1 /*M/////////////////////////////////////////////////////////////////////////////////////// 2 // 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4 // 5 // By downloading, copying, installing or using the software you agree to this license. 6 // If you do not agree to this license, do not download, install, 7 // copy or use the software. 8 // 9 // 10 // License Agreement 11 // For Open Source Computer Vision Library 12 // 13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved. 15 // Third party copyrights are property of their respective owners. 16 // 17 // Redistribution and use in source and binary forms, with or without modification, 18 // are permitted provided that the following conditions are met: 19 // 20 // * Redistribution's of source code must retain the above copyright notice, 21 // this list of conditions and the following disclaimer. 22 // 23 // * Redistribution's in binary form must reproduce the above copyright notice, 24 // this list of conditions and the following disclaimer in the documentation 25 // and/or other materials provided with the distribution. 26 // 27 // * The name of the copyright holders may not be used to endorse or promote products 28 // derived from this software without specific prior written permission. 29 // 30 // This software is provided by the copyright holders and contributors "as is" and 31 // any express or implied warranties, including, but not limited to, the implied 32 // warranties of merchantability and fitness for a particular purpose are disclaimed. 33 // In no event shall the Intel Corporation or contributors be liable for any direct, 34 // indirect, incidental, special, exemplary, or consequential damages 35 // (including, but not limited to, procurement of substitute goods or services; 36 // loss of use, data, or profits; or business interruption) however caused 37 // and on any theory of liability, whether in contract, strict liability, 38 // or tort (including negligence or otherwise) arising in any way out of 39 // the use of this software, even if advised of the possibility of such damage. 40 // 41 //M*/ 42 43 #ifndef __OPENCV_CUDASTEREO_HPP__ 44 #define __OPENCV_CUDASTEREO_HPP__ 45 46 #ifndef __cplusplus 47 # error cudastereo.hpp header must be compiled as C++ 48 #endif 49 50 #include "opencv2/core/cuda.hpp" 51 #include "opencv2/calib3d.hpp" 52 53 /** 54 @addtogroup cuda 55 @{ 56 @defgroup cudastereo Stereo Correspondence 57 @} 58 */ 59 60 namespace cv { namespace cuda { 61 62 //! @addtogroup cudastereo 63 //! @{ 64 65 ///////////////////////////////////////// 66 // StereoBM 67 68 /** @brief Class computing stereo correspondence (disparity map) using the block matching algorithm. : 69 70 @sa StereoBM 71 */ 72 class CV_EXPORTS StereoBM : public cv::StereoBM 73 { 74 public: 75 using cv::StereoBM::compute; 76 77 virtual void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream) = 0; 78 }; 79 80 /** @brief Creates StereoBM object. 81 82 @param numDisparities the disparity search range. For each pixel algorithm will find the best 83 disparity from 0 (default minimum disparity) to numDisparities. The search range can then be 84 shifted by changing the minimum disparity. 85 @param blockSize the linear size of the blocks compared by the algorithm. The size should be odd 86 (as the block is centered at the current pixel). Larger block size implies smoother, though less 87 accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher 88 chance for algorithm to find a wrong correspondence. 89 */ 90 CV_EXPORTS Ptr<cuda::StereoBM> createStereoBM(int numDisparities = 64, int blockSize = 19); 91 92 ///////////////////////////////////////// 93 // StereoBeliefPropagation 94 95 /** @brief Class computing stereo correspondence using the belief propagation algorithm. : 96 97 The class implements algorithm described in @cite Felzenszwalb2006 . It can compute own data cost 98 (using a truncated linear model) or use a user-provided data cost. 99 100 @note 101 StereoBeliefPropagation requires a lot of memory for message storage: 102 103 \f[width \_ step \cdot height \cdot ndisp \cdot 4 \cdot (1 + 0.25)\f] 104 105 and for data cost storage: 106 107 \f[width\_step \cdot height \cdot ndisp \cdot (1 + 0.25 + 0.0625 + \dotsm + \frac{1}{4^{levels}})\f] 108 109 width_step is the number of bytes in a line including padding. 