1 /* 2 * Copyright 2012 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #include "Sk4fLinearGradient.h" 9 #include "SkLinearGradient.h" 10 11 // define to test the 4f gradient path 12 // #define FORCE_4F_CONTEXT 13 14 static const float kInv255Float = 1.0f / 255; 15 16 static inline int repeat_8bits(int x) { 17 return x & 0xFF; 18 } 19 20 // Visual Studio 2010 (MSC_VER=1600) optimizes bit-shift code incorrectly. 21 // See http://code.google.com/p/skia/issues/detail?id=472 22 #if defined(_MSC_VER) && (_MSC_VER >= 1600) 23 #pragma optimize("", off) 24 #endif 25 26 static inline int mirror_8bits(int x) { 27 if (x & 256) { 28 x = ~x; 29 } 30 return x & 255; 31 } 32 33 #if defined(_MSC_VER) && (_MSC_VER >= 1600) 34 #pragma optimize("", on) 35 #endif 36 37 static SkMatrix pts_to_unit_matrix(const SkPoint pts[2]) { 38 SkVector vec = pts[1] - pts[0]; 39 SkScalar mag = vec.length(); 40 SkScalar inv = mag ? SkScalarInvert(mag) : 0; 41 42 vec.scale(inv); 43 SkMatrix matrix; 44 matrix.setSinCos(-vec.fY, vec.fX, pts[0].fX, pts[0].fY); 45 matrix.postTranslate(-pts[0].fX, -pts[0].fY); 46 matrix.postScale(inv, inv); 47 return matrix; 48 } 49 50 static bool use_4f_context(const SkShader::ContextRec& rec, uint32_t flags) { 51 #ifdef FORCE_4F_CONTEXT 52 return true; 53 #else 54 // Perspective not supported in 4f yet. 55 if (rec.fMatrix->hasPerspective() 56 || (rec.fLocalMatrix && rec.fLocalMatrix->hasPerspective())) { 57 return false; 58 } 59 60 return rec.fPreferredDstType == SkShader::ContextRec::kPM4f_DstType 61 || SkToBool(flags & SkLinearGradient::kForce4fContext_PrivateFlag); 62 #endif 63 } 64 65 /////////////////////////////////////////////////////////////////////////////// 66 67 SkLinearGradient::SkLinearGradient(const SkPoint pts[2], const Descriptor& desc) 68 : SkGradientShaderBase(desc, pts_to_unit_matrix(pts)) 69 , fStart(pts[0]) 70 , fEnd(pts[1]) { 71 } 72 73 SkFlattenable* SkLinearGradient::CreateProc(SkReadBuffer& buffer) { 74 DescriptorScope desc; 75 if (!desc.unflatten(buffer)) { 76 return nullptr; 77 } 78 SkPoint pts[2]; 79 pts[0] = buffer.readPoint(); 80 pts[1] = buffer.readPoint(); 81 return SkGradientShader::CreateLinear(pts, desc.fColors, desc.fPos, desc.fCount, 82 desc.fTileMode, desc.fGradFlags, desc.fLocalMatrix); 83 } 84 85 void SkLinearGradient::flatten(SkWriteBuffer& buffer) const { 86 this->INHERITED::flatten(buffer); 87 buffer.writePoint(fStart); 88 buffer.writePoint(fEnd); 89 } 90 91 size_t SkLinearGradient::contextSize(const ContextRec& rec) const { 92 return use_4f_context(rec, fGradFlags) 93 ? sizeof(LinearGradient4fContext) 94 : sizeof(LinearGradientContext); 95 } 96 97 SkShader::Context* SkLinearGradient::onCreateContext(const ContextRec& rec, void* storage) const { 98 return use_4f_context(rec, fGradFlags) 99 ? static_cast<SkShader::Context*>(new (storage) LinearGradient4fContext(*this, rec)) 100 : static_cast<SkShader::Context*>(new (storage) LinearGradientContext(*this, rec)); 101 } 102 103 // This swizzles SkColor into the same component order as SkPMColor, but does not actually 104 // "pre" multiply the color components. 