1 /* 2 * Copyright 2015 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef SkNx_neon_DEFINED 9 #define SkNx_neon_DEFINED 10 11 #define SKNX_IS_FAST 12 13 // ARMv8 has vrndmq_f32 to floor 4 floats. Here we emulate it: 14 // - roundtrip through integers via truncation 15 // - subtract 1 if that's too big (possible for negative values). 16 // This restricts the domain of our inputs to a maximum somehwere around 2^31. Seems plenty big. 17 static inline float32x4_t armv7_vrndmq_f32(float32x4_t v) { 18 auto roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v)); 19 auto too_big = vcgtq_f32(roundtrip, v); 20 return vsubq_f32(roundtrip, (float32x4_t)vandq_u32(too_big, (uint32x4_t)vdupq_n_f32(1))); 21 } 22 23 // Well, this is absurd. The shifts require compile-time constant arguments. 24 25 #define SHIFT8(op, v, bits) switch(bits) { \ 26 case 1: return op(v, 1); case 2: return op(v, 2); case 3: return op(v, 3); \ 27 case 4: return op(v, 4); case 5: return op(v, 5); case 6: return op(v, 6); \ 28 case 7: return op(v, 7); \ 29 } return fVec 30 31 #define SHIFT16(op, v, bits) if (bits < 8) { SHIFT8(op, v, bits); } switch(bits) { \ 32 case 8: return op(v, 8); case 9: return op(v, 9); \ 33 case 10: return op(v, 10); case 11: return op(v, 11); case 12: return op(v, 12); \ 34 case 13: return op(v, 13); case 14: return op(v, 14); case 15: return op(v, 15); \ 35 } return fVec 36 37 #define SHIFT32(op, v, bits) if (bits < 16) { SHIFT16(op, v, bits); } switch(bits) { \ 38 case 16: return op(v, 16); case 17: return op(v, 17); case 18: return op(v, 18); \ 39 case 19: return op(v, 19); case 20: return op(v, 20); case 21: return op(v, 21); \ 40 case 22: return op(v, 22); case 23: return op(v, 23); case 24: return op(v, 24); \ 41 case 25: return op(v, 25); case 26: return op(v, 26); case 27: return op(v, 27); \ 42 case 28: return op(v, 28); case 29: return op(v, 29); case 30: return op(v, 30); \ 43 case 31: return op(v, 31); } return fVec 44 45 template <> 46 class SkNx<2, float> { 47 public: 48 SkNx(float32x2_t vec) : fVec(vec) {} 49 50 SkNx() {} 51 SkNx(float val) : fVec(vdup_n_f32(val)) {} 52 static SkNx Load(const void* ptr) { return vld1_f32((const float*)ptr); } 53 SkNx(float a, float b) { fVec = (float32x2_t) { a, b }; } 54 55 void store(void* ptr) const { vst1_f32((float*)ptr, fVec); } 56 57 SkNx approxInvert() const { 58 float32x2_t est0 = vrecpe_f32(fVec), 59 est1 = vmul_f32(vrecps_f32(est0, fVec), est0); 60 return est1; 61 } 62 SkNx invert() const { 63 float32x2_t est1 = this->approxInvert().fVec, 64 est2 = vmul_f32(vrecps_f32(est1, fVec), est1); 65 return est2; 66 } 67 68 SkNx operator + (const SkNx& o) const { return vadd_f32(fVec, o.fVec); } 69 SkNx operator - (const SkNx& o) const { return vsub_f32(fVec, o.fVec); } 70 SkNx operator * (const SkNx& o) const { return vmul_f32(fVec, o.fVec); } 71 SkNx operator / (const SkNx& o) const { 72 #if defined(SK_CPU_ARM64) 73 return vdiv_f32(fVec, o.fVec); 74 #else 75 return vmul_f32(fVec, o.invert().fVec); 76 #endif 77 } 78 79 SkNx operator == (const SkNx& o) const { return vreinterpret_f32_u32(vceq_f32(fVec, o.fVec)); } 80 SkNx operator < (const SkNx& o) const { return vreinterpret_f32_u32(vclt_f32(fVec, o.fVec)); } 81 SkNx operator > (const SkNx& o) const { return vreinterpret_f32_u32(vcgt_f32(fVec, o.fVec)); } 82 SkNx operator <= (const SkNx& o) const { return vreinterpret_f32_u32(vcle_f32(fVec, o.fVec)); } 83 SkNx operator >= (const SkNx& o) const { return