Home | History | Annotate | Download | only in tests
      1 /*
      2  * Copyright 2011 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkColorPriv.h"
      9 #include "SkEndian.h"
     10 #include "SkFloatBits.h"
     11 #include "SkFloatingPoint.h"
     12 #include "SkHalf.h"
     13 #include "SkMathPriv.h"
     14 #include "SkPoint.h"
     15 #include "SkRandom.h"
     16 #include "Test.h"
     17 
     18 static void test_clz(skiatest::Reporter* reporter) {
     19     REPORTER_ASSERT(reporter, 32 == SkCLZ(0));
     20     REPORTER_ASSERT(reporter, 31 == SkCLZ(1));
     21     REPORTER_ASSERT(reporter, 1 == SkCLZ(1 << 30));
     22     REPORTER_ASSERT(reporter, 0 == SkCLZ(~0U));
     23 
     24     SkRandom rand;
     25     for (int i = 0; i < 1000; ++i) {
     26         uint32_t mask = rand.nextU();
     27         // need to get some zeros for testing, but in some obscure way so the
     28         // compiler won't "see" that, and work-around calling the functions.
     29         mask >>= (mask & 31);
     30         int intri = SkCLZ(mask);
     31         int porta = SkCLZ_portable(mask);
     32         REPORTER_ASSERT(reporter, intri == porta);
     33     }
     34 }
     35 
     36 ///////////////////////////////////////////////////////////////////////////////
     37 
     38 static float sk_fsel(float pred, float result_ge, float result_lt) {
     39     return pred >= 0 ? result_ge : result_lt;
     40 }
     41 
     42 static float fast_floor(float x) {
     43 //    float big = sk_fsel(x, 0x1.0p+23, -0x1.0p+23);
     44     float big = sk_fsel(x, (float)(1 << 23), -(float)(1 << 23));
     45     return (float)(x + big) - big;
     46 }
     47 
     48 static float std_floor(float x) {
     49     return sk_float_floor(x);
     50 }
     51 
     52 static void test_floor_value(skiatest::Reporter* reporter, float value) {
     53     float fast = fast_floor(value);
     54     float std = std_floor(value);
     55     if (std != fast) {
     56         ERRORF(reporter, "fast_floor(%.9g) == %.9g != %.9g == std_floor(%.9g)",
     57                value, fast, std, value);
     58     }
     59 }
     60 
     61 static void test_floor(skiatest::Reporter* reporter) {
     62     static const float gVals[] = {
     63         0, 1, 1.1f, 1.01f, 1.001f, 1.0001f, 1.00001f, 1.000001f, 1.0000001f
     64     };
     65 
     66     for (size_t i = 0; i < SK_ARRAY_COUNT(gVals); ++i) {
     67         test_floor_value(reporter, gVals[i]);
     68 //        test_floor_value(reporter, -gVals[i]);
     69     }
     70 }
     71 
     72 ///////////////////////////////////////////////////////////////////////////////
     73 
     74 // test that SkMul16ShiftRound and SkMulDiv255Round return the same result
     75 static void test_muldivround(skiatest::Reporter* reporter) {
     76 #if 0
     77     // this "complete" test is too slow, so we test a random sampling of it
     78 
     79     for (int a = 0; a <= 32767; ++a) {
     80         for (int b = 0; b <= 32767; ++b) {
     81             unsigned prod0 = SkMul16ShiftRound(a, b, 8);
     82             unsigned prod1 = SkMulDiv255Round(a, b);
     83             SkASSERT(prod0 == prod1);
     84         }
     85     }
     86 #endif
     87 
     88     SkRandom rand;
     89     for (int i = 0; i < 10000; ++i) {
     90         unsigned a = rand.nextU() & 0x7FFF;
     91         unsigned b = rand.nextU() & 0x7FFF;
     92 
     93         unsigned prod0 = SkMul16ShiftRound(a, b, 8);
     94         unsigned prod1 = SkMulDiv255Round(a, b);
     95 
     96         REPORTER_ASSERT(reporter, prod0 == prod1);
     97     }
     98 }
     99 
    100 static float float_blend(int src, int dst, float unit) {
    101     return dst + (src - dst) * unit;
    102 }
    103 
    104 static int blend31(int src, int dst, int a31) {
    105     return dst + ((src - dst) * a31 * 2114 >> 16);
    106     //    return dst + ((src - dst) * a31 * 33 >> 10);