105 // 106 // This allows us to map directly to Sk4f, and eventually scale down to bytes to output a 107 // SkPMColor from the floats, without having to swizzle each time. 108 // 109 static uint32_t SkSwizzle_Color_to_PMColor(SkColor c) { 110 return SkPackARGB32NoCheck(SkColorGetA(c), SkColorGetR(c), SkColorGetG(c), SkColorGetB(c)); 111 } 112 113 SkLinearGradient::LinearGradientContext::LinearGradientContext( 114 const SkLinearGradient& shader, const ContextRec& ctx) 115 : INHERITED(shader, ctx) 116 { 117 // setup for Sk4f 118 int count = shader.fColorCount; 119 fRecs.setCount(count); 120 Rec* rec = fRecs.begin(); 121 if (shader.fOrigPos) { 122 rec[0].fPos = 0; 123 SkDEBUGCODE(rec[0].fPosScale = SK_FloatNaN;) // should never get used 124 for (int i = 1; i < count; ++i) { 125 rec[i].fPos = SkTPin(shader.fOrigPos[i], rec[i - 1].fPos, 1.0f); 126 float diff = rec[i].fPos - rec[i - 1].fPos; 127 if (diff > 0) { 128 rec[i].fPosScale = 1.0f / diff; 129 } else { 130 rec[i].fPosScale = 0; 131 } 132 } 133 rec[count - 1].fPos = 1; // overwrite the last value just to be sure we end at 1.0 134 } else { 135 // no pos specified, so we compute evenly spaced values 136 const float scale = float(count - 1); 137 float invScale = 1.0f / scale; 138 for (int i = 0; i < count; ++i) { 139 rec[i].fPos = i * invScale; 140 rec[i].fPosScale = scale; 141 } 142 } 143 144 fApplyAlphaAfterInterp = true; 145 if ((shader.getGradFlags() & SkGradientShader::kInterpolateColorsInPremul_Flag) || 146 shader.colorsAreOpaque()) 147 { 148 fApplyAlphaAfterInterp = false; 149 } 150 151 if (fApplyAlphaAfterInterp) { 152 // Our fColor values are in PMColor order, but are still unpremultiplied, allowing us to 153 // interpolate in unpremultiplied space first, and then scale by alpha right before we 154 // convert to SkPMColor bytes. 155 const float paintAlpha = ctx.fPaint->getAlpha() * kInv255Float; 156 const Sk4f scale(1, 1, 1, paintAlpha); 157 for (int i = 0; i < count; ++i) { 158 uint32_t c = SkSwizzle_Color_to_PMColor(shader.fOrigColors[i]); 159 rec[i].fColor = SkNx_cast<float>(Sk4b::Load(&c)) * scale; 160 if (i > 0) { 161 SkASSERT(rec[i - 1].fPos <= rec[i].fPos); 162 } 163 } 164 } else { 165 // Our fColor values are premultiplied, so converting to SkPMColor is just a matter 166 // of converting the floats down to bytes. 167 unsigned alphaScale = ctx.fPaint->getAlpha() + (ctx.fPaint->getAlpha() >> 7); 168 for (int i = 0; i < count; ++i) { 169 SkPMColor pmc = SkPreMultiplyColor(shader.fOrigColors[i]); 170 pmc = SkAlphaMulQ(pmc, alphaScale); 171 rec[i].fColor = SkNx_cast<float>(Sk4b::Load(&pmc)); 172 if (i > 0) { 173 SkASSERT(rec[i - 1].fPos <= rec[i].fPos); 174 } 175 } 176 } 177 } 178 179 #define NO_CHECK_ITER \ 180 do { \ 181 unsigned fi = SkGradFixedToFixed(fx) >> SkGradientShaderBase::kCache32Shift; \ 182 SkASSERT(fi <= 0xFF); \ 183 fx += dx; \ 184 *dstC++ = cache[toggle + fi]; \ 185 toggle = next_dither_toggle(toggle); \ 186 } while (0) 187 188 namespace { 189 190 typedef void (*LinearShadeProc)(TileProc proc, SkGradFixed dx, SkGradFixed fx, 191 SkPMColor* dstC, const SkPMColor* cache, 192 int toggle, int count); 193 194 // Linear interpolation (lerp) is unnecessary if there are no sharp 195 // discontinuities in the gradient - which must be true if there are 196 // only 2 colors - but it's cheap. 