Home | History | Annotate | Download | only in test
      1 /*M///////////////////////////////////////////////////////////////////////////////////////
      2 //
      3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
      4 //
      5 //  By downloading, copying, installing or using the software you agree to this license.
      6 //  If you do not agree to this license, do not download, install,
      7 //  copy or use the software.
      8 //
      9 //
     10 //                           License Agreement
     11 //                For Open Source Computer Vision Library
     12 //
     13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
     14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
     15 // Third party copyrights are property of their respective owners.
     16 //
     17 // Redistribution and use in source and binary forms, with or without modification,
     18 // are permitted provided that the following conditions are met:
     19 //
     20 //   * Redistribution's of source code must retain the above copyright notice,
     21 //     this list of conditions and the following disclaimer.
     22 //
     23 //   * Redistribution's in binary form must reproduce the above copyright notice,
     24 //     this list of conditions and the following disclaimer in the documentation
     25 //     and/or other materials provided with the distribution.
     26 //
     27 //   * The name of the copyright holders may not be used to endorse or promote products
     28 //     derived from this software without specific prior written permission.
     29 //
     30 // This software is provided by the copyright holders and contributors "as is" and
     31 // any express or implied warranties, including, but not limited to, the implied
     32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
     33 // In no event shall the Intel Corporation or contributors be liable for any direct,
     34 // indirect, incidental, special, exemplary, or consequential damages
     35 // (including, but not limited to, procurement of substitute goods or services;
     36 // loss of use, data, or profits; or business interruption) however caused
     37 // and on any theory of liability, whether in contract, strict liability,
     38 // or tort (including negligence or otherwise) arising in any way out of
     39 // the use of this software, even if advised of the possibility of such damage.
     40 //
     41 //M*/
     42 
     43 #include "test_precomp.hpp"
     44 
     45 #ifdef HAVE_CUDA
     46 
     47 using namespace cvtest;
     48 
     49 /////////////////////////////////////////////////////////////////////////////////////////////////
     50 // FAST
     51 
     52 namespace
     53 {
     54     IMPLEMENT_PARAM_CLASS(FAST_Threshold, int)
     55     IMPLEMENT_PARAM_CLASS(FAST_NonmaxSuppression, bool)
     56 }
     57 
     58 PARAM_TEST_CASE(FAST, cv::cuda::DeviceInfo, FAST_Threshold, FAST_NonmaxSuppression)
     59 {
     60     cv::cuda::DeviceInfo devInfo;
     61     int threshold;
     62     bool nonmaxSuppression;
     63 
     64     virtual void SetUp()
     65     {
     66         devInfo = GET_PARAM(0);
     67         threshold = GET_PARAM(1);
     68         nonmaxSuppression = GET_PARAM(2);
     69 
     70         cv::cuda::setDevice(devInfo.deviceID());
     71     }
     72 };
     73 
     74 CUDA_TEST_P(FAST, Accuracy)
     75 {
     76     cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
     77     ASSERT_FALSE(image.empty());
     78 
     79     cv::Ptr<cv::cuda::FastFeatureDetector> fast = cv::cuda::FastFeatureDetector::create(threshold, nonmaxSuppression);
     80 
     81     if (!supportFeature(devInfo, cv::cuda::GLOBAL_ATOMICS))
