Home | History | Annotate | Download | only in remap
      1 Remapping {#tutorial_remap}
      2 =========
      3 
      4 Goal
      5 ----
      6 
      7 In this tutorial you will learn how to:
      8 
      9 a.  Use the OpenCV function @ref cv::remap to implement simple remapping routines.
     10 
     11 Theory
     12 ------
     13 
     14 ### What is remapping?
     15 
     16 -   It is the process of taking pixels from one place in the image and locating them in another
     17     position in a new image.
     18 -   To accomplish the mapping process, it might be necessary to do some interpolation for
     19     non-integer pixel locations, since there will not always be a one-to-one-pixel correspondence
     20     between source and destination images.
     21 -   We can express the remap for every pixel location \f$(x,y)\f$ as:
     22 
     23     \f[g(x,y) = f ( h(x,y) )\f]
     24 
     25     where \f$g()\f$ is the remapped image, \f$f()\f$ the source image and \f$h(x,y)\f$ is the mapping function
     26     that operates on \f$(x,y)\f$.
     27 
     28 -   Let's think in a quick example. Imagine that we have an image \f$I\f$ and, say, we want to do a
     29     remap such that:
     30 
     31     \f[h(x,y) = (I.cols - x, y )\f]
     32 
     33     What would happen? It is easily seen that the image would flip in the \f$x\f$ direction. For
     34     instance, consider the input image:
     35 
     36     ![](images/Remap_Tutorial_Theory_0.jpg)
     37 
     38     observe how the red circle changes positions with respect to x (considering \f$x\f$ the horizontal
     39     direction):
     40 
     41     ![](images/Remap_Tutorial_Theory_1.jpg)
     42 
     43 -   In OpenCV, the function @ref cv::remap offers a simple remapping implementation.
     44 
     45 Code
     46 ----
     47 
     48 -#  **What does this program do?**
     49     -   Loads an image
     50     -   Each second, apply 1 of 4 different remapping processes to the image and display them
     51         indefinitely in a window.
     52     -   Wait for the user to exit the program
     53 
     54 -#  The tutorial code's is shown lines below. You can also download it from
     55     [here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/Remap_Demo.cpp)
     56     @include samples/cpp/tutorial_code/ImgTrans/Remap_Demo.cpp
     57 
     58 Explanation
     59 -----------
     60 
     61 -#  Create some variables we will use:
     62     @code{.cpp}
     63     Mat src, dst;
     64     Mat map_x, map_y;
     65     char* remap_window = "Remap demo";
     66     int ind = 0;
     67     @endcode
     68 -#  Load an image:
     69     @code{.cpp}
     70     src = imread( argv[1], 1 );
     71     @endcode
     72 -#  Create the destination image and the two mapping matrices (for x and y )
     73     @code{.cpp}
     74     dst.create( src.size(), src.type() );
     75     map_x.create( src.size(), CV_32FC1 );
     76     map_y.create( src.size(), CV_32FC1 );
     77     @endcode
     78 -#  Create a window to display results
     79     @code{.cpp}
     80     namedWindow( remap_window, WINDOW_AUTOSIZE );
     81     @endcode
     82 -#  Establish a loop. Each 1000 ms we update our mapping matrices (*mat_x* and *mat_y*) and apply
     83     them to our source image:
     84     @code{.cpp}
     85     while( true )
     86     {
     87       /// Each 1 sec. Press ESC to exit the program
     88       int c = waitKey( 1000 );
     89 
     90       if( (char)c == 27 )
     91         { break; }
     92 
     93       /// Update map_x & map_y. Then apply remap
     94       update_map();
     95       remap( src, dst, map_x, map_y, INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) );
     96 
     97       /// Display results
     98       imshow( remap_window, dst );
     99     }
    100     @endcode
    101     The function that applies the remapping is @ref cv::remap . We give the following arguments:
    102 
    103     -   **src**: Source image
    104     -   **dst**: Destination image of same size as *src*
    105     -   **map_x**: The mapping function in the x direction. It is equivalent to the first component
    106         of \f$h(i,j)\f$
    107     -   **map_y**: Same as above, but in y direction. Note that *map_y* and *map_x* are both of
    108         the same size as *src*
    109     -   **INTER_LINEAR**: The type of interpolation to use for non-integer pixels. This is by
    110         default.
    111     -   **BORDER_CONSTANT**: Default
    112 
    113     How do we update our mapping matrices *mat_x* and *mat_y*? Go on reading:
    114 
    115 -#  **Updating the mapping matrices:** We are going to perform 4 different mappings:
    116     -#  Reduce the picture to half its size and will display it in the middle:
    117         \f[h(i,j) = ( 2*i - src.cols/2  + 0.5, 2*j - src.rows/2  + 0.5)\f]
    118         for all pairs \f$(i,j)\f$ such that: \f$\dfrac{src.cols}{4}<i<\dfrac{3 \cdot src.cols}{4}\f$ and
    119         \f$\dfrac{src.rows}{4}<j<\dfrac{3 \cdot src.rows}{4}\f$
    120     -#  Turn the image upside down: \f$h( i, j ) = (i, src.rows - j)\f$
    121     -#  Reflect the image from left to right: \f$h(i,j) = ( src.cols - i, j )\f$
    122     -#  Combination of b and c: \f$h(i,j) = ( src.cols - i, src.rows - j )\f$
    123 
    124 This is expressed in the following snippet. Here, *map_x* represents the first coordinate of
    125 *h(i,j)* and *map_y* the second coordinate.
    126 @code{.cpp}
    127 for( int j = 0; j < src.rows; j++ )
    128 { for( int i = 0; i < src.cols; i++ )
    129 {
    130       switch( ind )
    131   {
    132     case 0:
    133       if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 )
    134             {
    135           map_x.at<float>(j,i) = 2*( i - src.cols*0.25 ) + 0.5 ;
    136           map_y.at<float>(j,i) = 2*( j - src.rows*0.25 ) + 0.5 ;
    137          }
    138       else
    139     { map_x.at<float>(j,i) = 0 ;
    140           map_y.at<float>(j,i) = 0 ;
    141             }
    142               break;
    143     case 1:
    144           map_x.at<float>(j,i) = i ;
    145           map_y.at<float>(j,i) = src.rows - j ;
    146       break;
    147         case 2:
    148           map_x.at<float>(j,i) = src.cols - i ;
    149           map_y.at<float>(j,i) = j ;
    150       break;
    151         case 3:
    152           map_x.at<float>(j,i) = src.cols - i ;
    153           map_y.at<float>(j,i) = src.rows - j ;
    154       break;
    155       } // end of switch
    156 }
    157   }
    158  ind++;
    159 }
    160 @endcode
    161 
    162 Result
    163 ------
    164 
    165 -#  After compiling the code above, you can execute it giving as argument an image path. For
    166     instance, by using the following image:
    167 
    168     ![](images/Remap_Tutorial_Original_Image.jpg)
    169 
    170 -#  This is the result of reducing it to half the size and centering it:
    171 
    172     ![](images/Remap_Tutorial_Result_0.jpg)
    173 
    174 -#  Turning it upside down:
    175 
    176     ![](images/Remap_Tutorial_Result_1.jpg)
    177 
    178 -#  Reflecting it in the x direction:
    179 
    180     ![](images/Remap_Tutorial_Result_2.jpg)
    181 
    182 -#  Reflecting it in both directions:
    183 
    184     ![](images/Remap_Tutorial_Result_3.jpg)
    185