Home | History | Annotate | Download | only in libjpeg
      1 /*
      2  * jchuff.c
      3  *
      4  * Copyright (C) 1991-1997, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains Huffman entropy encoding routines.
      9  *
     10  * Much of the complexity here has to do with supporting output suspension.
     11  * If the data destination module demands suspension, we want to be able to
     12  * back up to the start of the current MCU.  To do this, we copy state
     13  * variables into local working storage, and update them back to the
     14  * permanent JPEG objects only upon successful completion of an MCU.
     15  */
     16 
     17 #define JPEG_INTERNALS
     18 #include "jinclude.h"
     19 #include "jpeglib.h"
     20 #include "jchuff.h"		/* Declarations shared with jcphuff.c */
     21 
     22 #ifdef _FX_MANAGED_CODE_
     23 #define savable_state	savable_state_c
     24 #endif
     25 
     26 /* Expanded entropy encoder object for Huffman encoding.
     27  *
     28  * The savable_state subrecord contains fields that change within an MCU,
     29  * but must not be updated permanently until we complete the MCU.
     30  */
     31 
     32 typedef struct {
     33   INT32 put_buffer;		/* current bit-accumulation buffer */
     34   int put_bits;			/* # of bits now in it */
     35   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
     36 } savable_state;
     37 
     38 /* This macro is to work around compilers with missing or broken
     39  * structure assignment.  You'll need to fix this code if you have
     40  * such a compiler and you change MAX_COMPS_IN_SCAN.
     41  */
     42 
     43 #ifndef NO_STRUCT_ASSIGN
     44 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
     45 #else
     46 #if MAX_COMPS_IN_SCAN == 4
     47 #define ASSIGN_STATE(dest,src)  \
     48 	((dest).put_buffer = (src).put_buffer, \
     49 	 (dest).put_bits = (src).put_bits, \
     50 	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
     51 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
     52 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
     53 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
     54 #endif
     55 #endif
     56 
     57 
     58 typedef struct {
     59   struct jpeg_entropy_encoder pub; /* public fields */
     60 
     61   savable_state saved;		/* Bit buffer & DC state at start of MCU */
     62 
     63   /* These fields are NOT loaded into local working state. */
     64   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
     65   int next_restart_num;		/* next restart number to write (0-7) */
     66 
     67   /* Pointers to derived tables (these workspaces have image lifespan) */
     68   c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
     69   c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
     70 
     71 #ifdef ENTROPY_OPT_SUPPORTED	/* Statistics tables for optimization */
     72   long * dc_count_ptrs[NUM_HUFF_TBLS];
     73   long * ac_count_ptrs[NUM_HUFF_TBLS];
     74 #endif
     75 } huff_entropy_encoder;
     76 
     77 typedef huff_entropy_encoder * huff_entropy_ptr;
     78 
     79 /* Working state while writing an MCU.
     80  * This struct contains all the fields that are needed by subroutines.
     81  */
     82 
     83 typedef struct {
     84   JOCTET * next_output_byte;	/* => next byte to write in buffer */
     85   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
     86   savable_state cur;		/* Current bit buffer & DC state */
     87   j_compress_ptr cinfo;		/* dump_buffer needs access to this */
     88 } working_state;
     89 
     90 
     91 /* Forward declarations */
     92 METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
     93 					JBLOCKROW *MCU_data));
     94 METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
     95 #ifdef ENTROPY_OPT_SUPPORTED
     96 METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
     97 					  JBLOCKROW *MCU_data));
     98 METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
     99 #endif
    100 
    101 
    102 /*
    103  * Initialize for a Huffman-compressed scan.
    104  * If gather_statistics is TRUE, we do not output anything during the scan,
    105  * just count the Huffman symbols used and generate Huffman code tables.