     82     {
     83         try
     84         {
     85             std::vector<cv::KeyPoint> keypoints;
     86             fast->detect(loadMat(image), keypoints);
     87         }
     88         catch (const cv::Exception& e)
     89         {
     90             ASSERT_EQ(cv::Error::StsNotImplemented, e.code);
     91         }
     92     }
     93     else
     94     {
     95         std::vector<cv::KeyPoint> keypoints;
     96         fast->detect(loadMat(image), keypoints);
     97 
     98         std::vector<cv::KeyPoint> keypoints_gold;
     99         cv::FAST(image, keypoints_gold, threshold, nonmaxSuppression);
    100 
    101         ASSERT_KEYPOINTS_EQ(keypoints_gold, keypoints);
    102     }
    103 }
    104 
    105 INSTANTIATE_TEST_CASE_P(CUDA_Features2D, FAST, testing::Combine(
    106     ALL_DEVICES,
    107     testing::Values(FAST_Threshold(25), FAST_Threshold(50)),
    108     testing::Values(FAST_NonmaxSuppression(false), FAST_NonmaxSuppression(true))));
    109 
    110 /////////////////////////////////////////////////////////////////////////////////////////////////
    111 // ORB
    112 
    113 namespace
    114 {
    115     IMPLEMENT_PARAM_CLASS(ORB_FeaturesCount, int)
    116     IMPLEMENT_PARAM_CLASS(ORB_ScaleFactor, float)
    117     IMPLEMENT_PARAM_CLASS(ORB_LevelsCount, int)
    118     IMPLEMENT_PARAM_CLASS(ORB_EdgeThreshold, int)
    119     IMPLEMENT_PARAM_CLASS(ORB_firstLevel, int)
    120     IMPLEMENT_PARAM_CLASS(ORB_WTA_K, int)
    121     IMPLEMENT_PARAM_CLASS(ORB_PatchSize, int)
    122     IMPLEMENT_PARAM_CLASS(ORB_BlurForDescriptor, bool)
    123 }
    124 
    125 CV_ENUM(ORB_ScoreType, cv::ORB::HARRIS_SCORE, cv::ORB::FAST_SCORE)
    126 
    127 PARAM_TEST_CASE(ORB, cv::cuda::DeviceInfo, ORB_FeaturesCount, ORB_ScaleFactor, ORB_LevelsCount, ORB_EdgeThreshold, ORB_firstLevel, ORB_WTA_K, ORB_ScoreType, ORB_PatchSize, ORB_BlurForDescriptor)
    128 {
    129     cv::cuda::DeviceInfo devInfo;
    130     int nFeatures;
    131     float scaleFactor;
    132     int nLevels;
    133     int edgeThreshold;
    134     int firstLevel;
    135     int WTA_K;
    136     int scoreType;
    137     int patchSize;
    138     bool blurForDescriptor;
    139 
    140     virtual void SetUp()
    141     {
    142         devInfo = GET_PARAM(0);
    143         nFeatures = GET_PARAM(1);
    144         scaleFactor = GET_PARAM(2);
    145         nLevels = GET_PARAM(3);
    146         edgeThreshold = GET_PARAM(4);
    147         firstLevel = GET_PARAM(5);
    148         WTA_K = GET_PARAM(6);
    149         scoreType = GET_PARAM(7);
    150         patchSize = GET_PARAM(8);
    151         blurForDescriptor = GET_PARAM(9);
    152 
    153         cv::cuda::setDevice(devInfo.deviceID());
    154     }
    155 };
    156 
    157 CUDA_TEST_P(ORB, Accuracy)
    158 {
    159     cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
    160     ASSERT_FALSE(image.empty());
    161 
    162     cv::Mat mask(image.size(), CV_8UC1, cv::Scalar::all(1));
    163     mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0));
    164 
    165     cv::Ptr<cv::cuda::ORB> orb =
    166             cv::cuda::ORB::create(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel,
    167                                   WTA_K, scoreType, patchSize, 20, blurForDescriptor);
    168 
    169     if (!supportFeature(devInfo, cv::cuda::GLOBAL_ATOMICS))
    170     {
    171         try
    172         {
    173             std::vector<cv::KeyPoint> keypoints;
    174             cv::cuda::GpuMat descriptors;
    175             orb->detectAndComputeAsync(loadMat(image), loadMat(mask), keypoints, descriptors);
    176         }