197 void shadeSpan_linear_vertical_lerp(TileProc proc, SkGradFixed dx, SkGradFixed fx, 198 SkPMColor* SK_RESTRICT dstC, 199 const SkPMColor* SK_RESTRICT cache, 200 int toggle, int count) { 201 // We're a vertical gradient, so no change in a span. 202 // If colors change sharply across the gradient, dithering is 203 // insufficient (it subsamples the color space) and we need to lerp. 204 unsigned fullIndex = proc(SkGradFixedToFixed(fx)); 205 unsigned fi = fullIndex >> SkGradientShaderBase::kCache32Shift; 206 unsigned remainder = fullIndex & ((1 << SkGradientShaderBase::kCache32Shift) - 1); 207 208 int index0 = fi + toggle; 209 int index1 = index0; 210 if (fi < SkGradientShaderBase::kCache32Count - 1) { 211 index1 += 1; 212 } 213 SkPMColor lerp = SkFastFourByteInterp(cache[index1], cache[index0], remainder); 214 index0 ^= SkGradientShaderBase::kDitherStride32; 215 index1 ^= SkGradientShaderBase::kDitherStride32; 216 SkPMColor dlerp = SkFastFourByteInterp(cache[index1], cache[index0], remainder); 217 sk_memset32_dither(dstC, lerp, dlerp, count); 218 } 219 220 void shadeSpan_linear_clamp(TileProc proc, SkGradFixed dx, SkGradFixed fx, 221 SkPMColor* SK_RESTRICT dstC, 222 const SkPMColor* SK_RESTRICT cache, 223 int toggle, int count) { 224 SkClampRange range; 225 range.init(fx, dx, count, 0, SkGradientShaderBase::kCache32Count - 1); 226 range.validate(count); 227 228 if ((count = range.fCount0) > 0) { 229 sk_memset32_dither(dstC, 230 cache[toggle + range.fV0], 231 cache[next_dither_toggle(toggle) + range.fV0], 232 count); 233 dstC += count; 234 } 235 if ((count = range.fCount1) > 0) { 236 int unroll = count >> 3; 237 fx = range.fFx1; 238 for (int i = 0; i < unroll; i++) { 239 NO_CHECK_ITER; NO_CHECK_ITER; 240 NO_CHECK_ITER; NO_CHECK_ITER; 241 NO_CHECK_ITER; NO_CHECK_ITER; 242 NO_CHECK_ITER; NO_CHECK_ITER; 243 } 244 if ((count &= 7) > 0) { 245 do { 246 NO_CHECK_ITER; 247 } while (--count != 0); 248 } 249 } 250 if ((count = range.fCount2) > 0) { 251 sk_memset32_dither(dstC, 252 cache[toggle + range.fV1], 253 cache[next_dither_toggle(toggle) + range.fV1], 254 count); 255 } 256 } 257 258 void shadeSpan_linear_mirror(TileProc proc, SkGradFixed dx, SkGradFixed fx, 259 SkPMColor* SK_RESTRICT dstC, 260 const SkPMColor* SK_RESTRICT cache, 261 int toggle, int count) { 262 do { 263 unsigned fi = mirror_8bits(SkGradFixedToFixed(fx) >> 8); 264 SkASSERT(fi <= 0xFF); 265 fx += dx; 266 *dstC++ = cache[toggle + fi]; 267 toggle = next_dither_toggle(toggle); 268 } while (--count != 0); 269 } 270 271 void shadeSpan_linear_repeat(TileProc proc, SkGradFixed dx, SkGradFixed fx, 272 SkPMColor* SK_RESTRICT