.2155224978923798</right_val></_></_> 4826 <_> 4827 <!-- tree 24 --> 4828 <_> 4829 <!-- root node --> 4830 <feature> 4831 <rects> 4832 <_> 4833 0 10 1 3 -1.</_> 4834 <_> 4835 0 11 1 1 3.</_></rects> 4836 <tilted>0</tilted></feature> 4837 <threshold>-4.6946710790507495e-004</threshold> 4838 <left_val>-0.4089371860027313</left_val> 4839 <right_val>0.0800421908497810</right_val></_></_> 4840 <_> 4841 <!-- tree 25 --> 4842 <_> 4843 <!-- root node --> 4844 <feature> 4845 <rects> 4846 <_> 4847 33 16 2 2 -1.</_> 4848 <_> 4849 34 16 1 1 2.</_> 4850 <_> 4851 33 17 1 1 2.</_></rects> 4852 <tilted>0</tilted></feature> 4853 <threshold>1.0301820293534547e-004</threshold> 4854 <left_val>-0.1153035983443260</left_val> 4855 <right_val>0.2795535027980804</right_val></_></_> 4856 <_> 4857 <!-- tree 26 --> 4858 <_> 4859 <!-- root node --> 4860 <feature> 4861 <rects> 4862 <_> 4863 1 16 2 2 -1.</_> 4864 <_> 4865 1 16 1 1 2.</_> 4866 <_> 4867 2 17 1 1 2.</_></rects> 4868 <tilted>0</tilted></feature> 4869 <threshold>2.7936851256527007e-004</threshold> 4870 <left_val>-0.1139610037207604</left_val> 4871 <right_val>0.2931660115718842</right_val></_></_> 4872 <_> 4873 <!-- tree 27 --> 4874 <_> 4875 <!-- root node --> 4876 <feature> 4877 <rects> 4878 <_> 4879 0 8 36 3 -1.</_> 4880 <_> 4881 12 9 12 1 9.</_></rects> 4882 <tilted>0</tilted></feature> 4883 <threshold>0.2467595934867859</threshold> 4884 <left_val>-0.0385956317186356</left_val> 4885 <right_val>0.8264998197555542</right_val></_></_> 4886 <_> 4887 <!-- tree 28 --> 4888 <_> 4889 <!-- root node --> 4890 <feature> 4891 <rects> 4892 <_> 4893 14 7 8 4 -1.</_> 4894 <_> 4895 14 8 8 2 2.</_></rects> 4896 <tilted>0</tilted></feature> 4897 <threshold>-8.4232958033680916e-003</threshold> 4898 <left_val>0.3299596905708313</left_val> 4899 <right_val>-0.1164536997675896</right_val></_></_> 4900 <_> 4901 <!-- tree 29 --> 4902 <_> 4903 <!-- root node --> 4904 <feature> 4905 <rects> 4906 <_> 4907 17 9 5 3 -1.</_> 4908 <_> 4909 17 10 5 1 3.</_></rects> 4910 <tilted>0</tilted></feature> 4911 <threshold>-4.2311567813158035e-003</threshold> 4912 <left_val>0.2714211940765381</left_val> 4913 <right_val>-0.1081148013472557</right_val></_></_> 4914 <_> 4915 <!-- tree 30 --> 4916 <_> 4917 <!-- root node --> 4918 <feature> 4919 <rects> 4920 <_> 4921 4 0 1 2 -1.</_> 4922 <_> 4923 4 0 1 1 2.</_></rects> 4924 <tilted>1</tilted></feature> 4925 <threshold>1.5653009759262204e-003</threshold> 4926 <left_val>0.0782537832856178</left_val> 4927 <right_val>-0.5209766030311585</right_val></_></_> 4928 <_> 4929 <!-- tree 31 --> 4930 <_> 4931 <!-- root node --> 4932 <feature> 4933 <rects> 4934 <_> 4935 31 0 3 2 -1.</_> 4936 <_> 4937 31 0 3 1 2.</_></rects> 4938 <tilted>1</tilted></feature> 4939 <threshold>-5.0341398455202579e-003</threshold> 4940 <left_val>0.2948805987834930</left_val> 4941 <right_val>-0.0469605103135109</right_val></_></_> 4942 <_> 4943 <!-- tree 32 --> 4944 <_> 4945 <!-- root node --> 4946 <feature> 4947 <rects> 4948 <_> 4949 5 0 2 3 -1.</_> 4950 <_> 4951 5 0 1 3 2.</_></rects> 4952 <tilted>1</tilted></feature> 4953 <threshold>1.4283140189945698e-003</threshold> 4954 <left_val>-0.1379459947347641</left_val> 4955 <right_val>0.2432370930910111</right_val></_></_> 4956 <_> 4957 <!-- tree 33 --> 4958 <_> 4959 <!-- root node --> 4960 <feature> 4961 <rects> 4962 <_> 4963 0 13 36 5 -1.</_> 4964 <_> 4965 0 13 18 5 2.</_></rects> 4966 <tilted>0</tilted></feature> 4967 <threshold>0.1903136968612671</threshold> 4968 <left_val>-0.0520935095846653</left_val> 4969 <right_val>0.6870803236961365</right_val></_></_> 4970 <_> 4971 <!-- tree 34 --> 4972 <_> 4973 <!-- root node --> 4974 <feature> 4975 <rects> 4976 <_> 4977 6 3 4 3 -1.</_> 4978 <_> 4979 5 4 4 1 3.</_></rects> 4980 <tilted>1</tilted></feature> 4981 <threshold>8.1368777900934219e-003</threshold> 4982 <left_val>-0.0533115193247795</left_val> 4983 <right_val>0.5827271938323975</right_val></_></_> 4984 <_> 4985 <!-- tree 35 --> 4986 <_> 4987 <!-- root node --> 4988 <feature> 4989 <rects> 4990 <_> 4991 28 7 6 3 -1.</_> 4992 <_> 4993 30 9 2 3 3.</_></rects> 4994 <tilted>1</tilted></feature> 4995 <threshold>-0.0467283688485622</threshold> 4996 <left_val>0.3552536070346832</left_val> 4997 <right_val>-0.0178062599152327</right_val></_></_> 4998 <_> 4999 <!-- tree 36 --> 5000 <_> 5001 <!-- root node --> 5002 <feature> 5003 <rects> 5004 <_> 5005 8 7 3 6 -1.</_> 5006 <_> 5007 6 9 3 2 3.</_></rects> 5008 <tilted>1</tilted></feature> 5009 <threshold>0.0143171697854996</threshold> 5010 <left_val>-0.1262664049863815</left_val> 5011 <right_val>0.2696101069450378</right_val></_></_> 5012 <_> 5013 <!-- tree 37 --> 5014 <_> 5015 <!-- root node --> 5016 <feature> 5017 <rects> 5018 <_> 5019 14 5 18 10 -1.</_> 5020 <_> 5021 23 5 9 5 2.</_> 5022 <_> 5023 14 10 9 5 2.</_></rects> 5024 <tilted>0</tilted></feature> 5025 <threshold>-0.0961097329854965</threshold> 5026 <left_val>0.3411748111248016</left_val> 5027 <right_val>-0.0392176099121571</right_val></_></_> 5028 <_> 5029 <!-- tree 38 --> 5030 <_> 5031 <!-- root node --> 5032 <feature> 5033 <rects> 5034 <_> 5035 4 5 18 10 -1.</_> 5036 <_> 5037 4 5 9 5 2.</_> 5038 <_> 5039 13 10 9 5 2.</_></rects> 5040 <tilted>0</tilted></feature> 5041 <threshold>0.0748788118362427</threshold> 5042 <left_val>-0.0648199021816254</left_val> 5043 <right_val>0.5671138167381287</right_val></_></_> 5044 <_> 5045 <!-- tree 39 --> 5046 <_> 5047 <!-- root node --> 5048 <feature> 5049 <rects> 5050 <_> 5051 32 17 3 1 -1.</_> 5052 <_> 5053 33 17 1 1 3.</_></rects> 5054 <tilted>0</tilted></feature> 5055 <threshold>-5.1972299843328074e-005</threshold> 5056 <left_val>0.2874209880828857</left_val> 5057 <right_val>-0.1642889976501465</right_val></_></_> 5058 <_> 5059 <!-- tree 40 --> 5060 <_> 5061 <!-- root node --> 5062 <feature> 5063 <rects> 5064 <_> 5065 1 17 3 1 -1.</_> 5066 <_> 5067 2 17 1 1 3.</_></rects> 5068 <tilted>0</tilted></feature> 5069 <threshold>-2.0099039829801768e-004</threshold> 5070 <left_val>0.2659021019935608</left_val> 5071 <right_val>-0.1299035996198654</right_val></_></_> 5072 <_> 5073 <!-- tree 41 --> 5074 <_> 5075 <!-- root node --> 5076 <feature> 5077 <rects> 5078 <_> 5079 5 0 26 2 -1.</_> 5080 <_> 5081 18 0 13 1 2.</_> 5082 <_> 5083 5 1 13 1 2.</_></rects> 5084 <tilted>0</tilted></feature> 5085 <threshold>0.0155834900215268</threshold> 5086 <left_val>0.0363226197659969</left_val> 5087 <right_val>-0.8874331712722778</right_val></_></_> 5088 <_> 5089 <!-- tree 42 --> 5090 <_> 5091 <!-- root node --> 5092 <feature> 5093 <rects> 5094 <_> 5095 0 3 27 9 -1.</_> 5096 <_> 5097 9 6 9 3 9.</_></rects> 5098 <tilted>0</tilted></feature> 5099 <threshold>6.7313341423869133e-003</threshold> 5100 <left_val>0.1628185957670212</left_val> 5101 <right_val>-0.1971620023250580</right_val></_></_> 5102 <_> 5103 <!-- tree 43 --> 5104 <_> 5105 <!-- root node --> 5106 <feature> 5107 <rects> 5108 <_> 5109 13 0 18 12 -1.</_> 5110 <_> 5111 13 6 18 6 2.</_></rects> 5112 <tilted>0</tilted></feature> 5113 <threshold>-0.0452514104545116</threshold> 5114 <left_val>-0.2031500935554504</left_val> 5115 <right_val>0.1573408991098404</right_val></_></_> 5116 <_> 5117 <!-- tree 44 --> 5118 <_> 5119 <!-- root node --> 5120 <feature> 5121 <rects> 5122 <_> 5123 0 17 4 1 -1.</_> 5124 <_> 5125 1 17 2 1 2.</_></rects> 5126 <tilted>0</tilted></feature> 5127 <threshold>2.8729529003612697e-004</threshold> 5128 <left_val>-0.1244959011673927</left_val> 5129 <right_val>0.2565822899341583</right_val></_></_> 5130 <_> 5131 <!-- tree 45 --> 5132 <_> 5133 <!-- root node --> 5134 <feature> 5135 <rects> 5136 <_> 5137 29 13 1 3 -1.</_> 5138 <_> 5139 28 14 1 1 3.</_></rects> 5140 <tilted>1</tilted></feature> 5141 <threshold>-2.1028579212725163e-003</threshold> 5142 <left_val>-0.5088729262351990</left_val> 5143 <right_val>0.0340831801295280</right_val></_></_> 5144 <_> 5145 <!-- tree 46 --> 5146 <_> 5147 <!-- root node --> 5148 <feature> 5149 <rects> 5150 <_> 5151 0 12 8 6 -1.</_> 5152 <_> 5153 0 14 8 2 3.</_></rects> 5154 <tilted>0</tilted></feature> 5155 <threshold>-3.9328099228441715e-003</threshold> 5156 <left_val>-0.3393375873565674</left_val> 5157 <right_val>0.0930555686354637</right_val></_></_> 5158 <_> 5159 <!-- tree 47 --> 5160 <_> 5161 <!-- root node --> 5162 <feature> 5163 <rects> 5164 <_> 5165 23 7 3 3 -1.</_> 5166 <_> 5167 24 7 1 3 3.</_></rects> 5168 <tilted>0</tilted></feature> 5169 <threshold>3.1205590348690748e-003</threshold> 5170 <left_val>-0.0227940604090691</left_val> 5171 <right_val>0.2379353046417236</right_val></_></_> 5172 <_> 5173 <!-- tree 48 --> 5174 <_> 5175 <!-- root node --> 5176 <feature> 5177 <rects> 5178 <_> 5179 11 1 12 6 -1.</_> 5180 <_> 5181 11 3 12 2 3.</_></rects> 5182 <tilted>0</tilted></feature> 5183 <threshold>0.0780286788940430</threshold> 5184 <left_val>-0.0445036217570305</left_val> 5185 <right_val>0.6776394248008728</right_val></_></_> 5186 <_> 5187 <!-- tree 49 --> 5188 <_> 5189 <!-- root node --> 5190 <feature> 5191 <rects> 5192 <_> 5193 5 10 26 8 -1.</_> 5194 <_> 5195 18 10 13 4 2.</_> 5196 <_> 5197 5 14 13 4 2.</_></rects> 5198 <tilted>0</tilted></feature> 5199 <threshold>0.0424769781529903</threshold> 5200 <left_val>0.0925821065902710</left_val> 5201 <right_val>-0.3536301851272583</right_val></_></_> 5202 <_> 5203 <!-- tree 50 --> 5204 <_> 5205 <!-- root node --> 5206 <feature> 5207 <rects> 5208 <_> 5209 11 12 9 6 -1.</_> 5210 <_> 5211 14 12 3 6 3.</_></rects> 5212 <tilted>0</tilted></feature> 5213 <threshold>-0.0257683005183935</threshold> 5214 <left_val>-0.9091991186141968</left_val> 5215 <right_val>0.0266928393393755</right_val></_></_> 5216 <_> 5217 <!-- tree 51 --> 5218 <_> 5219 <!-- root node --> 5220 <feature> 5221 <rects> 5222 <_> 5223 14 12 12 3 -1.</_> 5224 <_> 5225 18 13 4 1 9.</_></rects> 5226 <tilted>0</tilted></feature> 5227 <threshold>0.0614446699619293</threshold> 5228 <left_val>-0.0249543990939856</left_val> 5229 <right_val>0.7212049961090088</right_val></_></_> 5230 <_> 5231 <!-- tree 52 --> 5232 <_> 5233 <!-- root node --> 5234 <feature> 5235 <rects> 5236 <_> 5237 10 12 12 3 -1.</_> 5238 <_> 5239 14 13 4 1 9.</_></rects> 5240 <tilted>0</tilted></feature> 5241 <threshold>3.5776318982243538e-003</threshold> 5242 <left_val>0.1772899031639099</left_val> 5243 <right_val>-0.1972344964742661</right_val></_></_></trees> 5244 <stage_threshold>-1.2766569852828979</stage_threshold> 5245 <parent>13</parent> 5246 <next>-1</next></_> 5247 <_> 5248 <!-- stage 15 --> 5249 <trees> 5250 <_> 5251 <!-- tree 0 --> 5252 <_> 5253 <!-- root node --> 5254 <feature> 5255 <rects> 5256 <_> 5257 4 6 27 6 -1.</_> 5258 <_> 5259 13 8 9 2 9.</_></rects> 5260 <tilted>0</tilted></feature> 5261 <threshold>0.2858596146106720</threshold> 5262 <left_val>-0.1539604961872101</left_val> 5263 <right_val>0.6624677181243897</right_val></_></_> 5264 <_> 5265 <!-- tree 1 --> 5266 <_> 5267 <!