    107 }
    108 
    109 static int blend31_slow(int src, int dst, int a31) {
    110     int prod = src * a31 + (31 - a31) * dst + 16;
    111     prod = (prod + (prod >> 5)) >> 5;
    112     return prod;
    113 }
    114 
    115 static int blend31_round(int src, int dst, int a31) {
    116     int prod = (src - dst) * a31 + 16;
    117     prod = (prod + (prod >> 5)) >> 5;
    118     return dst + prod;
    119 }
    120 
    121 static int blend31_old(int src, int dst, int a31) {
    122     a31 += a31 >> 4;
    123     return dst + ((src - dst) * a31 >> 5);
    124 }
    125 
    126 // suppress unused code warning
    127 static int (*blend_functions[])(int, int, int) = {
    128     blend31,
    129     blend31_slow,
    130     blend31_round,
    131     blend31_old
    132 };
    133 
    134 static void test_blend31() {
    135     int failed = 0;
    136     int death = 0;
    137     if (false) { // avoid bit rot, suppress warning
    138         failed = (*blend_functions[0])(0,0,0);
    139     }
    140     for (int src = 0; src <= 255; src++) {
    141         for (int dst = 0; dst <= 255; dst++) {
    142             for (int a = 0; a <= 31; a++) {
    143 //                int r0 = blend31(src, dst, a);
    144 //                int r0 = blend31_round(src, dst, a);
    145 //                int r0 = blend31_old(src, dst, a);
    146                 int r0 = blend31_slow(src, dst, a);
    147 
    148                 float f = float_blend(src, dst, a / 31.f);
    149                 int r1 = (int)f;
    150                 int r2 = SkScalarRoundToInt(f);
    151 
    152                 if (r0 != r1 && r0 != r2) {
    153                     SkDebugf("src:%d dst:%d a:%d result:%d float:%g\n",
    154                                  src,   dst, a,        r0,      f);
    155                     failed += 1;
    156                 }
    157                 if (r0 > 255) {
    158                     death += 1;
    159                     SkDebugf("death src:%d dst:%d a:%d result:%d float:%g\n",
    160                                         src,   dst, a,        r0,      f);
    161                 }
    162             }
    163         }
    164     }
    165     SkDebugf("---- failed %d death %d\n", failed, death);
    166 }
    167 
    168 static void test_blend(skiatest::Reporter* reporter) {
    169     for (int src = 0; src <= 255; src++) {
    170         for (int dst = 0; dst <= 255; dst++) {
    171             for (int a = 0; a <= 255; a++) {
    172                 int r0 = SkAlphaBlend255(src, dst, a);
    173                 float f1 = float_blend(src, dst, a / 255.f);
    174                 int r1 = SkScalarRoundToInt(f1);
    175 
    176                 if (r0 != r1) {
    177                     float diff = sk_float_abs(f1 - r1);
    178                     diff = sk_float_abs(diff - 0.5f);
    179                     if (diff > (1 / 255.f)) {
    180                         ERRORF(reporter, "src:%d dst:%d a:%d "
    181                                "result:%d float:%g\n", src, dst, a, r0, f1);
    182                     }
    183                 }
    184             }
    185         }
    186     }
    187 }
    188 
    189 static void check_length(skiatest::Reporter* reporter,
    190                          const SkPoint& p, SkScalar targetLen) {
    191     float x = SkScalarToFloat(p.fX);
    192     float y = SkScalarToFloat(p.fY);
    193     float len = sk_float_sqrt(x*x + y*y);
    194 
    195     len /= SkScalarToFloat(targetLen);
    196 
    197     REPORTER_ASSERT(reporter, len > 0.999f && len < 1.001f);
    198 }
    199 
    200 static float nextFloat(SkRandom& rand) {
    201     SkFloatIntUnion data;
    202     data.fSignBitInt = rand.nextU();
    203     return data.fFloat;
    204 }
    205 
    206 /*  returns true if a == b as resulting from (int)x. Since it is undefined
    207  what to do if the float exceeds 2^32-1, we check for that explicitly.
