Home | History | Annotate | Download | only in cctest
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include <iostream>  // NOLINT(readability/streams)
     29 
     30 #include "src/v8.h"
     31 
     32 #include "src/base/utils/random-number-generator.h"
     33 #include "src/disassembler.h"
     34 #include "src/factory.h"
     35 #include "src/macro-assembler.h"
     36 #include "src/mips64/macro-assembler-mips64.h"
     37 #include "src/mips64/simulator-mips64.h"
     38 
     39 #include "test/cctest/cctest.h"
     40 
     41 using namespace v8::internal;
     42 
     43 
     44 // Define these function prototypes to match JSEntryFunction in execution.cc.
     45 typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4);
     46 typedef Object* (*F2)(int x, int y, int p2, int p3, int p4);
     47 typedef Object* (*F3)(void* p, int p1, int p2, int p3, int p4);
     48 typedef Object* (*F4)(int64_t x, int64_t y, int64_t p2, int64_t p3, int64_t p4);
     49 
     50 
     51 #define __ assm.
     52 
     53 TEST(MIPS0) {
     54   CcTest::InitializeVM();
     55   Isolate* isolate = CcTest::i_isolate();
     56   HandleScope scope(isolate);
     57 
     58   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
     59 
     60   // Addition.
     61   __ addu(v0, a0, a1);
     62   __ jr(ra);
     63   __ nop();
     64 
     65   CodeDesc desc;
     66   assm.GetCode(&desc);
     67   Handle<Code> code = isolate->factory()->NewCode(
     68       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
     69   F2 f = FUNCTION_CAST<F2>(code->entry());
     70   int64_t res = reinterpret_cast<int64_t>(
     71       CALL_GENERATED_CODE(isolate, f, 0xab0, 0xc, 0, 0, 0));
     72   CHECK_EQ(0xabcL, res);
     73 }
     74 
     75 
     76 TEST(MIPS1) {
     77   CcTest::InitializeVM();
     78   Isolate* isolate = CcTest::i_isolate();
     79   HandleScope scope(isolate);
     80 
     81   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
     82   Label L, C;
     83 
     84   __ mov(a1, a0);
     85   __ li(v0, 0);
     86   __ b(&C);
     87   __ nop();
     88 
     89   __ bind(&L);
     90   __ addu(v0, v0, a1);
     91   __ addiu(a1, a1, -1);
     92 
     93   __ bind(&C);
     94   __ xori(v1, a1, 0);
     95   __ Branch(&L, ne, v1, Operand((int64_t)0));
     96   __ nop();
     97 
     98   __ jr(ra);
     99   __ nop();
    100 
    101   CodeDesc desc;
    102   assm.GetCode(&desc);
    103   Handle<Code> code = isolate->factory()->NewCode(
    104       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    105   F1 f = FUNCTION_CAST<F1>(code->entry());
    106   int64_t res = reinterpret_cast<int64_t>(
    107       CALL_GENERATED_CODE(isolate, f, 50, 0, 0, 0, 0));
    108   CHECK_EQ(1275L, res);
    109 }
    110 
    111 
    112 TEST(MIPS2) {
    113   CcTest::InitializeVM();
    114   Isolate* isolate = CcTest::i_isolate();
    115   HandleScope scope(isolate);
    116 
    117   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
    118 
    119   Label exit, error;
    120 
    121   // ----- Test all instructions.
    122 
    123   // Test lui, ori, and addiu, used in the li pseudo-instruction.
    124   // This way we can then safely load registers with chosen values.
    125 
    126   __ ori(a4, zero_reg, 0);
    127   __ lui(a4, 0x1234);
    128   __ ori(a4, a4, 0);
    129   __ ori(a4, a4, 0x0f0f);
    130   __ ori(a4, a4, 0xf0f0);
    131   __ addiu(a5, a4, 1);
    132   __ addiu(a6, a5, -0x10);
    133 
    134   // Load values in temporary registers.
    135   __ li(a4, 0x00000004);
    136   __ li(a5, 0x00001234);
    137   __ li(a6, 0x12345678);
    138   __ li(a7, 0x7fffffff);
    139   __ li(t0, 0xfffffffc);
    140   __ li(t1, 0xffffedcc);
    141   __ li(t2, 0xedcba988);
    142   __ li(t3, 0x80000000);
    143 
    144   // SPECIAL class.
    145   __ srl(v0, a6, 8);    // 0x00123456
    146   __ sll(v0, v0, 11);   // 0x91a2b000
    147   __ sra(v0, v0, 3);    // 0xf2345600
    148   __ srav(v0, v0, a4);  // 0xff234560
    149   __ sllv(v0, v0, a4);  // 0xf2345600
    150   __ srlv(v0, v0, a4);  // 0x0f234560
    151   __ Branch(&error, ne, v0, Operand(0x0f234560));
    152   __ nop();
    153 
    154   __ addu(v0, a4, a5);  // 0x00001238
    155   __ subu(v0, v0, a4);  // 0x00001234
    156   __ Branch(&error, ne, v0, Operand(0x00001234));
    157   __ nop();
    158   __ addu(v1, a7, a4);  // 32bit addu result is sign-extended into 64bit reg.
    159   __ Branch(&error, ne, v1, Operand(0xffffffff80000003));
    160   __ nop();
    161   __ subu(v1, t3, a4);  // 0x7ffffffc
    162   __ Branch(&error, ne, v1, Operand(0x7ffffffc));
    163   __ nop();
    164 
    165   __ and_(v0, a5, a6);  // 0x0000000000001230
    166   __ or_(v0, v0, a5);   // 0x0000000000001234
    167   __ xor_(v0, v0, a6);  // 0x000000001234444c
    168   __ nor(v0, v0, a6);   // 0xffffffffedcba987
    169   __ Branch(&error, ne, v0, Operand(0xffffffffedcba983));
    170   __ nop();
    171 
    172   // Shift both 32bit number to left, to preserve meaning of next comparison.
    173   __ dsll32(a7, a7, 0);
    174   __ dsll32(t3, t3, 0);
    175 
    176   __ slt(v0, t3, a7);
    177   __ Branch(&error, ne, v0, Operand(0x1));
    178   __ nop();
    179   __ sltu(v0, t3, a7);
    180   __ Branch(&error, ne, v0, Operand(zero_reg));
    181   __ nop();
    182 
    183   // Restore original values in registers.
    184   __ dsrl32(a7, a7, 0);
    185   __ dsrl32(t3, t3, 0);
    186   // End of SPECIAL class.
    187 
    188   __ addiu(v0, zero_reg, 0x7421);  // 0x00007421
    189   __ addiu(v0, v0, -0x1);          // 0x00007420
    190   __ addiu(v0, v0, -0x20);         // 0x00007400
    191   __ Branch(&error, ne, v0, Operand(0x00007400));
    192   __ nop();
    193   __ addiu(v1, a7, 0x1);  // 0x80000000 - result is sign-extended.