-- root node --> 5268 <feature> 5269 <rects> 5270 <_> 5271 17 9 5 4 -1.</_> 5272 <_> 5273 17 10 5 2 2.</_></rects> 5274 <tilted>0</tilted></feature> 5275 <threshold>9.2271259054541588e-003</threshold> 5276 <left_val>-0.1074633970856667</left_val> 5277 <right_val>0.4311806857585907</right_val></_></_> 5278 <_> 5279 <!-- tree 2 --> 5280 <_> 5281 <!-- root node --> 5282 <feature> 5283 <rects> 5284 <_> 5285 0 0 16 2 -1.</_> 5286 <_> 5287 0 0 8 1 2.</_> 5288 <_> 5289 8 1 8 1 2.</_></rects> 5290 <tilted>0</tilted></feature> 5291 <threshold>2.2924109362065792e-003</threshold> 5292 <left_val>-0.1983013004064560</left_val> 5293 <right_val>0.3842228949069977</right_val></_></_> 5294 <_> 5295 <!-- tree 3 --> 5296 <_> 5297 <!-- root node --> 5298 <feature> 5299 <rects> 5300 <_> 5301 22 0 8 8 -1.</_> 5302 <_> 5303 26 0 4 4 2.</_> 5304 <_> 5305 22 4 4 4 2.</_></rects> 5306 <tilted>0</tilted></feature> 5307 <threshold>0.0140045098960400</threshold> 5308 <left_val>-0.1924948990345001</left_val> 5309 <right_val>0.3442491888999939</right_val></_></_> 5310 <_> 5311 <!-- tree 4 --> 5312 <_> 5313 <!-- root node --> 5314 <feature> 5315 <rects> 5316 <_> 5317 1 0 32 12 -1.</_> 5318 <_> 5319 1 0 16 6 2.</_> 5320 <_> 5321 17 6 16 6 2.</_></rects> 5322 <tilted>0</tilted></feature> 5323 <threshold>0.0960232019424438</threshold> 5324 <left_val>0.1299059987068176</left_val> 5325 <right_val>-0.6065304875373840</right_val></_></_> 5326 <_> 5327 <!-- tree 5 --> 5328 <_> 5329 <!-- root node --> 5330 <feature> 5331 <rects> 5332 <_> 5333 28 7 6 10 -1.</_> 5334 <_> 5335 31 7 3 5 2.</_> 5336 <_> 5337 28 12 3 5 2.</_></rects> 5338 <tilted>0</tilted></feature> 5339 <threshold>6.1803720891475677e-003</threshold> 5340 <left_val>-0.1904646009206772</left_val> 5341 <right_val>0.1891862004995346</right_val></_></_> 5342 <_> 5343 <!-- tree 6 --> 5344 <_> 5345 <!-- root node --> 5346 <feature> 5347 <rects> 5348 <_> 5349 2 7 6 10 -1.</_> 5350 <_> 5351 2 7 3 5 2.</_> 5352 <_> 5353 5 12 3 5 2.</_></rects> 5354 <tilted>0</tilted></feature> 5355 <threshold>8.2172285765409470e-003</threshold> 5356 <left_val>-0.2518267929553986</left_val> 5357 <right_val>0.2664459049701691</right_val></_></_> 5358 <_> 5359 <!-- tree 7 --> 5360 <_> 5361 <!-- root node --> 5362 <feature> 5363 <rects> 5364 <_> 5365 20 10 3 3 -1.</_> 5366 <_> 5367 20 11 3 1 3.</_></rects> 5368 <tilted>0</tilted></feature> 5369 <threshold>-1.4542760327458382e-003</threshold> 5370 <left_val>0.2710269093513489</left_val> 5371 <right_val>-0.1204148977994919</right_val></_></_> 5372 <_> 5373 <!-- tree 8 --> 5374 <_> 5375 <!-- root node --> 5376 <feature> 5377 <rects> 5378 <_> 5379 13 10 3 3 -1.</_> 5380 <_> 5381 13 11 3 1 3.</_></rects> 5382 <tilted>0</tilted></feature> 5383 <threshold>3.0185449868440628e-003</threshold> 5384 <left_val>-0.1353860944509506</left_val> 5385 <right_val>0.4733603000640869</right_val></_></_> 5386 <_> 5387 <!-- tree 9 --> 5388 <_> 5389 <!-- root node --> 5390 <feature> 5391 <rects> 5392 <_> 5393 17 16 6 2 -1.</_> 5394 <_> 5395 19 16 2 2 3.</_></rects> 5396 <tilted>0</tilted></feature> 5397 <threshold>-3.4214779734611511e-003</threshold> 5398 <left_val>-0.5049971938133240</left_val> 5399 <right_val>0.1042480990290642</right_val></_></_> 5400 <_> 5401 <!-- tree 10 --> 5402 <_> 5403 <!-- root node --> 5404 <feature> 5405 <rects> 5406 <_> 5407 13 11 7 3 -1.</_> 5408 <_> 5409 13 12 7 1 3.</_></rects> 5410 <tilted>0</tilted></feature> 5411 <threshold>9.5980763435363770e-003</threshold> 5412 <left_val>-0.1034729033708572</left_val> 5413 <right_val>0.5837283730506897</right_val></_></_> 5414 <_> 5415 <!-- tree 11 --> 5416 <_> 5417 <!-- root node --> 5418 <feature> 5419 <rects> 5420 <_> 5421 25 13 3 2 -1.</_> 5422 <_> 5423 25 13 3 1 2.</_></rects> 5424 <tilted>1</tilted></feature> 5425 <threshold>4.1849957779049873e-003</threshold> 5426 <left_val>0.0588967092335224</left_val> 5427 <right_val>-0.4623228907585144</right_val></_></_> 5428 <_> 5429 <!-- tree 12 --> 5430 <_> 5431 <!-- root node --> 5432 <feature> 5433 <rects> 5434 <_> 5435 13 10 4 4 -1.</_> 5436 <_> 5437 13 11 4 2 2.</_></rects> 5438 <tilted>0</tilted></feature> 5439 <threshold>-4.6107750385999680e-003</threshold> 5440 <left_val>0.3783561885356903</left_val> 5441 <right_val>-0.1259022951126099</right_val></_></_> 5442 <_> 5443 <!-- tree 13 --> 5444 <_> 5445 <!-- root node --> 5446 <feature> 5447 <rects> 5448 <_> 5449 17 16 18 2 -1.</_> 5450 <_> 5451 26 16 9 1 2.</_> 5452 <_> 5453 17 17 9 1 2.</_></rects> 5454 <tilted>0</tilted></feature> 5455 <threshold>2.8978679329156876e-003</threshold> 5456 <left_val>-0.1369954943656921</left_val> 5457 <right_val>0.2595148086547852</right_val></_></_> 5458 <_> 5459 <!-- tree 14 --> 5460 <_> 5461 <!-- root node --> 5462 <feature> 5463 <rects> 5464 <_> 5465 9 13 4 1 -1.</_> 5466 <_> 5467 9 13 2 1 2.</_></rects> 5468 <tilted>1</tilted></feature> 5469 <threshold>4.2606070637702942e-003</threshold> 5470 <left_val>0.0882339626550674</left_val> 5471 <right_val>-0.6390284895896912</right_val></_></_> 5472 <_> 5473 <!-- tree 15 --> 5474 <_> 5475 <!-- root node --> 5476 <feature> 5477 <rects> 5478 <_> 5479 34 1 2 1 -1.</_> 5480 <_> 5481 34 1 1 1 2.</_></rects> 5482 <tilted>1</tilted></feature> 5483 <threshold>-4.2996238917112350e-003</threshold> 5484 <left_val>-0.7953972816467285</left_val> 5485 <right_val>0.0170935597270727</right_val></_></_> 5486 <_> 5487 <!-- tree 16 --> 5488 <_> 5489 <!-- root node --> 5490 <feature> 5491 <rects> 5492 <_> 5493 5 4 24 6 -1.</_> 5494 <_> 5495 13 6 8 2 9.</_></rects> 5496 <tilted>0</tilted></feature> 5497 <threshold>0.3542361855506897</threshold> 5498 <left_val>-0.0593450404703617</left_val> 5499 <right_val>0.8557919859886169</right_val></_></_> 5500 <_> 5501 <!-- tree 17 --> 5502 <_> 5503 <!-- root node --> 5504 <feature> 5505 <rects> 5506 <_> 5507 33 16 3 2 -1.</_> 5508 <_> 5509 33 17 3 1 2.</_></rects> 5510 <tilted>0</tilted></feature> 5511 <threshold>-3.0245838570408523e-004</threshold> 5512 <left_val>0.3147065043449402</left_val> 5513 <right_val>-0.1448609977960587</right_val></_></_> 5514 <_> 5515 <!-- tree 18 --> 5516 <_> 5517 <!-- root node --> 5518 <feature> 5519 <rects> 5520 <_> 5521 0 17 36 1 -1.</_> 5522 <_> 5523 18 17 18 1 2.</_></rects> 5524 <tilted>0</tilted></feature> 5525 <threshold>0.0271694902330637</threshold> 5526 <left_val>-0.1249295026063919</left_val> 5527 <right_val>0.4280903935432434</right_val></_></_> 5528 <_> 5529 <!-- tree 19 --> 5530 <_> 5531 <!-- root node --> 5532 <feature> 5533 <rects> 5534 <_> 5535 34 1 2 1 -1.</_> 5536 <_> 5537 34 1 1 1 2.</_></rects> 5538 <tilted>1</tilted></feature> 5539 <threshold>3.4571529831737280e-003</threshold> 5540 <left_val>0.0397093296051025</left_val> 5541 <right_val>-0.7089157104492188</right_val></_></_> 5542 <_> 5543 <!-- tree 20 --> 5544 <_> 5545 <!-- root node --> 5546 <feature> 5547 <rects> 5548 <_> 5549 2 1 1 2 -1.</_> 5550 <_> 5551 2 1 1 1 2.</_></rects> 5552 <tilted>1</tilted></feature> 5553 <threshold>2.1742798853665590e-003</threshold> 5554 <left_val>0.0658724531531334</left_val> 5555 <right_val>-0.6949694156646729</right_val></_></_> 5556 <_> 5557 <!-- tree 21 --> 5558 <_> 5559 <!-- root node --> 5560 <feature> 5561 <rects> 5562 <_> 5563 22 0 8 10 -1.</_> 5564 <_> 5565 24 2 4 10 2.</_></rects> 5566 <tilted>1</tilted></feature> 5567 <threshold>0.0252638105303049</threshold> 5568 <left_val>-0.1169395968317986</left_val> 5569 <right_val>0.1904976963996887</right_val></_></_> 5570 <_> 5571 <!-- tree 22 --> 5572 <_> 5573 <!-- root node --> 5574 <feature> 5575 <rects> 5576 <_> 5577 12 4 8 12 -1.</_> 5578 <_> 5579 12 4 4 6 2.</_> 5580 <_> 5581 16 10 4 6 2.</_></rects> 5582 <tilted>0</tilted></feature> 5583 <threshold>-0.0247209891676903</threshold> 5584 <left_val>-0.4965795874595642</left_val> 5585 <right_val>0.1017538011074066</right_val></_></_> 5586 <_> 5587 <!-- tree 23 --> 5588 <_> 5589 <!-- root node --> 5590 <feature> 5591 <rects> 5592 <_> 5593 26 6 6 6 -1.</_> 5594 <_> 5595 29 6 3 3 2.</_> 5596 <_> 5597 26 9 3 3 2.</_></rects> 5598 <tilted>0</tilted></feature> 5599 <threshold>0.0103848800063133</threshold> 5600 <left_val>-0.1148673966526985</left_val> 5601 <right_val>0.3374153077602387</right_val></_></_> 5602 <_> 5603 <!-- tree 24 --> 5604 <_> 5605 <!-- root node --> 5606 <feature> 5607 <rects> 5608 <_> 5609 5 6 4 6 -1.</_> 5610 <_> 5611 5 6 2 3 2.</_> 5612 <_> 5613 7 9 2 3 2.</_></rects> 5614 <tilted>0</tilted></feature> 5615 <threshold>5.0045028328895569e-003</threshold> 5616 <left_val>-0.1096355020999908</left_val> 5617 <right_val>0.3925519883632660</right_val></_></_> 5618 <_> 5619 <!-- tree 25 --> 5620 <_> 5621 <!-- root node --> 5622 <feature> 5623 <rects> 5624 <_> 5625 29 5 2 4 -1.</_> 5626 <_> 5627 29 5 1 4 2.</_></rects> 5628 <tilted>1</tilted></feature> 5629 <threshold>7.1279620751738548e-003</threshold> 5630 <left_val>-0.0649081915616989</left_val> 5631 <right_val>0.4042040109634399</right_val></_></_> 5632 <_> 5633 <!-- tree 26 --> 5634 <_> 5635 <!-- root node --> 5636 <feature> 5637 <rects> 5638 <_> 5639 7 4 18 3 -1.</_> 5640 <_> 5641 7 5 18 1 3.</_></rects> 5642 <tilted>0</tilted></feature> 5643 <threshold>0.0197004191577435</threshold> 5644 <left_val>-0.0793758779764175</left_val> 5645 <right_val>0.5308234095573425</right_val></_></_> 5646 <_> 5647 <!-- tree 27 --> 5648 <_> 5649 <!-- root node --> 5650 <feature> 5651 <rects> 5652 <_> 5653 29 13 2 3 -1.</_> 5654 <_> 5655 28 14 2 1 3.</_></rects> 5656 <tilted>1</tilted></feature> 5657 <threshold>4.2097331024706364e-003</threshold> 5658 <left_val>0.0407970212399960</left_val> 5659 <right_val>-0.6044098734855652</right_val></_></_> 5660 <_> 5661 <!-- tree 28 --> 5662 <_> 5663 <!-- root node --> 5664 <feature> 5665 <rects> 5666 <_> 5667 9 5 3 3 -1.</_> 5668 <_> 5669 8 6 3 1 3.</_></rects> 5670 <tilted>1</tilted></feature> 5671 <threshold>4.4459570199251175e-003</threshold> 5672 <left_val>-0.1038623005151749</left_val> 5673 <right_val>0.4093598127365112</right_val></_></_> 5674 <_> 5675 <!-- tree 29 --> 5676 <_> 5677 <!-- root node --> 5678 <feature> 5679 <rects> 5680 <_> 5681 7 16 22 2 -1.</_> 5682 <_> 5683 18 16 11 1 2.</_> 5684 <_> 5685 7 17 11 1 2.</_></rects> 5686 <tilted>0</tilted></feature> 5687 <threshold>-5.9610428288578987e-003</threshold> 5688 <left_val>-0.5291494727134705</left_val> 5689 <right_val>0.0805394500494003</right_val></_></_> 5690 <_> 5691 <!-- tree 30 --> 5692 <_> 5693 <!-- root node --> 5694 <feature> 5695 <rects> 5696 <_> 5697 0 2 1 3 -1.</_> 5698 <_> 5699 0 3 1 1 3.</_></rects> 5700 <tilted>0</tilted></feature> 5701 <threshold>5.7519221445545554e-004</threshold> 5702 <left_val>0.0638044029474258</left_val> 5703 <right_val>-0.5863661766052246</right_val></_></_> 5704 <_> 5705 <!-- tree 31 --> 5706 <_> 5707 <!-- root node --> 5708 <feature> 5709 <rects> 5710 <_> 5711 16 3 20 6 -1.</_> 5712 <_> 5713 26 3 10 3 2.