    208  */
    209 static bool equal_float_native_skia(float x, uint32_t ni, uint32_t si) {
    210     if (!(x == x)) {    // NAN
    211         return ((int32_t)si) == SK_MaxS32 || ((int32_t)si) == SK_MinS32;
    212     }
    213     // for out of range, C is undefined, but skia always should return NaN32
    214     if (x > SK_MaxS32) {
    215         return ((int32_t)si) == SK_MaxS32;
    216     }
    217     if (x < -SK_MaxS32) {
    218         return ((int32_t)si) == SK_MinS32;
    219     }
    220     return si == ni;
    221 }
    222 
    223 static void assert_float_equal(skiatest::Reporter* reporter, const char op[],
    224                                float x, uint32_t ni, uint32_t si) {
    225     if (!equal_float_native_skia(x, ni, si)) {
    226         ERRORF(reporter, "%s float %g bits %x native %x skia %x\n",
    227                op, x, SkFloat2Bits(x), ni, si);
    228     }
    229 }
    230 
    231 static void test_float_cast(skiatest::Reporter* reporter, float x) {
    232     int ix = (int)x;
    233     int iix = SkFloatToIntCast(x);
    234     assert_float_equal(reporter, "cast", x, ix, iix);
    235 }
    236 
    237 static void test_float_floor(skiatest::Reporter* reporter, float x) {
    238     int ix = (int)floor(x);
    239     int iix = SkFloatToIntFloor(x);
    240     assert_float_equal(reporter, "floor", x, ix, iix);
    241 }
    242 
    243 static void test_float_round(skiatest::Reporter* reporter, float x) {
    244     double xx = x + 0.5;    // need intermediate double to avoid temp loss
    245     int ix = (int)floor(xx);
    246     int iix = SkFloatToIntRound(x);
    247     assert_float_equal(reporter, "round", x, ix, iix);
    248 }
    249 
    250 static void test_float_ceil(skiatest::Reporter* reporter, float x) {
    251     int ix = (int)ceil(x);
    252     int iix = SkFloatToIntCeil(x);
    253     assert_float_equal(reporter, "ceil", x, ix, iix);
    254 }
    255 
    256 static void test_float_conversions(skiatest::Reporter* reporter, float x) {
    257     test_float_cast(reporter, x);
    258     test_float_floor(reporter, x);
    259     test_float_round(reporter, x);
    260     test_float_ceil(reporter, x);
    261 }
    262 
    263 static void test_int2float(skiatest::Reporter* reporter, int ival) {
    264     float x0 = (float)ival;
    265     float x1 = SkIntToFloatCast(ival);
    266     REPORTER_ASSERT(reporter, x0 == x1);
    267 }
    268 
    269 static void unittest_fastfloat(skiatest::Reporter* reporter) {
    270     SkRandom rand;
    271     size_t i;
    272 
    273     static const float gFloats[] = {
    274         0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3,
    275         0.000000001f, 1000000000.f,     // doesn't overflow
    276         0.0000000001f, 10000000000.f    // does overflow
    277     };
    278     for (i = 0; i < SK_ARRAY_COUNT(gFloats); i++) {
    279         test_float_conversions(reporter, gFloats[i]);
    280         test_float_conversions(reporter, -gFloats[i]);
    281     }
    282 
    283     for (int outer = 0; outer < 100; outer++) {
    284         rand.setSeed(outer);
    285         for (i = 0; i < 100000; i++) {
    286             float x = nextFloat(rand);
    287             test_float_conversions(reporter, x);
    288         }
    289 
    290         test_int2float(reporter, 0);
    291         test_int2float(reporter, 1);
    292         test_int2float(reporter, -1);
    293         for (i = 0; i < 100000; i++) {
    294             // for now only test ints that are 24bits or less, since we don't
    295             // round (down) large ints the same as IEEE...
