Home | History | Annotate | Download | only in core
      1 
      2 /*
      3  * Copyright 2012 Google Inc.
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 #include "SkWriteBuffer.h"
     10 #include "SkBitmap.h"
     11 #include "SkBitmapHeap.h"
     12 #include "SkData.h"
     13 #include "SkPixelRef.h"
     14 #include "SkPtrRecorder.h"
     15 #include "SkStream.h"
     16 #include "SkTypeface.h"
     17 
     18 SkWriteBuffer::SkWriteBuffer(uint32_t flags)
     19     : fFlags(flags)
     20     , fFactorySet(nullptr)
     21     , fNamedFactorySet(nullptr)
     22     , fBitmapHeap(nullptr)
     23     , fTFSet(nullptr) {
     24 }
     25 
     26 SkWriteBuffer::SkWriteBuffer(void* storage, size_t storageSize, uint32_t flags)
     27     : fFlags(flags)
     28     , fFactorySet(nullptr)
     29     , fNamedFactorySet(nullptr)
     30     , fWriter(storage, storageSize)
     31     , fBitmapHeap(nullptr)
     32     , fTFSet(nullptr) {
     33 }
     34 
     35 SkWriteBuffer::~SkWriteBuffer() {
     36     SkSafeUnref(fFactorySet);
     37     SkSafeUnref(fNamedFactorySet);
     38     SkSafeUnref(fBitmapHeap);
     39     SkSafeUnref(fTFSet);
     40 }
     41 
     42 void SkWriteBuffer::writeByteArray(const void* data, size_t size) {
     43     fWriter.write32(SkToU32(size));
     44     fWriter.writePad(data, size);
     45 }
     46 
     47 void SkWriteBuffer::writeBool(bool value) {
     48     fWriter.writeBool(value);
     49 }
     50 
     51 void SkWriteBuffer::writeFixed(SkFixed value) {
     52     fWriter.write32(value);
     53 }
     54 
     55 void SkWriteBuffer::writeScalar(SkScalar value) {
     56     fWriter.writeScalar(value);
     57 }
     58 
     59 void SkWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) {
     60     fWriter.write32(count);
     61     fWriter.write(value, count * sizeof(SkScalar));
     62 }
     63 
     64 void SkWriteBuffer::writeInt(int32_t value) {
     65     fWriter.write32(value);
     66 }
     67 
     68 void SkWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) {
     69     fWriter.write32(count);
     70     fWriter.write(value, count * sizeof(int32_t));
     71 }
     72 
     73 void SkWriteBuffer::writeUInt(uint32_t value) {
     74     fWriter.write32(value);
     75 }
     76 
     77 void SkWriteBuffer::write32(int32_t value) {
     78     fWriter.write32(value);
     79 }
     80 
     81 void SkWriteBuffer::writeString(const char* value) {
     82     fWriter.writeString(value);
     83 }
     84 
     85 void SkWriteBuffer::writeEncodedString(const void* value, size_t byteLength,
     86                                               SkPaint::TextEncoding encoding) {
     87     fWriter.writeInt(encoding);
     88     fWriter.writeInt(SkToU32(byteLength));
     89     fWriter.write(value, byteLength);
     90 }
     91 
     92 
     93 void SkWriteBuffer::writeColor(const SkColor& color) {
     94     fWriter.write32(color);
     95 }
     96 
     97 void SkWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) {
     98     fWriter.write32(count);
     99     fWriter.write(color, count * sizeof(SkColor));
    100 }
    101 
    102 void SkWriteBuffer::writePoint(const SkPoint& point) {
    103     fWriter.writeScalar(point.fX);
    104     fWriter.writeScalar(point.fY);
    105 }
    106 
    107 void SkWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) {
    108     fWriter.write32(count);
    109     fWriter.write(point, count * sizeof(SkPoint));
    110 }
    111 
    112 void SkWriteBuffer::writeMatrix(const SkMatrix& matrix) {
    113     fWriter.writeMatrix(matrix);
    114 }
    115 
    116 void SkWriteBuffer::writeIRect(const SkIRect& rect) {
    117     fWriter.write(&rect, sizeof(SkIRect));
    118 }
    119 
    120 void SkWriteBuffer::writeRect(const SkRect& rect) {
    121     fWriter.writeRect(rect);
    122 }
    123 
    124 void SkWriteBuffer::writeRegion(const SkRegion& region) {
    125     fWriter.writeRegion(region);
    126 }
    127 
    128 void SkWriteBuffer::writePath(const SkPath& path) {
    129     fWriter.writePath(path);
    130 }
    131 
    132 size_t SkWriteBuffer::writeStream(SkStream* stream, size_t length) {
    133     fWriter.write32(SkToU32(length));
    134     size_t bytesWritten = fWriter.readFromStream(stream, length);
    135     if (bytesWritten < length) {
    136         fWriter.reservePad(length - bytesWritten);
    137     }
    138     return bytesWritten;
    139 }
    140 
    141 bool SkWriteBuffer::writeToStream(SkWStream* stream) {
    142     return fWriter.writeToStream(stream);
    143 }
    144 
    145 static void write_encoded_bitmap(SkWriteBuffer* buffer, SkData* data,
    146                                  const SkIPoint& origin) {
    147     buffer->writeUInt(SkToU32(data->size()));
    148     buffer->getWriter32()->writePad(data->data(), data->size());
    149     buffer->write32(origin.fX);
    150     buffer->write32(origin.fY);
    151 }
    152 
    153 void SkWriteBuffer::writeBitmap(const SkBitmap& bitmap) {
    154     // Record the width and height. This way if readBitmap fails a dummy bitmap can be drawn at the
    155     // right size.