</_> 5714 <_> 5715 16 6 10 3 2.</_></rects> 5716 <tilted>0</tilted></feature> 5717 <threshold>0.0605248510837555</threshold> 5718 <left_val>-0.0337128005921841</left_val> 5719 <right_val>0.2631115913391113</right_val></_></_> 5720 <_> 5721 <!-- tree 32 --> 5722 <_> 5723 <!-- root node --> 5724 <feature> 5725 <rects> 5726 <_> 5727 10 5 8 6 -1.</_> 5728 <_> 5729 12 5 4 6 2.</_></rects> 5730 <tilted>0</tilted></feature> 5731 <threshold>-0.0103538101539016</threshold> 5732 <left_val>-0.4792002141475678</left_val> 5733 <right_val>0.0800439566373825</right_val></_></_> 5734 <_> 5735 <!-- tree 33 --> 5736 <_> 5737 <!-- root node --> 5738 <feature> 5739 <rects> 5740 <_> 5741 1 8 34 8 -1.</_> 5742 <_> 5743 18 8 17 4 2.</_> 5744 <_> 5745 1 12 17 4 2.</_></rects> 5746 <tilted>0</tilted></feature> 5747 <threshold>-0.0227775108069181</threshold> 5748 <left_val>-0.3116275072097778</left_val> 5749 <right_val>0.1189998015761375</right_val></_></_> 5750 <_> 5751 <!-- tree 34 --> 5752 <_> 5753 <!-- root node --> 5754 <feature> 5755 <rects> 5756 <_> 5757 14 9 8 8 -1.</_> 5758 <_> 5759 14 9 4 4 2.</_> 5760 <_> 5761 18 13 4 4 2.</_></rects> 5762 <tilted>0</tilted></feature> 5763 <threshold>-0.0224688798189163</threshold> 5764 <left_val>-0.6608346104621887</left_val> 5765 <right_val>0.0522344894707203</right_val></_></_> 5766 <_> 5767 <!-- tree 35 --> 5768 <_> 5769 <!-- root node --> 5770 <feature> 5771 <rects> 5772 <_> 5773 35 0 1 3 -1.</_> 5774 <_> 5775 35 1 1 1 3.</_></rects> 5776 <tilted>0</tilted></feature> 5777 <threshold>5.8432162040844560e-004</threshold> 5778 <left_val>0.0546303391456604</left_val> 5779 <right_val>-0.4639565944671631</right_val></_></_> 5780 <_> 5781 <!-- tree 36 --> 5782 <_> 5783 <!-- root node --> 5784 <feature> 5785 <rects> 5786 <_> 5787 15 8 3 5 -1.</_> 5788 <_> 5789 16 8 1 5 3.</_></rects> 5790 <tilted>0</tilted></feature> 5791 <threshold>-3.6177870351821184e-003</threshold> 5792 <left_val>0.6744704246520996</left_val> 5793 <right_val>-0.0587895289063454</right_val></_></_> 5794 <_> 5795 <!-- tree 37 --> 5796 <_> 5797 <!-- root node --> 5798 <feature> 5799 <rects> 5800 <_> 5801 19 0 10 1 -1.</_> 5802 <_> 5803 19 0 5 1 2.</_></rects> 5804 <tilted>1</tilted></feature> 5805 <threshold>0.0300888605415821</threshold> 5806 <left_val>0.0331335216760635</left_val> 5807 <right_val>-0.4646137058734894</right_val></_></_></trees> 5808 <stage_threshold>-1.4061349630355835</stage_threshold> 5809 <parent>14</parent> 5810 <next>-1</next></_> 5811 <_> 5812 <!-- stage 16 --> 5813 <trees> 5814 <_> 5815 <!-- tree 0 --> 5816 <_> 5817 <!-- root node --> 5818 <feature> 5819 <rects> 5820 <_> 5821 9 3 9 6 -1.</_> 5822 <_> 5823 7 5 9 2 3.</_></rects> 5824 <tilted>1</tilted></feature> 5825 <threshold>-0.0726009905338287</threshold> 5826 <left_val>0.6390709280967712</left_val> 5827 <right_val>-0.1512455046176910</right_val></_></_> 5828 <_> 5829 <!-- tree 1 --> 5830 <_> 5831 <!-- root node --> 5832 <feature> 5833 <rects> 5834 <_> 5835 6 6 24 6 -1.</_> 5836 <_> 5837 14 8 8 2 9.</_></rects> 5838 <tilted>0</tilted></feature> 5839 <threshold>0.3471255898475647</threshold> 5840 <left_val>-0.0790246576070786</left_val> 5841 <right_val>0.7955042123794556</right_val></_></_> 5842 <_> 5843 <!-- tree 2 --> 5844 <_> 5845 <!-- root node --> 5846 <feature> 5847 <rects> 5848 <_> 5849 4 8 27 6 -1.</_> 5850 <_> 5851 13 10 9 2 9.</_></rects> 5852 <tilted>0</tilted></feature> 5853 <threshold>0.3429723083972931</threshold> 5854 <left_val>-0.1230095997452736</left_val> 5855 <right_val>0.6572809815406799</right_val></_></_> 5856 <_> 5857 <!-- tree 3 --> 5858 <_> 5859 <!-- root node --> 5860 <feature> 5861 <rects> 5862 <_> 5863 5 4 27 6 -1.</_> 5864 <_> 5865 14 6 9 2 9.</_></rects> 5866 <tilted>0</tilted></feature> 5867 <threshold>0.3561694025993347</threshold> 5868 <left_val>-0.0537334382534027</left_val> 5869 <right_val>0.8285108208656311</right_val></_></_> 5870 <_> 5871 <!-- tree 4 --> 5872 <_> 5873 <!-- root node --> 5874 <feature> 5875 <rects> 5876 <_> 5877 5 6 5 6 -1.</_> 5878 <_> 5879 5 8 5 2 3.</_></rects> 5880 <tilted>0</tilted></feature> 5881 <threshold>6.0840700753033161e-003</threshold> 5882 <left_val>-0.1284721046686173</left_val> 5883 <right_val>0.3382267951965332</right_val></_></_> 5884 <_> 5885 <!-- tree 5 --> 5886 <_> 5887 <!-- root node --> 5888 <feature> 5889 <rects> 5890 <_> 5891 35 0 1 2 -1.</_> 5892 <_> 5893 35 1 1 1 2.</_></rects> 5894 <tilted>0</tilted></feature> 5895 <threshold>-1.6281309945043176e-004</threshold> 5896 <left_val>0.3035660982131958</left_val> 5897 <right_val>-0.2518202960491180</right_val></_></_> 5898 <_> 5899 <!-- tree 6 --> 5900 <_> 5901 <!-- root node --> 5902 <feature> 5903 <rects> 5904 <_> 5905 4 3 10 3 -1.</_> 5906 <_> 5907 3 4 10 1 3.</_></rects> 5908 <tilted>1</tilted></feature> 5909 <threshold>0.0112819001078606</threshold> 5910 <left_val>-0.0839143469929695</left_val> 5911 <right_val>0.4347592890262604</right_val></_></_> 5912 <_> 5913 <!-- tree 7 --> 5914 <_> 5915 <!-- root node --> 5916 <feature> 5917 <rects> 5918 <_> 5919 29 5 2 4 -1.</_> 5920 <_> 5921 29 5 1 4 2.</_></rects> 5922 <tilted>1</tilted></feature> 5923 <threshold>7.4357059784233570e-003</threshold> 5924 <left_val>-0.0670880377292633</left_val> 5925 <right_val>0.3722797930240631</right_val></_></_> 5926 <_> 5927 <!-- tree 8 --> 5928 <_> 5929 <!-- root node --> 5930 <feature> 5931 <rects> 5932 <_> 5933 3 0 28 16 -1.</_> 5934 <_> 5935 3 0 14 8 2.</_> 5936 <_> 5937 17 8 14 8 2.</_></rects> 5938 <tilted>0</tilted></feature> 5939 <threshold>-0.0905762165784836</threshold> 5940 <left_val>-0.5831961035728455</left_val> 5941 <right_val>0.0801467597484589</right_val></_></_> 5942 <_> 5943 <!-- tree 9 --> 5944 <_> 5945 <!-- root node --> 5946 <feature> 5947 <rects> 5948 <_> 5949 31 0 4 2 -1.</_> 5950 <_> 5951 31 0 2 2 2.</_></rects> 5952 <tilted>1</tilted></feature> 5953 <threshold>8.8247694075107574e-003</threshold> 5954 <left_val>0.1290193051099777</left_val> 5955 <right_val>-0.4760313034057617</right_val></_></_> 5956 <_> 5957 <!-- tree 10 --> 5958 <_> 5959 <!-- root node --> 5960 <feature> 5961 <rects> 5962 <_> 5963 4 9 3 9 -1.</_> 5964 <_> 5965 4 12 3 3 3.</_></rects> 5966 <tilted>0</tilted></feature> 5967 <threshold>-2.6147770695388317e-003</threshold> 5968 <left_val>-0.4000220894813538</left_val> 5969 <right_val>0.1124631017446518</right_val></_></_> 5970 <_> 5971 <!-- tree 11 --> 5972 <_> 5973 <!-- root node --> 5974 <feature> 5975 <rects> 5976 <_> 5977 32 16 4 2 -1.</_> 5978 <_> 5979 32 17 4 1 2.</_></rects> 5980 <tilted>0</tilted></feature> 5981 <threshold>-2.5541300419718027e-004</threshold> 5982 <left_val>0.3238615989685059</left_val> 5983 <right_val>-0.2333187013864517</right_val></_></_> 5984 <_> 5985 <!-- tree 12 --> 5986 <_> 5987 <!-- root node --> 5988 <feature> 5989 <rects> 5990 <_> 5991 17 0 1 10 -1.</_> 5992 <_> 5993 17 0 1 5 2.</_></rects> 5994 <tilted>1</tilted></feature> 5995 <threshold>0.0265476293861866</threshold> 5996 <left_val>0.0723338723182678</left_val> 5997 <right_val>-0.5837839841842651</right_val></_></_> 5998 <_> 5999 <!-- tree 13 --> 6000 <_> 6001 <!-- root node --> 6002 <feature> 6003 <rects> 6004 <_> 6005 17 4 14 8 -1.</_> 6006 <_> 6007 17 4 7 8 2.</_></rects> 6008 <tilted>0</tilted></feature> 6009 <threshold>-0.0513831414282322</threshold> 6010 <left_val>-0.2244618982076645</left_val> 6011 <right_val>0.0409497395157814</right_val></_></_> 6012 <_> 6013 <!-- tree 14 --> 6014 <_> 6015 <!-- root node --> 6016 <feature> 6017 <rects> 6018 <_> 6019 6 0 11 4 -1.</_> 6020 <_> 6021 6 2 11 2 2.</_></rects> 6022 <tilted>0</tilted></feature> 6023 <threshold>3.3701129723340273e-003</threshold> 6024 <left_val>-0.1671708971261978</left_val> 6025 <right_val>0.2552697062492371</right_val></_></_> 6026 <_> 6027 <!-- tree 15 --> 6028 <_> 6029 <!-- root node --> 6030 <feature> 6031 <rects> 6032 <_> 6033 35 0 1 2 -1.</_> 6034 <_> 6035 35 1 1 1 2.</_></rects> 6036 <tilted>0</tilted></feature> 6037 <threshold>-2.2581920493394136e-003</threshold> 6038 <left_val>-0.9207922816276550</left_val> 6039 <right_val>3.4371060319244862e-003</right_val></_></_> 6040 <_> 6041 <!-- tree 16 --> 6042 <_> 6043 <!-- root node --> 6044 <feature> 6045 <rects> 6046 <_> 6047 0 0 1 2 -1.</_> 6048 <_> 6049 0 1 1 1 2.</_></rects> 6050 <tilted>0</tilted></feature> 6051 <threshold>-1.3282749569043517e-004</threshold> 6052 <left_val>0.1857322007417679</left_val> 6053 <right_val>-0.2249896973371506</right_val></_></_> 6054 <_> 6055 <!-- tree 17 --> 6056 <_> 6057 <!-- root node --> 6058 <feature> 6059 <rects> 6060 <_> 6061 33 0 2 1 -1.</_> 6062 <_> 6063 33 0 1 1 2.</_></rects> 6064 <tilted>1</tilted></feature> 6065 <threshold>-2.8032590635120869e-003</threshold> 6066 <left_val>-0.8589754104614258</left_val> 6067 <right_val>0.0463845208287239</right_val></_></_> 6068 <_> 6069 <!-- tree 18 --> 6070 <_> 6071 <!-- root node --> 6072 <feature> 6073 <rects> 6074 <_> 6075 3 0 1 2 -1.</_> 6076 <_> 6077 3 0 1 1 2.</_></rects> 6078 <tilted>1</tilted></feature> 6079 <threshold>1.3141379458829761e-003</threshold> 6080 <left_val>0.0796270668506622</left_val> 6081 <right_val>-0.4610596895217896</right_val></_></_> 6082 <_> 6083 <!-- tree 19 --> 6084 <_> 6085 <!-- root node --> 6086 <feature> 6087 <rects> 6088 <_> 6089 0 17 36 1 -1.</_> 6090 <_> 6091 9 17 18 1 2.</_></rects> 6092 <tilted>0</tilted></feature> 6093 <threshold>0.0638845413923264</threshold> 6094 <left_val>-0.0534401498734951</left_val> 6095 <right_val>0.8104500174522400</right_val></_></_> 6096 <_> 6097 <!-- tree 20 --> 6098 <_> 6099 <!-- root node --> 6100 <feature> 6101 <rects> 6102 <_> 6103 7 13 3 1 -1.</_> 6104 <_> 6105 8 14 1 1 3.</_></rects> 6106 <tilted>1</tilted></feature> 6107 <threshold>-1.9811019301414490e-003</threshold> 6108 <left_val>-0.6382514834403992</left_val> 6109 <right_val>0.0766435563564301</right_val></_></_> 6110 <_> 6111 <!-- tree 21 --> 6112 <_> 6113 <!-- root node --> 6114 <feature> 6115 <rects> 6116 <_> 6117 17 4 14 8 -1.</_> 6118 <_> 6119 17 4 7 8 2.</_></rects> 6120 <tilted>0</tilted></feature> 6121 <threshold>0.0133598595857620</threshold> 6122 <left_val>-0.0950375497341156</left_val> 6123 <right_val>0.0625333487987518</right_val></_></_> 6124 <_> 6125 <!-- tree 22 --> 6126 <_> 6127 <!-- root node --> 6128 <feature> 6129 <rects> 6130 <_> 6131 0 16 4 2 -1.</_> 6132 <_> 6133 0 17 4 1 2.</_></rects> 6134 <tilted>0</tilted></feature> 6135 <threshold>-1.0935300088021904e-004</threshold> 6136 <left_val>0.1747954040765762</left_val> 6137 <right_val>-0.2287603020668030</right_val></_></_> 6138 <_> 6139 <!-- tree 23 --> 6140 <_> 6141 <!-- root node --> 6142 <feature> 6143 <rects> 6144 <_> 6145 13 12 10 3 -1.</_> 6146 <_> 6147 13 13 10 1 3.</_></rects> 6148 <tilted>0</tilted></feature> 6149 <threshold>0.0119106303900480</threshold> 6150 <left_val>-0.0770419836044312</left_val> 6151 <right_val>0.5045837759971619</right_val></_></_> 6152 <_> 6153 <!