    296             int ival = rand.nextU() & 0xFFFFFF;
    297             test_int2float(reporter, ival);
    298             test_int2float(reporter, -ival);
    299         }
    300     }
    301 }
    302 
    303 static float make_zero() {
    304     return sk_float_sin(0);
    305 }
    306 
    307 static void unittest_isfinite(skiatest::Reporter* reporter) {
    308     float nan = sk_float_asin(2);
    309     float inf = 1.0f / make_zero();
    310     float big = 3.40282e+038f;
    311 
    312     REPORTER_ASSERT(reporter, !SkScalarIsNaN(inf));
    313     REPORTER_ASSERT(reporter, !SkScalarIsNaN(-inf));
    314     REPORTER_ASSERT(reporter, !SkScalarIsFinite(inf));
    315     REPORTER_ASSERT(reporter, !SkScalarIsFinite(-inf));
    316 
    317     REPORTER_ASSERT(reporter,  SkScalarIsNaN(nan));
    318     REPORTER_ASSERT(reporter, !SkScalarIsNaN(big));
    319     REPORTER_ASSERT(reporter, !SkScalarIsNaN(-big));
    320     REPORTER_ASSERT(reporter, !SkScalarIsNaN(0));
    321 
    322     REPORTER_ASSERT(reporter, !SkScalarIsFinite(nan));
    323     REPORTER_ASSERT(reporter,  SkScalarIsFinite(big));
    324     REPORTER_ASSERT(reporter,  SkScalarIsFinite(-big));
    325     REPORTER_ASSERT(reporter,  SkScalarIsFinite(0));
    326 }
    327 
    328 static void unittest_half(skiatest::Reporter* reporter) {
    329     static const float gFloats[] = {
    330         0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3,
    331         -0.f, -1.f, -0.5f, -0.499999f, -0.5000001f, -1.f/3
    332     };
    333 
    334     for (size_t i = 0; i < SK_ARRAY_COUNT(gFloats); ++i) {
    335         SkHalf h = SkFloatToHalf(gFloats[i]);
    336         float f = SkHalfToFloat(h);
    337         REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, gFloats[i]));
    338     }
    339 
    340     // check some special values
    341     union FloatUnion {
    342         uint32_t fU;
    343         float    fF;
    344     };
    345 
    346     static const FloatUnion largestPositiveHalf = { ((142 << 23) | (1023 << 13)) };
    347     SkHalf h = SkFloatToHalf(largestPositiveHalf.fF);
    348     float f = SkHalfToFloat(h);
    349     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestPositiveHalf.fF));
    350 
    351     static const FloatUnion largestNegativeHalf = { (1u << 31) | (142u << 23) | (1023u << 13) };
    352     h = SkFloatToHalf(largestNegativeHalf.fF);
    353     f = SkHalfToFloat(h);
    354     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestNegativeHalf.fF));
    355 
    356     static const FloatUnion smallestPositiveHalf = { 102 << 23 };
    357     h = SkFloatToHalf(smallestPositiveHalf.fF);
    358     f = SkHalfToFloat(h);
    359     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, smallestPositiveHalf.fF));
    360 
    361     static const FloatUnion overflowHalf = { ((143 << 23) | (1023 << 13)) };
    362     h = SkFloatToHalf(overflowHalf.fF);
    363     f = SkHalfToFloat(h);
    364     REPORTER_ASSERT(reporter, !SkScalarIsFinite(f) );
    365 
    366     static const FloatUnion underflowHalf = { 101 << 23 };
    367     h = SkFloatToHalf(underflowHalf.fF);
    368     f = SkHalfToFloat(h);
    369     REPORTER_ASSERT(reporter, f == 0.0f );
    370 
    371     static const FloatUnion inf32 = { 255 << 23 };
    372     h = SkFloatToHalf(inf32.fF);
    373     f = SkHalfToFloat(h);
    374     REPORTER_ASSERT(reporter, !SkScalarIsFinite(f) );
    375 
    376     static const FloatUnion nan32 = { 255 << 23 | 1 };
    377     h = SkFloatToHalf(nan32.fF);
    378     f = SkHalfToFloat(h);
    379     REPORTER_ASSERT(reporter, SkScalarIsNaN(f) );
    380 
    381 }
    382 
    383 template <typename RSqrtFn>
    384 static void test_rsqrt(skiatest::Reporter* reporter, RSqrtFn rsqrt) {
    385     const float maxRelativeError = 6.50196699e-4f;
    386 
    387     // test close to 0 up to 1