    194   __ Branch(&error, ne, v1, Operand(0xffffffff80000000));
    195   __ nop();
    196 
    197   __ slti(v0, a5, 0x00002000);  // 0x1
    198   __ slti(v0, v0, 0xffff8000);  // 0x0
    199   __ Branch(&error, ne, v0, Operand(zero_reg));
    200   __ nop();
    201   __ sltiu(v0, a5, 0x00002000);  // 0x1
    202   __ sltiu(v0, v0, 0x00008000);  // 0x1
    203   __ Branch(&error, ne, v0, Operand(0x1));
    204   __ nop();
    205 
    206   __ andi(v0, a5, 0xf0f0);  // 0x00001030
    207   __ ori(v0, v0, 0x8a00);   // 0x00009a30
    208   __ xori(v0, v0, 0x83cc);  // 0x000019fc
    209   __ Branch(&error, ne, v0, Operand(0x000019fc));
    210   __ nop();
    211   __ lui(v1, 0x8123);  // Result is sign-extended into 64bit register.
    212   __ Branch(&error, ne, v1, Operand(0xffffffff81230000));
    213   __ nop();
    214 
    215   // Bit twiddling instructions & conditional moves.
    216   // Uses a4-t3 as set above.
    217   __ Clz(v0, a4);       // 29
    218   __ Clz(v1, a5);       // 19
    219   __ addu(v0, v0, v1);  // 48
    220   __ Clz(v1, a6);       // 3
    221   __ addu(v0, v0, v1);  // 51
    222   __ Clz(v1, t3);       // 0
    223   __ addu(v0, v0, v1);  // 51
    224   __ Branch(&error, ne, v0, Operand(51));
    225   __ Movn(a0, a7, a4);  // Move a0<-a7 (a4 is NOT 0).
    226   __ Ins(a0, a5, 12, 8);  // 0x7ff34fff
    227   __ Branch(&error, ne, a0, Operand(0x7ff34fff));
    228   __ Movz(a0, t2, t3);    // a0 not updated (t3 is NOT 0).
    229   __ Ext(a1, a0, 8, 12);  // 0x34f
    230   __ Branch(&error, ne, a1, Operand(0x34f));
    231   __ Movz(a0, t2, v1);    // a0<-t2, v0 is 0, from 8 instr back.
    232   __ Branch(&error, ne, a0, Operand(t2));
    233 
    234   // Everything was correctly executed. Load the expected result.
    235   __ li(v0, 0x31415926);
    236   __ b(&exit);
    237   __ nop();
    238 
    239   __ bind(&error);
    240   // Got an error. Return a wrong result.
    241   __ li(v0, 666);
    242 
    243   __ bind(&exit);
    244   __ jr(ra);
    245   __ nop();
    246 
    247   CodeDesc desc;
    248   assm.GetCode(&desc);
    249   Handle<Code> code = isolate->factory()->NewCode(
    250       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    251   F2 f = FUNCTION_CAST<F2>(code->entry());
    252   int64_t res = reinterpret_cast<int64_t>(
    253       CALL_GENERATED_CODE(isolate, f, 0xab0, 0xc, 0, 0, 0));
    254 
    255   CHECK_EQ(0x31415926L, res);
    256 }
    257 
    258 
    259 TEST(MIPS3) {
    260   // Test floating point instructions.
    261   CcTest::InitializeVM();
    262   Isolate* isolate = CcTest::i_isolate();
    263   HandleScope scope(isolate);
    264 
    265   typedef struct {
    266     double a;
    267     double b;
    268     double c;
    269     double d;
    270     double e;
    271     double f;
    272     double g;
    273     double h;
    274     double i;
    275     float fa;
    276     float fb;
    277     float fc;
    278     float fd;
    279     float fe;
    280     float ff;
    281     float fg;
    282   } T;
    283   T t;
    284 
    285   // Create a function that accepts &t, and loads, manipulates, and stores
    286   // the doubles t.a ... t.f.
    287   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
    288   Label L, C;
    289 
    290   // Double precision floating point instructions.
    291   __ ldc1(f4, MemOperand(a0, offsetof(T, a)) );
    292   __ ldc1(f6, MemOperand(a0, offsetof(T, b)) );
    293   __ add_d(f8, f4, f6);
    294   __ sdc1(f8, MemOperand(a0, offsetof(T, c)) );  // c = a + b.
    295 
    296   __ mov_d(f10, f8);  // c
    297   __ neg_d(f12, f6);  // -b
    298   __ sub_d(f10, f10, f12);
    299   __ sdc1(f10, MemOperand(a0, offsetof(T, d)) );  // d = c - (-b).
    300 
    301   __ sdc1(f4, MemOperand(a0, offsetof(T, b)) );   // b = a.
    302 
    303   __ li(a4, 120);
    304   __ mtc1(a4, f14);
    305   __ cvt_d_w(f14, f14);   // f14 = 120.0.
    306   __ mul_d(f10, f10, f14);
    307   __ sdc1(f10, MemOperand(a0, offsetof(T, e)) );  // e = d * 120 = 1.8066e16.
    308 
    309   __ div_d(f12, f10, f4);
    310   __ sdc1(f12, MemOperand(a0, offsetof(T, f)) );  // f = e / a = 120.44.
    311 
    312   __ sqrt_d(f14, f12);
    313   __ sdc1(f14, MemOperand(a0, offsetof(T, g)) );
    314   // g = sqrt(f) = 10.97451593465515908537
    315 
    316   if (kArchVariant == kMips64r2) {
    317     __ ldc1(f4, MemOperand(a0, offsetof(T, h)) );
    318     __ ldc1(f6, MemOperand(a0, offsetof(T, i)) );
    319     __ madd_d(f14, f6, f4, f6);
    320     __ sdc1(f14, MemOperand(a0, offsetof(T, h)) );
    321   }
    322 
    323   // Single precision floating point instructions.
    324   __ lwc1(f4, MemOperand(a0, offsetof(T, fa)) );
    325   __ lwc1(f6, MemOperand(a0, offsetof(T, fb)) );
    326   __ add_s(f8, f4, f6);
    327   __ swc1(f8, MemOperand(a0, offsetof(T, fc)) );  // fc = fa + fb.
    328 
    329   __ neg_s(f10, f6);  // -fb
    330   __ sub_s(f10, f8, f10);
    331   __ swc1(f10, MemOperand(a0, offsetof(T, fd)) );  // fd = fc - (-fb).
    332 
    333   __ swc1(f4, MemOperand(a0, offsetof(T, fb)) );   // fb = fa.
    334 
    335   __ li(t0, 120);
    336   __ mtc1(t0, f14);
    337   __ cvt_s_w(f14, f14);   // f14 = 120.0.
    338   __ mul_s(f10, f10, f14);
    339   __ swc1(f10, MemOperand(a0, offsetof(T, fe)) );  // fe = fd * 120
    340 
    341   __ div_s(f12, f10, f4);
    342   __ swc1(f12, MemOperand(a0, offsetof(T, ff)) );  // ff = fe / fa
    343 
    344   __ sqrt_s(f14, f12);
    345   __ swc1(f14, MemOperand(a0, offsetof(T, fg)) );
    346 
    347   __ jr(ra);
    348   __ nop();
    349 
    350   CodeDesc desc;
    351   assm.GetCode(&desc);
    352   Handle<Code> code = isolate->factory()->NewCode(
    353       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    354   F3 f = FUNCTION_CAST<F3>(code->entry());
    355   // Double test values.
    356   t.a = 1.5e14;
    357   t.b = 2.75e11;
    358   t.c = 0.0;
    359   t.d = 0.0;
    360   t.e = 0.0;
    361   t.f = 0.0;
    362   t.h = 1.5;
    363   t.i = 2.75;
    364   // Single test values.