vreinterpret_f32_u32(vcge_f32(fVec, o.fVec)); } 84 SkNx operator != (const SkNx& o) const { 85 return vreinterpret_f32_u32(vmvn_u32(vceq_f32(fVec, o.fVec))); 86 } 87 88 static SkNx Min(const SkNx& l, const SkNx& r) { return vmin_f32(l.fVec, r.fVec); } 89 static SkNx Max(const SkNx& l, const SkNx& r) { return vmax_f32(l.fVec, r.fVec); } 90 91 SkNx rsqrt0() const { return vrsqrte_f32(fVec); } 92 SkNx rsqrt1() const { 93 float32x2_t est0 = this->rsqrt0().fVec; 94 return vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0); 95 } 96 SkNx rsqrt2() const { 97 float32x2_t est1 = this->rsqrt1().fVec; 98 return vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1); 99 } 100 101 SkNx sqrt() const { 102 #if defined(SK_CPU_ARM64) 103 return vsqrt_f32(fVec); 104 #else 105 return *this * this->rsqrt2(); 106 #endif 107 } 108 109 float operator[](int k) const { 110 SkASSERT(0 <= k && k < 2); 111 union { float32x2_t v; float fs[2]; } pun = {fVec}; 112 return pun.fs[k&1]; 113 } 114 115 bool allTrue() const { 116 auto v = vreinterpret_u32_f32(fVec); 117 return vget_lane_u32(v,0) && vget_lane_u32(v,1); 118 } 119 bool anyTrue() const { 120 auto v = vreinterpret_u32_f32(fVec); 121 return vget_lane_u32(v,0) || vget_lane_u32(v,1); 122 } 123 124 float32x2_t fVec; 125 }; 126 127 template <> 128 class SkNx<4, float> { 129 public: 130 SkNx(float32x4_t vec) : fVec(vec) {} 131 132 SkNx() {} 133 SkNx(float val) : fVec(vdupq_n_f32(val)) {} 134 static SkNx Load(const void* ptr) { return vld1q_f32((const float*)ptr); } 135 SkNx(float a, float b, float c, float d) { fVec = (float32x4_t) { a, b, c, d }; } 136 137 void store(void* ptr) const { vst1q_f32((float*)ptr, fVec); } 138 SkNx approxInvert() const { 139 float32x4_t est0 = vrecpeq_f32(fVec), 140 est1 = vmulq_f32(vrecpsq_f32(est0, fVec), est0); 141 return est1; 142 } 143 SkNx invert() const { 144 float32x4_t est1 = this->approxInvert().fVec, 145 est2 = vmulq_f32(vrecpsq_f32(est1, fVec), est1); 146 return est2; 147 } 148 149 SkNx operator + (const SkNx& o) const { return vaddq_f32(fVec, o.fVec); } 150 SkNx operator - (const SkNx& o) const { return vsubq_f32(fVec, o.fVec); } 151 SkNx operator * (const SkNx& o) const { return vmulq_f32(fVec, o.fVec); } 152 SkNx operator / (const SkNx& o) const { 153 #if defined(SK_CPU_ARM64) 154 return vdivq_f32(fVec, o.fVec); 155 #else 156 return vmulq_f32(fVec, o.invert().fVec); 157 #endif 158 } 159 160 SkNx operator==(const SkNx& o) const { return vreinterpretq_f32_u32(vceqq_f32(fVec, o.fVec)); } 161 SkNx operator <(const SkNx& o) const { return vreinterpretq_f32_u32(vcltq_f32(fVec, o.fVec)); } 162 SkNx operator >(const SkNx& o) const { return vreinterpretq_f32_u32(vcgtq_f32(fVec, o.fVec)); } 163 SkNx operator<=(const SkNx& o) const { return vreinterpretq_f32_u32(vcleq_f32(fVec, o.fVec)); } 164 SkNx operator>=(const SkNx& o) const { return vreinterpretq_f32_u32(vcgeq_f32(fVec, o.fVec)); } 165 SkNx operator!=(const SkNx& o) const { 166 return vreinterpretq_f32_u32(vmvnq_u32(vceqq_f32(fVec, o.fVec))); 167 } 168 169 static SkNx Min(const SkNx& l, const SkNx& r) { return vminq_f32(l.fVec, r.fVec); } 170 static SkNx Max(const SkNx& l, const SkNx& r) { return vmaxq_f32(l.fVec, r.fVec); } 171 172 SkNx abs() const { return vabsq_f32(fVec); } 173 SkNx floor() const { 174 #if defined(SK_CPU_ARM64) 175 return vrndmq_f32(fVec); 176 #else 177 return armv7_vrndmq_f32(fVec); 178 #endif 179 } 180 181 182 SkNx rsqrt0() const { return vrsqrteq_f32(fVec); } 183 SkNx rsqrt1() const { 184 