    106  */
    107 
    108 METHODDEF(void)
    109 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
    110 {
    111   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    112   int ci, dctbl, actbl;
    113   jpeg_component_info * compptr;
    114 
    115   if (gather_statistics) {
    116 #ifdef ENTROPY_OPT_SUPPORTED
    117     entropy->pub.encode_mcu = encode_mcu_gather;
    118     entropy->pub.finish_pass = finish_pass_gather;
    119 #else
    120     ERREXIT(cinfo, JERR_NOT_COMPILED);
    121 #endif
    122   } else {
    123     entropy->pub.encode_mcu = encode_mcu_huff;
    124     entropy->pub.finish_pass = finish_pass_huff;
    125   }
    126 
    127   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    128     compptr = cinfo->cur_comp_info[ci];
    129     dctbl = compptr->dc_tbl_no;
    130     actbl = compptr->ac_tbl_no;
    131     if (gather_statistics) {
    132 #ifdef ENTROPY_OPT_SUPPORTED
    133       /* Check for invalid table indexes */
    134       /* (make_c_derived_tbl does this in the other path) */
    135       if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
    136 	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
    137       if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
    138 	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
    139       /* Allocate and zero the statistics tables */
    140       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
    141       if (entropy->dc_count_ptrs[dctbl] == NULL)
    142 	entropy->dc_count_ptrs[dctbl] = (long *)
    143 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    144 				      257 * SIZEOF(long));
    145       MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
    146       if (entropy->ac_count_ptrs[actbl] == NULL)
    147 	entropy->ac_count_ptrs[actbl] = (long *)
    148 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    149 				      257 * SIZEOF(long));
    150       MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
    151 #endif
    152     } else {
    153       /* Compute derived values for Huffman tables */
    154       /* We may do this more than once for a table, but it's not expensive */
    155       jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
    156 			      & entropy->dc_derived_tbls[dctbl]);
    157       jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
    158 			      & entropy->ac_derived_tbls[actbl]);
    159     }
    160     /* Initialize DC predictions to 0 */
    161     entropy->saved.last_dc_val[ci] = 0;
    162   }
    163 
    164   /* Initialize bit buffer to empty */
    165   entropy->saved.put_buffer = 0;
    166   entropy->saved.put_bits = 0;
    167 
    168   /* Initialize restart stuff */
    169   entropy->restarts_to_go = cinfo->restart_interval;
    170   entropy->next_restart_num = 0;
    171 }
    172 
    173 
    174 /*
    175  * Compute the derived values for a Huffman table.
    176  * This routine also performs some validation checks on the table.
    177  *
    178  * Note this is also used by jcphuff.c.
    179  */
    180 
    181 GLOBAL(void)
    182 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
    183 			 c_derived_tbl ** pdtbl)
    184 {
    185   JHUFF_TBL *htbl;
    186   c_derived_tbl *dtbl;
    187   int p, i, l, lastp, _si, maxsymbol;
    188   char huffsize[257];
    189   unsigned int huffcode[257];
    190   unsigned int code;
    191 
    192   /* Note that huffsize[] and huffcode[] are filled in code-length order,
    193    * paralleling the order of the symbols themselves in htbl->huffval[].
    194    */
    195 
    196   /* Find the input Huffman table */
    197   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
    198     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
    199   htbl =
    200     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
    201   if (htbl == NULL)
    202     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
    203 
    204   /* Allocate a workspace if we haven't already done so. */
    205   if (*pdtbl == NULL)
    206     *pdtbl = (c_derived_tbl *)
    207       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    208 				  SIZEOF(c_derived_tbl));
    209   dtbl = *pdtbl;
    210 
    211   /* Figure C.1: make table of Huffman code length for each symbol */
    212 
    213   p = 0;
    214   for (l = 1; l <= 16; l++) {
    215     i = (int) htbl->bits[l];
    216     if (i < 0 || p + i > 256)	/* protect against table overrun */
    217       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    218     while (i--)
    219       huffsize[p++] = (char) l;
    220   }
    221   huffsize[p] = 0;
    222   lastp = p;
    223 
    224   /* Figure C.2: generate the codes themselves */
    225   /* We also validate that the counts represent a legal Huffman code tree. */
    226 
    227   code = 0;
    228   _si = huffsize[0];
    229   p = 0;
    230   while (huffsize[p]) {
    231     while (((int) huffsize[p]) == _si) {
    232       huffcode[p++] = code;
    233       code++;
    234     }
    235     /* code is now 1 more than the last code used for codelength si; but
    236      * it must still fit in si bits, since no code is allowed to be all ones.