    365   t.fa = 1.5e6;
    366   t.fb = 2.75e4;
    367   t.fc = 0.0;
    368   t.fd = 0.0;
    369   t.fe = 0.0;
    370   t.ff = 0.0;
    371   Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
    372   USE(dummy);
    373   // Expected double results.
    374   CHECK_EQ(1.5e14, t.a);
    375   CHECK_EQ(1.5e14, t.b);
    376   CHECK_EQ(1.50275e14, t.c);
    377   CHECK_EQ(1.50550e14, t.d);
    378   CHECK_EQ(1.8066e16, t.e);
    379   CHECK_EQ(120.44, t.f);
    380   CHECK_EQ(10.97451593465515908537, t.g);
    381   if (kArchVariant == kMips64r2) {
    382     CHECK_EQ(6.875, t.h);
    383   }
    384   // Expected single results.
    385   CHECK_EQ(1.5e6, t.fa);
    386   CHECK_EQ(1.5e6, t.fb);
    387   CHECK_EQ(1.5275e06, t.fc);
    388   CHECK_EQ(1.5550e06, t.fd);
    389   CHECK_EQ(1.866e08, t.fe);
    390   CHECK_EQ(124.40000152587890625, t.ff);
    391   CHECK_EQ(11.1534748077392578125, t.fg);
    392 }
    393 
    394 
    395 TEST(MIPS4) {
    396   // Test moves between floating point and integer registers.
    397   CcTest::InitializeVM();
    398   Isolate* isolate = CcTest::i_isolate();
    399   HandleScope scope(isolate);
    400 
    401   typedef struct {
    402     double a;
    403     double b;
    404     double c;
    405     double d;
    406     int64_t high;
    407     int64_t low;
    408   } T;
    409   T t;
    410 
    411   Assembler assm(isolate, NULL, 0);
    412   Label L, C;
    413 
    414   __ ldc1(f4, MemOperand(a0, offsetof(T, a)));
    415   __ ldc1(f5, MemOperand(a0, offsetof(T, b)));
    416 
    417   // Swap f4 and f5, by using 3 integer registers, a4-a6,
    418   // both two 32-bit chunks, and one 64-bit chunk.
    419   // mXhc1 is mips32/64-r2 only, not r1,
    420   // but we will not support r1 in practice.
    421   __ mfc1(a4, f4);
    422   __ mfhc1(a5, f4);
    423   __ dmfc1(a6, f5);
    424 
    425   __ mtc1(a4, f5);
    426   __ mthc1(a5, f5);
    427   __ dmtc1(a6, f4);
    428 
    429   // Store the swapped f4 and f5 back to memory.
    430   __ sdc1(f4, MemOperand(a0, offsetof(T, a)));
    431   __ sdc1(f5, MemOperand(a0, offsetof(T, c)));
    432 
    433   // Test sign extension of move operations from coprocessor.
    434   __ ldc1(f4, MemOperand(a0, offsetof(T, d)));
    435   __ mfhc1(a4, f4);
    436   __ mfc1(a5, f4);
    437 
    438   __ sd(a4, MemOperand(a0, offsetof(T, high)));
    439   __ sd(a5, MemOperand(a0, offsetof(T, low)));
    440 
    441   __ jr(ra);
    442   __ nop();
    443 
    444   CodeDesc desc;
    445   assm.GetCode(&desc);
    446   Handle<Code> code = isolate->factory()->NewCode(
    447       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    448   F3 f = FUNCTION_CAST<F3>(code->entry());
    449   t.a = 1.5e22;
    450   t.b = 2.75e11;
    451   t.c = 17.17;
    452   t.d = -2.75e11;
    453   Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
    454   USE(dummy);
    455 
    456   CHECK_EQ(2.75e11, t.a);
    457   CHECK_EQ(2.75e11, t.b);
    458   CHECK_EQ(1.5e22, t.c);
    459   CHECK_EQ(static_cast<int64_t>(0xffffffffc25001d1L), t.high);
    460   CHECK_EQ(static_cast<int64_t>(0xffffffffbf800000L), t.low);
    461 }
    462 
    463 
    464 TEST(MIPS5) {
    465   // Test conversions between doubles and integers.
    466   CcTest::InitializeVM();
    467   Isolate* isolate = CcTest::i_isolate();
    468   HandleScope scope(isolate);
    469 
    470   typedef struct {
    471     double a;
    472     double b;
    473     int i;
    474     int j;
    475   } T;
    476   T t;
    477 
    478   Assembler assm(isolate, NULL, 0);
    479   Label L, C;
    480 
    481   // Load all structure elements to registers.
    482   __ ldc1(f4, MemOperand(a0, offsetof(T, a)) );
    483   __ ldc1(f6, MemOperand(a0, offsetof(T, b)) );
    484   __ lw(a4, MemOperand(a0, offsetof(T, i)) );
    485   __ lw(a5, MemOperand(a0, offsetof(T, j)) );
    486 
    487   // Convert double in f4 to int in element i.
    488   __ cvt_w_d(f8, f4);
    489   __ mfc1(a6, f8);
    490   __ sw(a6, MemOperand(a0, offsetof(T, i)) );
    491 
    492   // Convert double in f6 to int in element j.
    493   __ cvt_w_d(f10, f6);
    494   __ mfc1(a7, f10);
    495   __ sw(a7, MemOperand(a0, offsetof(T, j)) );
    496 
    497   // Convert int in original i (a4) to double in a.
    498   __ mtc1(a4, f12);
    499   __ cvt_d_w(f0, f12);
    500   __ sdc1(f0, MemOperand(a0, offsetof(T, a)) );
    501 
    502   // Convert int in original j (a5) to double in b.
    503   __ mtc1(a5, f14);
    504   __ cvt_d_w(f2, f14);
    505   __ sdc1(f2, MemOperand(a0, offsetof(T, b)) );
    506 
    507   __ jr(ra);
    508   __ nop();
    509 
    510   CodeDesc desc;
    511   assm.GetCode(&desc);
    512   Handle<Code> code = isolate->factory()->NewCode(
    513       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    514   F3 f = FUNCTION_CAST<F3>(code->entry());
    515   t.a = 1.5e4;
    516   t.b = 2.75e8;
    517   t.i = 12345678;
    518   t.j = -100000;
    519   Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
    520   USE(dummy);
    521 
    522   CHECK_EQ(12345678.0, t.a);
    523   CHECK_EQ(-100000.0, t.b);
    524   CHECK_EQ(15000, t.i);
    525   CHECK_EQ(275000000, t.j);
    526 }
    527 
    528 
    529 TEST(MIPS6) {
    530   // Test simple memory loads and stores.
    531   CcTest::InitializeVM();
    532   Isolate* isolate = CcTest::i_isolate();
    533   HandleScope scope(isolate);
    534 
    535   typedef struct {
    536     uint32_t ui;
    537     int32_t si;
    538     int32_t r1;
    539     int32_t r2;
    540     int32_t r3;
    541     int32_t r4;
    542     int32_t r5;
    543     int32_t r6;
    544   } T;
    545   T t;
    546 
    547   Assembler assm(isolate, NULL, 0);
    548   Label L, C;
    549 
    550   // Basic word load/store.
    551   __ lw(a4, MemOperand(a0, offsetof(T, ui)) );
    552   __ sw(a4, MemOperand(a0, offsetof(T, r1)) );
    553 
    554   // lh with positive data.
    555   __ lh(a5, MemOperand(a0, offsetof(T, ui)) );
    556   __ sw(a5, MemOperand(a0, offsetof(T, r2)) );
    557 
    558   // lh with negative data.