    177         catch (const cv::Exception& e)
    178         {
    179             ASSERT_EQ(cv::Error::StsNotImplemented, e.code);
    180         }
    181     }
    182     else
    183     {
    184         std::vector<cv::KeyPoint> keypoints;
    185         cv::cuda::GpuMat descriptors;
    186         orb->detectAndCompute(loadMat(image), loadMat(mask), keypoints, descriptors);
    187 
    188         cv::Ptr<cv::ORB> orb_gold = cv::ORB::create(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize);
    189 
    190         std::vector<cv::KeyPoint> keypoints_gold;
    191         cv::Mat descriptors_gold;
    192         orb_gold->detectAndCompute(image, mask, keypoints_gold, descriptors_gold);
    193 
    194         cv::BFMatcher matcher(cv::NORM_HAMMING);
    195         std::vector<cv::DMatch> matches;
    196         matcher.match(descriptors_gold, cv::Mat(descriptors), matches);
    197 
    198         int matchedCount = getMatchedPointsCount(keypoints_gold, keypoints, matches);
    199         double matchedRatio = static_cast<double>(matchedCount) / keypoints.size();
    200 
    201         EXPECT_GT(matchedRatio, 0.35);
    202     }
    203 }
    204 
    205 INSTANTIATE_TEST_CASE_P(CUDA_Features2D, ORB,  testing::Combine(
    206     ALL_DEVICES,
    207     testing::Values(ORB_FeaturesCount(1000)),
    208     testing::Values(ORB_ScaleFactor(1.2f)),
    209     testing::Values(ORB_LevelsCount(4), ORB_LevelsCount(8)),
    210     testing::Values(ORB_EdgeThreshold(31)),
    211     testing::Values(ORB_firstLevel(0)),
    212     testing::Values(ORB_WTA_K(2), ORB_WTA_K(3), ORB_WTA_K(4)),
    213     testing::Values(ORB_ScoreType(cv::ORB::HARRIS_SCORE)),
    214     testing::Values(ORB_PatchSize(31), ORB_PatchSize(29)),
    215     testing::Values(ORB_BlurForDescriptor(false), ORB_BlurForDescriptor(true))));
    216 
    217 /////////////////////////////////////////////////////////////////////////////////////////////////
    218 // BruteForceMatcher
    219 
    220 namespace
    221 {
    222     IMPLEMENT_PARAM_CLASS(DescriptorSize, int)
    223     IMPLEMENT_PARAM_CLASS(UseMask, bool)
    224 }
    225 
    226 PARAM_TEST_CASE(BruteForceMatcher, cv::cuda::DeviceInfo, NormCode, DescriptorSize, UseMask)
    227 {
    228     cv::cuda::DeviceInfo devInfo;
    229     int normCode;
    230     int dim;
    231     bool useMask;
    232 
    233     int queryDescCount;
    234     int countFactor;
    235 
    236     cv::Mat query, train;
    237 
    238     virtual void SetUp()
    239     {
    240         devInfo = GET_PARAM(0);
    241         normCode = GET_PARAM(1);
    242         dim = GET_PARAM(2);
    243         useMask = GET_PARAM(3);
    244 
    245         cv::cuda::setDevice(devInfo.deviceID());
    246 
    247         queryDescCount = 300; // must be even number because we split train data in some cases in two
    248         countFactor = 4; // do not change it
    249 
    250         cv::RNG& rng = cvtest::TS::ptr()->get_rng();
    251 
    252         cv::Mat queryBuf, trainBuf;
    253 
    254         // Generate query descriptors randomly.
    255         // Descriptor vector elements are integer values.
    256         queryBuf.create(queryDescCount, dim, CV_32SC1);
    257         rng.fill(queryBuf, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(3));
    258         queryBuf.convertTo(queryBuf, CV_32FC1);
    259 
    260         // Generate train decriptors as follows:
    261         // copy each query descriptor to train set countFactor times
    262         // and perturb some one element of the copied descriptors in
    263         // in ascending order. General boundaries of the perturbation
    264         // are (0.f, 1.f).