    237      */
    238     if (((INT32) code) >= (((INT32) 1) << _si))
    239       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    240     code <<= 1;
    241     _si++;
    242   }
    243 
    244   /* Figure C.3: generate encoding tables */
    245   /* These are code and size indexed by symbol value */
    246 
    247   /* Set all codeless symbols to have code length 0;
    248    * this lets us detect duplicate VAL entries here, and later
    249    * allows emit_bits to detect any attempt to emit such symbols.
    250    */
    251   MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
    252 
    253   /* This is also a convenient place to check for out-of-range
    254    * and duplicated VAL entries.  We allow 0..255 for AC symbols
    255    * but only 0..15 for DC.  (We could constrain them further
    256    * based on data depth and mode, but this seems enough.)
    257    */
    258   maxsymbol = isDC ? 15 : 255;
    259 
    260   for (p = 0; p < lastp; p++) {
    261     i = htbl->huffval[p];
    262     if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
    263       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    264     dtbl->ehufco[i] = huffcode[p];
    265     dtbl->ehufsi[i] = huffsize[p];
    266   }
    267 }
    268 
    269 
    270 /* Outputting bytes to the file */
    271 
    272 /* Emit a byte, taking 'action' if must suspend. */
    273 #define emit_byte(state,val,action)  \
    274 	{ *(state)->next_output_byte++ = (JOCTET) (val);  \
    275 	  if (--(state)->free_in_buffer == 0)  \
    276 	    if (! dump_buffer(state))  \
    277 	      { action; } }
    278 
    279 
    280 LOCAL(boolean)
    281 dump_buffer (working_state * state)
    282 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
    283 {
    284   struct jpeg_destination_mgr * dest = state->cinfo->dest;
    285 
    286   if (! (*dest->empty_output_buffer) (state->cinfo))
    287     return FALSE;
    288   /* After a successful buffer dump, must reset buffer pointers */
    289   state->next_output_byte = dest->next_output_byte;
    290   state->free_in_buffer = dest->free_in_buffer;
    291   return TRUE;
    292 }
    293 
    294 
    295 /* Outputting bits to the file */
    296 
    297 /* Only the right 24 bits of put_buffer are used; the valid bits are
    298  * left-justified in this part.  At most 16 bits can be passed to emit_bits
    299  * in one call, and we never retain more than 7 bits in put_buffer
    300  * between calls, so 24 bits are sufficient.
    301  */
    302 
    303 INLINE
    304 LOCAL(boolean)
    305 emit_bits (working_state * state, unsigned int code, int size)
    306 /* Emit some bits; return TRUE if successful, FALSE if must suspend */
    307 {
    308   /* This routine is heavily used, so it's worth coding tightly. */
    309   register INT32 put_buffer = (INT32) code;
    310   register int put_bits = state->cur.put_bits;
    311 
    312   /* if size is 0, caller used an invalid Huffman table entry */
    313   if (size == 0)
    314     ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
    315 
    316   put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
    317 
    318   put_bits += size;		/* new number of bits in buffer */
    319 
    320   put_buffer <<= 24 - put_bits; /* align incoming bits */
    321 
    322   put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
    323 
    324   while (put_bits >= 8) {
    325     int c = (int) ((put_buffer >> 16) & 0xFF);
    326 
    327     emit_byte(state, c, return FALSE);
    328     if (c == 0xFF) {		/* need to stuff a zero byte? */
    329       emit_byte(state, 0, return FALSE);
    330     }
    331     put_buffer <<= 8;
    332     put_bits -= 8;
    333   }
    334 
    335   state->cur.put_buffer = put_buffer; /* update state variables */
    336   state->cur.put_bits = put_bits;
    337 
    338   return TRUE;
    339 }
    340 
    341 
    342 LOCAL(boolean)
    343 flush_bits (working_state * state)
    344 {
    345   if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
    346     return FALSE;
    347   state->cur.put_buffer = 0;	/* and reset bit-buffer to empty */
    348   state->cur.put_bits = 0;
    349   return TRUE;
    350 }
    351 
    352 
    353 /* Encode a single block's worth of coefficients */