-- tree 24 --> 6154 <_> 6155 <!-- root node --> 6156 <feature> 6157 <rects> 6158 <_> 6159 0 12 36 6 -1.</_> 6160 <_> 6161 18 12 18 6 2.</_></rects> 6162 <tilted>0</tilted></feature> 6163 <threshold>0.2395170032978058</threshold> 6164 <left_val>-0.0651228874921799</left_val> 6165 <right_val>0.5042074918746948</right_val></_></_> 6166 <_> 6167 <!-- tree 25 --> 6168 <_> 6169 <!-- root node --> 6170 <feature> 6171 <rects> 6172 <_> 6173 5 3 27 6 -1.</_> 6174 <_> 6175 14 5 9 2 9.</_></rects> 6176 <tilted>0</tilted></feature> 6177 <threshold>0.3983140885829926</threshold> 6178 <left_val>-0.0299998205155134</left_val> 6179 <right_val>0.7968547940254211</right_val></_></_> 6180 <_> 6181 <!-- tree 26 --> 6182 <_> 6183 <!-- root node --> 6184 <feature> 6185 <rects> 6186 <_> 6187 9 5 5 3 -1.</_> 6188 <_> 6189 8 6 5 1 3.</_></rects> 6190 <tilted>1</tilted></feature> 6191 <threshold>6.1875800602138042e-003</threshold> 6192 <left_val>-0.0853391736745834</left_val> 6193 <right_val>0.3945176899433136</right_val></_></_> 6194 <_> 6195 <!-- tree 27 --> 6196 <_> 6197 <!-- root node --> 6198 <feature> 6199 <rects> 6200 <_> 6201 12 7 12 4 -1.</_> 6202 <_> 6203 15 7 6 4 2.</_></rects> 6204 <tilted>0</tilted></feature> 6205 <threshold>-9.4047123566269875e-003</threshold> 6206 <left_val>-0.4344133138656616</left_val> 6207 <right_val>0.0826191008090973</right_val></_></_> 6208 <_> 6209 <!-- tree 28 --> 6210 <_> 6211 <!-- root node --> 6212 <feature> 6213 <rects> 6214 <_> 6215 13 5 8 4 -1.</_> 6216 <_> 6217 15 5 4 4 2.</_></rects> 6218 <tilted>0</tilted></feature> 6219 <threshold>0.0117366304621100</threshold> 6220 <left_val>0.0694831609725952</left_val> 6221 <right_val>-0.4870649874210358</right_val></_></_> 6222 <_> 6223 <!-- tree 29 --> 6224 <_> 6225 <!-- root node --> 6226 <feature> 6227 <rects> 6228 <_> 6229 16 14 6 4 -1.</_> 6230 <_> 6231 16 14 3 4 2.</_></rects> 6232 <tilted>0</tilted></feature> 6233 <threshold>-0.0151767702773213</threshold> 6234 <left_val>-0.5854120850563049</left_val> 6235 <right_val>0.0328795611858368</right_val></_></_> 6236 <_> 6237 <!-- tree 30 --> 6238 <_> 6239 <!-- root node --> 6240 <feature> 6241 <rects> 6242 <_> 6243 14 10 5 3 -1.</_> 6244 <_> 6245 14 11 5 1 3.</_></rects> 6246 <tilted>0</tilted></feature> 6247 <threshold>3.0744259711354971e-003</threshold> 6248 <left_val>-0.1314608007669449</left_val> 6249 <right_val>0.2546674013137817</right_val></_></_> 6250 <_> 6251 <!-- tree 31 --> 6252 <_> 6253 <!-- root node --> 6254 <feature> 6255 <rects> 6256 <_> 6257 25 3 6 4 -1.</_> 6258 <_> 6259 25 4 6 2 2.</_></rects> 6260 <tilted>0</tilted></feature> 6261 <threshold>2.9391339048743248e-003</threshold> 6262 <left_val>-0.1086023002862930</left_val> 6263 <right_val>0.2783496081829071</right_val></_></_> 6264 <_> 6265 <!-- tree 32 --> 6266 <_> 6267 <!-- root node --> 6268 <feature> 6269 <rects> 6270 <_> 6271 3 6 6 8 -1.</_> 6272 <_> 6273 3 8 6 4 2.</_></rects> 6274 <tilted>0</tilted></feature> 6275 <threshold>2.1510310471057892e-003</threshold> 6276 <left_val>-0.1575057953596115</left_val> 6277 <right_val>0.2087786048650742</right_val></_></_> 6278 <_> 6279 <!-- tree 33 --> 6280 <_> 6281 <!-- root node --> 6282 <feature> 6283 <rects> 6284 <_> 6285 27 4 5 6 -1.</_> 6286 <_> 6287 27 6 5 2 3.</_></rects> 6288 <tilted>0</tilted></feature> 6289 <threshold>5.3775361739099026e-003</threshold> 6290 <left_val>-0.1320703029632568</left_val> 6291 <right_val>0.3767293989658356</right_val></_></_> 6292 <_> 6293 <!-- tree 34 --> 6294 <_> 6295 <!-- root node --> 6296 <feature> 6297 <rects> 6298 <_> 6299 4 1 6 9 -1.</_> 6300 <_> 6301 4 4 6 3 3.</_></rects> 6302 <tilted>0</tilted></feature> 6303 <threshold>0.0221741795539856</threshold> 6304 <left_val>-0.0901802927255630</left_val> 6305 <right_val>0.4157527089118958</right_val></_></_> 6306 <_> 6307 <!-- tree 35 --> 6308 <_> 6309 <!-- root node --> 6310 <feature> 6311 <rects> 6312 <_> 6313 21 9 2 4 -1.</_> 6314 <_> 6315 21 10 2 2 2.</_></rects> 6316 <tilted>0</tilted></feature> 6317 <threshold>-1.9948610570281744e-003</threshold> 6318 <left_val>0.2560858130455017</left_val> 6319 <right_val>-0.0990849286317825</right_val></_></_> 6320 <_> 6321 <!-- tree 36 --> 6322 <_> 6323 <!-- root node --> 6324 <feature> 6325 <rects> 6326 <_> 6327 1 10 34 4 -1.</_> 6328 <_> 6329 1 10 17 2 2.</_> 6330 <_> 6331 18 12 17 2 2.</_></rects> 6332 <tilted>0</tilted></feature> 6333 <threshold>0.0315575599670410</threshold> 6334 <left_val>0.0741889998316765</left_val> 6335 <right_val>-0.5494022965431213</right_val></_></_> 6336 <_> 6337 <!-- tree 37 --> 6338 <_> 6339 <!-- root node --> 6340 <feature> 6341 <rects> 6342 <_> 6343 34 15 2 3 -1.</_> 6344 <_> 6345 34 16 2 1 3.</_></rects> 6346 <tilted>0</tilted></feature> 6347 <threshold>-4.3111158447572961e-005</threshold> 6348 <left_val>0.3032462894916534</left_val> 6349 <right_val>-0.1778181046247482</right_val></_></_> 6350 <_> 6351 <!-- tree 38 --> 6352 <_> 6353 <!-- root node --> 6354 <feature> 6355 <rects> 6356 <_> 6357 3 0 2 2 -1.</_> 6358 <_> 6359 3 0 2 1 2.</_></rects> 6360 <tilted>1</tilted></feature> 6361 <threshold>-3.2675920519977808e-003</threshold> 6362 <left_val>-0.6721243262290955</left_val> 6363 <right_val>0.0591883286833763</right_val></_></_> 6364 <_> 6365 <!-- tree 39 --> 6366 <_> 6367 <!-- root node --> 6368 <feature> 6369 <rects> 6370 <_> 6371 33 0 1 2 -1.</_> 6372 <_> 6373 33 0 1 1 2.</_></rects> 6374 <tilted>1</tilted></feature> 6375 <threshold>4.2293380829505622e-004</threshold> 6376 <left_val>-0.1103409975767136</left_val> 6377 <right_val>0.1257317960262299</right_val></_></_></trees> 6378 <stage_threshold>-1.3384460210800171</stage_threshold> 6379 <parent>15</parent> 6380 <next>-1</next></_> 6381 <_> 6382 <!-- stage 17 --> 6383 <trees> 6384 <_> 6385 <!-- tree 0 --> 6386 <_> 6387 <!-- root node --> 6388 <feature> 6389 <rects> 6390 <_> 6391 8 0 10 8 -1.</_> 6392 <_> 6393 6 2 10 4 2.</_></rects> 6394 <tilted>1</tilted></feature> 6395 <threshold>-0.0425620190799236</threshold> 6396 <left_val>0.3334665894508362</left_val> 6397 <right_val>-0.2986198067665100</right_val></_></_> 6398 <_> 6399 <!-- tree 1 --> 6400 <_> 6401 <!-- root node --> 6402 <feature> 6403 <rects> 6404 <_> 6405 3 6 30 6 -1.</_> 6406 <_> 6407 13 8 10 2 9.</_></rects> 6408 <tilted>0</tilted></feature> 6409 <threshold>0.4182719886302948</threshold> 6410 <left_val>-0.0951386988162994</left_val> 6411 <right_val>0.7570992112159729</right_val></_></_> 6412 <_> 6413 <!-- tree 2 --> 6414 <_> 6415 <!-- root node --> 6416 <feature> 6417 <rects> 6418 <_> 6419 13 7 10 4 -1.</_> 6420 <_> 6421 13 8 10 2 2.</_></rects> 6422 <tilted>0</tilted></feature> 6423 <threshold>-0.0202563796192408</threshold> 6424 <left_val>0.4778389036655426</left_val> 6425 <right_val>-0.1459210067987442</right_val></_></_> 6426 <_> 6427 <!-- tree 3 --> 6428 <_> 6429 <!-- root node --> 6430 <feature> 6431 <rects> 6432 <_> 6433 16 5 6 12 -1.</_> 6434 <_> 6435 19 5 3 6 2.</_> 6436 <_> 6437 16 11 3 6 2.</_></rects> 6438 <tilted>0</tilted></feature> 6439 <threshold>-0.0189483091235161</threshold> 6440 <left_val>-0.3872750103473663</left_val> 6441 <right_val>0.0524798892438412</right_val></_></_> 6442 <_> 6443 <!-- tree 4 --> 6444 <_> 6445 <!-- root node --> 6446 <feature> 6447 <rects> 6448 <_> 6449 10 1 4 6 -1.</_> 6450 <_> 6451 8 3 4 2 3.</_></rects> 6452 <tilted>1</tilted></feature> 6453 <threshold>-0.0405505895614624</threshold> 6454 <left_val>0.5464624762535095</left_val> 6455 <right_val>-0.0813998579978943</right_val></_></_> 6456 <_> 6457 <!-- tree 5 --> 6458 <_> 6459 <!-- root node --> 6460 <feature> 6461 <rects> 6462 <_> 6463 2 7 33 6 -1.</_> 6464 <_> 6465 13 9 11 2 9.</_></rects> 6466 <tilted>0</tilted></feature> 6467 <threshold>0.5187274813652039</threshold> 6468 <left_val>-0.0279305391013622</left_val> 6469 <right_val>0.8458098173141480</right_val></_></_> 6470 <_> 6471 <!-- tree 6 --> 6472 <_> 6473 <!-- root node --> 6474 <feature> 6475 <rects> 6476 <_> 6477 3 6 30 3 -1.</_> 6478 <_> 6479 13 7 10 1 9.</_></rects> 6480 <tilted>0</tilted></feature> 6481 <threshold>0.2071361988782883</threshold> 6482 <left_val>-0.0588508695363998</left_val> 6483 <right_val>0.7960156202316284</right_val></_></_> 6484 <_> 6485 <!-- tree 7 --> 6486 <_> 6487 <!-- root node --> 6488 <feature> 6489 <rects> 6490 <_> 6491 15 11 6 3 -1.</_> 6492 <_> 6493 15 12 6 1 3.</_></rects> 6494 <tilted>0</tilted></feature> 6495 <threshold>8.1972572952508926e-003</threshold> 6496 <left_val>-0.0999663695693016</left_val> 6497 <right_val>0.4983156025409699</right_val></_></_> 6498 <_> 6499 <!-- tree 8 --> 6500 <_> 6501 <!-- root node --> 6502 <feature> 6503 <rects> 6504 <_> 6505 14 5 6 12 -1.</_> 6506 <_> 6507 14 5 3 6 2.</_> 6508 <_> 6509 17 11 3 6 2.</_></rects> 6510 <tilted>0</tilted></feature> 6511 <threshold>0.0174453891813755</threshold> 6512 <left_val>0.0680409595370293</left_val> 6513 <right_val>-0.5669981837272644</right_val></_></_> 6514 <_> 6515 <!-- tree 9 --> 6516 <_> 6517 <!-- root node --> 6518 <feature> 6519 <rects> 6520 <_> 6521 5 12 26 6 -1.</_> 6522 <_> 6523 18 12 13 3 2.</_> 6524 <_> 6525 5 15 13 3 2.</_></rects> 6526 <tilted>0</tilted></feature> 6527 <threshold>-0.0563102811574936</threshold> 6528 <left_val>-0.6862804293632507</left_val> 6529 <right_val>0.0742225572466850</right_val></_></_> 6530 <_> 6531 <!-- tree 10 --> 6532 <_> 6533 <!-- root node --> 6534 <feature> 6535 <rects> 6536 <_> 6537 4 12 27 3 -1.</_> 6538 <_> 6539 13 13 9 1 9.</_></rects> 6540 <tilted>0</tilted></feature> 6541 <threshold>0.1809556037187576</threshold> 6542 <left_val>-0.0528081282973289</left_val> 6543 <right_val>0.8448318243026733</right_val></_></_> 6544 <_> 6545 <!-- tree 11 --> 6546 <_> 6547 <!-- root node --> 6548 <feature> 6549 <rects> 6550 <_> 6551 16 11 4 3 -1.</_> 6552 <_> 6553 16 12 4 1 3.</_></rects> 6554 <tilted>0</tilted></feature> 6555 <threshold>-2.3450690787285566e-003</threshold> 6556 <left_val>0.2839694023132324</left_val> 6557 <right_val>-0.1112336963415146</right_val></_></_> 6558 <_> 6559 <!-- tree 12 --> 6560 <_> 6561 <!-- root node --> 6562 <feature> 6563 <rects> 6564 <_> 6565 5 12 4 2 -1.</_> 6566 <_> 6567 6 13 2 2 2.</_></rects> 6568 <tilted>1</tilted></feature> 6569 <threshold>3.8937770295888186e-003</threshold> 6570 <left_val>0.0654993131756783</left_val> 6571 <right_val>-0.5792096257209778</right_val></_></_> 6572 <_> 6573 <!-- tree 13 --> 6574 <_> 6575 <!-- root node --> 6576 <feature> 6577 <rects> 6578 <_> 6579 34 17 2 1 -1.</_> 6580 <_> 6581 34 17 1 1 2.</_></rects> 6582 <tilted>0</tilted></feature> 6583 <threshold>3.9383721741614863e-005</threshold> 6584 <left_val>-0.3093047142028809</left_val> 6585 <right_val>0.4223710894584656</right_val></_></_> 6586 <_> 6587 <!-- tree 14 --> 6588 <_> 6589 <!-- root node --> 6590 <feature> 6591 <rects> 6592 <_> 6593 16 0 1 12 -1.