    156     this->writeInt(bitmap.width());
    157     this->writeInt(bitmap.height());
    158 
    159     // Record information about the bitmap in one of three ways, in order of priority:
    160     // 1. If there is an SkBitmapHeap, store it in the heap. The client can avoid serializing the
    161     //    bitmap entirely or serialize it later as desired. A boolean value of true will be written
    162     //    to the stream to signify that a heap was used.
    163     // 2. If there is a function for encoding bitmaps, use it to write an encoded version of the
    164     //    bitmap. After writing a boolean value of false, signifying that a heap was not used, write
    165     //    the size of the encoded data. A non-zero size signifies that encoded data was written.
    166     // 3. Call SkBitmap::flatten. After writing a boolean value of false, signifying that a heap was
    167     //    not used, write a zero to signify that the data was not encoded.
    168     bool useBitmapHeap = fBitmapHeap != nullptr;
    169     // Write a bool: true if the SkBitmapHeap is to be used, in which case the reader must use an
    170     // SkBitmapHeapReader to read the SkBitmap. False if the bitmap was serialized another way.
    171     this->writeBool(useBitmapHeap);
    172     if (useBitmapHeap) {
    173         SkASSERT(nullptr == fPixelSerializer);
    174         int32_t slot = fBitmapHeap->insert(bitmap);
    175         fWriter.write32(slot);
    176         // crbug.com/155875
    177         // The generation ID is not required information. We write it to prevent collisions
    178         // in SkFlatDictionary.  It is possible to get a collision when a previously
    179         // unflattened (i.e. stale) instance of a similar flattenable is in the dictionary
    180         // and the instance currently being written is re-using the same slot from the
    181         // bitmap heap.
    182         fWriter.write32(bitmap.getGenerationID());
    183         return;
    184     }
    185 
    186     SkPixelRef* pixelRef = bitmap.pixelRef();
    187     if (pixelRef) {
    188         // see if the pixelref already has an encoded version
    189         SkAutoDataUnref existingData(pixelRef->refEncodedData());
    190         if (existingData.get() != nullptr) {
    191             // Assumes that if the client did not set a serializer, they are
    192             // happy to get the encoded data.
    193             if (!fPixelSerializer || fPixelSerializer->useEncodedData(existingData->data(),
    194                                                                       existingData->size())) {
    195                 write_encoded_bitmap(this, existingData, bitmap.pixelRefOrigin());
    196                 return;
    197             }
    198         }
    199 
    200         // see if the caller wants to manually encode
    201         SkAutoPixmapUnlock result;
    202         if (fPixelSerializer && bitmap.requestLock(&result)) {
    203             SkASSERT(nullptr == fBitmapHeap);
    204             SkAutoDataUnref data(fPixelSerializer->encode(result.pixmap()));
    205             if (data.get() != nullptr) {
    206                 // if we have to "encode" the bitmap, then we assume there is no
    207                 // offset to share, since we are effectively creating a new pixelref
    208                 write_encoded_bitmap(this, data, SkIPoint::Make(0, 0));
    209                 return;
    210             }
    211         }
    212     }
    213 
    214     this->writeUInt(0); // signal raw pixels
    215     SkBitmap::WriteRawPixels(this, bitmap);
    216 }
    217 
    218 void SkWriteBuffer::writeImage(const SkImage* image) {
    219     this->writeInt(image->width());
    220     this->writeInt(image->height());
    221 
    222     SkAutoTUnref<SkData> encoded(image->encode(this->getPixelSerializer()));
    223     if (encoded && encoded->size() > 0) {
    224         write_encoded_bitmap(this, encoded, SkIPoint::Make(0, 0));
    225         return;
    226     }
    227 
    228     this->writeUInt(0); // signal no pixels (in place of the size of the encoded data)
    229 }
    230 
    231 void SkWriteBuffer::writeTypeface(SkTypeface* obj) {
    232     if (nullptr == obj || nullptr == fTFSet) {
    233         fWriter.write32(0);
    234     } else {
    235         fWriter.write32(fTFSet->add(obj));
    236     }