    559   __ lh(a6, MemOperand(a0, offsetof(T, si)) );
    560   __ sw(a6, MemOperand(a0, offsetof(T, r3)) );
    561 
    562   // lhu with negative data.
    563   __ lhu(a7, MemOperand(a0, offsetof(T, si)) );
    564   __ sw(a7, MemOperand(a0, offsetof(T, r4)) );
    565 
    566   // lb with negative data.
    567   __ lb(t0, MemOperand(a0, offsetof(T, si)) );
    568   __ sw(t0, MemOperand(a0, offsetof(T, r5)) );
    569 
    570   // sh writes only 1/2 of word.
    571   __ lui(t1, 0x3333);
    572   __ ori(t1, t1, 0x3333);
    573   __ sw(t1, MemOperand(a0, offsetof(T, r6)) );
    574   __ lhu(t1, MemOperand(a0, offsetof(T, si)) );
    575   __ sh(t1, MemOperand(a0, offsetof(T, r6)) );
    576 
    577   __ jr(ra);
    578   __ nop();
    579 
    580   CodeDesc desc;
    581   assm.GetCode(&desc);
    582   Handle<Code> code = isolate->factory()->NewCode(
    583       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    584   F3 f = FUNCTION_CAST<F3>(code->entry());
    585   t.ui = 0x11223344;
    586   t.si = 0x99aabbcc;
    587   Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
    588   USE(dummy);
    589 
    590   CHECK_EQ(static_cast<int32_t>(0x11223344), t.r1);
    591   if (kArchEndian == kLittle)  {
    592     CHECK_EQ(static_cast<int32_t>(0x3344), t.r2);
    593     CHECK_EQ(static_cast<int32_t>(0xffffbbcc), t.r3);
    594     CHECK_EQ(static_cast<int32_t>(0x0000bbcc), t.r4);
    595     CHECK_EQ(static_cast<int32_t>(0xffffffcc), t.r5);
    596     CHECK_EQ(static_cast<int32_t>(0x3333bbcc), t.r6);
    597   } else {
    598     CHECK_EQ(static_cast<int32_t>(0x1122), t.r2);
    599     CHECK_EQ(static_cast<int32_t>(0xffff99aa), t.r3);
    600     CHECK_EQ(static_cast<int32_t>(0x000099aa), t.r4);
    601     CHECK_EQ(static_cast<int32_t>(0xffffff99), t.r5);
    602     CHECK_EQ(static_cast<int32_t>(0x99aa3333), t.r6);
    603   }
    604 }
    605 
    606 
    607 TEST(MIPS7) {
    608   // Test floating point compare and branch instructions.
    609   CcTest::InitializeVM();
    610   Isolate* isolate = CcTest::i_isolate();
    611   HandleScope scope(isolate);
    612 
    613   typedef struct {
    614     double a;
    615     double b;
    616     double c;
    617     double d;
    618     double e;
    619     double f;
    620     int32_t result;
    621   } T;
    622   T t;
    623 
    624   // Create a function that accepts &t, and loads, manipulates, and stores
    625   // the doubles t.a ... t.f.
    626   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
    627   Label neither_is_nan, less_than, outa_here;
    628 
    629   __ ldc1(f4, MemOperand(a0, offsetof(T, a)) );
    630   __ ldc1(f6, MemOperand(a0, offsetof(T, b)) );
    631   if (kArchVariant != kMips64r6) {
    632     __ c(UN, D, f4, f6);
    633     __ bc1f(&neither_is_nan);
    634   } else {
    635     __ cmp(UN, L, f2, f4, f6);
    636     __ bc1eqz(&neither_is_nan, f2);
    637   }
    638   __ nop();
    639   __ sw(zero_reg, MemOperand(a0, offsetof(T, result)) );
    640   __ Branch(&outa_here);
    641 
    642   __ bind(&neither_is_nan);
    643 
    644   if (kArchVariant == kMips64r6) {
    645     __ cmp(OLT, L, f2, f6, f4);
    646     __ bc1nez(&less_than, f2);
    647   } else {
    648     __ c(OLT, D, f6, f4, 2);
    649     __ bc1t(&less_than, 2);
    650   }
    651 
    652   __ nop();
    653   __ sw(zero_reg, MemOperand(a0, offsetof(T, result)) );
    654   __ Branch(&outa_here);
    655 
    656   __ bind(&less_than);
    657   __ Addu(a4, zero_reg, Operand(1));
    658   __ sw(a4, MemOperand(a0, offsetof(T, result)) );  // Set true.
    659 
    660 
    661   // This test-case should have additional tests.
    662 
    663   __ bind(&outa_here);
    664 
    665   __ jr(ra);
    666   __ nop();
    667 
    668   CodeDesc desc;
    669   assm.GetCode(&desc);
    670   Handle<Code> code = isolate->factory()->NewCode(
    671       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    672   F3 f = FUNCTION_CAST<F3>(code->entry());
    673   t.a = 1.5e14;
    674   t.b = 2.75e11;
    675   t.c = 2.0;
    676   t.d = -4.0;
    677   t.e = 0.0;
    678   t.f = 0.0;
    679   t.result = 0;
    680   Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
    681   USE(dummy);
    682   CHECK_EQ(1.5e14, t.a);
    683   CHECK_EQ(2.75e11, t.b);
    684   CHECK_EQ(1, t.result);
    685 }
    686 
    687 
    688 TEST(MIPS8) {
    689   if (kArchVariant == kMips64r2) {
    690     // Test ROTR and ROTRV instructions.
    691     CcTest::InitializeVM();
    692     Isolate* isolate = CcTest::i_isolate();
    693     HandleScope scope(isolate);
    694 
    695     typedef struct {
    696       int32_t input;
    697       int32_t result_rotr_4;
    698       int32_t result_rotr_8;
    699       int32_t result_rotr_12;
    700       int32_t result_rotr_16;
    701       int32_t result_rotr_20;
    702       int32_t result_rotr_24;
    703       int32_t result_rotr_28;
    704       int32_t result_rotrv_4;
    705       int32_t result_rotrv_8;
    706       int32_t result_rotrv_12;
    707       int32_t result_rotrv_16;
    708       int32_t result_rotrv_20;
    709       int32_t result_rotrv_24;
    710       int32_t result_rotrv_28;
    711     } T;
    712     T t;
    713 
    714     MacroAssembler assm(isolate, NULL, 0,
    715                         v8::internal::CodeObjectRequired::kYes);
    716 
    717     // Basic word load.
    718     __ lw(a4, MemOperand(a0, offsetof(T, input)) );
    719 
    720     // ROTR instruction (called through the Ror macro).
    721     __ Ror(a5, a4, 0x0004);
    722     __ Ror(a6, a4, 0x0008);
    723     __ Ror(a7, a4, 0x000c);
    724     __ Ror(t0, a4, 0x0010);
    725     __ Ror(t1, a4, 0x0014);
    726     __ Ror(t2, a4, 0x0018);
    727     __ Ror(t3, a4, 0x001c);
    728 
    729     // Basic word store.
