Home | History | Annotate | Download | only in test
      1 /*M///////////////////////////////////////////////////////////////////////////////////////
      2 //
      3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
      4 //
      5 //  By downloading, copying, installing or using the software you agree to this license.
      6 //  If you do not agree to this license, do not download, install,
      7 //  copy or use the software.
      8 //
      9 //
     10 //                           License Agreement
     11 //                For Open Source Computer Vision Library
     12 //
     13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
     14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
     15 // Third party copyrights are property of their respective owners.
     16 //
     17 // Redistribution and use in source and binary forms, with or without modification,
     18 // are permitted provided that the following conditions are met:
     19 //
     20 //   * Redistribution's of source code must retain the above copyright notice,
     21 //     this list of conditions and the following disclaimer.
     22 //
     23 //   * Redistribution's in binary form must reproduce the above copyright notice,
     24 //     this list of conditions and the following disclaimer in the documentation
     25 //     and/or other materials provided with the distribution.
     26 //
     27 //   * The name of the copyright holders may not be used to endorse or promote products
     28 //     derived from this software without specific prior written permission.
     29 //
     30 // This software is provided by the copyright holders and contributors "as is" and
     31 // any express or implied warranties, including, but not limited to, the implied
     32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
     33 // In no event shall the Intel Corporation or contributors be liable for any direct,
     34 // indirect, incidental, special, exemplary, or consequential damages
     35 // (including, but not limited to, procurement of substitute goods or services;
     36 // loss of use, data, or profits; or business interruption) however caused
     37 // and on any theory of liability, whether in contract, strict liability,
     38 // or tort (including negligence or otherwise) arising in any way out of
     39 // the use of this software, even if advised of the possibility of such damage.
     40 //
     41 //M*/
     42 
     43 #include "test_precomp.hpp"
     44 
     45 namespace
     46 {
     47     // http://www.christian-seiler.de/projekte/fpmath/
     48     class FpuControl
     49     {
     50     public:
     51         FpuControl();
     52         ~FpuControl();
     53 
     54     private:
     55     #if defined(__GNUC__) && !defined(__APPLE__) && !defined(__arm__) && !defined(__aarch64__)
     56         fpu_control_t fpu_oldcw, fpu_cw;
     57     #elif defined(_WIN32) && !defined(_WIN64)
     58         unsigned int fpu_oldcw, fpu_cw;
     59     #endif
     60     };
     61 
     62     FpuControl::FpuControl()
     63     {
     64     #if defined(__GNUC__) && !defined(__APPLE__) && !defined(__arm__) && !defined(__aarch64__)
     65         _FPU_GETCW(fpu_oldcw);
     66         fpu_cw = (fpu_oldcw & ~_FPU_EXTENDED & ~_FPU_DOUBLE & ~_FPU_SINGLE) | _FPU_SINGLE;
     67         _FPU_SETCW(fpu_cw);
     68     #elif defined(_WIN32) && !defined(_WIN64)
     69         _controlfp_s(&fpu_cw, 0, 0);
     70         fpu_oldcw = fpu_cw;
     71         _controlfp_s(&fpu_cw, _PC_24, _MCW_PC);
     72     #endif
     73     }
     74 
     75     FpuControl::~FpuControl()
     76     {
     77     #if defined(__GNUC__) && !defined(__APPLE__) && !defined(__arm__) && !defined(__aarch64__)
     78         _FPU_SETCW(fpu_oldcw);
     79     #elif defined(_WIN32) && !defined(_WIN64)
     80         _controlfp_s(&fpu_cw, fpu_oldcw, _MCW_PC);
     81     #endif
     82     }
     83 }
     84 