    354 
    355 LOCAL(boolean)
    356 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
    357 		  c_derived_tbl *dctbl, c_derived_tbl *actbl)
    358 {
    359   register int temp, temp2;
    360   register int nbits;
    361   register int k, r, i;
    362 
    363   /* Encode the DC coefficient difference per section F.1.2.1 */
    364 
    365   temp = temp2 = block[0] - last_dc_val;
    366 
    367   if (temp < 0) {
    368     temp = -temp;		/* temp is abs value of input */
    369     /* For a negative input, want temp2 = bitwise complement of abs(input) */
    370     /* This code assumes we are on a two's complement machine */
    371     temp2--;
    372   }
    373 
    374   /* Find the number of bits needed for the magnitude of the coefficient */
    375   nbits = 0;
    376   while (temp) {
    377     nbits++;
    378     temp >>= 1;
    379   }
    380   /* Check for out-of-range coefficient values.
    381    * Since we're encoding a difference, the range limit is twice as much.
    382    */
    383   if (nbits > MAX_COEF_BITS+1)
    384     ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
    385 
    386   /* Emit the Huffman-coded symbol for the number of bits */
    387   if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
    388     return FALSE;
    389 
    390   /* Emit that number of bits of the value, if positive, */
    391   /* or the complement of its magnitude, if negative. */
    392   if (nbits)			/* emit_bits rejects calls with size 0 */
    393     if (! emit_bits(state, (unsigned int) temp2, nbits))
    394       return FALSE;
    395 
    396   /* Encode the AC coefficients per section F.1.2.2 */
    397 
    398   r = 0;			/* r = run length of zeros */
    399 
    400   for (k = 1; k < DCTSIZE2; k++) {
    401     if ((temp = block[jpeg_natural_order[k]]) == 0) {
    402       r++;
    403     } else {
    404       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
    405       while (r > 15) {
    406 	if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
    407 	  return FALSE;
    408 	r -= 16;
    409       }
    410 
    411       temp2 = temp;
    412       if (temp < 0) {
    413 	temp = -temp;		/* temp is abs value of input */
    414 	/* This code assumes we are on a two's complement machine */
    415 	temp2--;
    416       }
    417 
    418       /* Find the number of bits needed for the magnitude of the coefficient */
    419       nbits = 1;		/* there must be at least one 1 bit */
    420       while ((temp >>= 1))
    421 	nbits++;
    422       /* Check for out-of-range coefficient values */
    423       if (nbits > MAX_COEF_BITS)
    424 	ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
    425 
    426       /* Emit Huffman symbol for run length / number of bits */
    427       i = (r << 4) + nbits;
    428       if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))
    429 	return FALSE;
    430 
    431       /* Emit that number of bits of the value, if positive, */
    432       /* or the complement of its magnitude, if negative. */
    433       if (! emit_bits(state, (unsigned int) temp2, nbits))
    434 	return FALSE;
    435 
    436       r = 0;
    437     }
    438   }
    439 
    440   /* If the last coef(s) were zero, emit an end-of-block code */
    441   if (r > 0)
    442     if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))
    443       return FALSE;
    444 
    445   return TRUE;
    446 }
    447 
    448 
    449 /*
    450  * Emit a restart marker & resynchronize predictions.
    451  */
    452 
    453 LOCAL(boolean)
    454 emit_restart (working_state * state, int restart_num)
    455 {
    456   int ci;
    457 
    458   if (! flush_bits(state))
    459     return FALSE;
    460 
    461   emit_byte(state, 0xFF, return FALSE);
    462   emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
    463 
    464   /* Re-initialize DC predictions to 0 */
    465   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
    466     state->cur.last_dc_val[ci] = 0;
    467 
    468   /* The restart counter is not updated until we successfully write the MCU. */
    469 
    470   return TRUE;
    471 }
    472 
    473 
    474 /*
    475  * Encode and output one MCU's worth of Huffman-compressed coefficients.