</_> 6594 <_> 6595 16 0 1 6 2.</_></rects> 6596 <tilted>1</tilted></feature> 6597 <threshold>0.0338991582393646</threshold> 6598 <left_val>0.0307075399905443</left_val> 6599 <right_val>-0.7229980826377869</right_val></_></_> 6600 <_> 6601 <!-- tree 15 --> 6602 <_> 6603 <!-- root node --> 6604 <feature> 6605 <rects> 6606 <_> 6607 2 17 34 1 -1.</_> 6608 <_> 6609 2 17 17 1 2.</_></rects> 6610 <tilted>0</tilted></feature> 6611 <threshold>-0.0336443893611431</threshold> 6612 <left_val>0.4266444146633148</left_val> 6613 <right_val>-0.0720057785511017</right_val></_></_> 6614 <_> 6615 <!-- tree 16 --> 6616 <_> 6617 <!-- root node --> 6618 <feature> 6619 <rects> 6620 <_> 6621 5 3 18 4 -1.</_> 6622 <_> 6623 5 4 18 2 2.</_></rects> 6624 <tilted>0</tilted></feature> 6625 <threshold>0.0388077609241009</threshold> 6626 <left_val>-0.0417135208845139</left_val> 6627 <right_val>0.6599556803703308</right_val></_></_> 6628 <_> 6629 <!-- tree 17 --> 6630 <_> 6631 <!-- root node --> 6632 <feature> 6633 <rects> 6634 <_> 6635 34 17 2 1 -1.</_> 6636 <_> 6637 34 17 1 1 2.</_></rects> 6638 <tilted>0</tilted></feature> 6639 <threshold>-3.9149548683781177e-005</threshold> 6640 <left_val>0.4933550059795380</left_val> 6641 <right_val>-0.2426010966300964</right_val></_></_> 6642 <_> 6643 <!-- tree 18 --> 6644 <_> 6645 <!-- root node --> 6646 <feature> 6647 <rects> 6648 <_> 6649 0 0 2 2 -1.</_> 6650 <_> 6651 0 1 2 1 2.</_></rects> 6652 <tilted>0</tilted></feature> 6653 <threshold>-2.7580570895224810e-004</threshold> 6654 <left_val>0.1791010946035385</left_val> 6655 <right_val>-0.2192519009113312</right_val></_></_> 6656 <_> 6657 <!-- tree 19 --> 6658 <_> 6659 <!-- root node --> 6660 <feature> 6661 <rects> 6662 <_> 6663 15 5 16 3 -1.</_> 6664 <_> 6665 15 6 16 1 3.</_></rects> 6666 <tilted>0</tilted></feature> 6667 <threshold>0.0126366596668959</threshold> 6668 <left_val>-0.0712336227297783</left_val> 6669 <right_val>0.2534261941909790</right_val></_></_> 6670 <_> 6671 <!-- tree 20 --> 6672 <_> 6673 <!-- root node --> 6674 <feature> 6675 <rects> 6676 <_> 6677 13 9 3 3 -1.</_> 6678 <_> 6679 13 10 3 1 3.</_></rects> 6680 <tilted>0</tilted></feature> 6681 <threshold>-3.3681739587336779e-003</threshold> 6682 <left_val>0.3310086131095886</left_val> 6683 <right_val>-0.1020777970552445</right_val></_></_> 6684 <_> 6685 <!-- tree 21 --> 6686 <_> 6687 <!-- root node --> 6688 <feature> 6689 <rects> 6690 <_> 6691 20 4 8 14 -1.</_> 6692 <_> 6693 22 4 4 14 2.</_></rects> 6694 <tilted>0</tilted></feature> 6695 <threshold>-0.0411845296621323</threshold> 6696 <left_val>-0.4787198901176453</left_val> 6697 <right_val>0.0274448096752167</right_val></_></_> 6698 <_> 6699 <!-- tree 22 --> 6700 <_> 6701 <!-- root node --> 6702 <feature> 6703 <rects> 6704 <_> 6705 7 5 20 6 -1.</_> 6706 <_> 6707 12 5 10 6 2.</_></rects> 6708 <tilted>0</tilted></feature> 6709 <threshold>0.0172852799296379</threshold> 6710 <left_val>-0.2373382002115250</left_val> 6711 <right_val>0.1541430056095123</right_val></_></_> 6712 <_> 6713 <!-- tree 23 --> 6714 <_> 6715 <!-- root node --> 6716 <feature> 6717 <rects> 6718 <_> 6719 26 3 6 6 -1.</_> 6720 <_> 6721 28 5 2 6 3.</_></rects> 6722 <tilted>1</tilted></feature> 6723 <threshold>-0.0583733208477497</threshold> 6724 <left_val>0.3635525107383728</left_val> 6725 <right_val>-0.0629119277000427</right_val></_></_> 6726 <_> 6727 <!-- tree 24 --> 6728 <_> 6729 <!-- root node --> 6730 <feature> 6731 <rects> 6732 <_> 6733 10 3 6 6 -1.</_> 6734 <_> 6735 8 5 6 2 3.</_></rects> 6736 <tilted>1</tilted></feature> 6737 <threshold>0.0252293199300766</threshold> 6738 <left_val>-0.0943458229303360</left_val> 6739 <right_val>0.4322442114353180</right_val></_></_> 6740 <_> 6741 <!-- tree 25 --> 6742 <_> 6743 <!-- root node --> 6744 <feature> 6745 <rects> 6746 <_> 6747 34 0 2 3 -1.</_> 6748 <_> 6749 34 0 1 3 2.</_></rects> 6750 <tilted>1</tilted></feature> 6751 <threshold>4.7925519756972790e-003</threshold> 6752 <left_val>0.0486642718315125</left_val> 6753 <right_val>-0.4704689085483551</right_val></_></_> 6754 <_> 6755 <!-- tree 26 --> 6756 <_> 6757 <!-- root node --> 6758 <feature> 6759 <rects> 6760 <_> 6761 0 16 2 2 -1.</_> 6762 <_> 6763 0 17 2 1 2.</_></rects> 6764 <tilted>0</tilted></feature> 6765 <threshold>-1.3549529830925167e-004</threshold> 6766 <left_val>0.1936188042163849</left_val> 6767 <right_val>-0.1933847069740295</right_val></_></_> 6768 <_> 6769 <!-- tree 27 --> 6770 <_> 6771 <!-- root node --> 6772 <feature> 6773 <rects> 6774 <_> 6775 30 6 4 8 -1.</_> 6776 <_> 6777 31 7 2 8 2.</_></rects> 6778 <tilted>1</tilted></feature> 6779 <threshold>-0.0179694108664989</threshold> 6780 <left_val>0.2900086045265198</left_val> 6781 <right_val>-0.0545452795922756</right_val></_></_> 6782 <_> 6783 <!-- tree 28 --> 6784 <_> 6785 <!-- root node --> 6786 <feature> 6787 <rects> 6788 <_> 6789 6 6 7 4 -1.</_> 6790 <_> 6791 5 7 7 2 2.</_></rects> 6792 <tilted>1</tilted></feature> 6793 <threshold>0.0111410403624177</threshold> 6794 <left_val>-0.1080225035548210</left_val> 6795 <right_val>0.3332796096801758</right_val></_></_> 6796 <_> 6797 <!-- tree 29 --> 6798 <_> 6799 <!-- root node --> 6800 <feature> 6801 <rects> 6802 <_> 6803 20 4 8 14 -1.</_> 6804 <_> 6805 22 4 4 14 2.</_></rects> 6806 <tilted>0</tilted></feature> 6807 <threshold>0.0397595092654228</threshold> 6808 <left_val>0.0192408692091703</left_val> 6809 <right_val>-0.4889996051788330</right_val></_></_> 6810 <_> 6811 <!-- tree 30 --> 6812 <_> 6813 <!-- root node --> 6814 <feature> 6815 <rects> 6816 <_> 6817 8 4 8 14 -1.</_> 6818 <_> 6819 10 4 4 14 2.</_></rects> 6820 <tilted>0</tilted></feature> 6821 <threshold>-0.0226527098566294</threshold> 6822 <left_val>-0.5036928057670593</left_val> 6823 <right_val>0.0807737335562706</right_val></_></_> 6824 <_> 6825 <!-- tree 31 --> 6826 <_> 6827 <!-- root node --> 6828 <feature> 6829 <rects> 6830 <_> 6831 17 17 6 1 -1.</_> 6832 <_> 6833 19 17 2 1 3.</_></rects> 6834 <tilted>0</tilted></feature> 6835 <threshold>1.0915650054812431e-003</threshold> 6836 <left_val>0.0655540525913239</left_val> 6837 <right_val>-0.2444387972354889</right_val></_></_> 6838 <_> 6839 <!-- tree 32 --> 6840 <_> 6841 <!-- root node --> 6842 <feature> 6843 <rects> 6844 <_> 6845 0 0 20 6 -1.</_> 6846 <_> 6847 10 0 10 6 2.</_></rects> 6848 <tilted>0</tilted></feature> 6849 <threshold>0.0687547475099564</threshold> 6850 <left_val>0.0891968086361885</left_val> 6851 <right_val>-0.3565390110015869</right_val></_></_> 6852 <_> 6853 <!-- tree 33 --> 6854 <_> 6855 <!-- root node --> 6856 <feature> 6857 <rects> 6858 <_> 6859 8 0 22 18 -1.</_> 6860 <_> 6861 8 0 11 18 2.</_></rects> 6862 <tilted>0</tilted></feature> 6863 <threshold>-0.3307105898857117</threshold> 6864 <left_val>0.4649569988250732</left_val> 6865 <right_val>-0.0581836998462677</right_val></_></_> 6866 <_> 6867 <!-- tree 34 --> 6868 <_> 6869 <!-- root node --> 6870 <feature> 6871 <rects> 6872 <_> 6873 13 2 8 12 -1.</_> 6874 <_> 6875 13 2 4 6 2.</_> 6876 <_> 6877 17 8 4 6 2.</_></rects> 6878 <tilted>0</tilted></feature> 6879 <threshold>-0.0193072296679020</threshold> 6880 <left_val>-0.4415718019008637</left_val> 6881 <right_val>0.0830501168966293</right_val></_></_> 6882 <_> 6883 <!-- tree 35 --> 6884 <_> 6885 <!-- root node --> 6886 <feature> 6887 <rects> 6888 <_> 6889 11 10 14 8 -1.</_> 6890 <_> 6891 18 10 7 4 2.</_> 6892 <_> 6893 11 14 7 4 2.</_></rects> 6894 <tilted>0</tilted></feature> 6895 <threshold>0.0348087586462498</threshold> 6896 <left_val>0.0534805804491043</left_val> 6897 <right_val>-0.5037739872932434</right_val></_></_> 6898 <_> 6899 <!-- tree 36 --> 6900 <_> 6901 <!-- root node --> 6902 <feature> 6903 <rects> 6904 <_> 6905 1 16 2 2 -1.</_> 6906 <_> 6907 1 16 1 1 2.</_> 6908 <_> 6909 2 17 1 1 2.</_></rects> 6910 <tilted>0</tilted></feature> 6911 <threshold>-3.8908151327632368e-004</threshold> 6912 <left_val>0.3427126109600067</left_val> 6913 <right_val>-0.0899231806397438</right_val></_></_> 6914 <_> 6915 <!-- tree 37 --> 6916 <_> 6917 <!-- root node --> 6918 <feature> 6919 <rects> 6920 <_> 6921 34 0 2 1 -1.</_> 6922 <_> 6923 34 0 1 1 2.</_></rects> 6924 <tilted>1</tilted></feature> 6925 <threshold>-2.1421869751065969e-003</threshold> 6926 <left_val>-0.6064280271530151</left_val> 6927 <right_val>0.0555892400443554</right_val></_></_> 6928 <_> 6929 <!-- tree 38 --> 6930 <_> 6931 <!-- root node --> 6932 <feature> 6933 <rects> 6934 <_> 6935 6 3 24 4 -1.</_> 6936 <_> 6937 12 3 12 4 2.</_></rects> 6938 <tilted>0</tilted></feature> 6939 <threshold>0.1101581007242203</threshold> 6940 <left_val>-0.0547747202217579</left_val> 6941 <right_val>0.6878091096878052</right_val></_></_> 6942 <_> 6943 <!-- tree 39 --> 6944 <_> 6945 <!-- root node --> 6946 <feature> 6947 <rects> 6948 <_> 6949 19 1 2 3 -1.</_> 6950 <_> 6951 19 2 2 1 3.</_></rects> 6952 <tilted>0</tilted></feature> 6953 <threshold>3.0875208904035389e-004</threshold> 6954 <left_val>-0.0558342188596725</left_val> 6955 <right_val>0.0931682363152504</right_val></_></_> 6956 <_> 6957 <!-- tree 40 --> 6958 <_> 6959 <!-- root node --> 6960 <feature> 6961 <rects> 6962 <_> 6963 2 0 1 2 -1.</_> 6964 <_> 6965 2 0 1 1 2.</_></rects> 6966 <tilted>1</tilted></feature> 6967 <threshold>2.1960400044918060e-003</threshold> 6968 <left_val>0.0539557486772537</left_val> 6969 <right_val>-0.6050305962562561</right_val></_></_> 6970 <_> 6971 <!-- tree 41 --> 6972 <_> 6973 <!-- root node --> 6974 <feature> 6975 <rects> 6976 <_> 6977 15 3 6 8 -1.</_> 6978 <_> 6979 18 3 3 4 2.</_> 6980 <_> 6981 15 7 3 4 2.</_></rects> 6982 <tilted>0</tilted></feature> 6983 <threshold>-0.0126062501221895</threshold> 6984 <left_val>-0.4686402976512909</left_val> 6985 <right_val>0.0599438697099686</right_val></_></_> 6986 <_> 6987 <!-- tree 42 --> 6988 <_> 6989 <!-- root node --> 6990 <feature> 6991 <rects> 6992 <_> 6993 14 5 4 2 -1.</_> 6994 <_> 6995 14 6 4 1 2.</_></rects> 6996 <tilted>0</tilted></feature> 6997 <threshold>-2.7497899718582630e-003</threshold> 6998 <left_val>0.2894253134727478</left_val> 6999 <right_val>-0.1129785031080246</right_val></_></_> 7000 <_> 7001 <!-- tree 43 --> 7002 <_> 7003 <!-- root node --> 7004 <feature> 7005 <rects> 7006 <_> 7007 3 7 30 9 -1.</_> 7008 <_> 7009 13 10 10 3 9.</_></rects> 7010 <tilted>0</tilted></feature> 7011 <threshold>0.6096264123916626</threshold> 7012 <left_val>-0.0478859916329384</left_val> 7013 <right_val>0.5946549177169800</right_val></_></_> 7014 <_> 7015 <!-- tree 44 --> 7016 <_> 7017 <!-- root node --> 7018 <feature> 7019 <rects> 7020 <_> 7021 9 8 12 9 -1.</_> 7022 <_> 7023 12 8 6 9 2.</_></rects> 7024 <tilted>0</tilted></feature> 7025 <threshold>0.0450232513248920</threshold> 7026 <left_val>0.0638310685753822</left_val> 7027 <right_val>-0.5295680165290833</right_val></_></_></trees> 7028 <stage_threshold>-1.2722699642181396</stage_threshold> 7029 <parent>16</parent> 7030 <next>-1</next></_> 7031 <_> 7032 <!