    388     float input = 0.000001f;
    389     for (int i = 0; i < 1000; ++i) {
    390         float exact = 1.0f/sk_float_sqrt(input);
    391         float estimate = rsqrt(input);
    392         float relativeError = sk_float_abs(exact - estimate)/exact;
    393         REPORTER_ASSERT(reporter, relativeError <= maxRelativeError);
    394         input += 0.001f;
    395     }
    396 
    397     // test 1 to ~100
    398     input = 1.0f;
    399     for (int i = 0; i < 1000; ++i) {
    400         float exact = 1.0f/sk_float_sqrt(input);
    401         float estimate = rsqrt(input);
    402         float relativeError = sk_float_abs(exact - estimate)/exact;
    403         REPORTER_ASSERT(reporter, relativeError <= maxRelativeError);
    404         input += 0.01f;
    405     }
    406 
    407     // test some big numbers
    408     input = 1000000.0f;
    409     for (int i = 0; i < 100; ++i) {
    410         float exact = 1.0f/sk_float_sqrt(input);
    411         float estimate = rsqrt(input);
    412         float relativeError = sk_float_abs(exact - estimate)/exact;
    413         REPORTER_ASSERT(reporter, relativeError <= maxRelativeError);
    414         input += 754326.f;
    415     }
    416 }
    417 
    418 static void test_muldiv255(skiatest::Reporter* reporter) {
    419     for (int a = 0; a <= 255; a++) {
    420         for (int b = 0; b <= 255; b++) {
    421             int ab = a * b;
    422             float s = ab / 255.0f;
    423             int round = (int)floorf(s + 0.5f);
    424             int trunc = (int)floorf(s);
    425 
    426             int iround = SkMulDiv255Round(a, b);
    427             int itrunc = SkMulDiv255Trunc(a, b);
    428 
    429             REPORTER_ASSERT(reporter, iround == round);
    430             REPORTER_ASSERT(reporter, itrunc == trunc);
    431 
    432             REPORTER_ASSERT(reporter, itrunc <= iround);
    433             REPORTER_ASSERT(reporter, iround <= a);
    434             REPORTER_ASSERT(reporter, iround <= b);
    435         }
    436     }
    437 }
    438 
    439 static void test_muldiv255ceiling(skiatest::Reporter* reporter) {
    440     for (int c = 0; c <= 255; c++) {
    441         for (int a = 0; a <= 255; a++) {
    442             int product = (c * a + 255);
    443             int expected_ceiling = (product + (product >> 8)) >> 8;
    444             int webkit_ceiling = (c * a + 254) / 255;
    445             REPORTER_ASSERT(reporter, expected_ceiling == webkit_ceiling);
    446             int skia_ceiling = SkMulDiv255Ceiling(c, a);
    447             REPORTER_ASSERT(reporter, skia_ceiling == webkit_ceiling);
    448         }
    449     }
    450 }
    451 
    452 static void test_copysign(skiatest::Reporter* reporter) {
    453     static const int32_t gTriples[] = {
    454         // x, y, expected result
    455         0, 0, 0,
    456         0, 1, 0,
    457         0, -1, 0,
    458         1, 0, 1,
    459         1, 1, 1,
    460         1, -1, -1,
    461         -1, 0, 1,
    462         -1, 1, 1,
    463         -1, -1, -1,
    464     };
    465     for (size_t i = 0; i < SK_ARRAY_COUNT(gTriples); i += 3) {
    466         REPORTER_ASSERT(reporter,
    467                         SkCopySign32(gTriples[i], gTriples[i+1]) == gTriples[i+2]);
    468         float x = (float)gTriples[i];
    469         float y = (float)gTriples[i+1];
    470         float expected = (float)gTriples[i+2];
    471         REPORTER_ASSERT(reporter, sk_float_copysign(x, y) == expected);
    472     }
    473 
    474     SkRandom rand;
    475     for (int j = 0; j < 1000; j++) {
    476         int ix = rand.nextS();
    477         REPORTER_ASSERT(reporter, SkCopySign32(ix, ix) == ix);
    478         REPORTER_ASSERT(reporter, SkCopySign32(ix, -ix) == -ix);
    479         REPORTER_ASSERT(reporter, SkCopySign32(-ix, ix) == ix);