    730     __ sw(a5, MemOperand(a0, offsetof(T, result_rotr_4)) );
    731     __ sw(a6, MemOperand(a0, offsetof(T, result_rotr_8)) );
    732     __ sw(a7, MemOperand(a0, offsetof(T, result_rotr_12)) );
    733     __ sw(t0, MemOperand(a0, offsetof(T, result_rotr_16)) );
    734     __ sw(t1, MemOperand(a0, offsetof(T, result_rotr_20)) );
    735     __ sw(t2, MemOperand(a0, offsetof(T, result_rotr_24)) );
    736     __ sw(t3, MemOperand(a0, offsetof(T, result_rotr_28)) );
    737 
    738     // ROTRV instruction (called through the Ror macro).
    739     __ li(t3, 0x0004);
    740     __ Ror(a5, a4, t3);
    741     __ li(t3, 0x0008);
    742     __ Ror(a6, a4, t3);
    743     __ li(t3, 0x000C);
    744     __ Ror(a7, a4, t3);
    745     __ li(t3, 0x0010);
    746     __ Ror(t0, a4, t3);
    747     __ li(t3, 0x0014);
    748     __ Ror(t1, a4, t3);
    749     __ li(t3, 0x0018);
    750     __ Ror(t2, a4, t3);
    751     __ li(t3, 0x001C);
    752     __ Ror(t3, a4, t3);
    753 
    754     // Basic word store.
    755     __ sw(a5, MemOperand(a0, offsetof(T, result_rotrv_4)) );
    756     __ sw(a6, MemOperand(a0, offsetof(T, result_rotrv_8)) );
    757     __ sw(a7, MemOperand(a0, offsetof(T, result_rotrv_12)) );
    758     __ sw(t0, MemOperand(a0, offsetof(T, result_rotrv_16)) );
    759     __ sw(t1, MemOperand(a0, offsetof(T, result_rotrv_20)) );
    760     __ sw(t2, MemOperand(a0, offsetof(T, result_rotrv_24)) );
    761     __ sw(t3, MemOperand(a0, offsetof(T, result_rotrv_28)) );
    762 
    763     __ jr(ra);
    764     __ nop();
    765 
    766     CodeDesc desc;
    767     assm.GetCode(&desc);
    768     Handle<Code> code = isolate->factory()->NewCode(
    769         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    770     F3 f = FUNCTION_CAST<F3>(code->entry());
    771     t.input = 0x12345678;
    772     Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0x0, 0, 0, 0);
    773     USE(dummy);
    774     CHECK_EQ(static_cast<int32_t>(0x81234567), t.result_rotr_4);
    775     CHECK_EQ(static_cast<int32_t>(0x78123456), t.result_rotr_8);
    776     CHECK_EQ(static_cast<int32_t>(0x67812345), t.result_rotr_12);
    777     CHECK_EQ(static_cast<int32_t>(0x56781234), t.result_rotr_16);
    778     CHECK_EQ(static_cast<int32_t>(0x45678123), t.result_rotr_20);
    779     CHECK_EQ(static_cast<int32_t>(0x34567812), t.result_rotr_24);
    780     CHECK_EQ(static_cast<int32_t>(0x23456781), t.result_rotr_28);
    781 
    782     CHECK_EQ(static_cast<int32_t>(0x81234567), t.result_rotrv_4);
    783     CHECK_EQ(static_cast<int32_t>(0x78123456), t.result_rotrv_8);
    784     CHECK_EQ(static_cast<int32_t>(0x67812345), t.result_rotrv_12);
    785     CHECK_EQ(static_cast<int32_t>(0x56781234), t.result_rotrv_16);
    786     CHECK_EQ(static_cast<int32_t>(0x45678123), t.result_rotrv_20);
    787     CHECK_EQ(static_cast<int32_t>(0x34567812), t.result_rotrv_24);
    788     CHECK_EQ(static_cast<int32_t>(0x23456781), t.result_rotrv_28);
    789   }
    790 }
    791 
    792 
    793 TEST(MIPS9) {
    794   // Test BRANCH improvements.
    795   CcTest::InitializeVM();
    796   Isolate* isolate = CcTest::i_isolate();
    797   HandleScope scope(isolate);
    798 
    799   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
    800   Label exit, exit2, exit3;
    801 
    802   __ Branch(&exit, ge, a0, Operand(zero_reg));
    803   __ Branch(&exit2, ge, a0, Operand(0x00001FFF));
    804   __ Branch(&exit3, ge, a0, Operand(0x0001FFFF));
    805 
    806   __ bind(&exit);
    807   __ bind(&exit2);
    808   __ bind(&exit3);
    809   __ jr(ra);
    810   __ nop();
    811 
    812   CodeDesc desc;
    813   assm.GetCode(&desc);
    814   isolate->factory()->NewCode(
    815       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    816 }
    817 
    818 
    819 TEST(MIPS10) {
    820   // Test conversions between doubles and long integers.
    821   // Test hos the long ints map to FP regs pairs.
    822   CcTest::InitializeVM();
    823   Isolate* isolate = CcTest::i_isolate();
    824   HandleScope scope(isolate);
    825 
    826   typedef struct {
    827     double a;
    828     double a_converted;
    829     double b;
    830     int32_t dbl_mant;
    831     int32_t dbl_exp;
    832     int32_t long_hi;
    833     int32_t long_lo;
    834     int64_t long_as_int64;
    835     int32_t b_long_hi;
    836     int32_t b_long_lo;
    837     int64_t b_long_as_int64;
    838   } T;
    839   T t;
    840 
    841   Assembler assm(isolate, NULL, 0);
    842   Label L, C;
    843 
    844   if (kArchVariant == kMips64r2) {
    845     // Rewritten for FR=1 FPU mode:
    846     //  -  32 FP regs of 64-bits each, no odd/even pairs.
    847     //  -  Note that cvt_l_d/cvt_d_l ARE legal in FR=1 mode.
    848     // Load all structure elements to registers.
    849     __ ldc1(f0, MemOperand(a0, offsetof(T, a)));
    850 
    851     // Save the raw bits of the double.
    852     __ mfc1(a4, f0);
    853     __ mfhc1(a5, f0);
    854     __ sw(a4, MemOperand(a0, offsetof(T, dbl_mant)));
    855     __ sw(a5, MemOperand(a0, offsetof(T, dbl_exp)));
    856 
    857     // Convert double in f0 to long, save hi/lo parts.
    858     __ cvt_l_d(f0, f0);
    859     __ mfc1(a4, f0);  // f0 LS 32 bits of long.
    860     __ mfhc1(a5, f0);  // f0 MS 32 bits of long.
    861     __ sw(a4, MemOperand(a0, offsetof(T, long_lo)));
    862     __ sw(a5, MemOperand(a0, offsetof(T, long_hi)));
    863 
    864     // Combine the high/low ints, convert back to double.
    865     __ dsll32(a6, a5, 0);  // Move a5 to high bits of a6.
    866     __ or_(a6, a6, a4);
    867     __ dmtc1(a6, f1);
    868     __ cvt_d_l(f1, f1);
    869     __ sdc1(f1, MemOperand(a0, offsetof(T, a_converted)));
    870 
    871 
    872     // Convert the b long integers to double b.
    873     __ lw(a4, MemOperand(a0, offsetof(T, b_long_lo)));
    874     __ lw(a5, MemOperand(a0, offsetof(T, b_long_hi)));
    875     __ mtc1(a4, f8);  // f8 LS 32-bits.
    876     __ mthc1(a5, f8);  // f8 MS 32-bits.
    877     __ cvt_d_l(f10, f8);
    878     __ sdc1(f10, MemOperand(a0, offsetof(T, b)));
    879 
    880     // Convert double b back to long-int.