    265         trainBuf.create(queryDescCount * countFactor, dim, CV_32FC1);
    266         float step = 1.f / countFactor;
    267         for (int qIdx = 0; qIdx < queryDescCount; qIdx++)
    268         {
    269             cv::Mat queryDescriptor = queryBuf.row(qIdx);
    270             for (int c = 0; c < countFactor; c++)
    271             {
    272                 int tIdx = qIdx * countFactor + c;
    273                 cv::Mat trainDescriptor = trainBuf.row(tIdx);
    274                 queryDescriptor.copyTo(trainDescriptor);
    275                 int elem = rng(dim);
    276                 float diff = rng.uniform(step * c, step * (c + 1));
    277                 trainDescriptor.at<float>(0, elem) += diff;
    278             }
    279         }
    280 
    281         queryBuf.convertTo(query, CV_32F);
    282         trainBuf.convertTo(train, CV_32F);
    283     }
    284 };
    285 
    286 CUDA_TEST_P(BruteForceMatcher, Match_Single)
    287 {
    288     cv::Ptr<cv::cuda::DescriptorMatcher> matcher =
    289             cv::cuda::DescriptorMatcher::createBFMatcher(normCode);
    290 
    291     cv::cuda::GpuMat mask;
    292     if (useMask)
    293     {
    294         mask.create(query.rows, train.rows, CV_8UC1);
    295         mask.setTo(cv::Scalar::all(1));
    296     }
    297 
    298     std::vector<cv::DMatch> matches;
    299     matcher->match(loadMat(query), loadMat(train), matches, mask);
    300 
    301     ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
    302 
    303     int badCount = 0;
    304     for (size_t i = 0; i < matches.size(); i++)
    305     {
    306         cv::DMatch match = matches[i];
    307         if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor) || (match.imgIdx != 0))
    308             badCount++;
    309     }
    310 
    311     ASSERT_EQ(0, badCount);
    312 }
    313 
    314 CUDA_TEST_P(BruteForceMatcher, Match_Collection)
    315 {
    316     cv::Ptr<cv::cuda::DescriptorMatcher> matcher =
    317             cv::cuda::DescriptorMatcher::createBFMatcher(normCode);
    318 
    319     cv::cuda::GpuMat d_train(train);
    320 
    321     // make add() twice to test such case
    322     matcher->add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(0, train.rows / 2)));
    323     matcher->add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows)));
    324 
    325     // prepare masks (make first nearest match illegal)
    326     std::vector<cv::cuda::GpuMat> masks(2);
    327     for (int mi = 0; mi < 2; mi++)
    328     {
    329         masks[mi] = cv::cuda::GpuMat(query.rows, train.rows/2, CV_8UC1, cv::Scalar::all(1));
    330         for (int di = 0; di < queryDescCount/2; di++)
    331             masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0));
    332     }
    333 
    334     std::vector<cv::DMatch> matches;
    335     if (useMask)
    336         matcher->match(cv::cuda::GpuMat(query), matches, masks);
    337     else
    338         matcher->match(cv::cuda::GpuMat(query), matches);
    339 
    340     ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
    341 
    342     int badCount = 0;
    343     int shift = useMask ? 1 : 0;
    344     for (size_t i = 0; i < matches.size(); i++)
    345     {
    346         cv::DMatch match = matches[i];
    347 
    348         if ((int)i < queryDescCount / 2)
    349         {
    350             bool validQueryIdx = (match.queryIdx == (int)i);
    351             bool validTrainIdx = (match.trainIdx == (int)i * countFactor + shift);
    352             bool validImgIdx = (match.imgIdx == 0);
    353             if (!validQueryIdx || !validTrainIdx || !validImgIdx)
    354                 badCount++;
    355         }
    356         else
    357         {
    358             bool validQueryIdx = (match.queryIdx == (int)i);
    359             bool validTrainIdx = (match.trainIdx == ((int)i - queryDescCount / 2) * countFactor + shift);
    360             bool validImgIdx = (match.imgIdx == 1);
    361             if (!validQueryIdx || !validTrainIdx || !validImgIdx)
    362                 badCount++;
    363         }
    364     }
    365 
    366     ASSERT_EQ(0, badCount);
    367 }
    368 
    369 CUDA_TEST_P(BruteForceMatcher, KnnMatch_2_Single)
    370 {
    371     cv::Ptr<cv::cuda::DescriptorMatcher> matcher =