dstC, 273 const SkPMColor* SK_RESTRICT cache, 274 int toggle, int count) { 275 do { 276 unsigned fi = repeat_8bits(SkGradFixedToFixed(fx) >> 8); 277 SkASSERT(fi <= 0xFF); 278 fx += dx; 279 *dstC++ = cache[toggle + fi]; 280 toggle = next_dither_toggle(toggle); 281 } while (--count != 0); 282 } 283 284 } 285 286 void SkLinearGradient::LinearGradientContext::shadeSpan(int x, int y, SkPMColor* SK_RESTRICT dstC, 287 int count) { 288 SkASSERT(count > 0); 289 const SkLinearGradient& linearGradient = static_cast<const SkLinearGradient&>(fShader); 290 291 // Only use the Sk4f impl when known to be fast. 292 #if defined(SKNX_IS_FAST) 293 if (SkShader::kClamp_TileMode == linearGradient.fTileMode && 294 kLinear_MatrixClass == fDstToIndexClass) 295 { 296 this->shade4_clamp(x, y, dstC, count); 297 return; 298 } 299 #endif 300 301 SkPoint srcPt; 302 SkMatrix::MapXYProc dstProc = fDstToIndexProc; 303 TileProc proc = linearGradient.fTileProc; 304 const SkPMColor* SK_RESTRICT cache = fCache->getCache32(); 305 int toggle = init_dither_toggle(x, y); 306 307 if (fDstToIndexClass != kPerspective_MatrixClass) { 308 dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf, 309 SkIntToScalar(y) + SK_ScalarHalf, &srcPt); 310 SkGradFixed dx, fx = SkScalarToGradFixed(srcPt.fX); 311 312 if (fDstToIndexClass == kFixedStepInX_MatrixClass) { 313 const auto step = fDstToIndex.fixedStepInX(SkIntToScalar(y)); 314 // todo: do we need a real/high-precision value for dx here? 315 dx = SkScalarToGradFixed(step.fX); 316 } else { 317 SkASSERT(fDstToIndexClass == kLinear_MatrixClass); 318 dx = SkScalarToGradFixed(fDstToIndex.getScaleX()); 319 } 320 321 LinearShadeProc shadeProc = shadeSpan_linear_repeat; 322 if (0 == dx) { 323 shadeProc = shadeSpan_linear_vertical_lerp; 324 } else if (SkShader::kClamp_TileMode == linearGradient.fTileMode) { 325 shadeProc = shadeSpan_linear_clamp; 326 } else if (SkShader::kMirror_TileMode == linearGradient.fTileMode) { 327 shadeProc = shadeSpan_linear_mirror; 328 } else { 329 SkASSERT(SkShader::kRepeat_TileMode == linearGradient.fTileMode); 330 } 331 (*shadeProc)(proc, dx, fx, dstC, cache, toggle, count); 332 } else { 333 SkScalar dstX = SkIntToScalar(x); 334 SkScalar dstY = SkIntToScalar(y); 335 do { 336 dstProc(fDstToIndex, dstX, dstY, &srcPt); 337 unsigned fi = proc(SkScalarToFixed(srcPt.fX)); 338 SkASSERT(fi <= 0xFFFF); 339 *dstC++ = cache[toggle + (fi >> kCache32Shift)]; 340 toggle = next_dither_toggle(toggle); 341 dstX += SK_Scalar1; 342 } while (--count != 0); 343 } 344 } 345 346 SkShader::GradientType SkLinearGradient::asAGradient(GradientInfo* info) const { 347 if (info) { 348 commonAsAGradient(info); 349 info->fPoint[0] = fStart; 350 info->fPoint[1] = fEnd; 351 } 352 return kLinear_GradientType; 353 } 354 355 #if SK_SUPPORT_GPU 356 357 #include "glsl/GrGLSLCaps.h" 358 #include "glsl/GrGLSLFragmentShaderBuilder.h" 359 #include "SkGr.h" 360 361 ///////////////////////////////////////////////////////////////////// 362 363 class GrGLLinearGradient : public GrGLGradientEffect { 364 public: 365 366 GrGLLinearGradient(const GrProcessor&) {} 367 368 virtual ~GrGLLinearGradient() { } 369 370 virtual void emitCode(EmitArgs&) override; 371 372 static void GenKey(const GrProcessor& processor, const GrGLSLCaps&, GrProcessorKeyBuilder* b) { 373 b->add32(GenBaseGradientKey(processor)); 374 } 375 376 private: 377 378 typedef GrGLGradientEffect INHERITED; 379 }; 380 381 ///////////////////////////////////////////////////////////////////// 382 383 class GrLinearGradient : public GrGradientEffect { 384 public: 385 386 static GrFragmentProcessor* Create(GrContext* ctx, 387 const SkLinearGradient& shader, 388 const SkMatrix& matrix, 389 SkShader::TileMode tm) { 390 return new GrLinearGradient(ctx, shader, matrix, tm); 391 } 392 393 virtual ~GrLinearGradient() { } 394 395 const char* name() const override { return "Linear Gradient"; } 396 397 private: 398 GrLinearGradient(GrContext* ctx, 399 const SkLinearGradient& shader, 400 const SkMatrix& matrix, 401 SkShader::TileMode tm) 402 : INHERITED(ctx, shader, matrix, tm) { 403 this->initClassID<GrLinearGradient>(); 404 } 405 406 GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { 407 return new GrGLLinearGradient(*this); 408 } 409 410 virtual void onGetGLSLProcessorKey(const GrGLSLCaps& caps, 411 GrProcessorKeyBuilder* b) const override { 412 GrGLLinearGradient::GenKey(*this, caps, b); 413 } 414 415 GR_DECLARE_FRAGMENT_PROCESSOR_TEST; 416 417 typedef GrGradientEffect INHERITED; 418 }; 419 420 ///////////////////////////////////////////////////////////////////// 421 422 GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrLinearGradient); 423 424 const GrFragmentProcessor* GrLinearGradient::TestCreate(GrProcessorTestData* d) { 425 SkPoint points[] = {{d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()}, 426 {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()}}; 427 428 SkColor colors[kMaxRandomGradientColors]; 429 SkScalar stopsArray[kMaxRandomGradientColors]; 430 SkScalar* stops = stopsArray; 431 SkShader::TileMode tm; 432 int colorCount = RandomGradientParams(d->fRandom, colors, &stops, &tm); 433 SkAutoTUnref<SkShader> shader(SkGradientShader::CreateLinear(points, 434 colors, stops, colorCount, 435 tm)); 436 const GrFragmentProcessor* fp = shader->asFragmentProcessor(d->fContext, 437 GrTest::TestMatrix(d->fRandom), NULL, kNone_SkFilterQuality); 438 GrAlwaysAssert(fp); 439 return fp; 440 } 441 442 ///////////////////////////////////////////////////////////////////// 443 444 void GrGLLinearGradient::emitCode(EmitArgs& args) { 445 const GrLinearGradient& ge = args.fFp.cast<GrLinearGradient>(); 446 this->emitUniforms(args.fUniformHandler, ge); 447 SkString t = args.fFragBuilder->ensureFSCoords2D(args.fCoords, 0); 448 t.append(".x"); 449 this->emitColor(args.fFragBuilder, 450 args.fUniformHandler, 451 args.fGLSLCaps, 452 ge, t.c_str(), 453 args.fOutputColor, 454 args.fInputColor, 455 args.fSamplers); 456 } 457 458 ///////////////////////////////////////////////////////////////////// 