    881     __ ldc1(f31, MemOperand(a0, offsetof(T, b)));
    882     __ cvt_l_d(f31, f31);
    883     __ dmfc1(a7, f31);
    884     __ sd(a7, MemOperand(a0, offsetof(T, b_long_as_int64)));
    885 
    886 
    887     __ jr(ra);
    888     __ nop();
    889 
    890     CodeDesc desc;
    891     assm.GetCode(&desc);
    892     Handle<Code> code = isolate->factory()->NewCode(
    893         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    894     F3 f = FUNCTION_CAST<F3>(code->entry());
    895     t.a = 2.147483647e9;       // 0x7fffffff -> 0x41DFFFFFFFC00000 as double.
    896     t.b_long_hi = 0x000000ff;  // 0xFF00FF00FF -> 0x426FE01FE01FE000 as double.
    897     t.b_long_lo = 0x00ff00ff;
    898     Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
    899     USE(dummy);
    900 
    901     CHECK_EQ(static_cast<int32_t>(0x41DFFFFF), t.dbl_exp);
    902     CHECK_EQ(static_cast<int32_t>(0xFFC00000), t.dbl_mant);
    903     CHECK_EQ(0, t.long_hi);
    904     CHECK_EQ(static_cast<int32_t>(0x7fffffff), t.long_lo);
    905     CHECK_EQ(2.147483647e9, t.a_converted);
    906 
    907     // 0xFF00FF00FF -> 1.095233372415e12.
    908     CHECK_EQ(1.095233372415e12, t.b);
    909     CHECK_EQ(static_cast<int64_t>(0xFF00FF00FF), t.b_long_as_int64);
    910   }
    911 }
    912 
    913 
    914 TEST(MIPS11) {
    915   // Do not run test on MIPS64r6, as these instructions are removed.
    916   if (kArchVariant != kMips64r6) {
    917     // Test LWL, LWR, SWL and SWR instructions.
    918     CcTest::InitializeVM();
    919     Isolate* isolate = CcTest::i_isolate();
    920     HandleScope scope(isolate);
    921 
    922     typedef struct {
    923       int32_t reg_init;
    924       int32_t mem_init;
    925       int32_t lwl_0;
    926       int32_t lwl_1;
    927       int32_t lwl_2;
    928       int32_t lwl_3;
    929       int32_t lwr_0;
    930       int32_t lwr_1;
    931       int32_t lwr_2;
    932       int32_t lwr_3;
    933       int32_t swl_0;
    934       int32_t swl_1;
    935       int32_t swl_2;
    936       int32_t swl_3;
    937       int32_t swr_0;
    938       int32_t swr_1;
    939       int32_t swr_2;
    940       int32_t swr_3;
    941     } T;
    942     T t;
    943 
    944     Assembler assm(isolate, NULL, 0);
    945 
    946     // Test all combinations of LWL and vAddr.
    947     __ lw(a4, MemOperand(a0, offsetof(T, reg_init)));
    948     __ lwl(a4, MemOperand(a0, offsetof(T, mem_init)));
    949     __ sw(a4, MemOperand(a0, offsetof(T, lwl_0)));
    950 
    951     __ lw(a5, MemOperand(a0, offsetof(T, reg_init)));
    952     __ lwl(a5, MemOperand(a0, offsetof(T, mem_init) + 1));
    953     __ sw(a5, MemOperand(a0, offsetof(T, lwl_1)));
    954 
    955     __ lw(a6, MemOperand(a0, offsetof(T, reg_init)));
    956     __ lwl(a6, MemOperand(a0, offsetof(T, mem_init) + 2));
    957     __ sw(a6, MemOperand(a0, offsetof(T, lwl_2)));
    958 
    959     __ lw(a7, MemOperand(a0, offsetof(T, reg_init)));
    960     __ lwl(a7, MemOperand(a0, offsetof(T, mem_init) + 3));
    961     __ sw(a7, MemOperand(a0, offsetof(T, lwl_3)));
    962 
    963     // Test all combinations of LWR and vAddr.
    964     __ lw(a4, MemOperand(a0, offsetof(T, reg_init)));
    965     __ lwr(a4, MemOperand(a0, offsetof(T, mem_init)));
    966     __ sw(a4, MemOperand(a0, offsetof(T, lwr_0)));
    967 
    968     __ lw(a5, MemOperand(a0, offsetof(T, reg_init)));
    969     __ lwr(a5, MemOperand(a0, offsetof(T, mem_init) + 1));
    970     __ sw(a5, MemOperand(a0, offsetof(T, lwr_1)));
    971 
    972     __ lw(a6, MemOperand(a0, offsetof(T, reg_init)));
    973     __ lwr(a6, MemOperand(a0, offsetof(T, mem_init) + 2));
    974     __ sw(a6, MemOperand(a0, offsetof(T, lwr_2)) );
    975 
    976     __ lw(a7, MemOperand(a0, offsetof(T, reg_init)));
    977     __ lwr(a7, MemOperand(a0, offsetof(T, mem_init) + 3));
    978     __ sw(a7, MemOperand(a0, offsetof(T, lwr_3)) );
    979 
    980     // Test all combinations of SWL and vAddr.
    981     __ lw(a4, MemOperand(a0, offsetof(T, mem_init)));
    982     __ sw(a4, MemOperand(a0, offsetof(T, swl_0)));
    983     __ lw(a4, MemOperand(a0, offsetof(T, reg_init)));
    984     __ swl(a4, MemOperand(a0, offsetof(T, swl_0)));
    985 
    986     __ lw(a5, MemOperand(a0, offsetof(T, mem_init)));
    987     __ sw(a5, MemOperand(a0, offsetof(T, swl_1)));
    988     __ lw(a5, MemOperand(a0, offsetof(T, reg_init)));
    989     __ swl(a5, MemOperand(a0, offsetof(T, swl_1) + 1));
    990 
    991     __ lw(a6, MemOperand(a0, offsetof(T, mem_init)));
    992     __ sw(a6, MemOperand(a0, offsetof(T, swl_2)));
    993     __ lw(a6, MemOperand(a0, offsetof(T, reg_init)));
    994     __ swl(a6, MemOperand(a0, offsetof(T, swl_2) + 2));
    995 
    996     __ lw(a7, MemOperand(a0, offsetof(T, mem_init)));
    997     __ sw(a7, MemOperand(a0, offsetof(T, swl_3)));
    998     __ lw(a7, MemOperand(a0, offsetof(T, reg_init)));
    999     __ swl(a7, MemOperand(a0, offsetof(T, swl_3) + 3));
   1000 
   1001     // Test all combinations of SWR and vAddr.