float32x4_t est0 = this->rsqrt0().fVec; 185 return vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0); 186 } 187 SkNx rsqrt2() const { 188 float32x4_t est1 = this->rsqrt1().fVec; 189 return vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est1, est1)), est1); 190 } 191 192 SkNx sqrt() const { 193 #if defined(SK_CPU_ARM64) 194 return vsqrtq_f32(fVec); 195 #else 196 return *this * this->rsqrt2(); 197 #endif 198 } 199 200 float operator[](int k) const { 201 SkASSERT(0 <= k && k < 4); 202 union { float32x4_t v; float fs[4]; } pun = {fVec}; 203 return pun.fs[k&3]; 204 } 205 206 bool allTrue() const { 207 auto v = vreinterpretq_u32_f32(fVec); 208 return vgetq_lane_u32(v,0) && vgetq_lane_u32(v,1) 209 && vgetq_lane_u32(v,2) && vgetq_lane_u32(v,3); 210 } 211 bool anyTrue() const { 212 auto v = vreinterpretq_u32_f32(fVec); 213 return vgetq_lane_u32(v,0) || vgetq_lane_u32(v,1) 214 || vgetq_lane_u32(v,2) || vgetq_lane_u32(v,3); 215 } 216 217 SkNx thenElse(const SkNx& t, const SkNx& e) const { 218 return vbslq_f32(vreinterpretq_u32_f32(fVec), t.fVec, e.fVec); 219 } 220 221 float32x4_t fVec; 222 }; 223 224 // It's possible that for our current use cases, representing this as 225 // half a uint16x8_t might be better than representing it as a uint16x4_t. 226 // It'd make conversion to Sk4b one step simpler. 227 template <> 228 class SkNx<4, uint16_t> { 229 public: 230 SkNx(const uint16x4_t& vec) : fVec(vec) {} 231 232 SkNx() {} 233 SkNx(uint16_t val) : fVec(vdup_n_u16(val)) {} 234 static SkNx Load(const void* ptr) { return vld1_u16((const uint16_t*)ptr); } 235 236 SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d) { 237 fVec = (uint16x4_t) { a,b,c,d }; 238 } 239 240 void store(void* ptr) const { vst1_u16((uint16_t*)ptr, fVec); } 241 242 SkNx operator + (const SkNx& o) const { return vadd_u16(fVec, o.fVec); } 243 SkNx operator - (const SkNx& o) const { return vsub_u16(fVec, o.fVec); } 244 SkNx operator * (const SkNx& o) const { return vmul_u16(fVec, o.fVec); } 245 246 SkNx operator << (int bits) const { SHIFT16(vshl_n_u16, fVec, bits); } 247 SkNx operator >> (int bits) const { SHIFT16(vshr_n_u16, fVec, bits); } 248 249 static SkNx Min(const SkNx& a, const SkNx& b) { return vmin_u16(a.fVec, b.fVec); } 250 251 uint16_t operator[](int k) const { 252 SkASSERT(0 <= k && k < 4); 253 union { uint16x4_t v; uint16_t us[4]; } pun = {fVec}; 254 return pun.us[k&3]; 255 } 256 257 SkNx thenElse(const SkNx& t, const SkNx& e) const { 258 return vbsl_u16(fVec, t.fVec, e.fVec); 259 } 260 261 uint16x4_t fVec; 262 }; 263 264 template <> 265 class SkNx<8, uint16_t> { 266 public: 267 SkNx(const uint16x8_t& vec) : fVec(vec) {} 268 269 SkNx() {} 270 SkNx(uint16_t val) : fVec(vdupq_n_u16(val)) {} 271 static SkNx Load(const void* ptr) { return vld1q_u16((const uint16_t*)ptr); } 272 273 SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d, 274 uint16_t e, uint16_t f, uint16_t g, uint16_t h) { 275 fVec = (uint16x8_t) { a,b,c,d, e,f,g,h }; 276 } 277 278 void store(void* ptr) const { vst1q_u16((uint16_t*)ptr, fVec); } 279 280 SkNx operator + (const SkNx& o) const { return vaddq_u16(fVec, o.fVec); } 281 SkNx operator - (const SkNx& o) const { return vsubq_u16(fVec, o.fVec); } 282 SkNx operator * (const SkNx& o) const { return vmulq_u16(fVec, o.fVec); } 283 284 SkNx operator << (int bits) const { SHIFT16(vshlq_n_u16, fVec, bits); } 285 SkNx operator >> (int bits) const { SHIFT16(vshrq_n_u16, fVec, bits); } 286 287 