    372             cv::cuda::DescriptorMatcher::createBFMatcher(normCode);
    373 
    374     const int knn = 2;
    375 
    376     cv::cuda::GpuMat mask;
    377     if (useMask)
    378     {
    379         mask.create(query.rows, train.rows, CV_8UC1);
    380         mask.setTo(cv::Scalar::all(1));
    381     }
    382 
    383     std::vector< std::vector<cv::DMatch> > matches;
    384     matcher->knnMatch(loadMat(query), loadMat(train), matches, knn, mask);
    385 
    386     ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
    387 
    388     int badCount = 0;
    389     for (size_t i = 0; i < matches.size(); i++)
    390     {
    391         if ((int)matches[i].size() != knn)
    392             badCount++;
    393         else
    394         {
    395             int localBadCount = 0;
    396             for (int k = 0; k < knn; k++)
    397             {
    398                 cv::DMatch match = matches[i][k];
    399                 if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0))
    400                     localBadCount++;
    401             }
    402             badCount += localBadCount > 0 ? 1 : 0;
    403         }
    404     }
    405 
    406     ASSERT_EQ(0, badCount);
    407 }
    408 
    409 CUDA_TEST_P(BruteForceMatcher, KnnMatch_3_Single)
    410 {
    411     cv::Ptr<cv::cuda::DescriptorMatcher> matcher =
    412             cv::cuda::DescriptorMatcher::createBFMatcher(normCode);
    413 
    414     const int knn = 3;
    415 
    416     cv::cuda::GpuMat mask;
    417     if (useMask)
    418     {
    419         mask.create(query.rows, train.rows, CV_8UC1);
    420         mask.setTo(cv::Scalar::all(1));
    421     }
    422 
    423     std::vector< std::vector<cv::DMatch> > matches;
    424     matcher->knnMatch(loadMat(query), loadMat(train), matches, knn, mask);
    425 
    426     ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
    427 
    428     int badCount = 0;
    429     for (size_t i = 0; i < matches.size(); i++)
    430     {
    431         if ((int)matches[i].size() != knn)
    432             badCount++;
    433         else
    434         {
    435             int localBadCount = 0;
    436             for (int k = 0; k < knn; k++)
    437             {
    438                 cv::DMatch match = matches[i][k];
    439                 if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0))
    440                     localBadCount++;
    441             }
    442             badCount += localBadCount > 0 ? 1 : 0;
    443         }
    444     }
    445 
    446     ASSERT_EQ(0, badCount);
    447 }
    448 
    449 CUDA_TEST_P(BruteForceMatcher, KnnMatch_2_Collection)
    450 {
    451     cv::Ptr<cv::cuda::DescriptorMatcher> matcher =
    452             cv::cuda::DescriptorMatcher::createBFMatcher(normCode);
    453 
    454     const int knn = 2;
    455 
    456     cv::cuda::GpuMat d_train(train);
    457 
    458     // make add() twice to test such case
    459     matcher->add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(0, train.rows / 2)));
    460     matcher->add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows)));
    461 
    462     // prepare masks (make first nearest match illegal)
    463     std::vector<cv::cuda::GpuMat> masks(2);
    464     for (int mi = 0; mi < 2; mi++ )
    465     {
    466         masks[mi] = cv::cuda::GpuMat(query.rows, train.rows / 2, CV_8UC1, cv::Scalar::all(1));
    467         for (int di = 0; di < queryDescCount / 2; di++)
    468             masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0));
    469     }
    470 
    471     std::vector< std::vector<cv::DMatch> > matches;
    472 
    473     if (useMask)
    474         matcher->knnMatch(cv::cuda::GpuMat(query), matches, knn, masks);
    475     else
    476         matcher->knnMatch(cv::cuda::GpuMat(query), matches, knn);
    477 
    478     ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
    479 
    480     int badCount = 0;
    481     int shift = useMask ? 1 : 0;
    482     for (size_t i = 0; i < matches.size(); i++)
    483     {
    484         if ((int)matches[i].size() != knn)
    485             badCount++;
    486         else
    487         {
    488             int localBadCount = 0;
    489             for (int k = 0; k < knn; k++)
    490             {
    491                 cv::DMatch match = matches[i][k];