     85 TestHaarCascadeApplication::TestHaarCascadeApplication(std::string testName_, NCVTestSourceProvider<Ncv8u> &src_,
     86                                                        std::string cascadeName_, Ncv32u width_, Ncv32u height_)
     87     :
     88     NCVTestProvider(testName_),
     89     src(src_),
     90     cascadeName(cascadeName_),
     91     width(width_),
     92     height(height_)
     93 {
     94 }
     95 
     96 
     97 bool TestHaarCascadeApplication::toString(std::ofstream &strOut)
     98 {
     99     strOut << "cascadeName=" << cascadeName << std::endl;
    100     strOut << "width=" << width << std::endl;
    101     strOut << "height=" << height << std::endl;
    102     return true;
    103 }
    104 
    105 
    106 bool TestHaarCascadeApplication::init()
    107 {
    108     return true;
    109 }
    110 
    111 bool TestHaarCascadeApplication::process()
    112 {
    113     NCVStatus ncvStat;
    114     bool rcode = false;
    115 
    116     Ncv32u numStages, numNodes, numFeatures;
    117 
    118     ncvStat = ncvHaarGetClassifierSize(this->cascadeName, numStages, numNodes, numFeatures);
    119     ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
    120 
    121     NCVVectorAlloc<HaarStage64> h_HaarStages(*this->allocatorCPU.get(), numStages);
    122     ncvAssertReturn(h_HaarStages.isMemAllocated(), false);
    123     NCVVectorAlloc<HaarClassifierNode128> h_HaarNodes(*this->allocatorCPU.get(), numNodes);
    124     ncvAssertReturn(h_HaarNodes.isMemAllocated(), false);
    125     NCVVectorAlloc<HaarFeature64> h_HaarFeatures(*this->allocatorCPU.get(), numFeatures);
    126     ncvAssertReturn(h_HaarFeatures.isMemAllocated(), false);
    127 
    128     NCVVectorAlloc<HaarStage64> d_HaarStages(*this->allocatorGPU.get(), numStages);
    129     ncvAssertReturn(d_HaarStages.isMemAllocated(), false);
    130     NCVVectorAlloc<HaarClassifierNode128> d_HaarNodes(*this->allocatorGPU.get(), numNodes);
    131     ncvAssertReturn(d_HaarNodes.isMemAllocated(), false);
    132     NCVVectorAlloc<HaarFeature64> d_HaarFeatures(*this->allocatorGPU.get(), numFeatures);
    133     ncvAssertReturn(d_HaarFeatures.isMemAllocated(), false);
    134 
    135     HaarClassifierCascadeDescriptor haar;
    136     haar.ClassifierSize.width = haar.ClassifierSize.height = 1;
    137     haar.bNeedsTiltedII = false;
    138     haar.NumClassifierRootNodes = numNodes;
    139     haar.NumClassifierTotalNodes = numNodes;
    140     haar.NumFeatures = numFeatures;
    141     haar.NumStages = numStages;
    142 
    143     NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting());
    144     NCV_SKIP_COND_BEGIN
    145 
    146     ncvStat = ncvHaarLoadFromFile_host(this->cascadeName, haar, h_HaarStages, h_HaarNodes, h_HaarFeatures);
    147     ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
    148 
    149     ncvAssertReturn(NCV_SUCCESS == h_HaarStages.copySolid(d_HaarStages, 0), false);
    150     ncvAssertReturn(NCV_SUCCESS == h_HaarNodes.copySolid(d_HaarNodes, 0), false);
    151     ncvAssertReturn(NCV_SUCCESS == h_HaarFeatures.copySolid(d_HaarFeatures, 0), false);
    152     ncvAssertCUDAReturn(cudaStreamSynchronize(0), false);
    153 
    154     NCV_SKIP_COND_END
    155 
    156     NcvSize32s srcRoi, srcIIRoi, searchRoi;
    157     srcRoi.width = this->width;
    158     srcRoi.height = this->height;
    159     srcIIRoi.width = srcRoi.width + 1;
    160     srcIIRoi.height = srcRoi.height + 1;
    161     searchRoi.width = srcIIRoi.width - haar.ClassifierSize.width;
    162     searchRoi.height = srcIIRoi.height - haar.ClassifierSize.height;
    163     if (searchRoi.width <= 0 || searchRoi.height <= 0)
    164     {
    165         return false;
    166     }
    167     NcvSize32u searchRoiU(searchRoi.width, searchRoi.height);
    168 
    169     NCVMatrixAlloc<Ncv8u> d_img(*this->allocatorGPU.get(), this->width, this->height);
    170     ncvAssertReturn(d_img.isMemAllocated(), false);