    476  */
    477 
    478 METHODDEF(boolean)
    479 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    480 {
    481   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    482   working_state state;
    483   int blkn, ci;
    484   jpeg_component_info * compptr;
    485 
    486   /* Load up working state */
    487   state.next_output_byte = cinfo->dest->next_output_byte;
    488   state.free_in_buffer = cinfo->dest->free_in_buffer;
    489   ASSIGN_STATE(state.cur, entropy->saved);
    490   state.cinfo = cinfo;
    491 
    492   /* Emit restart marker if needed */
    493   if (cinfo->restart_interval) {
    494     if (entropy->restarts_to_go == 0)
    495       if (! emit_restart(&state, entropy->next_restart_num))
    496 	return FALSE;
    497   }
    498 
    499   /* Encode the MCU data blocks */
    500   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    501     ci = cinfo->MCU_membership[blkn];
    502     compptr = cinfo->cur_comp_info[ci];
    503     if (! encode_one_block(&state,
    504 			   MCU_data[blkn][0], state.cur.last_dc_val[ci],
    505 			   entropy->dc_derived_tbls[compptr->dc_tbl_no],
    506 			   entropy->ac_derived_tbls[compptr->ac_tbl_no]))
    507       return FALSE;
    508     /* Update last_dc_val */
    509     state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
    510   }
    511 
    512   /* Completed MCU, so update state */
    513   cinfo->dest->next_output_byte = state.next_output_byte;
    514   cinfo->dest->free_in_buffer = state.free_in_buffer;
    515   ASSIGN_STATE(entropy->saved, state.cur);
    516 
    517   /* Update restart-interval state too */
    518   if (cinfo->restart_interval) {
    519     if (entropy->restarts_to_go == 0) {
    520       entropy->restarts_to_go = cinfo->restart_interval;
    521       entropy->next_restart_num++;
    522       entropy->next_restart_num &= 7;
    523     }
    524     entropy->restarts_to_go--;
    525   }
    526 
    527   return TRUE;
    528 }
    529 
    530 
    531 /*
    532  * Finish up at the end of a Huffman-compressed scan.
    533  */
    534 
    535 METHODDEF(void)
    536 finish_pass_huff (j_compress_ptr cinfo)
    537 {
    538   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    539   working_state state;
    540 
    541   /* Load up working state ... flush_bits needs it */
    542   state.next_output_byte = cinfo->dest->next_output_byte;
    543   state.free_in_buffer = cinfo->dest->free_in_buffer;
    544   ASSIGN_STATE(state.cur, entropy->saved);
    545   state.cinfo = cinfo;
    546 
    547   /* Flush out the last data */
    548   if (! flush_bits(&state))
    549     ERREXIT(cinfo, JERR_CANT_SUSPEND);
    550 
    551   /* Update state */
    552   cinfo->dest->next_output_byte = state.next_output_byte;
    553   cinfo->dest->free_in_buffer = state.free_in_buffer;
    554   ASSIGN_STATE(entropy->saved, state.cur);
    555 }
    556 
    557 
    558 /*
    559  * Huffman coding optimization.
    560  *
    561  * We first scan the supplied data and count the number of uses of each symbol
    562  * that is to be Huffman-coded. (This process MUST agree with the code above.)
    563  * Then we build a Huffman coding tree for the observed counts.
    564  * Symbols which are not needed at all for the particular image are not
    565  * assigned any code, which saves space in the DHT marker as well as in
    566  * the compressed data.