    237 }
    238 
    239 SkFactorySet* SkWriteBuffer::setFactoryRecorder(SkFactorySet* rec) {
    240     SkRefCnt_SafeAssign(fFactorySet, rec);
    241     if (fNamedFactorySet != nullptr) {
    242         fNamedFactorySet->unref();
    243         fNamedFactorySet = nullptr;
    244     }
    245     return rec;
    246 }
    247 
    248 SkNamedFactorySet* SkWriteBuffer::setNamedFactoryRecorder(SkNamedFactorySet* rec) {
    249     SkRefCnt_SafeAssign(fNamedFactorySet, rec);
    250     if (fFactorySet != nullptr) {
    251         fFactorySet->unref();
    252         fFactorySet = nullptr;
    253     }
    254     return rec;
    255 }
    256 
    257 SkRefCntSet* SkWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) {
    258     SkRefCnt_SafeAssign(fTFSet, rec);
    259     return rec;
    260 }
    261 
    262 void SkWriteBuffer::setBitmapHeap(SkBitmapHeap* bitmapHeap) {
    263     SkRefCnt_SafeAssign(fBitmapHeap, bitmapHeap);
    264     if (bitmapHeap != nullptr) {
    265         SkASSERT(nullptr == fPixelSerializer);
    266         fPixelSerializer.reset(nullptr);
    267     }
    268 }
    269 
    270 void SkWriteBuffer::setPixelSerializer(SkPixelSerializer* serializer) {
    271     fPixelSerializer.reset(serializer);
    272     if (serializer) {
    273         serializer->ref();
    274         SkASSERT(nullptr == fBitmapHeap);
    275         SkSafeUnref(fBitmapHeap);
    276         fBitmapHeap = nullptr;
    277     }
    278 }
    279 
    280 void SkWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) {
    281     /*
    282      *  If we have a factoryset, then the first 32bits tell us...
    283      *       0: failure to write the flattenable
    284      *      >0: (1-based) index into the SkFactorySet or SkNamedFactorySet
    285      *  If we don't have a factoryset, then the first "ptr" is either the
    286      *  factory, or null for failure.
    287      *
    288      *  The distinction is important, since 0-index is 32bits (always), but a
    289      *  0-functionptr might be 32 or 64 bits.
    290      */
    291     if (nullptr == flattenable) {
    292         if (this->isValidating()) {
    293             this->writeString("");
    294         } else if (fFactorySet != nullptr || fNamedFactorySet != nullptr) {
    295             this->write32(0);
    296         } else {
    297             this->writeFunctionPtr(nullptr);
    298         }
    299         return;
    300     }
    301 
    302     SkFlattenable::Factory factory = flattenable->getFactory();
    303     SkASSERT(factory != nullptr);
    304 
    305     /*
    306      *  We can write 1 of 3 versions of the flattenable:
    307      *  1.  function-ptr : this is the fastest for the reader, but assumes that
    308      *      the writer and reader are in the same process.
    309      *  2.  index into fFactorySet : This is assumes the writer will later
    310      *      resolve the function-ptrs into strings for its reader. SkPicture
    311      *      does exactly this, by writing a table of names (matching the indices)
    312      *      up front in its serialized form.
    313      *  3.  index into fNamedFactorySet. fNamedFactorySet will also store the
    314      *      name. SkGPipe uses this technique so it can write the name to its
    315      *      stream before writing the flattenable.
    316      */
    317     if (this->isValidating()) {
    318         this->writeString(flattenable->getTypeName());
    319     } else if (fFactorySet) {
    320         this->write32(fFactorySet->add(factory));
    321     } else if (fNamedFactorySet) {
    322         int32_t index = fNamedFactorySet->find(factory);
    323         this->write32(index);
    324         if (0 == index) {
    325             return;
    326         }
    327     } else {
    328         this->writeFunctionPtr((void*)factory);
    329     }
    330 
    331     // make room for the size of the flattened object
    332     (void)fWriter.reserve(sizeof(uint32_t));
    333     // record the current size, so we can subtract after the object writes.
    334     size_t offset = fWriter.bytesWritten();
    335     // now flatten the object
    336     flattenable->flatten(*this);
    337     size_t objSize = fWriter.bytesWritten() - offset;
    338     // record the obj's size
    339     fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize));
    340 }
    341