    492                 {
    493                     if ((int)i < queryDescCount / 2)
    494                     {
    495                         if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) )
    496                             localBadCount++;
    497                     }
    498                     else
    499                     {
    500                         if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) )
    501                             localBadCount++;
    502                     }
    503                 }
    504             }
    505             badCount += localBadCount > 0 ? 1 : 0;
    506         }
    507     }
    508 
    509     ASSERT_EQ(0, badCount);
    510 }
    511 
    512 CUDA_TEST_P(BruteForceMatcher, KnnMatch_3_Collection)
    513 {
    514     cv::Ptr<cv::cuda::DescriptorMatcher> matcher =
    515             cv::cuda::DescriptorMatcher::createBFMatcher(normCode);
    516 
    517     const int knn = 3;
    518 
    519     cv::cuda::GpuMat d_train(train);
    520 
    521     // make add() twice to test such case
    522     matcher->add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(0, train.rows / 2)));
    523     matcher->add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows)));
    524 
    525     // prepare masks (make first nearest match illegal)
    526     std::vector<cv::cuda::GpuMat> masks(2);
    527     for (int mi = 0; mi < 2; mi++ )
    528     {
    529         masks[mi] = cv::cuda::GpuMat(query.rows, train.rows / 2, CV_8UC1, cv::Scalar::all(1));
    530         for (int di = 0; di < queryDescCount / 2; di++)
    531             masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0));
    532     }
    533 
    534     std::vector< std::vector<cv::DMatch> > matches;
    535 
    536     if (useMask)
    537         matcher->knnMatch(cv::cuda::GpuMat(query), matches, knn, masks);
    538     else
    539         matcher->knnMatch(cv::cuda::GpuMat(query), matches, knn);
    540 
    541     ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
    542 
    543     int badCount = 0;
    544     int shift = useMask ? 1 : 0;
    545     for (size_t i = 0; i < matches.size(); i++)
    546     {
    547         if ((int)matches[i].size() != knn)
    548             badCount++;
    549         else
    550         {
    551             int localBadCount = 0;
    552             for (int k = 0; k < knn; k++)
    553             {
    554                 cv::DMatch match = matches[i][k];
    555                 {
    556                     if ((int)i < queryDescCount / 2)
    557                     {
    558                         if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) )
    559                             localBadCount++;
    560                     }
    561                     else
    562                     {
    563                         if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) )
    564                             localBadCount++;
    565                     }
    566                 }
    567             }
    568             badCount += localBadCount > 0 ? 1 : 0;
    569         }
    570     }
    571 
    572     ASSERT_EQ(0, badCount);
    573 }
    574 
    575 CUDA_TEST_P(BruteForceMatcher, RadiusMatch_Single)
    576 {
    577     cv::Ptr<cv::cuda::DescriptorMatcher> matcher =
    578             cv::cuda::DescriptorMatcher::createBFMatcher(normCode);
    579 
    580     const float radius = 1.f / countFactor;
    581 
    582     if (!supportFeature(devInfo, cv::cuda::GLOBAL_ATOMICS))
    583     {
    584         try
    585         {
    586             std::vector< std::vector<cv::DMatch> > matches;
    587             matcher->radiusMatch(loadMat(query), loadMat(train), matches, radius);
    588         }
    589         catch (const cv::Exception& e)
    590         {
    591             ASSERT_EQ(cv::Error::StsNotImplemented, e.code);
    592         }
    593     }
    594     else
    595     {
    596         cv::cuda::GpuMat mask;
    597         if (useMask)
    598         {
    599             mask.create(query.rows, train.rows, CV_8UC1);
    600             mask.setTo(cv::Scalar::all(1));
    601         }
    602 
    603         std::vector< std::vector<cv::DMatch> > matches;
    604         matcher->radiusMatch(loadMat(query), loadMat(train), matches, radius, mask);
    605 
