1 /* 2 * Copyright 2016 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #include "SkColor.h" 9 #include "SkColorMatrixFilter.h" 10 #include "SkGradientShader.h" 11 #include "SkImage.h" 12 #include "SkPM4f.h" 13 #include "SkShader.h" 14 15 #include "Test.h" 16 #include "SkRandom.h" 17 18 const float kTolerance = 1.0f / (1 << 20); 19 20 static bool nearly_equal(float a, float b, float tol = kTolerance) { 21 SkASSERT(tol >= 0); 22 return fabsf(a - b) <= tol; 23 } 24 25 static bool nearly_equal(const SkPM4f a, const SkPM4f& b, float tol = kTolerance) { 26 for (int i = 0; i < 4; ++i) { 27 if (!nearly_equal(a.fVec[i], b.fVec[i], tol)) { 28 return false; 29 } 30 } 31 return true; 32 } 33 34 DEF_TEST(SkColor4f_FromColor, reporter) { 35 const struct { 36 SkColor fC; 37 SkColor4f fC4; 38 } recs[] = { 39 { SK_ColorBLACK, { 1, 0, 0, 0 } }, 40 { SK_ColorWHITE, { 1, 1, 1, 1 } }, 41 { SK_ColorRED, { 1, 1, 0, 0 } }, 42 { SK_ColorGREEN, { 1, 0, 1, 0 } }, 43 { SK_ColorBLUE, { 1, 0, 0, 1 } }, 44 { 0, { 0, 0, 0, 0 } }, 45 { 0x55AAFF00, { 1/3.0f, 2/3.0f, 1, 0 } }, 46 }; 47 48 for (const auto& r : recs) { 49 SkColor4f c4 = SkColor4f::FromColor(r.fC); 50 REPORTER_ASSERT(reporter, c4 == r.fC4); 51 } 52 } 53 54 DEF_TEST(Color4f_premul, reporter) { 55 SkRandom rand; 56 57 for (int i = 0; i < 1000000; ++i) { 58 // First just test opaque colors, so that the premul should be exact 59 SkColor4f c4 { 60 1, rand.nextUScalar1(), rand.nextUScalar1(), rand.nextUScalar1() 61 }; 62 SkPM4f pm4 = c4.premul(); 63 REPORTER_ASSERT(reporter, pm4.fVec[SK_A_INDEX] == c4.fA); 64 REPORTER_ASSERT(reporter, pm4.fVec[SK_R_INDEX] == c4.fA * c4.fR); 65 REPORTER_ASSERT(reporter, pm4.fVec[SK_G_INDEX] == c4.fA * c4.fG); 66 REPORTER_ASSERT(reporter, pm4.fVec[SK_B_INDEX] == c4.fA * c4.fB); 67 68 // We compare with a tolerance, in case our premul multiply is implemented at slightly 69 // different precision than the test code. 70 c4.fA = rand.nextUScalar1(); 71 pm4 = c4.premul(); 72 REPORTER_ASSERT(reporter, pm4.fVec[SK_A_INDEX] == c4.fA); 73 REPORTER_ASSERT(reporter, nearly_equal(pm4.fVec[SK_R_INDEX], c4.fA * c4.fR)); 74 REPORTER_ASSERT(reporter, nearly_equal(pm4.fVec[SK_G_INDEX], c4.fA * c4.fG)); 75 REPORTER_ASSERT(reporter, nearly_equal(pm4.fVec[SK_B_INDEX], c4.fA * c4.fB)); 76 } 77 } 78 79 ////////////////////////////////////////////////////////////////////////////////////////////////// 80 81 static SkColorFilter* make_mode_cf() { 82 return SkColorFilter::CreateModeFilter(0xFFBB8855, SkXfermode::kPlus_Mode); 83 } 84 85 static SkColorFilter* make_mx_cf() { 86 const float mx[] = { 87 0.5f, 0, 0, 0, 0.1f, 88 0, 0.5f, 0, 0, 0.2f, 89 0, 0, 1, 0, -0.1f, 90 0, 0, 0, 1, 0, 91 }; 92 return SkColorMatrixFilter::Create(mx); 93 } 94 95 static SkColorFilter* make_compose_cf() { 96 SkAutoTUnref<SkColorFilter> cf0(make_mode_cf()); 97 SkAutoTUnref<SkColorFilter> cf1(make_mx_cf()); 98 return SkColorFilter::CreateComposeFilter(cf0, cf1); 99 } 100 101 static SkShader* make_color_sh() { return SkShader::CreateColorShader(0xFFBB8855); } 102 103 static SkShader* make_image_sh() { 104 const SkImageInfo info = SkImageInfo::MakeN32Premul(2, 2); 105 const SkPMColor pixels[] { 106 SkPackARGB32(0xFF, 0xBB, 0x88, 0x55), 107 SkPackARGB32(0xFF, 0xBB, 0x88, 0x55), 108 SkPackARGB32(0xFF, 0xBB, 0x88, 0x55), 109 SkPackARGB32(0xFF, 0xBB, 0x88, 0x55), 110 }; 111 SkAutoTUnref<SkImage> image(SkImage::NewRasterCopy(info, pixels, sizeof(SkPMColor) * 2)); 112 return image->newShader(SkShader::kClamp_TileMode, SkShader::kClamp_TileMode); 113 } 114 115 static SkShader* make_grad_sh() { 116 const SkPoint pts[] {{ 0, 0 }, { 100, 100 }}; 117 const SkColor colors[] { SK_ColorRED, SK_ColorBLUE }; 118 return SkGradientShader::CreateLinear(pts, colors, nullptr, 2, SkShader::kClamp_TileMode); 119 } 120 121 static SkShader* make_cf_sh() { 122 SkAutoTUnref<SkColorFilter> filter(make_mx_cf()); 123 SkAutoTUnref<SkShader> shader(make_color_sh()); 124 return shader->newWithColorFilter(filter); 