static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u16(a.fVec, b.fVec); } 288 289 uint16_t operator[](int k) const { 290 SkASSERT(0 <= k && k < 8); 291 union { uint16x8_t v; uint16_t us[8]; } pun = {fVec}; 292 return pun.us[k&7]; 293 } 294 295 SkNx thenElse(const SkNx& t, const SkNx& e) const { 296 return vbslq_u16(fVec, t.fVec, e.fVec); 297 } 298 299 uint16x8_t fVec; 300 }; 301 302 template <> 303 class SkNx<4, uint8_t> { 304 public: 305 SkNx(const uint8x8_t& vec) : fVec(vec) {} 306 307 SkNx() {} 308 static SkNx Load(const void* ptr) { 309 return (uint8x8_t)vld1_dup_u32((const uint32_t*)ptr); 310 } 311 void store(void* ptr) const { 312 return vst1_lane_u32((uint32_t*)ptr, (uint32x2_t)fVec, 0); 313 } 314 315 // TODO as needed 316 317 uint8x8_t fVec; 318 }; 319 320 template <> 321 class SkNx<16, uint8_t> { 322 public: 323 SkNx(const uint8x16_t& vec) : fVec(vec) {} 324 325 SkNx() {} 326 SkNx(uint8_t val) : fVec(vdupq_n_u8(val)) {} 327 static SkNx Load(const void* ptr) { return vld1q_u8((const uint8_t*)ptr); } 328 329 SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d, 330 uint8_t e, uint8_t f, uint8_t g, uint8_t h, 331 uint8_t i, uint8_t j, uint8_t k, uint8_t l, 332 uint8_t m, uint8_t n, uint8_t o, uint8_t p) { 333 fVec = (uint8x16_t) { a,b,c,d, e,f,g,h, i,j,k,l, m,n,o,p }; 334 } 335 336 void store(void* ptr) const { vst1q_u8((uint8_t*)ptr, fVec); } 337 338 SkNx saturatedAdd(const SkNx& o) const { return vqaddq_u8(fVec, o.fVec); } 339 340 SkNx operator + (const SkNx& o) const { return vaddq_u8(fVec, o.fVec); } 341 SkNx operator - (const SkNx& o) const { return vsubq_u8(fVec, o.fVec); } 342 343 static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u8(a.fVec, b.fVec); } 344 SkNx operator < (const SkNx& o) const { return vcltq_u8(fVec, o.fVec); } 345 346 uint8_t operator[](int k) const { 347 SkASSERT(0 <= k && k < 16); 348 union { uint8x16_t v; uint8_t us[16]; } pun = {fVec}; 349 return pun.us[k&15]; 350 } 351 352 SkNx thenElse(const SkNx& t, const SkNx& e) const { 353 return vbslq_u8(fVec, t.fVec, e.fVec); 354 } 355 356 uint8x16_t fVec; 357 }; 358 359 #undef SHIFT32 360 #undef SHIFT16 361 #undef SHIFT8 362 363 template<> inline Sk4h SkNx_cast<uint16_t, float>(const Sk4f& src) { 364 return vqmovn_u32(vcvtq_u32_f32(src.fVec)); 365 } 366 367 template<> inline Sk4f SkNx_cast<float, uint16_t>(const Sk4h& src) { 368 return vcvtq_f32_u32(vmovl_u16(src.fVec)); 369 } 370 371 template<> inline Sk4b SkNx_cast<uint8_t, float>(const Sk4f& src) { 372 uint32x4_t _32 = vcvtq_u32_f32(src.fVec); 373 uint16x4_t _16 = vqmovn_u32(_32); 374 return vqmovn_u16(vcombine_u16(_16, _16)); 375 } 376 377 template<> inline Sk4f SkNx_cast<float, uint8_t>(const Sk4b& src) { 378 uint16x8_t _16 = vmovl_u8 (src.fVec) ; 379 uint32x4_t _32 = vmovl_u16(vget_low_u16(_16)); 380 return vcvtq_f32_u32(_32); 381 } 382 383 static inline void Sk4f_ToBytes(uint8_t bytes[16], 384 const Sk4f& a, const Sk4f& b, const Sk4f& c, const Sk4f& d) { 385 vst1q_u8(bytes, vuzpq_u8(vuzpq_u8((uint8x16_t)vcvtq_u32_f32(a.fVec), 386 (uint8x16_t)vcvtq_u32_f32(b.fVec)).val[0], 387 vuzpq_u8((uint8x16_t)vcvtq_u32_f32(c.fVec), 388 (uint8x16_t)vcvtq_u32_f32(d.fVec)).val[0]).val[0]); 389 } 390 391 template<> inline Sk4h SkNx_cast<uint16_t, uint8_t>(const Sk4b& src) { 392 return vget_low_u16(vmovl_u8(src.fVec)); 393 } 394 395 template<> inline Sk4b SkNx_cast<uint8_t, uint16_t>(const Sk4h& src) { 396 return vmovn_u16(vcombine_u16(src.fVec, src.fVec)); 397 } 398 399 #endif//SkNx_neon_DEFINED 400