    606         ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
    607 
    608         int badCount = 0;
    609         for (size_t i = 0; i < matches.size(); i++)
    610         {
    611             if ((int)matches[i].size() != 1)
    612                 badCount++;
    613             else
    614             {
    615                 cv::DMatch match = matches[i][0];
    616                 if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0))
    617                     badCount++;
    618             }
    619         }
    620 
    621         ASSERT_EQ(0, badCount);
    622     }
    623 }
    624 
    625 CUDA_TEST_P(BruteForceMatcher, RadiusMatch_Collection)
    626 {
    627     cv::Ptr<cv::cuda::DescriptorMatcher> matcher =
    628             cv::cuda::DescriptorMatcher::createBFMatcher(normCode);
    629 
    630     const int n = 3;
    631     const float radius = 1.f / countFactor * n;
    632 
    633     cv::cuda::GpuMat d_train(train);
    634 
    635     // make add() twice to test such case
    636     matcher->add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(0, train.rows / 2)));
    637     matcher->add(std::vector<cv::cuda::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows)));
    638 
    639     // prepare masks (make first nearest match illegal)
    640     std::vector<cv::cuda::GpuMat> masks(2);
    641     for (int mi = 0; mi < 2; mi++)
    642     {
    643         masks[mi] = cv::cuda::GpuMat(query.rows, train.rows / 2, CV_8UC1, cv::Scalar::all(1));
    644         for (int di = 0; di < queryDescCount / 2; di++)
    645             masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0));
    646     }
    647 
    648     if (!supportFeature(devInfo, cv::cuda::GLOBAL_ATOMICS))
    649     {
    650         try
    651         {
    652             std::vector< std::vector<cv::DMatch> > matches;
    653             matcher->radiusMatch(cv::cuda::GpuMat(query), matches, radius, masks);
    654         }
    655         catch (const cv::Exception& e)
    656         {
    657             ASSERT_EQ(cv::Error::StsNotImplemented, e.code);
    658         }
    659     }
    660     else
    661     {
    662         std::vector< std::vector<cv::DMatch> > matches;
    663 
    664         if (useMask)
    665             matcher->radiusMatch(cv::cuda::GpuMat(query), matches, radius, masks);
    666         else
    667             matcher->radiusMatch(cv::cuda::GpuMat(query), matches, radius);
    668 
    669         ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
    670 
    671         int badCount = 0;
    672         int shift = useMask ? 1 : 0;
    673         int needMatchCount = useMask ? n-1 : n;
    674         for (size_t i = 0; i < matches.size(); i++)
    675         {
    676             if ((int)matches[i].size() != needMatchCount)
    677                 badCount++;
    678             else
    679             {
    680                 int localBadCount = 0;
    681                 for (int k = 0; k < needMatchCount; k++)
    682                 {
    683                     cv::DMatch match = matches[i][k];
    684                     {
    685                         if ((int)i < queryDescCount / 2)
    686                         {
    687                             if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) )
    688                                 localBadCount++;
    689                         }
    690                         else
    691                         {
    692                             if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) )
    693                                 localBadCount++;
    694                         }
    695                     }
    696                 }
    697                 badCount += localBadCount > 0 ? 1 : 0;
    698             }
    699         }
    700 
    701         ASSERT_EQ(0, badCount);
    702     }
    703 }
    704 
    705 INSTANTIATE_TEST_CASE_P(CUDA_Features2D, BruteForceMatcher, testing::Combine(
    706     ALL_DEVICES,
    707     testing::Values(NormCode(cv::NORM_L1), NormCode(cv::NORM_L2)),
    708     testing::Values(DescriptorSize(57), DescriptorSize(64), DescriptorSize(83), DescriptorSize(128), DescriptorSize(179), DescriptorSize(256), DescriptorSize(304)),
    709     testing::Values(UseMask(false), UseMask(true))));
    710 
    711 #endif // HAVE_CUDA
    712