125 } 126 127 static void compare_spans(const SkPM4f span4f[], const SkPMColor span4b[], int count, 128 skiatest::Reporter* reporter, float tolerance = 1.0f/255) { 129 for (int i = 0; i < count; ++i) { 130 SkPM4f c0 = SkPM4f::FromPMColor(span4b[i]); 131 SkPM4f c1 = span4f[i]; 132 REPORTER_ASSERT(reporter, nearly_equal(c0, c1, tolerance)); 133 } 134 } 135 136 DEF_TEST(Color4f_shader, reporter) { 137 struct { 138 SkShader* (*fFact)(); 139 bool fSupports4f; 140 float fTolerance; 141 } recs[] = { 142 { make_color_sh, true, 1.0f/255 }, 143 // PMColor 4f gradients are interpolated in 255-multiplied values, so we need a 144 // slightly relaxed tolerance to accommodate the cumulative precision deviation. 145 { make_grad_sh, true, 1.001f/255 }, 146 { make_image_sh, false, 1.0f/255 }, 147 { make_cf_sh, true, 1.0f/255 }, 148 }; 149 150 SkPaint paint; 151 for (const auto& rec : recs) { 152 uint32_t storage[200]; 153 paint.setShader(rec.fFact())->unref(); 154 // Encourage 4f context selection. At some point we may need 155 // to instantiate two separate contexts for optimal 4b/4f selection. 156 const SkShader::ContextRec contextRec(paint, SkMatrix::I(), nullptr, 157 SkShader::ContextRec::kPM4f_DstType); 158 SkASSERT(paint.getShader()->contextSize(contextRec) <= sizeof(storage)); 159 SkShader::Context* ctx = paint.getShader()->createContext(contextRec, storage); 160 if (rec.fSupports4f) { 161 const int N = 100; 162 SkPM4f buffer4f[N]; 163 ctx->shadeSpan4f(0, 0, buffer4f, N); 164 SkPMColor buffer4b[N]; 165 ctx->shadeSpan(0, 0, buffer4b, N); 166 compare_spans(buffer4f, buffer4b, N, reporter, rec.fTolerance); 167 } 168 ctx->~Context(); 169 } 170 } 171 172 DEF_TEST(Color4f_colorfilter, reporter) { 173 struct { 174 SkColorFilter* (*fFact)(); 175 bool fSupports4f; 176 } recs[] = { 177 { make_mode_cf, true }, 178 { make_mx_cf, true }, 179 { make_compose_cf, true }, 180 }; 181 182 // prepare the src 183 const int N = 100; 184 SkPMColor src4b[N]; 185 SkPM4f src4f[N]; 186 SkRandom rand; 187 for (int i = 0; i < N; ++i) { 188 src4b[i] = SkPreMultiplyColor(rand.nextU()); 189 src4f[i] = SkPM4f::FromPMColor(src4b[i]); 190 } 191 // confirm that our srcs are (nearly) equal 192 compare_spans(src4f, src4b, N, reporter); 193 194 for (const auto& rec : recs) { 195 SkAutoTUnref<SkColorFilter> filter(rec.fFact()); 196 SkPMColor dst4b[N]; 197 filter->filterSpan(src4b, N, dst4b); 198 SkPM4f dst4f[N]; 199 filter->filterSpan4f(src4f, N, dst4f); 200 compare_spans(dst4f, dst4b, N, reporter); 201 } 202 } 203 204 /////////////////////////////////////////////////////////////////////////////////////////////////// 205 206 typedef SkPM4f (*SkXfermodeProc4f)(const SkPM4f& src, const SkPM4f& dst); 207 208 static bool compare_procs(SkXfermodeProc proc32, SkXfermodeProc4f proc4f) { 209 const float kTolerance = 1.0f / 255; 210 211 const SkColor colors[] = { 212 0, 0xFF000000, 0xFFFFFFFF, 0x80FF0000 213 }; 214 215 for (auto s32 : colors) { 216 SkPMColor s_pm32 = SkPreMultiplyColor(s32); 217 SkPM4f s_pm4f = SkColor4f::FromColor(s32).premul(); 218 for (auto d32 : colors) { 219 SkPMColor d_pm32 = SkPreMultiplyColor(d32); 220 SkPM4f d_pm4f = SkColor4f::FromColor(d32).premul(); 221 222 SkPMColor r32 = proc32(s_pm32, d_pm32); 223 SkPM4f r4f = proc4f(s_pm4f, d_pm4f); 224 225 SkPM4f r32_4f = SkPM4f::FromPMColor(r32); 226 if (!nearly_equal(r4f, r32_4f, kTolerance)) { 227 return false; 228 } 229 } 230 } 231 return true; 232 } 233 234 // Check that our Proc and Proc4f return (nearly) the same results 235 // 236 DEF_TEST(Color4f_xfermode_proc4f, reporter) { 237 // TODO: extend xfermodes so that all cases can be tested. 238 // 239 for (int mode = SkXfermode::kClear_Mode; mode <= SkXfermode::kScreen_Mode; ++mode) { 240 SkXfermodeProc proc32 = SkXfermode::GetProc((SkXfermode::Mode)mode); 241 SkXfermodeProc4f proc4f = SkXfermode::GetProc4f((SkXfermode::Mode)mode); 242 REPORTER_ASSERT(reporter, compare_procs(proc32, proc4f)); 243 } 244 } 245