-- stage 18 --> 7033 <trees> 7034 <_> 7035 <!-- tree 0 --> 7036 <_> 7037 <!-- root node --> 7038 <feature> 7039 <rects> 7040 <_> 7041 10 8 16 5 -1.</_> 7042 <_> 7043 14 8 8 5 2.</_></rects> 7044 <tilted>0</tilted></feature> 7045 <threshold>0.0159072801470757</threshold> 7046 <left_val>-0.3819232881069183</left_val> 7047 <right_val>0.2941176891326904</right_val></_></_> 7048 <_> 7049 <!-- tree 1 --> 7050 <_> 7051 <!-- root node --> 7052 <feature> 7053 <rects> 7054 <_> 7055 30 1 4 10 -1.</_> 7056 <_> 7057 31 2 2 10 2.</_></rects> 7058 <tilted>1</tilted></feature> 7059 <threshold>-0.0304830092936754</threshold> 7060 <left_val>0.6401454806327820</left_val> 7061 <right_val>-0.1133823990821838</right_val></_></_> 7062 <_> 7063 <!-- tree 2 --> 7064 <_> 7065 <!-- root node --> 7066 <feature> 7067 <rects> 7068 <_> 7069 13 0 10 8 -1.</_> 7070 <_> 7071 11 2 10 4 2.</_></rects> 7072 <tilted>1</tilted></feature> 7073 <threshold>0.0258412398397923</threshold> 7074 <left_val>-0.1765469014644623</left_val> 7075 <right_val>0.2556340098381043</right_val></_></_> 7076 <_> 7077 <!-- tree 3 --> 7078 <_> 7079 <!-- root node --> 7080 <feature> 7081 <rects> 7082 <_> 7083 32 2 2 14 -1.</_> 7084 <_> 7085 32 2 1 14 2.</_></rects> 7086 <tilted>1</tilted></feature> 7087 <threshold>0.0121606197208166</threshold> 7088 <left_val>-0.0494619905948639</left_val> 7089 <right_val>0.3473398983478546</right_val></_></_> 7090 <_> 7091 <!-- tree 4 --> 7092 <_> 7093 <!-- root node --> 7094 <feature> 7095 <rects> 7096 <_> 7097 4 2 14 2 -1.</_> 7098 <_> 7099 4 2 14 1 2.</_></rects> 7100 <tilted>1</tilted></feature> 7101 <threshold>-0.0159101597964764</threshold> 7102 <left_val>0.4796676933765411</left_val> 7103 <right_val>-0.1300950944423676</right_val></_></_> 7104 <_> 7105 <!-- tree 5 --> 7106 <_> 7107 <!-- root node --> 7108 <feature> 7109 <rects> 7110 <_> 7111 30 14 6 4 -1.</_> 7112 <_> 7113 30 14 3 4 2.</_></rects> 7114 <tilted>0</tilted></feature> 7115 <threshold>3.5282061435282230e-004</threshold> 7116 <left_val>-0.3418492972850800</left_val> 7117 <right_val>0.2309112995862961</right_val></_></_> 7118 <_> 7119 <!-- tree 6 --> 7120 <_> 7121 <!-- root node --> 7122 <feature> 7123 <rects> 7124 <_> 7125 11 13 1 4 -1.</_> 7126 <_> 7127 11 15 1 2 2.</_></rects> 7128 <tilted>0</tilted></feature> 7129 <threshold>6.7633582511916757e-004</threshold> 7130 <left_val>-0.1543250977993012</left_val> 7131 <right_val>0.2668730020523071</right_val></_></_> 7132 <_> 7133 <!-- tree 7 --> 7134 <_> 7135 <!-- root node --> 7136 <feature> 7137 <rects> 7138 <_> 7139 11 0 14 18 -1.</_> 7140 <_> 7141 18 0 7 9 2.</_> 7142 <_> 7143 11 9 7 9 2.</_></rects> 7144 <tilted>0</tilted></feature> 7145 <threshold>-0.0599361397325993</threshold> 7146 <left_val>-0.4880258142948151</left_val> 7147 <right_val>0.0933274477720261</right_val></_></_> 7148 <_> 7149 <!-- tree 8 --> 7150 <_> 7151 <!-- root node --> 7152 <feature> 7153 <rects> 7154 <_> 7155 0 1 20 9 -1.</_> 7156 <_> 7157 10 1 10 9 2.</_></rects> 7158 <tilted>0</tilted></feature> 7159 <threshold>-0.1134240999817848</threshold> 7160 <left_val>-0.6577144265174866</left_val> 7161 <right_val>0.0591668188571930</right_val></_></_> 7162 <_> 7163 <!-- tree 9 --> 7164 <_> 7165 <!-- root node --> 7166 <feature> 7167 <rects> 7168 <_> 7169 21 3 8 3 -1.</_> 7170 <_> 7171 23 3 4 3 2.</_></rects> 7172 <tilted>0</tilted></feature> 7173 <threshold>-4.3361280113458633e-003</threshold> 7174 <left_val>-0.1593652069568634</left_val> 7175 <right_val>0.0502370409667492</right_val></_></_> 7176 <_> 7177 <!-- tree 10 --> 7178 <_> 7179 <!-- root node --> 7180 <feature> 7181 <rects> 7182 <_> 7183 13 9 2 4 -1.</_> 7184 <_> 7185 13 10 2 2 2.</_></rects> 7186 <tilted>0</tilted></feature> 7187 <threshold>-1.8627740209922194e-003</threshold> 7188 <left_val>0.3073025941848755</left_val> 7189 <right_val>-0.1254066973924637</right_val></_></_> 7190 <_> 7191 <!-- tree 11 --> 7192 <_> 7193 <!-- root node --> 7194 <feature> 7195 <rects> 7196 <_> 7197 14 9 11 2 -1.</_> 7198 <_> 7199 14 10 11 1 2.</_></rects> 7200 <tilted>0</tilted></feature> 7201 <threshold>0.0126530099660158</threshold> 7202 <left_val>-0.1004493013024330</left_val> 7203 <right_val>0.3749617934226990</right_val></_></_> 7204 <_> 7205 <!-- tree 12 --> 7206 <_> 7207 <!-- root node --> 7208 <feature> 7209 <rects> 7210 <_> 7211 0 2 36 9 -1.</_> 7212 <_> 7213 12 5 12 3 9.</_></rects> 7214 <tilted>0</tilted></feature> 7215 <threshold>0.6911857724189758</threshold> 7216 <left_val>-0.0471464097499847</left_val> 7217 <right_val>0.8321244120597839</right_val></_></_> 7218 <_> 7219 <!-- tree 13 --> 7220 <_> 7221 <!-- root node --> 7222 <feature> 7223 <rects> 7224 <_> 7225 34 12 2 6 -1.</_> 7226 <_> 7227 34 15 2 3 2.</_></rects> 7228 <tilted>0</tilted></feature> 7229 <threshold>-2.6093868655152619e-004</threshold> 7230 <left_val>0.3198773860931397</left_val> 7231 <right_val>-0.2718330919742584</right_val></_></_> 7232 <_> 7233 <!-- tree 14 --> 7234 <_> 7235 <!-- root node --> 7236 <feature> 7237 <rects> 7238 <_> 7239 11 4 14 6 -1.</_> 7240 <_> 7241 11 6 14 2 3.</_></rects> 7242 <tilted>0</tilted></feature> 7243 <threshold>-0.0763450562953949</threshold> 7244 <left_val>0.4309130012989044</left_val> 7245 <right_val>-0.0908882692456245</right_val></_></_> 7246 <_> 7247 <!-- tree 15 --> 7248 <_> 7249 <!-- root node --> 7250 <feature> 7251 <rects> 7252 <_> 7253 31 0 4 1 -1.</_> 7254 <_> 7255 31 0 2 1 2.</_></rects> 7256 <tilted>0</tilted></feature> 7257 <threshold>2.8098300099372864e-003</threshold> 7258 <left_val>0.0587311200797558</left_val> 7259 <right_val>-0.6199675202369690</right_val></_></_> 7260 <_> 7261 <!-- tree 16 --> 7262 <_> 7263 <!-- root node --> 7264 <feature> 7265 <rects> 7266 <_> 7267 1 0 4 1 -1.</_> 7268 <_> 7269 3 0 2 1 2.</_></rects> 7270 <tilted>0</tilted></feature> 7271 <threshold>-1.3322039740160108e-004</threshold> 7272 <left_val>0.2000005990266800</left_val> 7273 <right_val>-0.2012010961771011</right_val></_></_> 7274 <_> 7275 <!-- tree 17 --> 7276 <_> 7277 <!-- root node --> 7278 <feature> 7279 <rects> 7280 <_> 7281 19 14 6 4 -1.</_> 7282 <_> 7283 21 14 2 4 3.</_></rects> 7284 <tilted>0</tilted></feature> 7285 <threshold>-0.0137176299467683</threshold> 7286 <left_val>-0.7309545278549194</left_val> 7287 <right_val>0.0271785296499729</right_val></_></_> 7288 <_> 7289 <!-- tree 18 --> 7290 <_> 7291 <!-- root node --> 7292 <feature> 7293 <rects> 7294 <_> 7295 11 14 6 4 -1.</_> 7296 <_> 7297 13 14 2 4 3.</_></rects> 7298 <tilted>0</tilted></feature> 7299 <threshold>-6.2303808517754078e-003</threshold> 7300 <left_val>-0.5478098988533020</left_val> 7301 <right_val>0.0687499493360519</right_val></_></_> 7302 <_> 7303 <!-- tree 19 --> 7304 <_> 7305 <!-- root node --> 7306 <feature> 7307 <rects> 7308 <_> 7309 0 14 36 1 -1.</_> 7310 <_> 7311 9 14 18 1 2.</_></rects> 7312 <tilted>0</tilted></feature> 7313 <threshold>0.0499227195978165</threshold> 7314 <left_val>-0.0473043099045753</left_val> 7315 <right_val>0.8242310285568237</right_val></_></_> 7316 <_> 7317 <!-- tree 20 --> 7318 <_> 7319 <!-- root node --> 7320 <feature> 7321 <rects> 7322 <_> 7323 5 0 2 2 -1.</_> 7324 <_> 7325 5 0 2 1 2.</_></rects> 7326 <tilted>1</tilted></feature> 7327 <threshold>-1.9126719562336802e-003</threshold> 7328 <left_val>-0.5394017100334168</left_val> 7329 <right_val>0.0774475932121277</right_val></_></_> 7330 <_> 7331 <!-- tree 21 --> 7332 <_> 7333 <!-- root node --> 7334 <feature> 7335 <rects> 7336 <_> 7337 26 3 5 3 -1.</_> 7338 <_> 7339 26 4 5 1 3.</_></rects> 7340 <tilted>0</tilted></feature> 7341 <threshold>1.1384560493752360e-003</threshold> 7342 <left_val>-0.0965376868844032</left_val> 7343 <right_val>0.1548569053411484</right_val></_></_> 7344 <_> 7345 <!-- tree 22 --> 7346 <_> 7347 <!-- root node --> 7348 <feature> 7349 <rects> 7350 <_> 7351 16 8 1 3 -1.</_> 7352 <_> 7353 15 9 1 1 3.</_></rects> 7354 <tilted>1</tilted></feature> 7355 <threshold>-2.4732090532779694e-003</threshold> 7356 <left_val>0.3559078872203827</left_val> 7357 <right_val>-0.0931698307394981</right_val></_></_> 7358 <_> 7359 <!-- tree 23 --> 7360 <_> 7361 <!-- root node --> 7362 <feature> 7363 <rects> 7364 <_> 7365 21 11 2 3 -1.</_> 7366 <_> 7367 21 12 2 1 3.</_></rects> 7368 <tilted>0</tilted></feature> 7369 <threshold>-7.1464257780462503e-004</threshold> 7370 <left_val>0.1452019065618515</left_val> 7371 <right_val>-0.0741942077875137</right_val></_></_> 7372 <_> 7373 <!-- tree 24 --> 7374 <_> 7375 <!-- root node --> 7376 <feature> 7377 <rects> 7378 <_> 7379 9 5 6 4 -1.</_> 7380 <_> 7381 8 6 6 2 2.</_></rects> 7382 <tilted>1</tilted></feature> 7383 <threshold>-0.0204371493309736</threshold> 7384 <left_val>0.4416376948356628</left_val> 7385 <right_val>-0.0809424370527267</right_val></_></_> 7386 <_> 7387 <!-- tree 25 --> 7388 <_> 7389 <!-- root node --> 7390 <feature> 7391 <rects> 7392 <_> 7393 31 0 2 2 -1.</_> 7394 <_> 7395 31 0 1 2 2.</_></rects> 7396 <tilted>1</tilted></feature> 7397 <threshold>-4.0483791381120682e-003</threshold> 7398 <left_val>-0.5999277830123901</left_val> 7399 <right_val>0.0330253802239895</right_val></_></_> 7400 <_> 7401 <!-- tree 26 --> 7402 <_> 7403 <!-- root node --> 7404 <feature> 7405 <rects> 7406 <_> 7407 6 4 3 9 -1.</_> 7408 <_> 7409 6 7 3 3 3.</_></rects> 7410 <tilted>0</tilted></feature> 7411 <threshold>0.0111480504274368</threshold> 7412 <left_val>-0.1135832965373993</left_val> 7413 <right_val>0.3264499902725220</right_val></_></_> 7414 <_> 7415 <!-- tree 27 --> 7416 <_> 7417 <!-- root node --> 7418 <feature> 7419 <rects> 7420 <_> 7421 19 0 11 2 -1.</_> 7422 <_> 7423 19 0 11 1 2.</_></rects> 7424 <tilted>1</tilted></feature> 7425 <threshold>9.8842009902000427e-003</threshold> 7426 <left_val>0.0554044805467129</left_val> 7427 <right_val>-0.3273097872734070</right_val></_></_> 7428 <_> 7429 <!-- tree 28 --> 7430 <_> 7431 <!-- root node --> 7432 <feature> 7433 <rects> 7434 <_> 7435 5 0 2 2 -1.</_> 7436 <_> 7437 5 0 2 1 2.</_></rects> 7438 <tilted>1</tilted></feature> 7439 <threshold>3.1296359375119209e-003</threshold> 7440 <left_val>0.0774086564779282</left_val> 7441 <right_val>-0.4595307111740112</right_val></_></_> 7442 <_> 7443 <!-- tree 29 --> 7444 <_> 7445 <!-- root node --> 7446 <feature> 7447 <rects> 7448 <_> 7449 22 0 14 4 -1.</_> 7450 <_> 7451 29 0 7 2 2.</_> 7452 <_> 7453 22 2 7 2 2.</_></rects> 7454 <tilted>0</tilted></feature> 7455 <threshold>2.9721839819103479e-003</threshold> 7456 <left_val>-0.1291726976633072</left_val> 7457 <right_val>0.1552311033010483</right_val></_></_> 7458 <_> 7459 <!-- tree 30 --> 7460 <_> 7461 <!-- root node --> 7462 <feature> 7463 <rects> 7464 <_> 7465 15 1 4 13 -1.</_> 7466 <_> 7467 15 1 2 13 2.</_></rects> 7468 <tilted>1</tilted></feature> 7469 <threshold>0.0205544792115688</threshold> 7470 <left_val>0.0876004695892334</left_val> 7471 <right_val>-0.4577418863773346</right_val></_></_> 7472 <_> 7473 <!