    480         REPORTER_ASSERT(reporter, SkCopySign32(-ix, -ix) == -ix);
    481 
    482         SkScalar sx = rand.nextSScalar1();
    483         REPORTER_ASSERT(reporter, SkScalarCopySign(sx, sx) == sx);
    484         REPORTER_ASSERT(reporter, SkScalarCopySign(sx, -sx) == -sx);
    485         REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, sx) == sx);
    486         REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, -sx) == -sx);
    487     }
    488 }
    489 
    490 DEF_TEST(Math, reporter) {
    491     int         i;
    492     SkRandom    rand;
    493 
    494     // these should assert
    495 #if 0
    496     SkToS8(128);
    497     SkToS8(-129);
    498     SkToU8(256);
    499     SkToU8(-5);
    500 
    501     SkToS16(32768);
    502     SkToS16(-32769);
    503     SkToU16(65536);
    504     SkToU16(-5);
    505 
    506     if (sizeof(size_t) > 4) {
    507         SkToS32(4*1024*1024);
    508         SkToS32(-4*1024*1024);
    509         SkToU32(5*1024*1024);
    510         SkToU32(-5);
    511     }
    512 #endif
    513 
    514     test_muldiv255(reporter);
    515     test_muldiv255ceiling(reporter);
    516     test_copysign(reporter);
    517 
    518     {
    519         SkScalar x = SK_ScalarNaN;
    520         REPORTER_ASSERT(reporter, SkScalarIsNaN(x));
    521     }
    522 
    523     for (i = 0; i < 1000; i++) {
    524         int value = rand.nextS16();
    525         int max = rand.nextU16();
    526 
    527         int clamp = SkClampMax(value, max);
    528         int clamp2 = value < 0 ? 0 : (value > max ? max : value);
    529         REPORTER_ASSERT(reporter, clamp == clamp2);
    530     }
    531 
    532     for (i = 0; i < 10000; i++) {
    533         SkPoint p;
    534 
    535         // These random values are being treated as 32-bit-patterns, not as
    536         // ints; calling SkIntToScalar() here produces crashes.
    537         p.setLength((SkScalar) rand.nextS(),
    538                     (SkScalar) rand.nextS(),
    539                     SK_Scalar1);
    540         check_length(reporter, p, SK_Scalar1);
    541         p.setLength((SkScalar) (rand.nextS() >> 13),
    542                     (SkScalar) (rand.nextS() >> 13),
    543                     SK_Scalar1);
    544         check_length(reporter, p, SK_Scalar1);
    545     }
    546 
    547     {
    548         SkFixed result = SkFixedDiv(100, 100);
    549         REPORTER_ASSERT(reporter, result == SK_Fixed1);
    550         result = SkFixedDiv(1, SK_Fixed1);
    551         REPORTER_ASSERT(reporter, result == 1);
    552     }
    553 
    554     unittest_fastfloat(reporter);
    555     unittest_isfinite(reporter);
    556     unittest_half(reporter);
    557     test_rsqrt(reporter, sk_float_rsqrt);
    558     test_rsqrt(reporter, sk_float_rsqrt_portable);
    559 
    560     for (i = 0; i < 10000; i++) {
    561         SkFixed numer = rand.nextS();
    562         SkFixed denom = rand.nextS();
    563         SkFixed result = SkFixedDiv(numer, denom);
    564         int64_t check = SkLeftShift((int64_t)numer, 16) / denom;
    565 
    566         (void)SkCLZ(numer);
    567         (void)SkCLZ(denom);
    568 
    569         REPORTER_ASSERT(reporter, result != (SkFixed)SK_NaN32);
    570         if (check > SK_MaxS32) {
    571             check = SK_MaxS32;
    572         } else if (check < -SK_MaxS32) {
    573             check = SK_MinS32;
    574         }
    575         if (result != (int32_t)check) {
    576             ERRORF(reporter, "\nFixed Divide: %8x / %8x -> %8x %8x\n", numer, denom, result, check);
    577         }
    578         REPORTER_ASSERT(reporter, result == (int32_t)check);
    579     }
    580 
    581     test_blend(reporter);
    582 
    583     if (false) test_floor(reporter);
    584 
    585     // disable for now