110 111 StereoBeliefPropagation uses a truncated linear model for the data cost and discontinuity terms: 112 113 \f[DataCost = data \_ weight \cdot \min ( \lvert Img_Left(x,y)-Img_Right(x-d,y) \rvert , max \_ data \_ term)\f] 114 115 \f[DiscTerm = \min (disc \_ single \_ jump \cdot \lvert f_1-f_2 \rvert , max \_ disc \_ term)\f] 116 117 For more details, see @cite Felzenszwalb2006 . 118 119 By default, StereoBeliefPropagation uses floating-point arithmetics and the CV_32FC1 type for 120 messages. But it can also use fixed-point arithmetics and the CV_16SC1 message type for better 121 performance. To avoid an overflow in this case, the parameters must satisfy the following 122 requirement: 123 124 \f[10 \cdot 2^{levels-1} \cdot max \_ data \_ term < SHRT \_ MAX\f] 125 126 @sa StereoMatcher 127 */ 128 class CV_EXPORTS StereoBeliefPropagation : public cv::StereoMatcher 129 { 130 public: 131 using cv::StereoMatcher::compute; 132 133 /** @overload */ 134 virtual void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream) = 0; 135 136 /** @brief Enables the stereo correspondence operator that finds the disparity for the specified data cost. 137 138 @param data User-specified data cost, a matrix of msg_type type and 139 Size(\<image columns\>\*ndisp, \<image rows\>) size. 140 @param disparity Output disparity map. If disparity is empty, the output type is CV_16SC1 . 141 Otherwise, the type is retained. 142 @param stream Stream for the asynchronous version. 143 */ 144 virtual void compute(InputArray data, OutputArray disparity, Stream& stream = Stream::Null()) = 0; 145 146 //! number of BP iterations on each level 147 virtual int getNumIters() const = 0; 148 virtual void setNumIters(int iters) = 0; 149 150 //! number of levels 151 virtual int getNumLevels() const = 0; 152 virtual void setNumLevels(int levels) = 0; 153 154 //! truncation of data cost 155 virtual double getMaxDataTerm() const = 0; 156 virtual void setMaxDataTerm(double max_data_term) = 0; 157 158 //! data weight 159 virtual double getDataWeight() const = 0; 160 virtual void setDataWeight(double data_weight) = 0; 161 162 //! truncation of discontinuity cost 163 virtual double getMaxDiscTerm() const = 0; 164 virtual void setMaxDiscTerm(double max_disc_term) = 0; 165 166 //! discontinuity single jump 167 virtual double getDiscSingleJump() const = 0; 168 virtual void setDiscSingleJump(double disc_single_jump) = 0; 169 170 //! type for messages (CV_16SC1 or CV_32FC1) 171 virtual int getMsgType() const = 0; 172 virtual void setMsgType(int msg_type) = 0; 173 174 /** @brief Uses a heuristic method to compute the recommended parameters ( ndisp, iters and levels ) for the 175 specified image size ( width and height ). 176 */ 177 static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels); 178 }; 179 180 /** @brief Creates StereoBeliefPropagation object. 181 182 @param ndisp Number of disparities. 183 @param iters Number of BP iterations on each level. 184 @param levels Number of levels. 185 @param msg_type Type for messages. CV_16SC1 and CV_32FC1 types are supported. 186 */ 187 CV_EXPORTS Ptr<cuda::StereoBeliefPropagation> 188 createStereoBeliefPropagation(int ndisp = 64, int iters = 5, int levels = 5, int msg_type = CV_32F); 189 190 ///////////////////////////////////////// 191 // StereoConstantSpaceBP 192 193 /** @brief Class computing stereo correspondence using the constant space belief propagation algorithm. : 194 195 The class implements algorithm described in @cite Yang2010 . StereoConstantSpaceBP supports both local 196 minimum and global minimum data cost initialization algorithms. For more details, see the paper 197 mentioned above. By default, a local algorithm is used. To enable a global algorithm, set 198 use_local_init_data_cost to false . 199 200 StereoConstantSpaceBP uses a truncated linear model for the data cost and discontinuity terms: 201 202 \f[DataCost = data \_ weight \cdot \min ( \lvert I_2-I_1 \rvert , max \_ data \_ term)\f] 203 204 \f[DiscTerm = \min (disc \_ single \_ jump \cdot \lvert f_1-f_2 \rvert , max \_ disc \_ term)\f] 205 206 For more details, see @cite Yang2010 . 207 208 By default, StereoConstantSpaceBP uses floating-point arithmetics and the CV_32FC1 type for 209 messages. But it can also use fixed-point arithmetics and the CV_16SC1 message type for better 210 performance. To avoid an overflow in this case, the parameters must satisfy the following 211 requirement: 212 213 \f[10 \cdot 2^{levels-1} \cdot max \_ data \_ term < SHRT \_ MAX\f] 214 215 */ 216 class CV_EXPORTS StereoConstantSpaceBP : public cuda::StereoBeliefPropagation 217 { 218 public: 219 //! number of active disparity on the first level 220 virtual int getNrPlane() const = 0; 221 virtual void setNrPlane(int nr_plane) = 0; 222 223 virtual bool getUseLocalInitDataCost() const = 0; 224 virtual void setUseLocalInitDataCost(bool use_local_init_data_cost) = 0; 225 226 /** @brief Uses a heuristic method to compute parameters (ndisp, iters, levelsand nrplane) for the specified 227 image size (widthand height). 