   1002     __ lw(a4, MemOperand(a0, offsetof(T, mem_init)));
   1003     __ sw(a4, MemOperand(a0, offsetof(T, swr_0)));
   1004     __ lw(a4, MemOperand(a0, offsetof(T, reg_init)));
   1005     __ swr(a4, MemOperand(a0, offsetof(T, swr_0)));
   1006 
   1007     __ lw(a5, MemOperand(a0, offsetof(T, mem_init)));
   1008     __ sw(a5, MemOperand(a0, offsetof(T, swr_1)));
   1009     __ lw(a5, MemOperand(a0, offsetof(T, reg_init)));
   1010     __ swr(a5, MemOperand(a0, offsetof(T, swr_1) + 1));
   1011 
   1012     __ lw(a6, MemOperand(a0, offsetof(T, mem_init)));
   1013     __ sw(a6, MemOperand(a0, offsetof(T, swr_2)));
   1014     __ lw(a6, MemOperand(a0, offsetof(T, reg_init)));
   1015     __ swr(a6, MemOperand(a0, offsetof(T, swr_2) + 2));
   1016 
   1017     __ lw(a7, MemOperand(a0, offsetof(T, mem_init)));
   1018     __ sw(a7, MemOperand(a0, offsetof(T, swr_3)));
   1019     __ lw(a7, MemOperand(a0, offsetof(T, reg_init)));
   1020     __ swr(a7, MemOperand(a0, offsetof(T, swr_3) + 3));
   1021 
   1022     __ jr(ra);
   1023     __ nop();
   1024 
   1025     CodeDesc desc;
   1026     assm.GetCode(&desc);
   1027     Handle<Code> code = isolate->factory()->NewCode(
   1028         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   1029     F3 f = FUNCTION_CAST<F3>(code->entry());
   1030     t.reg_init = 0xaabbccdd;
   1031     t.mem_init = 0x11223344;
   1032 
   1033     Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
   1034     USE(dummy);
   1035 
   1036     if (kArchEndian == kLittle) {
   1037       CHECK_EQ(static_cast<int32_t>(0x44bbccdd), t.lwl_0);
   1038       CHECK_EQ(static_cast<int32_t>(0x3344ccdd), t.lwl_1);
   1039       CHECK_EQ(static_cast<int32_t>(0x223344dd), t.lwl_2);
   1040       CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwl_3);
   1041 
   1042       CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwr_0);
   1043       CHECK_EQ(static_cast<int32_t>(0xaa112233), t.lwr_1);
   1044       CHECK_EQ(static_cast<int32_t>(0xaabb1122), t.lwr_2);
   1045       CHECK_EQ(static_cast<int32_t>(0xaabbcc11), t.lwr_3);
   1046 
   1047       CHECK_EQ(static_cast<int32_t>(0x112233aa), t.swl_0);
   1048       CHECK_EQ(static_cast<int32_t>(0x1122aabb), t.swl_1);
   1049       CHECK_EQ(static_cast<int32_t>(0x11aabbcc), t.swl_2);
   1050       CHECK_EQ(static_cast<int32_t>(0xaabbccdd), t.swl_3);
   1051 
   1052       CHECK_EQ(static_cast<int32_t>(0xaabbccdd), t.swr_0);
   1053       CHECK_EQ(static_cast<int32_t>(0xbbccdd44), t.swr_1);
   1054       CHECK_EQ(static_cast<int32_t>(0xccdd3344), t.swr_2);
   1055       CHECK_EQ(static_cast<int32_t>(0xdd223344), t.swr_3);
   1056     } else {
   1057       CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwl_0);
   1058       CHECK_EQ(static_cast<int32_t>(0x223344dd), t.lwl_1);
   1059       CHECK_EQ(static_cast<int32_t>(0x3344ccdd), t.lwl_2);
   1060       CHECK_EQ(static_cast<int32_t>(0x44bbccdd), t.lwl_3);
   1061 
   1062       CHECK_EQ(static_cast<int32_t>(0xaabbcc11), t.lwr_0);
   1063       CHECK_EQ(static_cast<int32_t>(0xaabb1122), t.lwr_1);
   1064       CHECK_EQ(static_cast<int32_t>(0xaa112233), t.lwr_2);
   1065       CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwr_3);
   1066 
   1067       CHECK_EQ(static_cast<int32_t>(0xaabbccdd), t.swl_0);
   1068       CHECK_EQ(static_cast<int32_t>(0x11aabbcc), t.swl_1);
   1069       CHECK_EQ(static_cast<int32_t>(0x1122aabb), t.swl_2);
   1070       CHECK_EQ(static_cast<int32_t>(0x112233aa), t.swl_3);
   1071 
   1072       CHECK_EQ(static_cast<int32_t>(0xdd223344), t.swr_0);
   1073       CHECK_EQ(static_cast<int32_t>(0xccdd3344), t.swr_1);
   1074       CHECK_EQ(static_cast<int32_t>(0xbbccdd44), t.swr_2);
   1075       CHECK_EQ(static_cast<int32_t>(0xaabbccdd), t.swr_3);
   1076     }
   1077   }
   1078 }
   1079 
   1080 
   1081 TEST(MIPS12) {
   1082   CcTest::InitializeVM();
   1083   Isolate* isolate = CcTest::i_isolate();
   1084   HandleScope scope(isolate);
   1085 
   1086   typedef struct {
   1087       int32_t  x;
   1088       int32_t  y;
   1089       int32_t  y1;
   1090       int32_t  y2;
   1091       int32_t  y3;
   1092       int32_t  y4;
   1093   } T;
   1094   T t;
   1095 
   1096   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   1097 
   1098   __ mov(t2, fp);  // Save frame pointer.
   1099   __ mov(fp, a0);  // Access struct T by fp.
   1100   __ lw(a4, MemOperand(a0, offsetof(T, y)));
   1101   __ lw(a7, MemOperand(a0, offsetof(T, y4)));
   1102 
   1103   __ addu(a5, a4, a7);
   1104   __ subu(t0, a4, a7);
   1105   __ nop();
   1106   __ push(a4);  // These instructions disappear after opt.
   1107   __ Pop();
   1108   __ addu(a4, a4, a4);
   1109   __ nop();
   1110   __ Pop();     // These instructions disappear after opt.
   1111   __ push(a7);
   1112   __ nop();
   1113   __ push(a7);  // These instructions disappear after opt.
   1114   __ pop(a7);
   1115   __ nop();
   1116   __ push(a7);
   1117   __ pop(t0);
   1118   __ nop();
   1119   __ sw(a4, MemOperand(fp, offsetof(T, y)));
   1120   __ lw(a4, MemOperand(fp, offsetof(T, y)));
   1121   __ nop();
   1122   __ sw(a4, MemOperand(fp, offsetof(T, y)));
   1123   __ lw(a5, MemOperand(fp, offsetof(T, y)));
   1124   __ nop();
   1125   __ push(a5);
   1126   __ lw(a5, MemOperand(fp, offsetof(T, y)));
   1127   __ pop(a5);
   1128   __ nop();
   1129   __ push(a5);
   1130   __ lw(a6, MemOperand(fp, offsetof(T, y)));
   1131   __ pop(a5);
   1132   __ nop();
   1133   __ push(a5);
   1134   __ lw(a6, MemOperand(fp, offsetof(T, y)));
   1135   __ pop(a6);
   1136   __ nop();
   1137   __ push(a6);
   1138   __ lw(a6, MemOperand(fp, offsetof(T, y)));
   1139   __ pop(a5);
   1140   __ nop();
   1141   __ push(a5);
   1142   __ lw(a6, MemOperand(fp, offsetof(T, y)));
   1143   __ pop(a7);
   1144   __ nop();
   1145 
   1146   __ mov(fp, t2);
   1147   __ jr(ra);
   1148   __ nop();
   1149 
   1150   CodeDesc desc;
   1151   assm.GetCode(&desc);
   1152   Handle<Code> code = isolate->factory()->NewCode(
   1153       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   1154   F3 f = FUNCTION_CAST<F3>(code->entry());
   1155   t.x = 1;
   1156   t.y = 2;
   1157   t.y1 = 3;
   1158   t.y2 = 4;
   1159   t.y3 = 0XBABA;
   1160   t.y4 = 0xDEDA;
   1161 
   1162   Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
   1163   USE(dummy);
   1164 
   1165   CHECK_EQ(3, t.y1);
   1166 }
   1167 
   1168 
   1169 TEST(MIPS13) {
   1170   // Test Cvt_d_uw and Trunc_uw_d macros.