-- tree 31 --> 7474 <_> 7475 <!-- root node --> 7476 <feature> 7477 <rects> 7478 <_> 7479 21 3 8 4 -1.</_> 7480 <_> 7481 23 3 4 4 2.</_></rects> 7482 <tilted>0</tilted></feature> 7483 <threshold>-0.0230272803455591</threshold> 7484 <left_val>0.3548808991909027</left_val> 7485 <right_val>-0.0205669198185205</right_val></_></_> 7486 <_> 7487 <!-- tree 32 --> 7488 <_> 7489 <!-- root node --> 7490 <feature> 7491 <rects> 7492 <_> 7493 7 3 8 4 -1.</_> 7494 <_> 7495 9 3 4 4 2.</_></rects> 7496 <tilted>0</tilted></feature> 7497 <threshold>-8.3903772756457329e-003</threshold> 7498 <left_val>-0.4324072897434235</left_val> 7499 <right_val>0.0920679792761803</right_val></_></_> 7500 <_> 7501 <!-- tree 33 --> 7502 <_> 7503 <!-- root node --> 7504 <feature> 7505 <rects> 7506 <_> 7507 32 14 2 2 -1.</_> 7508 <_> 7509 33 14 1 1 2.</_> 7510 <_> 7511 32 15 1 1 2.</_></rects> 7512 <tilted>0</tilted></feature> 7513 <threshold>-1.1431539896875620e-003</threshold> 7514 <left_val>0.3959133923053742</left_val> 7515 <right_val>-0.0231928899884224</right_val></_></_> 7516 <_> 7517 <!-- tree 34 --> 7518 <_> 7519 <!-- root node --> 7520 <feature> 7521 <rects> 7522 <_> 7523 2 14 2 2 -1.</_> 7524 <_> 7525 2 14 1 1 2.</_> 7526 <_> 7527 3 15 1 1 2.</_></rects> 7528 <tilted>0</tilted></feature> 7529 <threshold>-4.9133709399029613e-004</threshold> 7530 <left_val>0.4274964034557343</left_val> 7531 <right_val>-0.0855242162942886</right_val></_></_> 7532 <_> 7533 <!-- tree 35 --> 7534 <_> 7535 <!-- root node --> 7536 <feature> 7537 <rects> 7538 <_> 7539 35 5 1 12 -1.</_> 7540 <_> 7541 35 9 1 4 3.</_></rects> 7542 <tilted>0</tilted></feature> 7543 <threshold>5.1292928401380777e-004</threshold> 7544 <left_val>-0.1619673967361450</left_val> 7545 <right_val>0.1961497068405151</right_val></_></_> 7546 <_> 7547 <!-- tree 36 --> 7548 <_> 7549 <!-- root node --> 7550 <feature> 7551 <rects> 7552 <_> 7553 0 7 1 9 -1.</_> 7554 <_> 7555 0 10 1 3 3.</_></rects> 7556 <tilted>0</tilted></feature> 7557 <threshold>-5.8478871360421181e-003</threshold> 7558 <left_val>-0.5911636948585510</left_val> 7559 <right_val>0.0624482408165932</right_val></_></_> 7560 <_> 7561 <!-- tree 37 --> 7562 <_> 7563 <!-- root node --> 7564 <feature> 7565 <rects> 7566 <_> 7567 12 2 15 6 -1.</_> 7568 <_> 7569 12 4 15 2 3.</_></rects> 7570 <tilted>0</tilted></feature> 7571 <threshold>-0.0941330492496490</threshold> 7572 <left_val>0.4770160913467407</left_val> 7573 <right_val>-0.0567101612687111</right_val></_></_> 7574 <_> 7575 <!-- tree 38 --> 7576 <_> 7577 <!-- root node --> 7578 <feature> 7579 <rects> 7580 <_> 7581 0 17 2 1 -1.</_> 7582 <_> 7583 1 17 1 1 2.</_></rects> 7584 <tilted>0</tilted></feature> 7585 <threshold>1.0079269850393757e-004</threshold> 7586 <left_val>-0.1625709980726242</left_val> 7587 <right_val>0.2140229046344757</right_val></_></_> 7588 <_> 7589 <!-- tree 39 --> 7590 <_> 7591 <!-- root node --> 7592 <feature> 7593 <rects> 7594 <_> 7595 34 17 2 1 -1.</_> 7596 <_> 7597 34 17 1 1 2.</_></rects> 7598 <tilted>0</tilted></feature> 7599 <threshold>3.2930231100181118e-005</threshold> 7600 <left_val>-0.1859605014324188</left_val> 7601 <right_val>0.1964769065380096</right_val></_></_> 7602 <_> 7603 <!-- tree 40 --> 7604 <_> 7605 <!-- root node --> 7606 <feature> 7607 <rects> 7608 <_> 7609 0 17 2 1 -1.</_> 7610 <_> 7611 1 17 1 1 2.</_></rects> 7612 <tilted>0</tilted></feature> 7613 <threshold>-1.1743210052372888e-004</threshold> 7614 <left_val>0.3182134926319122</left_val> 7615 <right_val>-0.1328738033771515</right_val></_></_> 7616 <_> 7617 <!-- tree 41 --> 7618 <_> 7619 <!-- root node --> 7620 <feature> 7621 <rects> 7622 <_> 7623 11 0 16 10 -1.</_> 7624 <_> 7625 15 0 8 10 2.</_></rects> 7626 <tilted>0</tilted></feature> 7627 <threshold>0.1275181025266647</threshold> 7628 <left_val>0.0301400795578957</left_val> 7629 <right_val>-0.7411035895347595</right_val></_></_> 7630 <_> 7631 <!-- tree 42 --> 7632 <_> 7633 <!-- root node --> 7634 <feature> 7635 <rects> 7636 <_> 7637 5 10 24 8 -1.</_> 7638 <_> 7639 5 10 12 4 2.</_> 7640 <_> 7641 17 14 12 4 2.</_></rects> 7642 <tilted>0</tilted></feature> 7643 <threshold>0.0803262963891029</threshold> 7644 <left_val>0.0415550395846367</left_val> 7645 <right_val>-0.8263683915138245</right_val></_></_> 7646 <_> 7647 <!-- tree 43 --> 7648 <_> 7649 <!-- root node --> 7650 <feature> 7651 <rects> 7652 <_> 7653 27 4 3 3 -1.</_> 7654 <_> 7655 27 5 3 1 3.</_></rects> 7656 <tilted>0</tilted></feature> 7657 <threshold>1.6904190415516496e-003</threshold> 7658 <left_val>-0.1029061973094940</left_val> 7659 <right_val>0.2972418069839478</right_val></_></_></trees> 7660 <stage_threshold>-1.3022350072860718</stage_threshold> 7661 <parent>17</parent> 7662 <next>-1</next></_> 7663 <_> 7664 <!-- stage 19 --> 7665 <trees> 7666 <_> 7667 <!-- tree 0 --> 7668 <_> 7669 <!-- root node --> 7670 <feature> 7671 <rects> 7672 <_> 7673 6 6 14 12 -1.</_> 7674 <_> 7675 6 6 7 6 2.</_> 7676 <_> 7677 13 12 7 6 2.</_></rects> 7678 <tilted>0</tilted></feature> 7679 <threshold>-0.0461227893829346</threshold> 7680 <left_val>0.4425258934497833</left_val> 7681 <right_val>-0.2991319894790649</right_val></_></_> 7682 <_> 7683 <!-- tree 1 --> 7684 <_> 7685 <!-- root node --> 7686 <feature> 7687 <rects> 7688 <_> 7689 6 5 24 6 -1.</_> 7690 <_> 7691 14 7 8 2 9.</_></rects> 7692 <tilted>0</tilted></feature> 7693 <threshold>0.3672331869602203</threshold> 7694 <left_val>-0.0630117505788803</left_val> 7695 <right_val>0.7712538242340088</right_val></_></_> 7696 <_> 7697 <!-- tree 2 --> 7698 <_> 7699 <!-- root node --> 7700 <feature> 7701 <rects> 7702 <_> 7703 12 6 3 4 -1.</_> 7704 <_> 7705 12 7 3 2 2.</_></rects> 7706 <tilted>0</tilted></feature> 7707 <threshold>-3.0962929595261812e-003</threshold> 7708 <left_val>0.3514241874217987</left_val> 7709 <right_val>-0.1730643957853317</right_val></_></_> 7710 <_> 7711 <!-- tree 3 --> 7712 <_> 7713 <!-- root node --> 7714 <feature> 7715 <rects> 7716 <_> 7717 30 7 6 10 -1.</_> 7718 <_> 7719 33 7 3 5 2.</_> 7720 <_> 7721 30 12 3 5 2.</_></rects> 7722 <tilted>0</tilted></feature> 7723 <threshold>9.2647131532430649e-003</threshold> 7724 <left_val>-0.1607280969619751</left_val> 7725 <right_val>0.1853290945291519</right_val></_></_> 7726 <_> 7727 <!-- tree 4 --> 7728 <_> 7729 <!-- root node --> 7730 <feature> 7731 <rects> 7732 <_> 7733 3 12 6 6 -1.</_> 7734 <_> 7735 3 12 3 3 2.</_> 7736 <_> 7737 6 15 3 3 2.</_></rects> 7738 <tilted>0</tilted></feature> 7739 <threshold>3.1748649198561907e-003</threshold> 7740 <left_val>-0.1968899965286255</left_val> 7741 <right_val>0.2409728020429611</right_val></_></_> 7742 <_> 7743 <!-- tree 5 --> 7744 <_> 7745 <!-- root node --> 7746 <feature> 7747 <rects> 7748 <_> 7749 20 0 13 2 -1.</_> 7750 <_> 7751 20 0 13 1 2.</_></rects> 7752 <tilted>1</tilted></feature> 7753 <threshold>8.0439839512109756e-003</threshold> 7754 <left_val>0.0898629724979401</left_val> 7755 <right_val>-0.3655225932598114</right_val></_></_> 7756 <_> 7757 <!-- tree 6 --> 7758 <_> 7759 <!-- root node --> 7760 <feature> 7761 <rects> 7762 <_> 7763 6 10 24 6 -1.</_> 7764 <_> 7765 14 12 8 2 9.</_></rects> 7766 <tilted>0</tilted></feature> 7767 <threshold>0.3275249004364014</threshold> 7768 <left_val>-0.0568796806037426</left_val> 7769 <right_val>0.7749336957931519</right_val></_></_> 7770 <_> 7771 <!-- tree 7 --> 7772 <_> 7773 <!-- root node --> 7774 <feature> 7775 <rects> 7776 <_> 7777 15 4 8 8 -1.</_> 7778 <_> 7779 19 4 4 4 2.</_> 7780 <_> 7781 15 8 4 4 2.</_></rects> 7782 <tilted>0</tilted></feature> 7783 <threshold>-0.0190744306892157</threshold> 7784 <left_val>-0.2895380854606628</left_val> 7785 <right_val>0.0622916705906391</right_val></_></_> 7786 <_> 7787 <!-- tree 8 --> 7788 <_> 7789 <!-- root node --> 7790 <feature> 7791 <rects> 7792 <_> 7793 13 4 8 8 -1.</_> 7794 <_> 7795 13 4 4 4 2.</_> 7796 <_> 7797 17 8 4 4 2.</_></rects> 7798 <tilted>0</tilted></feature> 7799 <threshold>-0.0205017495900393</threshold> 7800 <left_val>-0.6262530088424683</left_val> 7801 <right_val>0.0682769715785980</right_val></_></_> 7802 <_> 7803 <!-- tree 9 --> 7804 <_> 7805 <!-- root node --> 7806 <feature> 7807 <rects> 7808 <_> 7809 34 16 2 2 -1.</_> 7810 <_> 7811 34 16 1 2 2.</_></rects> 7812 <tilted>0</tilted></feature> 7813 <threshold>5.3187010053079575e-005</threshold> 7814 <left_val>-0.2514955997467041</left_val> 7815 <right_val>0.2613196074962616</right_val></_></_> 7816 <_> 7817 <!-- tree 10 --> 7818 <_> 7819 <!-- root node --> 7820 <feature> 7821 <rects> 7822 <_> 7823 12 6 3 3 -1.</_> 7824 <_> 7825 12 7 3 1 3.</_></rects> 7826 <tilted>0</tilted></feature> 7827 <threshold>3.3275580499321222e-003</threshold> 7828 <left_val>-0.1199077963829041</left_val> 7829 <right_val>0.3651930093765259</right_val></_></_> 7830 <_> 7831 <!-- tree 11 --> 7832 <_> 7833 <!-- root node --> 7834 <feature> 7835 <rects> 7836 <_> 7837 21 7 4 4 -1.</_> 7838 <_> 7839 21 8 4 2 2.</_></rects> 7840 <tilted>0</tilted></feature> 7841 <threshold>5.8408430777490139e-003</threshold> 7842 <left_val>-0.0827485173940659</left_val> 7843 <right_val>0.2365082055330277</right_val></_></_> 7844 <_> 7845 <!-- tree 12 --> 7846 <_> 7847 <!-- root node --> 7848 <feature> 7849 <rects> 7850 <_> 7851 2 8 30 4 -1.</_> 7852 <_> 7853 2 8 15 2 2.</_> 7854 <_> 7855 17 10 15 2 2.</_></rects> 7856 <tilted>0</tilted></feature> 7857 <threshold>-0.0464623309671879</threshold> 7858 <left_val>-0.6928564906120300</left_val> 7859 <right_val>0.0781976729631424</right_val></_></_> 7860 <_> 7861 <!-- tree 13 --> 7862 <_> 7863 <!-- root node --> 7864 <feature> 7865 <rects> 7866 <_> 7867 27 4 3 4 -1.</_> 7868 <_> 7869 27 5 3 2 2.</_></rects> 7870 <tilted>0</tilted></feature> 7871 <threshold>-3.7785700988024473e-003</threshold> 7872 <left_val>0.3437257111072540</left_val> 7873 <right_val>-0.1027545034885407</right_val></_></_> 7874 <_> 7875 <!-- tree 14 --> 7876 <_> 7877 <!-- root node --> 7878 <feature> 7879 <rects> 7880 <_> 7881 5 4 3 4 -1.</_> 7882 <_> 7883 5 5 3 2 2.</_></rects> 7884 <tilted>0</tilted></feature> 7885 <threshold>1.6655459767207503e-003</threshold> 7886 <left_val>-0.1160527989268303</left_val> 7887 <right_val>0.3716202974319458</right_val></_></_> 7888 <_> 7889 <!-- tree 15 --> 7890 <_> 7891 <!-- root node --> 7892 <feature> 7893 <rects> 7894 <_> 7895 34 16 2 2 -1.</_> 7896 <_> 7897 34 16 1 2 2.</_></rects> 7898 <tilted>0</tilted></feature> 7899 <threshold>-5.7107670727418736e-005</threshold> 7900 <left_val>0.4589366912841797</left_val> 7901 <right_val>-0.2123643010854721</right_val></_></_> 7902 <_> 7903 <!-- tree 16 --> 7904 <_> 7905 <!-- root node --> 7906 <feature> 7907 <rects> 7908 <_> 7909 0 16 34 2 -1.</_> 7910 <_> 7911 0 16 17 1 2.</_> 7912 <_> 7913 17 17 17 1 2.</_></rects> 7914 <tilted>0</tilted></feature> 7915 <threshold>-9.0066380798816681e-003</threshold> 7916 <left_val>-0.5953341126441956</left_val> 7917 <right_val>0.0808764025568962</right_val></_></_> 7918 <_> 7919 <!