    171     NCVMatrixAlloc<Ncv8u> h_img(*this->allocatorCPU.get(), this->width, this->height);
    172     ncvAssertReturn(h_img.isMemAllocated(), false);
    173 
    174     Ncv32u integralWidth = this->width + 1;
    175     Ncv32u integralHeight = this->height + 1;
    176 
    177     NCVMatrixAlloc<Ncv32u> d_integralImage(*this->allocatorGPU.get(), integralWidth, integralHeight);
    178     ncvAssertReturn(d_integralImage.isMemAllocated(), false);
    179     NCVMatrixAlloc<Ncv64u> d_sqIntegralImage(*this->allocatorGPU.get(), integralWidth, integralHeight);
    180     ncvAssertReturn(d_sqIntegralImage.isMemAllocated(), false);
    181     NCVMatrixAlloc<Ncv32u> h_integralImage(*this->allocatorCPU.get(), integralWidth, integralHeight);
    182     ncvAssertReturn(h_integralImage.isMemAllocated(), false);
    183     NCVMatrixAlloc<Ncv64u> h_sqIntegralImage(*this->allocatorCPU.get(), integralWidth, integralHeight);
    184     ncvAssertReturn(h_sqIntegralImage.isMemAllocated(), false);
    185 
    186     NCVMatrixAlloc<Ncv32f> d_rectStdDev(*this->allocatorGPU.get(), this->width, this->height);
    187     ncvAssertReturn(d_rectStdDev.isMemAllocated(), false);
    188     NCVMatrixAlloc<Ncv32u> d_pixelMask(*this->allocatorGPU.get(), this->width, this->height);
    189     ncvAssertReturn(d_pixelMask.isMemAllocated(), false);
    190     NCVMatrixAlloc<Ncv32f> h_rectStdDev(*this->allocatorCPU.get(), this->width, this->height);
    191     ncvAssertReturn(h_rectStdDev.isMemAllocated(), false);
    192     NCVMatrixAlloc<Ncv32u> h_pixelMask(*this->allocatorCPU.get(), this->width, this->height);
    193     ncvAssertReturn(h_pixelMask.isMemAllocated(), false);
    194 
    195     NCVVectorAlloc<NcvRect32u> d_hypotheses(*this->allocatorGPU.get(), this->width * this->height);
    196     ncvAssertReturn(d_hypotheses.isMemAllocated(), false);
    197     NCVVectorAlloc<NcvRect32u> h_hypotheses(*this->allocatorCPU.get(), this->width * this->height);
    198     ncvAssertReturn(h_hypotheses.isMemAllocated(), false);
    199 
    200     NCVStatus nppStat;
    201     Ncv32u szTmpBufIntegral, szTmpBufSqIntegral;
    202     nppStat = nppiStIntegralGetSize_8u32u(NcvSize32u(this->width, this->height), &szTmpBufIntegral, this->devProp);
    203     ncvAssertReturn(nppStat == NPPST_SUCCESS, false);
    204     nppStat = nppiStSqrIntegralGetSize_8u64u(NcvSize32u(this->width, this->height), &szTmpBufSqIntegral, this->devProp);
    205     ncvAssertReturn(nppStat == NPPST_SUCCESS, false);
    206     NCVVectorAlloc<Ncv8u> d_tmpIIbuf(*this->allocatorGPU.get(), std::max(szTmpBufIntegral, szTmpBufSqIntegral));
    207     ncvAssertReturn(d_tmpIIbuf.isMemAllocated(), false);
    208 
    209     Ncv32u detectionsOnThisScale_d = 0;
    210     Ncv32u detectionsOnThisScale_h = 0;
    211 
    212     NCV_SKIP_COND_BEGIN
    213 
    214     ncvAssertReturn(this->src.fill(h_img), false);
    215     ncvStat = h_img.copySolid(d_img, 0);
    216     ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
    217     ncvAssertCUDAReturn(cudaStreamSynchronize(0), false);
    218 
    219     nppStat = nppiStIntegral_8u32u_C1R(d_img.ptr(), d_img.pitch(),
    220                                        d_integralImage.ptr(), d_integralImage.pitch(),
    221                                        NcvSize32u(d_img.width(), d_img.height()),
    222                                        d_tmpIIbuf.ptr(), szTmpBufIntegral, this->devProp);
    223     ncvAssertReturn(nppStat == NPPST_SUCCESS, false);
    224 
    225     nppStat = nppiStSqrIntegral_8u64u_C1R(d_img.ptr(), d_img.pitch(),
    226                                           d_sqIntegralImage.ptr(), d_sqIntegralImage.pitch(),
    227                                           NcvSize32u(d_img.width(), d_img.height()),
    228                                           d_tmpIIbuf.ptr(), szTmpBufSqIntegral, this->devProp);
    229     ncvAssertReturn(nppStat == NPPST_SUCCESS, false);
    230 
    231     const NcvRect32u rect(