459 460 const GrFragmentProcessor* SkLinearGradient::asFragmentProcessor( 461 GrContext* context, 462 const SkMatrix& viewm, 463 const SkMatrix* localMatrix, 464 SkFilterQuality) const { 465 SkASSERT(context); 466 467 SkMatrix matrix; 468 if (!this->getLocalMatrix().invert(&matrix)) { 469 return nullptr; 470 } 471 if (localMatrix) { 472 SkMatrix inv; 473 if (!localMatrix->invert(&inv)) { 474 return nullptr; 475 } 476 matrix.postConcat(inv); 477 } 478 matrix.postConcat(fPtsToUnit); 479 480 SkAutoTUnref<const GrFragmentProcessor> inner( 481 GrLinearGradient::Create(context, *this, matrix, fTileMode)); 482 return GrFragmentProcessor::MulOutputByInputAlpha(inner); 483 } 484 485 486 #endif 487 488 #ifndef SK_IGNORE_TO_STRING 489 void SkLinearGradient::toString(SkString* str) const { 490 str->append("SkLinearGradient ("); 491 492 str->appendf("start: (%f, %f)", fStart.fX, fStart.fY); 493 str->appendf(" end: (%f, %f) ", fEnd.fX, fEnd.fY); 494 495 this->INHERITED::toString(str); 496 497 str->append(")"); 498 } 499 #endif 500 501 /////////////////////////////////////////////////////////////////////////////////////////////////// 502 503 #include "SkNx.h" 504 505 static const SkLinearGradient::LinearGradientContext::Rec* 506 find_forward(const SkLinearGradient::LinearGradientContext::Rec rec[], float tiledX) { 507 SkASSERT(tiledX >= 0 && tiledX <= 1); 508 509 SkASSERT(rec[0].fPos >= 0 && rec[0].fPos <= 1); 510 SkASSERT(rec[1].fPos >= 0 && rec[1].fPos <= 1); 511 SkASSERT(rec[0].fPos <= rec[1].fPos); 512 rec += 1; 513 while (rec->fPos < tiledX || rec->fPosScale == 0) { 514 SkASSERT(rec[0].fPos >= 0 && rec[0].fPos <= 1); 515 SkASSERT(rec[1].fPos >= 0 && rec[1].fPos <= 1); 516 SkASSERT(rec[0].fPos <= rec[1].fPos); 517 rec += 1; 518 } 519 return rec - 1; 520 } 521 522 static const SkLinearGradient::LinearGradientContext::Rec* 523 find_backward(const SkLinearGradient::LinearGradientContext::Rec rec[], float tiledX) { 524 SkASSERT(tiledX >= 0 && tiledX <= 1); 525 526 SkASSERT(rec[0].fPos >= 0 && rec[0].fPos <= 1); 527 SkASSERT(rec[1].fPos >= 0 && rec[1].fPos <= 1); 528 SkASSERT(rec[0].fPos <= rec[1].fPos); 529 while (tiledX < rec->fPos || rec[1].fPosScale == 0) { 530 rec -= 1; 531 SkASSERT(rec[0].fPos >= 0 && rec[0].fPos <= 1); 532 SkASSERT(rec[1].fPos >= 0 && rec[1].fPos <= 1); 533 SkASSERT(rec[0].fPos <= rec[1].fPos); 534 } 535 return rec; 536 } 537 538 template <bool apply_alpha> SkPMColor trunc_from_255(const Sk4f& x) { 539 SkPMColor c; 540 SkNx_cast<uint8_t>(x).store(&c); 541 if (apply_alpha) { 542 c = SkPreMultiplyARGB(SkGetPackedA32(c), SkGetPackedR32(c), 543 SkGetPackedG32(c), SkGetPackedB32(c)); 544 } 545 return c; 546 } 547 548 template <bool apply_alpha> void fill(SkPMColor dst[], int count, 549 const Sk4f& c4, const Sk4f& c4other) { 550 sk_memset32_dither(dst, trunc_from_255<apply_alpha>(c4), 551 trunc_from_255<apply_alpha>(c4other), count); 552 } 553 554 template <bool apply_alpha> void fill(SkPMColor dst[], int count, const Sk4f& c4) { 555 // Assumes that c4 does not need to be dithered. 