    567  */
    568 
    569 #ifdef ENTROPY_OPT_SUPPORTED
    570 
    571 
    572 /* Process a single block's worth of coefficients */
    573 
    574 LOCAL(void)
    575 htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
    576 		 long dc_counts[], long ac_counts[])
    577 {
    578   register int temp;
    579   register int nbits;
    580   register int k, r;
    581 
    582   /* Encode the DC coefficient difference per section F.1.2.1 */
    583 
    584   temp = block[0] - last_dc_val;
    585   if (temp < 0)
    586     temp = -temp;
    587 
    588   /* Find the number of bits needed for the magnitude of the coefficient */
    589   nbits = 0;
    590   while (temp) {
    591     nbits++;
    592     temp >>= 1;
    593   }
    594   /* Check for out-of-range coefficient values.
    595    * Since we're encoding a difference, the range limit is twice as much.
    596    */
    597   if (nbits > MAX_COEF_BITS+1)
    598     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
    599 
    600   /* Count the Huffman symbol for the number of bits */
    601   dc_counts[nbits]++;
    602 
    603   /* Encode the AC coefficients per section F.1.2.2 */
    604 
    605   r = 0;			/* r = run length of zeros */
    606 
    607   for (k = 1; k < DCTSIZE2; k++) {
    608     if ((temp = block[jpeg_natural_order[k]]) == 0) {
    609       r++;
    610     } else {
    611       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
    612       while (r > 15) {
    613 	ac_counts[0xF0]++;
    614 	r -= 16;
    615       }
    616 
    617       /* Find the number of bits needed for the magnitude of the coefficient */
    618       if (temp < 0)
    619 	temp = -temp;
    620 
    621       /* Find the number of bits needed for the magnitude of the coefficient */
    622       nbits = 1;		/* there must be at least one 1 bit */
    623       while ((temp >>= 1))
    624 	nbits++;
    625       /* Check for out-of-range coefficient values */
    626       if (nbits > MAX_COEF_BITS)
    627 	ERREXIT(cinfo, JERR_BAD_DCT_COEF);
    628 
    629       /* Count Huffman symbol for run length / number of bits */
    630       ac_counts[(r << 4) + nbits]++;
    631 
    632       r = 0;
    633     }
    634   }
    635 
    636   /* If the last coef(s) were zero, emit an end-of-block code */
    637   if (r > 0)
    638     ac_counts[0]++;
    639 }
    640 
    641 
    642 /*
    643  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
    644  * No data is actually output, so no suspension return is possible.
    645  */
    646 
    647 METHODDEF(boolean)
    648 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    649 {
    650   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    651   int blkn, ci;
    652   jpeg_component_info * compptr;
    653 
    654   /* Take care of restart intervals if needed */
    655   if (cinfo->restart_interval) {
    656     if (entropy->restarts_to_go == 0) {
    657       /* Re-initialize DC predictions to 0 */
    658       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
    659 	entropy->saved.last_dc_val[ci] = 0;
    660       /* Update restart state */
    661       entropy->restarts_to_go = cinfo->restart_interval;
    662     }
    663     entropy->restarts_to_go--;
    664   }
    665 
    666   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    667     ci = cinfo->MCU_membership[blkn];
    668     compptr = cinfo->cur_comp_info[ci];
    669     htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
    670 		    entropy->dc_count_ptrs[compptr->dc_tbl_no],
    671 		    entropy->ac_count_ptrs[compptr->ac_tbl_no]);
    672     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
    673   }
    674 
    675   return TRUE;
    676 }
    677 
    678 
    679 /*
    680  * Generate the best Huffman code table for the given counts, fill htbl.
    681  * Note this is also used by jcphuff.c.
    682  *
    683  * The JPEG standard requires that no symbol be assigned a codeword of all
    684  * one bits (so that padding bits added at the end of a compressed segment
    685  * can't look like a valid code).  Because of the canonical ordering of
    686  * codewords, this just means that there must be an unused slot in the
    687  * longest codeword length category.  Section K.2 of the JPEG spec suggests
    688  * reserving such a slot by pretending that symbol 256 is a valid symbol
    689  * with count 1.  In theory that's not optimal; giving it count zero but
    690  * including it in the symbol set anyway should give a better Huffman code.
