Home | History | Annotate | Download | only in tests
      1 /*
      2  * Copyright 2014 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 #include "PathOpsTestCommon.h"
      8 #include "SkIntersections.h"
      9 #include "SkPathOpsCubic.h"
     10 #include "SkPathOpsLine.h"
     11 #include "SkPathOpsQuad.h"
     12 #include "SkRandom.h"
     13 #include "SkReduceOrder.h"
     14 #include "Test.h"
     15 
     16 static bool gPathOpsCubicLineIntersectionIdeasVerbose = false;
     17 
     18 static struct CubicLineFailures {
     19     SkDCubic c;
     20     double t;
     21     SkDPoint p;
     22 } cubicLineFailures[] = {
     23     {{{{-164.3726806640625, 36.826904296875}, {-189.045166015625, -953.2220458984375},
     24         {926.505859375, -897.36175537109375}, {-139.33489990234375, 204.40771484375}}},
     25         0.37329583, {107.54935269006289, -632.13736293162208}},
     26     {{{{784.056884765625, -554.8350830078125}, {67.5489501953125, 509.0224609375},
     27         {-447.713134765625, 751.375}, {415.7784423828125, 172.22265625}}},
     28         0.660005242, {-32.973148967736151, 478.01341797403569}},
     29     {{{{-580.6834716796875, -127.044921875}, {-872.8983154296875, -945.54302978515625},
     30         {260.8092041015625, -909.34991455078125}, {-976.2125244140625, -18.46551513671875}}},
     31         0.578826774, {-390.17910153915489, -687.21144412296007}},
     32 };
     33 
     34 int cubicLineFailuresCount = (int) SK_ARRAY_COUNT(cubicLineFailures);
     35 
     36 double measuredSteps[] = {
     37     9.15910731e-007, 8.6600277e-007, 7.4122059e-007, 6.92087618e-007, 8.35290245e-007,
     38     3.29763199e-007, 5.07547773e-007, 4.41294224e-007, 0, 0,
     39     3.76879167e-006, 1.06126249e-006, 2.36873967e-006, 1.62421134e-005, 3.09103599e-005,
     40     4.38917976e-005, 0.000112348938, 0.000243149242, 0.000433174114, 0.00170880232,
     41     0.00272619724, 0.00518844604, 0.000352621078, 0.00175960064, 0.027875185,
     42     0.0351329803, 0.103964925,
     43 };
     44 
     45 /* last output : errors=3121
     46     9.1796875e-007 8.59375e-007 7.5e-007 6.875e-007 8.4375e-007
     47     3.125e-007 5e-007 4.375e-007 0 0
     48     3.75e-006 1.09375e-006 2.1875e-006 1.640625e-005 3.0859375e-005
     49     4.38964844e-005 0.000112304687 0.000243164063 0.000433181763 0.00170898437
     50     0.00272619247 0.00518844604 0.000352621078 0.00175960064 0.027875185
     51     0.0351329803 0.103964925
     52 */
     53 
     54 static double binary_search(const SkDCubic& cubic, double step, const SkDPoint& pt, double t,
     55         int* iters) {
     56     double firstStep = step;
     57     do {
     58         *iters += 1;
     59         SkDPoint cubicAtT = cubic.ptAtT(t);
     60         if (cubicAtT.approximatelyEqual(pt)) {
     61             break;
     62         }
     63         double calcX = cubicAtT.fX - pt.fX;
     64         double calcY = cubicAtT.fY - pt.fY;
     65         double calcDist = calcX * calcX + calcY * calcY;
     66         if (step == 0) {
     67             SkDebugf("binary search failed: step=%1.9g cubic=", firstStep);
     68             cubic.dump();
     69             SkDebugf(" t=%1.9g ", t);
     70             pt.dump();
     71             SkDebugf("\n");
     72             return -1;
     73         }
     74         double lastStep = step;
     75         step /= 2;
     76         SkDPoint lessPt = cubic.ptAtT(t - lastStep);
     77         double lessX = lessPt.fX - pt.fX;
     78         double lessY = lessPt.fY - pt.fY;
     79         double lessDist = lessX * lessX + lessY * lessY;
     80         // use larger x/y difference to choose step
     81         if (calcDist > lessDist) {
     82             t -= step;
     83             t = SkTMax(0., t);
     84         } else {
     85             SkDPoint morePt = cubic.ptAtT(t + lastStep);
     86             double moreX = morePt.fX - pt.fX;
     87             double moreY = morePt.fY - pt.fY;
     88             double moreDist = moreX * moreX + moreY * moreY;