    586     if (false) test_blend31();  // avoid bit rot, suppress warning
    587 
    588     test_muldivround(reporter);
    589     test_clz(reporter);
    590 }
    591 
    592 template <typename T> struct PairRec {
    593     T   fYin;
    594     T   fYang;
    595 };
    596 
    597 DEF_TEST(TestEndian, reporter) {
    598     static const PairRec<uint16_t> g16[] = {
    599         { 0x0,      0x0     },
    600         { 0xFFFF,   0xFFFF  },
    601         { 0x1122,   0x2211  },
    602     };
    603     static const PairRec<uint32_t> g32[] = {
    604         { 0x0,          0x0         },
    605         { 0xFFFFFFFF,   0xFFFFFFFF  },
    606         { 0x11223344,   0x44332211  },
    607     };
    608     static const PairRec<uint64_t> g64[] = {
    609         { 0x0,      0x0                             },
    610         { 0xFFFFFFFFFFFFFFFFULL,  0xFFFFFFFFFFFFFFFFULL  },
    611         { 0x1122334455667788ULL,  0x8877665544332211ULL  },
    612     };
    613 
    614     REPORTER_ASSERT(reporter, 0x1122 == SkTEndianSwap16<0x2211>::value);
    615     REPORTER_ASSERT(reporter, 0x11223344 == SkTEndianSwap32<0x44332211>::value);
    616     REPORTER_ASSERT(reporter, 0x1122334455667788ULL == SkTEndianSwap64<0x8877665544332211ULL>::value);
    617 
    618     for (size_t i = 0; i < SK_ARRAY_COUNT(g16); ++i) {
    619         REPORTER_ASSERT(reporter, g16[i].fYang == SkEndianSwap16(g16[i].fYin));
    620     }
    621     for (size_t i = 0; i < SK_ARRAY_COUNT(g32); ++i) {
    622         REPORTER_ASSERT(reporter, g32[i].fYang == SkEndianSwap32(g32[i].fYin));
    623     }
    624     for (size_t i = 0; i < SK_ARRAY_COUNT(g64); ++i) {
    625         REPORTER_ASSERT(reporter, g64[i].fYang == SkEndianSwap64(g64[i].fYin));
    626     }
    627 }
    628 
    629 template <typename T>
    630 static void test_divmod(skiatest::Reporter* r) {
    631     const struct {
    632         T numer;
    633         T denom;
    634     } kEdgeCases[] = {
    635         {(T)17, (T)17},
    636         {(T)17, (T)4},
    637         {(T)0,  (T)17},
    638         // For unsigned T these negatives are just some large numbers.  Doesn't hurt to test them.
    639         {(T)-17, (T)-17},
    640         {(T)-17, (T)4},
    641         {(T)17,  (T)-4},
    642         {(T)-17, (T)-4},
    643     };
    644 
    645     for (size_t i = 0; i < SK_ARRAY_COUNT(kEdgeCases); i++) {
    646         const T numer = kEdgeCases[i].numer;
    647         const T denom = kEdgeCases[i].denom;
    648         T div, mod;
    649         SkTDivMod(numer, denom, &div, &mod);
    650         REPORTER_ASSERT(r, numer/denom == div);
    651         REPORTER_ASSERT(r, numer%denom == mod);
    652     }
    653 
    654     SkRandom rand;
    655     for (size_t i = 0; i < 10000; i++) {
    656         const T numer = (T)rand.nextS();
    657         T denom = 0;
    658         while (0 == denom) {
    659             denom = (T)rand.nextS();
    660         }
    661         T div, mod;
    662         SkTDivMod(numer, denom, &div, &mod);
    663         REPORTER_ASSERT(r, numer/denom == div);
    664         REPORTER_ASSERT(r, numer%denom == mod);
    665     }
    666 }
    667 
    668 DEF_TEST(divmod_u8, r) {
    669     test_divmod<uint8_t>(r);
    670 }
    671 
    672 DEF_TEST(divmod_u16, r) {
    673     test_divmod<uint16_t>(r);
    674 }
    675 
    676 DEF_TEST(divmod_u32, r) {
    677     test_divmod<uint32_t>(r);
    678 }
    679 
    680 DEF_TEST(divmod_u64, r) {
    681     test_divmod<uint64_t>(r);
    682 }
    683 
    684 DEF_TEST(divmod_s8, r) {
    685     test_divmod<int8_t>(r);
    686 }
    687 
    688 DEF_TEST(divmod_s16, r) {
    689     test_divmod<int16_t>(r);
    690 }
    691 
    692 DEF_TEST(divmod_s32, r) {
    693     test_divmod<int32_t>(r);
    694 }
    695 
    696 DEF_TEST(divmod_s64, r) {
    697     test_divmod<int64_t>(r);
    698 }
    699