    232         HAAR_STDDEV_BORDER,
    233         HAAR_STDDEV_BORDER,
    234         haar.ClassifierSize.width - 2*HAAR_STDDEV_BORDER,
    235         haar.ClassifierSize.height - 2*HAAR_STDDEV_BORDER);
    236     nppStat = nppiStRectStdDev_32f_C1R(
    237         d_integralImage.ptr(), d_integralImage.pitch(),
    238         d_sqIntegralImage.ptr(), d_sqIntegralImage.pitch(),
    239         d_rectStdDev.ptr(), d_rectStdDev.pitch(),
    240         NcvSize32u(searchRoi.width, searchRoi.height), rect,
    241         1.0f, true);
    242     ncvAssertReturn(nppStat == NPPST_SUCCESS, false);
    243 
    244     ncvStat = d_integralImage.copySolid(h_integralImage, 0);
    245     ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
    246     ncvStat = d_rectStdDev.copySolid(h_rectStdDev, 0);
    247     ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
    248 
    249     for (Ncv32u i=0; i<searchRoiU.height; i++)
    250     {
    251         for (Ncv32u j=0; j<h_pixelMask.stride(); j++)
    252         {
    253             if (j<searchRoiU.width)
    254             {
    255                 h_pixelMask.ptr()[i*h_pixelMask.stride()+j] = (i << 16) | j;
    256             }
    257             else
    258             {
    259                 h_pixelMask.ptr()[i*h_pixelMask.stride()+j] = OBJDET_MASK_ELEMENT_INVALID_32U;
    260             }
    261         }
    262     }
    263     ncvAssertReturn(cudaSuccess == cudaStreamSynchronize(0), false);
    264 
    265     {
    266         // calculations here
    267         FpuControl fpu;
    268         (void) fpu;
    269 
    270         ncvStat = ncvApplyHaarClassifierCascade_host(
    271             h_integralImage, h_rectStdDev, h_pixelMask,
    272             detectionsOnThisScale_h,
    273             haar, h_HaarStages, h_HaarNodes, h_HaarFeatures, false,
    274             searchRoiU, 1, 1.0f);
    275         ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
    276     }
    277 
    278     NCV_SKIP_COND_END
    279 
    280     int devId;
    281     ncvAssertCUDAReturn(cudaGetDevice(&devId), false);
    282     cudaDeviceProp _devProp;
    283     ncvAssertCUDAReturn(cudaGetDeviceProperties(&_devProp, devId), false);
    284 
    285     ncvStat = ncvApplyHaarClassifierCascade_device(
    286         d_integralImage, d_rectStdDev, d_pixelMask,
    287         detectionsOnThisScale_d,
    288         haar, h_HaarStages, d_HaarStages, d_HaarNodes, d_HaarFeatures, false,
    289         searchRoiU, 1, 1.0f,
    290         *this->allocatorGPU.get(), *this->allocatorCPU.get(),
    291         _devProp, 0);
    292     ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
    293 
    294     NCVMatrixAlloc<Ncv32u> h_pixelMask_d(*this->allocatorCPU.get(), this->width, this->height);
    295     ncvAssertReturn(h_pixelMask_d.isMemAllocated(), false);
    296 
    297     //bit-to-bit check
    298     bool bLoopVirgin = true;
    299 
    300     NCV_SKIP_COND_BEGIN
    301 
    302     ncvStat = d_pixelMask.copySolid(h_pixelMask_d, 0);
    303     ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
    304 
    305     if (detectionsOnThisScale_d != detectionsOnThisScale_h)
    306     {
    307         bLoopVirgin = false;
    308     }
    309     else
    310     {
    311         std::sort(h_pixelMask_d.ptr(), h_pixelMask_d.ptr() + detectionsOnThisScale_d);
    312         for (Ncv32u i=0; i<detectionsOnThisScale_d && bLoopVirgin; i++)
    313         {
    314             if (h_pixelMask.ptr()[i] != h_pixelMask_d.ptr()[i])
    315             {
    316                 bLoopVirgin = false;
    317             }
    318         }
    319     }
    320 
    321     NCV_SKIP_COND_END
    322 
    323     if (bLoopVirgin)
    324     {
    325         rcode = true;
    326     }
    327 
    328     return rcode;
    329 }
    330 
    331 
    332 bool TestHaarCascadeApplication::deinit()
    333 {
    334     return true;
    335 }
    336