-- tree 17 --> 7920 <_> 7921 <!-- root node --> 7922 <feature> 7923 <rects> 7924 <_> 7925 12 5 15 12 -1.</_> 7926 <_> 7927 12 9 15 4 3.</_></rects> 7928 <tilted>0</tilted></feature> 7929 <threshold>-0.1378971040248871</threshold> 7930 <left_val>0.3957067131996155</left_val> 7931 <right_val>-0.0898853763937950</right_val></_></_> 7932 <_> 7933 <!-- tree 18 --> 7934 <_> 7935 <!-- root node --> 7936 <feature> 7937 <rects> 7938 <_> 7939 0 8 36 6 -1.</_> 7940 <_> 7941 12 10 12 2 9.</_></rects> 7942 <tilted>0</tilted></feature> 7943 <threshold>0.5759987235069275</threshold> 7944 <left_val>-0.0538108199834824</left_val> 7945 <right_val>0.8170394897460938</right_val></_></_> 7946 <_> 7947 <!-- tree 19 --> 7948 <_> 7949 <!-- root node --> 7950 <feature> 7951 <rects> 7952 <_> 7953 25 4 6 2 -1.</_> 7954 <_> 7955 25 5 6 1 2.</_></rects> 7956 <tilted>0</tilted></feature> 7957 <threshold>-2.3918158840388060e-003</threshold> 7958 <left_val>0.1393374055624008</left_val> 7959 <right_val>-0.0421559289097786</right_val></_></_> 7960 <_> 7961 <!-- tree 20 --> 7962 <_> 7963 <!-- root node --> 7964 <feature> 7965 <rects> 7966 <_> 7967 0 17 2 1 -1.</_> 7968 <_> 7969 1 17 1 1 2.</_></rects> 7970 <tilted>0</tilted></feature> 7971 <threshold>2.4896071408875287e-004</threshold> 7972 <left_val>-0.1485866010189056</left_val> 7973 <right_val>0.2626332938671112</right_val></_></_> 7974 <_> 7975 <!-- tree 21 --> 7976 <_> 7977 <!-- root node --> 7978 <feature> 7979 <rects> 7980 <_> 7981 16 0 9 9 -1.</_> 7982 <_> 7983 19 0 3 9 3.</_></rects> 7984 <tilted>0</tilted></feature> 7985 <threshold>0.0330624915659428</threshold> 7986 <left_val>0.0306599102914333</left_val> 7987 <right_val>-0.3231860101222992</right_val></_></_> 7988 <_> 7989 <!-- tree 22 --> 7990 <_> 7991 <!-- root node --> 7992 <feature> 7993 <rects> 7994 <_> 7995 11 0 9 9 -1.</_> 7996 <_> 7997 14 0 3 9 3.</_></rects> 7998 <tilted>0</tilted></feature> 7999 <threshold>0.0443218797445297</threshold> 8000 <left_val>0.0478538200259209</left_val> 8001 <right_val>-0.7813590168952942</right_val></_></_> 8002 <_> 8003 <!-- tree 23 --> 8004 <_> 8005 <!-- root node --> 8006 <feature> 8007 <rects> 8008 <_> 8009 20 5 16 5 -1.</_> 8010 <_> 8011 24 5 8 5 2.</_></rects> 8012 <tilted>0</tilted></feature> 8013 <threshold>-0.0187181904911995</threshold> 8014 <left_val>0.1201262027025223</left_val> 8015 <right_val>-0.1121146976947784</right_val></_></_> 8016 <_> 8017 <!-- tree 24 --> 8018 <_> 8019 <!-- root node --> 8020 <feature> 8021 <rects> 8022 <_> 8023 0 3 16 9 -1.</_> 8024 <_> 8025 4 3 8 9 2.</_></rects> 8026 <tilted>0</tilted></feature> 8027 <threshold>0.0923093706369400</threshold> 8028 <left_val>0.0424630790948868</left_val> 8029 <right_val>-0.8009700179100037</right_val></_></_> 8030 <_> 8031 <!-- tree 25 --> 8032 <_> 8033 <!-- root node --> 8034 <feature> 8035 <rects> 8036 <_> 8037 7 6 26 12 -1.</_> 8038 <_> 8039 20 6 13 6 2.</_> 8040 <_> 8041 7 12 13 6 2.</_></rects> 8042 <tilted>0</tilted></feature> 8043 <threshold>0.0906654372811317</threshold> 8044 <left_val>-0.0223045293241739</left_val> 8045 <right_val>0.1284797936677933</right_val></_></_> 8046 <_> 8047 <!-- tree 26 --> 8048 <_> 8049 <!-- root node --> 8050 <feature> 8051 <rects> 8052 <_> 8053 5 6 24 12 -1.</_> 8054 <_> 8055 5 6 12 6 2.</_> 8056 <_> 8057 17 12 12 6 2.</_></rects> 8058 <tilted>0</tilted></feature> 8059 <threshold>-0.0582949295639992</threshold> 8060 <left_val>-0.3936854004859924</left_val> 8061 <right_val>0.0954821407794952</right_val></_></_> 8062 <_> 8063 <!-- tree 27 --> 8064 <_> 8065 <!-- root node --> 8066 <feature> 8067 <rects> 8068 <_> 8069 17 4 3 12 -1.</_> 8070 <_> 8071 18 4 1 12 3.</_></rects> 8072 <tilted>0</tilted></feature> 8073 <threshold>4.6649780124425888e-003</threshold> 8074 <left_val>-0.0656419470906258</left_val> 8075 <right_val>0.3640717864036560</right_val></_></_> 8076 <_> 8077 <!-- tree 28 --> 8078 <_> 8079 <!-- root node --> 8080 <feature> 8081 <rects> 8082 <_> 8083 1 11 6 1 -1.</_> 8084 <_> 8085 3 13 2 1 3.</_></rects> 8086 <tilted>1</tilted></feature> 8087 <threshold>5.2480432204902172e-003</threshold> 8088 <left_val>0.0687657818198204</left_val> 8089 <right_val>-0.5050830245018005</right_val></_></_> 8090 <_> 8091 <!-- tree 29 --> 8092 <_> 8093 <!-- root node --> 8094 <feature> 8095 <rects> 8096 <_> 8097 21 12 14 2 -1.</_> 8098 <_> 8099 28 12 7 1 2.</_> 8100 <_> 8101 21 13 7 1 2.</_></rects> 8102 <tilted>0</tilted></feature> 8103 <threshold>2.5315659586340189e-003</threshold> 8104 <left_val>-0.0933471694588661</left_val> 8105 <right_val>0.1649612933397293</right_val></_></_> 8106 <_> 8107 <!-- tree 30 --> 8108 <_> 8109 <!-- root node --> 8110 <feature> 8111 <rects> 8112 <_> 8113 1 13 2 3 -1.</_> 8114 <_> 8115 2 13 1 3 2.</_></rects> 8116 <tilted>0</tilted></feature> 8117 <threshold>2.4391160695813596e-004</threshold> 8118 <left_val>-0.1888543963432312</left_val> 8119 <right_val>0.1695670038461685</right_val></_></_> 8120 <_> 8121 <!-- tree 31 --> 8122 <_> 8123 <!-- root node --> 8124 <feature> 8125 <rects> 8126 <_> 8127 26 8 3 2 -1.</_> 8128 <_> 8129 27 9 1 2 3.</_></rects> 8130 <tilted>1</tilted></feature> 8131 <threshold>-6.3037211075425148e-003</threshold> 8132 <left_val>0.3826352953910828</left_val> 8133 <right_val>-0.0590420998632908</right_val></_></_> 8134 <_> 8135 <!-- tree 32 --> 8136 <_> 8137 <!-- root node --> 8138 <feature> 8139 <rects> 8140 <_> 8141 10 8 2 3 -1.</_> 8142 <_> 8143 9 9 2 1 3.</_></rects> 8144 <tilted>1</tilted></feature> 8145 <threshold>2.2754059173166752e-003</threshold> 8146 <left_val>-0.1224882006645203</left_val> 8147 <right_val>0.2828365862369537</right_val></_></_> 8148 <_> 8149 <!-- tree 33 --> 8150 <_> 8151 <!-- root node --> 8152 <feature> 8153 <rects> 8154 <_> 8155 12 0 18 18 -1.</_> 8156 <_> 8157 12 0 9 18 2.</_></rects> 8158 <tilted>0</tilted></feature> 8159 <threshold>-0.2769486904144287</threshold> 8160 <left_val>0.4851497113704681</left_val> 8161 <right_val>-0.0404825396835804</right_val></_></_> 8162 <_> 8163 <!-- tree 34 --> 8164 <_> 8165 <!-- root node --> 8166 <feature> 8167 <rects> 8168 <_> 8169 8 9 3 3 -1.</_> 8170 <_> 8171 7 10 3 1 3.</_></rects> 8172 <tilted>1</tilted></feature> 8173 <threshold>5.8051547966897488e-003</threshold> 8174 <left_val>-0.0835584178566933</left_val> 8175 <right_val>0.4215149879455566</right_val></_></_> 8176 <_> 8177 <!-- tree 35 --> 8178 <_> 8179 <!-- root node --> 8180 <feature> 8181 <rects> 8182 <_> 8183 28 5 5 6 -1.</_> 8184 <_> 8185 28 7 5 2 3.</_></rects> 8186 <tilted>0</tilted></feature> 8187 <threshold>2.4654529988765717e-003</threshold> 8188 <left_val>-0.1281685978174210</left_val> 8189 <right_val>0.2077662944793701</right_val></_></_> 8190 <_> 8191 <!-- tree 36 --> 8192 <_> 8193 <!-- root node --> 8194 <feature> 8195 <rects> 8196 <_> 8197 9 1 9 8 -1.</_> 8198 <_> 8199 9 1 9 4 2.</_></rects> 8200 <tilted>1</tilted></feature> 8201 <threshold>7.8863510861992836e-003</threshold> 8202 <left_val>-0.1719754040241242</left_val> 8203 <right_val>0.2079081982374191</right_val></_></_> 8204 <_> 8205 <!-- tree 37 --> 8206 <_> 8207 <!-- root node --> 8208 <feature> 8209 <rects> 8210 <_> 8211 0 0 36 2 -1.</_> 8212 <_> 8213 18 0 18 1 2.</_> 8214 <_> 8215 0 1 18 1 2.</_></rects> 8216 <tilted>0</tilted></feature> 8217 <threshold>-0.0118171302601695</threshold> 8218 <left_val>-0.5788066983222961</left_val> 8219 <right_val>0.0589591413736343</right_val></_></_> 8220 <_> 8221 <!-- tree 38 --> 8222 <_> 8223 <!-- root node --> 8224 <feature> 8225 <rects> 8226 <_> 8227 5 0 26 6 -1.</_> 8228 <_> 8229 5 0 13 3 2.</_> 8230 <_> 8231 18 3 13 3 2.</_></rects> 8232 <tilted>0</tilted></feature> 8233 <threshold>-0.0641399174928665</threshold> 8234 <left_val>-0.6368926167488098</left_val> 8235 <right_val>0.0417975001037121</right_val></_></_> 8236 <_> 8237 <!-- tree 39 --> 8238 <_> 8239 <!-- root node --> 8240 <feature> 8241 <rects> 8242 <_> 8243 28 3 3 3 -1.</_> 8244 <_> 8245 28 4 3 1 3.</_></rects> 8246 <tilted>0</tilted></feature> 8247 <threshold>-1.2179970508441329e-003</threshold> 8248 <left_val>0.2356870025396347</left_val> 8249 <right_val>-0.0805152580142021</right_val></_></_> 8250 <_> 8251 <!-- tree 40 --> 8252 <_> 8253 <!-- root node --> 8254 <feature> 8255 <rects> 8256 <_> 8257 5 3 5 3 -1.</_> 8258 <_> 8259 5 4 5 1 3.</_></rects> 8260 <tilted>0</tilted></feature> 8261 <threshold>2.8652620967477560e-003</threshold> 8262 <left_val>-0.0931371971964836</left_val> 8263 <right_val>0.3902595043182373</right_val></_></_> 8264 <_> 8265 <!-- tree 41 --> 8266 <_> 8267 <!-- root node --> 8268 <feature> 8269 <rects> 8270 <_> 8271 14 12 8 2 -1.</_> 8272 <_> 8273 16 12 4 2 2.</_></rects> 8274 <tilted>0</tilted></feature> 8275 <threshold>-5.7746102102100849e-003</threshold> 8276 <left_val>-0.5753986835479736</left_val> 8277 <right_val>0.0596776902675629</right_val></_></_> 8278 <_> 8279 <!-- tree 42 --> 8280 <_> 8281 <!-- root node --> 8282 <feature> 8283 <rects> 8284 <_> 8285 13 0 9 14 -1.</_> 8286 <_> 8287 16 0 3 14 3.</_></rects> 8288 <tilted>0</tilted></feature> 8289 <threshold>0.0653770864009857</threshold> 8290 <left_val>0.0341660715639591</left_val> 8291 <right_val>-0.7425342202186585</right_val></_></_> 8292 <_> 8293 <!-- tree 43 --> 8294 <_> 8295 <!-- root node --> 8296 <feature> 8297 <rects> 8298 <_> 8299 23 0 10 1 -1.</_> 8300 <_> 8301 23 0 5 1 2.</_></rects> 8302 <tilted>1</tilted></feature> 8303 <threshold>0.0162657108157873</threshold> 8304 <left_val>0.0536542609333992</left_val> 8305 <right_val>-0.2365860939025879</right_val></_></_> 8306 <_> 8307 <!-- tree 44 --> 8308 <_> 8309 <!-- root node --> 8310 <feature> 8311 <rects> 8312 <_> 8313 8 14 2 2 -1.</_> 8314 <_> 8315 8 14 1 2 2.</_></rects> 8316 <tilted>1</tilted></feature> 8317 <threshold>2.2717609535902739e-003</threshold> 8318 <left_val>0.0533591099083424</left_val> 8319 <right_val>-0.5494074225425720</right_val></_></_> 8320 <_> 8321 <!-- tree 45 --> 8322 <_> 8323 <!-- root node --> 8324 <feature> 8325 <rects> 8326 <_> 8327 0 12 36 3 -1.</_> 8328 <_> 8329 12 13 12 1 9.</_></rects> 8330 <tilted>0</tilted></feature> 8331 <threshold>0.2262602001428604</threshold> 8332 <left_val>-0.0420460589230061</left_val> 8333 <right_val>0.7791252136230469</right_val></_></_> 8334 <_> 8335 <!-- tree 46 --> 8336 <_> 8337 <!-- root node --> 8338 <feature> 8339 <rects> 8340 <_> 8341 0 13 34 4 -1.</_> 8342 <_> 8343 0 13 17 2 2.</_> 8344 <_> 8345 17 15 17 2 2.</_></rects> 8346 <tilted>0</tilted></feature> 8347 <threshold>-0.0293774604797363</threshold> 8348 <left_val>-0.5947058796882629</left_val> 8349 <right_val>0.0548178702592850</right_val></_></_></trees> 8350 <stage_threshold>-1.1933319568634033</stage_threshold> 8351 <parent>18</parent> 8352 <next>-1</next></_></stages></SmileDetector> 8353 </opencv_storage> 8354