556 sk_memset32(dst, trunc_from_255<apply_alpha>(c4), count); 557 } 558 559 /* 560 * TODOs 561 * 562 * - tilemodes 563 * - interp before or after premul 564 * - perspective 565 * - optimizations 566 * - use fixed (32bit or 16bit) instead of floats? 567 */ 568 569 static Sk4f lerp_color(float fx, const SkLinearGradient::LinearGradientContext::Rec* rec) { 570 SkASSERT(fx >= rec[0].fPos); 571 SkASSERT(fx <= rec[1].fPos); 572 573 const float p0 = rec[0].fPos; 574 const Sk4f c0 = rec[0].fColor; 575 const Sk4f c1 = rec[1].fColor; 576 const Sk4f diffc = c1 - c0; 577 const float scale = rec[1].fPosScale; 578 const float t = (fx - p0) * scale; 579 return c0 + Sk4f(t) * diffc; 580 } 581 582 template <bool apply_alpha> void ramp(SkPMColor dstC[], int n, const Sk4f& c, const Sk4f& dc, 583 const Sk4f& dither0, const Sk4f& dither1) { 584 Sk4f dc2 = dc + dc; 585 Sk4f dc4 = dc2 + dc2; 586 Sk4f cd0 = c + dither0; 587 Sk4f cd1 = c + dc + dither1; 588 Sk4f cd2 = cd0 + dc2; 589 Sk4f cd3 = cd1 + dc2; 590 while (n >= 4) { 591 if (!apply_alpha) { 592 Sk4f_ToBytes((uint8_t*)dstC, cd0, cd1, cd2, cd3); 593 dstC += 4; 594 } else { 595 *dstC++ = trunc_from_255<apply_alpha>(cd0); 596 *dstC++ = trunc_from_255<apply_alpha>(cd1); 597 *dstC++ = trunc_from_255<apply_alpha>(cd2); 598 *dstC++ = trunc_from_255<apply_alpha>(cd3); 599 } 600 cd0 = cd0 + dc4; 601 cd1 = cd1 + dc4; 602 cd2 = cd2 + dc4; 603 cd3 = cd3 + dc4; 604 n -= 4; 605 } 606 if (n & 2) { 607 *dstC++ = trunc_from_255<apply_alpha>(cd0); 608 *dstC++ = trunc_from_255<apply_alpha>(cd1); 609 cd0 = cd0 + dc2; 610 } 611 if (n & 1) { 612 *dstC++ = trunc_from_255<apply_alpha>(cd0); 613 } 614 } 615 616 template <bool apply_alpha, bool dx_is_pos> 617 void SkLinearGradient::LinearGradientContext::shade4_dx_clamp(SkPMColor dstC[], int count, 618 float fx, float dx, float invDx, 619 const float dither[2]) { 620 Sk4f dither0(dither[0]); 621 Sk4f dither1(dither[1]); 622 const Rec* rec = fRecs.begin(); 623 624 const Sk4f dx4 = Sk4f(dx); 625 SkDEBUGCODE(SkPMColor* endDstC = dstC + count;) 626 627 if (dx_is_pos) { 628 if (fx < 0) { 629 int n = SkTMin(SkFloatToIntFloor(-fx * invDx) + 1, count); 630 fill<apply_alpha>(dstC, n, rec[0].fColor); 631 count -= n; 632 dstC += n; 633 fx += n * dx; 634 SkASSERT(0 == count || fx >= 0); 635 if (n & 1) { 636 SkTSwap(dither0, dither1); 637 } 638 } 639 } else { // dx < 0 640 if (fx > 1) { 641 int n = SkTMin(SkFloatToIntFloor((1 - fx) * invDx) + 1, count); 642 fill<apply_alpha>(dstC, n, rec[fRecs.count() - 1].fColor); 643 count -= n; 644 dstC += n; 645 fx += n * dx; 646 SkASSERT(0 == count || fx <= 1); 647 if (n & 1) { 648 SkTSwap(dither0, dither1); 649 } 650 } 651 } 652 SkASSERT(count >= 0); 653 654 const Rec* r; 655 if (dx_is_pos) { 656 r = fRecs.begin(); // start at the beginning 657 } else { 658 r = fRecs.begin() + fRecs.count() - 2; // start at the end 659 } 660 661 while (count > 0) { 662 if (dx_is_pos) { 663 if (fx >= 1) { 664 fill<apply_alpha>(dstC, count, rec[fRecs.count() - 