     89             if (calcDist <= moreDist) {
     90                 continue;
     91             }
     92             t += step;
     93             t = SkTMin(1., t);
     94         }
     95     } while (true);
     96     return t;
     97 }
     98 
     99 #if 0
    100 static bool r2check(double A, double B, double C, double D, double* R2MinusQ3Ptr) {
    101     if (approximately_zero(A)
    102             && approximately_zero_when_compared_to(A, B)
    103             && approximately_zero_when_compared_to(A, C)
    104             && approximately_zero_when_compared_to(A, D)) {  // we're just a quadratic
    105         return false;
    106     }
    107     if (approximately_zero_when_compared_to(D, A)
    108             && approximately_zero_when_compared_to(D, B)
    109             && approximately_zero_when_compared_to(D, C)) {  // 0 is one root
    110         return false;
    111     }
    112     if (approximately_zero(A + B + C + D)) {  // 1 is one root
    113         return false;
    114     }
    115     double a, b, c;
    116     {
    117         double invA = 1 / A;
    118         a = B * invA;
    119         b = C * invA;
    120         c = D * invA;
    121     }
    122     double a2 = a * a;
    123     double Q = (a2 - b * 3) / 9;
    124     double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
    125     double R2 = R * R;
    126     double Q3 = Q * Q * Q;
    127     double R2MinusQ3 = R2 - Q3;
    128     *R2MinusQ3Ptr = R2MinusQ3;
    129     return true;
    130 }
    131 #endif
    132 
    133 /* What is the relationship between the accuracy of the root in range and the magnitude of all
    134    roots? To find out, create a bunch of cubics, and measure */
    135 
    136 DEF_TEST(PathOpsCubicLineRoots, reporter) {
    137     if (!gPathOpsCubicLineIntersectionIdeasVerbose) {  // slow; exclude it by default
    138         return;
    139     }
    140     SkRandom ran;
    141     double worstStep[256] = {0};
    142     int errors = 0;
    143     int iters = 0;
    144     double smallestR2 = 0;
    145     double largestR2 = 0;
    146     for (int index = 0; index < 1000000000; ++index) {
    147         SkDPoint origin = {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)};
    148         SkDCubic cubic = {{origin,
    149                 {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
    150                 {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
    151                 {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}
    152         }};
    153         // construct a line at a known intersection
    154         double t = ran.nextRangeF(0, 1);
    155         SkDPoint pt = cubic.ptAtT(t);
    156         // skip answers with no intersections (although note the bug!) or two, or more
    157         // see if the line / cubic has a fun range of roots
    158         double A, B, C, D;
    159         SkDCubic::Coefficients(&cubic[0].fY, &A, &B, &C, &D);
    160         D -= pt.fY;
    161         double allRoots[3] = {0}, validRoots[3] = {0};
    162         int realRoots = SkDCubic::RootsReal(A, B, C, D, allRoots);
    163         int valid = SkDQuad::AddValidTs(allRoots, realRoots, validRoots);
    164         if (valid != 1) {
    165             continue;
    166         }
    167         if (realRoots == 1) {
    168             continue;
    169         }
    170         t = validRoots[0];
    171         SkDPoint calcPt = cubic.ptAtT(t);
    172         if (calcPt.approximatelyEqual(pt)) {
    173             continue;
    174         }
    175 #if 0
    176         double R2MinusQ3;
    177         if (r2check(A, B, C, D, &R2MinusQ3)) {
    178             smallestR2 = SkTMin(smallestR2, R2MinusQ3);
    179             largestR2 = SkTMax(largestR2, R2MinusQ3);
    180         }
    181 #endif
    182         double largest = SkTMax(fabs(allRoots[0]), fabs(allRoots[1]));
    183         if (realRoots == 3) {
    184             largest = SkTMax(largest, fabs(allRoots[2]));
    185         }