228 */ 229 static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane); 230 }; 231 232 /** @brief Creates StereoConstantSpaceBP object. 233 234 @param ndisp Number of disparities. 235 @param iters Number of BP iterations on each level. 236 @param levels Number of levels. 237 @param nr_plane Number of disparity levels on the first level. 238 @param msg_type Type for messages. CV_16SC1 and CV_32FC1 types are supported. 239 */ 240 CV_EXPORTS Ptr<cuda::StereoConstantSpaceBP> 241 createStereoConstantSpaceBP(int ndisp = 128, int iters = 8, int levels = 4, int nr_plane = 4, int msg_type = CV_32F); 242 243 ///////////////////////////////////////// 244 // DisparityBilateralFilter 245 246 /** @brief Class refining a disparity map using joint bilateral filtering. : 247 248 The class implements @cite Yang2010 algorithm. 249 */ 250 class CV_EXPORTS DisparityBilateralFilter : public cv::Algorithm 251 { 252 public: 253 /** @brief Refines a disparity map using joint bilateral filtering. 254 255 @param disparity Input disparity map. CV_8UC1 and CV_16SC1 types are supported. 256 @param image Input image. CV_8UC1 and CV_8UC3 types are supported. 257 @param dst Destination disparity map. It has the same size and type as disparity . 258 @param stream Stream for the asynchronous version. 259 */ 260 virtual void apply(InputArray disparity, InputArray image, OutputArray dst, Stream& stream = Stream::Null()) = 0; 261 262 virtual int getNumDisparities() const = 0; 263 virtual void setNumDisparities(int numDisparities) = 0; 264 265 virtual int getRadius() const = 0; 266 virtual void setRadius(int radius) = 0; 267 268 virtual int getNumIters() const = 0; 269 virtual void setNumIters(int iters) = 0; 270 271 //! truncation of data continuity 272 virtual double getEdgeThreshold() const = 0; 273 virtual void setEdgeThreshold(double edge_threshold) = 0; 274 275 //! truncation of disparity continuity 276 virtual double getMaxDiscThreshold() const = 0; 277 virtual void setMaxDiscThreshold(double max_disc_threshold) = 0; 278 279 //! filter range sigma 280 virtual double getSigmaRange() const = 0; 281 virtual void setSigmaRange(double sigma_range) = 0; 282 }; 283 284 /** @brief Creates DisparityBilateralFilter object. 285 286 @param ndisp Number of disparities. 287 @param radius Filter radius. 288 @param iters Number of iterations. 289 */ 290 CV_EXPORTS Ptr<cuda::DisparityBilateralFilter> 291 createDisparityBilateralFilter(int ndisp = 64, int radius = 3, int iters = 1); 292 293 ///////////////////////////////////////// 294 // Utility 295 296 /** @brief Reprojects a disparity image to 3D space. 297 298 @param disp Input disparity image. CV_8U and CV_16S types are supported. 299 @param xyzw Output 3- or 4-channel floating-point image of the same size as disp . Each element of 300 xyzw(x,y) contains 3D coordinates (x,y,z) or (x,y,z,1) of the point (x,y) , computed from the 301 disparity map. 302 @param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained via stereoRectify . 303 @param dst_cn The number of channels for output image. Can be 3 or 4. 304 @param stream Stream for the asynchronous version. 305 306 @sa reprojectImageTo3D 307 */ 308 CV_EXPORTS void reprojectImageTo3D(InputArray disp, OutputArray xyzw, InputArray Q, int dst_cn = 4, Stream& stream = Stream::Null()); 309 310 /** @brief Colors a disparity image. 311 312 @param src_disp Source disparity image. CV_8UC1 and CV_16SC1 types are supported. 313 @param dst_disp Output disparity image. It has the same size as src_disp . The type is CV_8UC4 314 in BGRA format (alpha = 255). 315 @param ndisp Number of disparities. 316 @param stream Stream for the asynchronous version. 317 318 This function draws a colored disparity map by converting disparity values from [0..ndisp) interval 319 first to HSV color space (where different disparity values correspond to different hues) and then 320 converting the pixels to RGB for visualization. 321 */ 322 CV_EXPORTS void drawColorDisp(InputArray src_disp, OutputArray dst_disp, int ndisp, Stream& stream = Stream::Null()); 323 324 //! @} 325 326 }} // namespace cv { namespace cuda { 327 328 #endif /* __OPENCV_CUDASTEREO_HPP__ */ 329