1].fColor); 665 return; 666 } 667 } else { // dx < 0 668 if (fx <= 0) { 669 fill<apply_alpha>(dstC, count, rec[0].fColor); 670 return; 671 } 672 } 673 674 if (dx_is_pos) { 675 r = find_forward(r, fx); 676 } else { 677 r = find_backward(r, fx); 678 } 679 SkASSERT(r >= fRecs.begin() && r < fRecs.begin() + fRecs.count() - 1); 680 681 const float p0 = r[0].fPos; 682 const Sk4f c0 = r[0].fColor; 683 const float p1 = r[1].fPos; 684 const Sk4f diffc = Sk4f(r[1].fColor) - c0; 685 const float scale = r[1].fPosScale; 686 const float t = (fx - p0) * scale; 687 const Sk4f c = c0 + Sk4f(t) * diffc; 688 const Sk4f dc = diffc * dx4 * Sk4f(scale); 689 690 int n; 691 if (dx_is_pos) { 692 n = SkTMin((int)((p1 - fx) * invDx) + 1, count); 693 } else { 694 n = SkTMin((int)((p0 - fx) * invDx) + 1, count); 695 } 696 697 fx += n * dx; 698 // fx should now outside of the p0..p1 interval. However, due to float precision loss, 699 // its possible that fx is slightly too small/large, so we clamp it. 700 if (dx_is_pos) { 701 fx = SkTMax(fx, p1); 702 } else { 703 fx = SkTMin(fx, p0); 704 } 705 706 ramp<apply_alpha>(dstC, n, c, dc, dither0, dither1); 707 dstC += n; 708 SkASSERT(dstC <= endDstC); 709 710 if (n & 1) { 711 SkTSwap(dither0, dither1); 712 } 713 714 count -= n; 715 SkASSERT(count >= 0); 716 } 717 } 718 719 void SkLinearGradient::LinearGradientContext::shade4_clamp(int x, int y, SkPMColor dstC[], 720 int count) { 721 SkASSERT(count > 0); 722 SkASSERT(kLinear_MatrixClass == fDstToIndexClass); 723 724 SkPoint srcPt; 725 fDstToIndexProc(fDstToIndex, x + SK_ScalarHalf, y + SK_ScalarHalf, &srcPt); 726 float fx = srcPt.x(); 727 const float dx = fDstToIndex.getScaleX(); 728 729 // Default our dither bias values to 1/2, (rounding), which is no dithering 730 float dither0 = 0.5f; 731 float dither1 = 0.5f; 732 if (fDither) { 733 const float ditherCell[] = { 734 1/8.0f, 5/8.0f, 735 7/8.0f, 3/8.0f, 736 }; 737 const int rowIndex = (y & 1) << 1; 738 dither0 = ditherCell[rowIndex]; 739 dither1 = ditherCell[rowIndex + 1]; 740 if (x & 1) { 741 SkTSwap(dither0, dither1); 742 } 743 } 744 const float dither[2] = { dither0, dither1 }; 745 const float invDx = 1 / dx; 746 747 if (SkScalarNearlyZero(dx * count)) { // gradient is vertical 748 const float pinFx = SkTPin(fx, 0.0f, 1.0f); 749 Sk4f c = lerp_color(pinFx, find_forward(fRecs.begin(), pinFx)); 750 if (fApplyAlphaAfterInterp) { 751 fill<true>(dstC, count, c + dither0, c + dither1); 752 } else { 753 fill<false>(dstC, count, c + dither0, c + dither1); 754 } 755 return; 756 } 757 758 if (dx > 0) { 759 if (fApplyAlphaAfterInterp) { 760 this->shade4_dx_clamp<true, true>(dstC, count, fx, dx, invDx, dither); 761 } else { 762 this->shade4_dx_clamp<false, true>(dstC, count, fx, dx, invDx, dither); 763 } 764 } else { 765 if (fApplyAlphaAfterInterp) { 766 this->shade4_dx_clamp<true, false>(dstC, count, fx, dx, invDx, dither); 767 } else { 768 this->shade4_dx_clamp<false, false>(dstC, count, fx, dx, invDx, dither); 769 } 770 } 771 } 772