    691  * But the theoretically better code actually seems to come out worse in
    692  * practice, because it produces more all-ones bytes (which incur stuffed
    693  * zero bytes in the final file).  In any case the difference is tiny.
    694  *
    695  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
    696  * If some symbols have a very small but nonzero probability, the Huffman tree
    697  * must be adjusted to meet the code length restriction.  We currently use
    698  * the adjustment method suggested in JPEG section K.2.  This method is *not*
    699  * optimal; it may not choose the best possible limited-length code.  But
    700  * typically only very-low-frequency symbols will be given less-than-optimal
    701  * lengths, so the code is almost optimal.  Experimental comparisons against
    702  * an optimal limited-length-code algorithm indicate that the difference is
    703  * microscopic --- usually less than a hundredth of a percent of total size.
    704  * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
    705  */
    706 
    707 GLOBAL(void)
    708 jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
    709 {
    710 #define MAX_CLEN 32		/* assumed maximum initial code length */
    711   UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */
    712   int codesize[257];		/* codesize[k] = code length of symbol k */
    713   int others[257];		/* next symbol in current branch of tree */
    714   int c1, c2;
    715   int p, i, j;
    716   long v;
    717 
    718   /* This algorithm is explained in section K.2 of the JPEG standard */
    719 
    720   MEMZERO(bits, SIZEOF(bits));
    721   MEMZERO(codesize, SIZEOF(codesize));
    722   for (i = 0; i < 257; i++)
    723     others[i] = -1;		/* init links to empty */
    724 
    725   freq[256] = 1;		/* make sure 256 has a nonzero count */
    726   /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
    727    * that no real symbol is given code-value of all ones, because 256
    728    * will be placed last in the largest codeword category.
    729    */
    730 
    731   /* Huffman's basic algorithm to assign optimal code lengths to symbols */
    732 
    733   for (;;) {
    734     /* Find the smallest nonzero frequency, set c1 = its symbol */
    735     /* In case of ties, take the larger symbol number */
    736     c1 = -1;
    737     v = 1000000000L;
    738     for (i = 0; i <= 256; i++) {
    739       if (freq[i] && freq[i] <= v) {
    740 	v = freq[i];
    741 	c1 = i;
    742       }
    743     }
    744 
    745     /* Find the next smallest nonzero frequency, set c2 = its symbol */
    746     /* In case of ties, take the larger symbol number */
    747     c2 = -1;
    748     v = 1000000000L;
    749     for (i = 0; i <= 256; i++) {
    750       if (freq[i] && freq[i] <= v && i != c1) {
    751 	v = freq[i];
    752 	c2 = i;
    753       }
    754     }
    755 
    756     /* Done if we've merged everything into one frequency */
    757     if (c2 < 0)
    758       break;
    759 
    760     /* Else merge the two counts/trees */
    761     freq[c1] += freq[c2];
    762     freq[c2] = 0;
    763 
    764     /* Increment the codesize of everything in c1's tree branch */
    765     codesize[c1]++;
    766     while (others[c1] >= 0) {
    767       c1 = others[c1];
    768       codesize[c1]++;
    769     }
    770 
    771     others[c1] = c2;		/* chain c2 onto c1's tree branch */
    772 
    773     /* Increment the codesize of everything in c2's tree branch */
    774     codesize[c2]++;
    775     while (others[c2] >= 0) {
    776       c2 = others[c2];
    777       codesize[c2]++;
    778     }
    779   }
    780 
    781   /* Now count the number of symbols of each code length */
    782   for (i = 0; i <= 256; i++) {
    783     if (codesize[i]) {
    784       /* The JPEG standard seems to think that this can't happen, */
    785       /* but I'm paranoid... */
    786       if (codesize[i] > MAX_CLEN)
    787 	ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
    788 
    789       bits[codesize[i]]++;
    790     }
    791   }
    792 
    793   /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
    794    * Huffman procedure assigned any such lengths, we must adjust the coding.