    186         int largeBits;
    187         if (largest <= 1) {
    188 #if 0
    189             SkDebugf("realRoots=%d (%1.9g, %1.9g, %1.9g) valid=%d (%1.9g, %1.9g, %1.9g)\n",
    190                 realRoots, allRoots[0], allRoots[1], allRoots[2], valid, validRoots[0],
    191                 validRoots[1], validRoots[2]);
    192 #endif
    193             double smallest = SkTMin(allRoots[0], allRoots[1]);
    194             if (realRoots == 3) {
    195                 smallest = SkTMin(smallest, allRoots[2]);
    196             }
    197             SkASSERT_RELEASE(smallest < 0);
    198             SkASSERT_RELEASE(smallest >= -1);
    199             largeBits = 0;
    200         } else {
    201             frexp(largest, &largeBits);
    202             SkASSERT_RELEASE(largeBits >= 0);
    203             SkASSERT_RELEASE(largeBits < 256);
    204         }
    205         double step = 1e-6;
    206         if (largeBits > 21) {
    207             step = 1e-1;
    208         } else if (largeBits > 18) {
    209             step = 1e-2;
    210         } else if (largeBits > 15) {
    211             step = 1e-3;
    212         } else if (largeBits > 12) {
    213             step = 1e-4;
    214         } else if (largeBits > 9) {
    215             step = 1e-5;
    216         }
    217         double diff;
    218         do {
    219             double newT = binary_search(cubic, step, pt, t, &iters);
    220             if (newT >= 0) {
    221                 diff = fabs(t - newT);
    222                 break;
    223             }
    224             step *= 1.5;
    225             SkASSERT_RELEASE(step < 1);
    226         } while (true);
    227         worstStep[largeBits] = SkTMax(worstStep[largeBits], diff);
    228 #if 0
    229         {
    230             cubic.dump();
    231             SkDebugf("\n");
    232             SkDLine line = {{{pt.fX - 1, pt.fY}, {pt.fX + 1, pt.fY}}};
    233             line.dump();
    234             SkDebugf("\n");
    235         }
    236 #endif
    237         ++errors;
    238     }
    239     SkDebugf("errors=%d avgIter=%1.9g", errors, (double) iters / errors);
    240     SkDebugf(" steps: ");
    241     int worstLimit = SK_ARRAY_COUNT(worstStep);
    242     while (worstStep[--worstLimit] == 0) ;
    243     for (int idx2 = 0; idx2 <= worstLimit; ++idx2) {
    244         SkDebugf("%1.9g ", worstStep[idx2]);
    245     }
    246     SkDebugf("\n");
    247     SkDebugf("smallestR2=%1.9g largestR2=%1.9g\n", smallestR2, largestR2);
    248 }
    249 
    250 static double testOneFailure(const CubicLineFailures& failure) {
    251     const SkDCubic& cubic = failure.c;
    252     const SkDPoint& pt = failure.p;
    253     double A, B, C, D;
    254     SkDCubic::Coefficients(&cubic[0].fY, &A, &B, &C, &D);
    255     D -= pt.fY;
    256     double allRoots[3] = {0}, validRoots[3] = {0};
    257     int realRoots = SkDCubic::RootsReal(A, B, C, D, allRoots);
    258     int valid = SkDQuad::AddValidTs(allRoots, realRoots, validRoots);
    259     SkASSERT_RELEASE(valid == 1);
    260     SkASSERT_RELEASE(realRoots != 1);
    261     double t = validRoots[0];
    262     SkDPoint calcPt = cubic.ptAtT(t);
    263     SkASSERT_RELEASE(!calcPt.approximatelyEqual(pt));
    264     int iters = 0;
    265     double newT = binary_search(cubic, 0.1, pt, t, &iters);
    266     return newT;
    267 }
    268 
    269 DEF_TEST(PathOpsCubicLineFailures, reporter) {
    270     return;  // disable for now
    271     for (int index = 0; index < cubicLineFailuresCount; ++index) {
    272         const CubicLineFailures& failure = cubicLineFailures[index];
    273         double newT = testOneFailure(failure);
    274         SkASSERT_RELEASE(newT >= 0);
    275     }
    276 }
    277 
    278 DEF_TEST(PathOpsCubicLineOneFailure, reporter) {
    279     return;  // disable for now
    280     const CubicLineFailures& failure = cubicLineFailures[1];
    281     double newT = testOneFailure(failure);
    282     SkASSERT_RELEASE(newT >= 0);
    283 }
    284