    795    * Here is what the JPEG spec says about how this next bit works:
    796    * Since symbols are paired for the longest Huffman code, the symbols are
    797    * removed from this length category two at a time.  The prefix for the pair
    798    * (which is one bit shorter) is allocated to one of the pair; then,
    799    * skipping the BITS entry for that prefix length, a code word from the next
    800    * shortest nonzero BITS entry is converted into a prefix for two code words
    801    * one bit longer.
    802    */
    803 
    804   for (i = MAX_CLEN; i > 16; i--) {
    805     while (bits[i] > 0) {
    806       j = i - 2;		/* find length of new prefix to be used */
    807       while (bits[j] == 0)
    808 	j--;
    809 
    810       bits[i] -= 2;		/* remove two symbols */
    811       bits[i-1]++;		/* one goes in this length */
    812       bits[j+1] += 2;		/* two new symbols in this length */
    813       bits[j]--;		/* symbol of this length is now a prefix */
    814     }
    815   }
    816 
    817   /* Remove the count for the pseudo-symbol 256 from the largest codelength */
    818   while (bits[i] == 0)		/* find largest codelength still in use */
    819     i--;
    820   bits[i]--;
    821 
    822   /* Return final symbol counts (only for lengths 0..16) */
    823   MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
    824 
    825   /* Return a list of the symbols sorted by code length */
    826   /* It's not real clear to me why we don't need to consider the codelength
    827    * changes made above, but the JPEG spec seems to think this works.
    828    */
    829   p = 0;
    830   for (i = 1; i <= MAX_CLEN; i++) {
    831     for (j = 0; j <= 255; j++) {
    832       if (codesize[j] == i) {
    833 	htbl->huffval[p] = (UINT8) j;
    834 	p++;
    835       }
    836     }
    837   }
    838 
    839   /* Set sent_table FALSE so updated table will be written to JPEG file. */
    840   htbl->sent_table = FALSE;
    841 }
    842 
    843 
    844 /*
    845  * Finish up a statistics-gathering pass and create the new Huffman tables.
    846  */
    847 
    848 METHODDEF(void)
    849 finish_pass_gather (j_compress_ptr cinfo)
    850 {
    851   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    852   int ci, dctbl, actbl;
    853   jpeg_component_info * compptr;
    854   JHUFF_TBL **htblptr;
    855   boolean did_dc[NUM_HUFF_TBLS];
    856   boolean did_ac[NUM_HUFF_TBLS];
    857 
    858   /* It's important not to apply jpeg_gen_optimal_table more than once
    859    * per table, because it clobbers the input frequency counts!
    860    */
    861   MEMZERO(did_dc, SIZEOF(did_dc));
    862   MEMZERO(did_ac, SIZEOF(did_ac));
    863 
    864   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    865     compptr = cinfo->cur_comp_info[ci];
    866     dctbl = compptr->dc_tbl_no;
    867     actbl = compptr->ac_tbl_no;
    868     if (! did_dc[dctbl]) {
    869       htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
    870       if (*htblptr == NULL)
    871 	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
    872       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
    873       did_dc[dctbl] = TRUE;
    874     }
    875     if (! did_ac[actbl]) {
    876       htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
    877       if (*htblptr == NULL)
    878 	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
    879       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
    880       did_ac[actbl] = TRUE;
    881     }
    882   }
    883 }
    884 
    885 
    886 #endif /* ENTROPY_OPT_SUPPORTED */
    887 
    888 
    889 /*
    890  * Module initialization routine for Huffman entropy encoding.
    891  */
    892 
    893 GLOBAL(void)
    894 jinit_huff_encoder (j_compress_ptr cinfo)
    895 {
    896   huff_entropy_ptr entropy;
    897   int i;
    898 
    899   entropy = (huff_entropy_ptr)
    900     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    901 				SIZEOF(huff_entropy_encoder));
    902   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
    903   entropy->pub.start_pass = start_pass_huff;
    904 
    905   /* Mark tables unallocated */
    906   for (i = 0; i < NUM_HUFF_TBLS; i++) {
    907     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
    908 #ifdef ENTROPY_OPT_SUPPORTED
    909     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
    910 #endif
    911   }
    912 }
    913