   1171   CcTest::InitializeVM();
   1172   Isolate* isolate = CcTest::i_isolate();
   1173   HandleScope scope(isolate);
   1174 
   1175   typedef struct {
   1176     double cvt_big_out;
   1177     double cvt_small_out;
   1178     uint32_t trunc_big_out;
   1179     uint32_t trunc_small_out;
   1180     uint32_t cvt_big_in;
   1181     uint32_t cvt_small_in;
   1182   } T;
   1183   T t;
   1184 
   1185   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   1186 
   1187   __ sw(a4, MemOperand(a0, offsetof(T, cvt_small_in)));
   1188   __ Cvt_d_uw(f10, a4);
   1189   __ sdc1(f10, MemOperand(a0, offsetof(T, cvt_small_out)));
   1190 
   1191   __ Trunc_uw_d(f10, f10, f4);
   1192   __ swc1(f10, MemOperand(a0, offsetof(T, trunc_small_out)));
   1193 
   1194   __ sw(a4, MemOperand(a0, offsetof(T, cvt_big_in)));
   1195   __ Cvt_d_uw(f8, a4);
   1196   __ sdc1(f8, MemOperand(a0, offsetof(T, cvt_big_out)));
   1197 
   1198   __ Trunc_uw_d(f8, f8, f4);
   1199   __ swc1(f8, MemOperand(a0, offsetof(T, trunc_big_out)));
   1200 
   1201   __ jr(ra);
   1202   __ nop();
   1203 
   1204   CodeDesc desc;
   1205   assm.GetCode(&desc);
   1206   Handle<Code> code = isolate->factory()->NewCode(
   1207       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   1208   F3 f = FUNCTION_CAST<F3>(code->entry());
   1209 
   1210   t.cvt_big_in = 0xFFFFFFFF;
   1211   t.cvt_small_in  = 333;
   1212 
   1213   Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
   1214   USE(dummy);
   1215 
   1216   CHECK_EQ(t.cvt_big_out, static_cast<double>(t.cvt_big_in));
   1217   CHECK_EQ(t.cvt_small_out, static_cast<double>(t.cvt_small_in));
   1218 
   1219   CHECK_EQ(static_cast<int>(t.trunc_big_out), static_cast<int>(t.cvt_big_in));
   1220   CHECK_EQ(static_cast<int>(t.trunc_small_out),
   1221            static_cast<int>(t.cvt_small_in));
   1222 }
   1223 
   1224 
   1225 TEST(MIPS14) {
   1226   // Test round, floor, ceil, trunc, cvt.
   1227   CcTest::InitializeVM();
   1228   Isolate* isolate = CcTest::i_isolate();
   1229   HandleScope scope(isolate);
   1230 
   1231 #define ROUND_STRUCT_ELEMENT(x) \
   1232   uint32_t x##_isNaN2008; \
   1233   int32_t x##_up_out; \
   1234   int32_t x##_down_out; \
   1235   int32_t neg_##x##_up_out; \
   1236   int32_t neg_##x##_down_out; \
   1237   uint32_t x##_err1_out; \
   1238   uint32_t x##_err2_out; \
   1239   uint32_t x##_err3_out; \
   1240   uint32_t x##_err4_out; \
   1241   int32_t x##_invalid_result;
   1242 
   1243   typedef struct {
   1244     double round_up_in;
   1245     double round_down_in;
   1246     double neg_round_up_in;
   1247     double neg_round_down_in;
   1248     double err1_in;
   1249     double err2_in;
   1250     double err3_in;
   1251     double err4_in;
   1252 
   1253     ROUND_STRUCT_ELEMENT(round)
   1254     ROUND_STRUCT_ELEMENT(floor)
   1255     ROUND_STRUCT_ELEMENT(ceil)
   1256     ROUND_STRUCT_ELEMENT(trunc)
   1257     ROUND_STRUCT_ELEMENT(cvt)
   1258   } T;
   1259   T t;
   1260 
   1261 #undef ROUND_STRUCT_ELEMENT
   1262 
   1263   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   1264 
   1265   // Save FCSR.
   1266   __ cfc1(a1, FCSR);
   1267   // Disable FPU exceptions.
   1268   __ ctc1(zero_reg, FCSR);
   1269 #define RUN_ROUND_TEST(x) \
   1270   __ cfc1(t0, FCSR);\
   1271   __ sw(t0, MemOperand(a0, offsetof(T, x##_isNaN2008))); \
   1272   __ ldc1(f0, MemOperand(a0, offsetof(T, round_up_in))); \
   1273   __ x##_w_d(f0, f0); \
   1274   __ swc1(f0, MemOperand(a0, offsetof(T, x##_up_out))); \
   1275   \
   1276   __ ldc1(f0, MemOperand(a0, offsetof(T, round_down_in))); \
   1277   __ x##_w_d(f0, f0); \
   1278   __ swc1(f0, MemOperand(a0, offsetof(T, x##_down_out))); \
   1279   \
   1280   __ ldc1(f0, MemOperand(a0, offsetof(T, neg_round_up_in))); \
   1281   __ x##_w_d(f0, f0); \
   1282   __ swc1(f0, MemOperand(a0, offsetof(T, neg_##x##_up_out))); \
   1283   \
   1284   __ ldc1(f0, MemOperand(a0, offsetof(T, neg_round_down_in))); \
   1285   __ x##_w_d(f0, f0); \
   1286   __ swc1(f0, MemOperand(a0, offsetof(T, neg_##x##_down_out))); \
   1287   \
   1288   __ ldc1(f0, MemOperand(a0, offsetof(T, err1_in))); \
   1289   __ ctc1(zero_reg, FCSR); \
   1290   __ x##_w_d(f0, f0); \
   1291   __ cfc1(a2, FCSR); \
   1292   __ sw(a2, MemOperand(a0, offsetof(T, x##_err1_out))); \
   1293   \
   1294   __ ldc1(f0, MemOperand(a0, offsetof(T, err2_in))); \
   1295   __ ctc1(zero_reg, FCSR); \
   1296   __ x##_w_d(f0, f0); \
   1297   __ cfc1(a2, FCSR); \
   1298   __ sw(a2, MemOperand(a0, offsetof(T, x##_err2_out))); \
   1299   \
   1300   __ ldc1(f0, MemOperand(a0, offsetof(T, err3_in))); \
   1301   __ ctc1(zero_reg, FCSR); \
   1302   __ x##_w_d(f0, f0); \
   1303   __ cfc1(a2, FCSR); \
   1304   __ sw(a2, MemOperand(a0, offsetof(T, x##_err3_out))); \
   1305   \
   1306   __ ldc1(f0, MemOperand(a0, offsetof(T, err4_in))); \
   1307   __ ctc1(zero_reg, FCSR); \
   1308   __ x##_w_d(f0, f0); \
   1309   __ cfc1(a2, FCSR); \
   1310   __ sw(a2, MemOperand(a0, offsetof(T, x##_err4_out))); \
   1311   __ swc1(f0, MemOperand(a0, offsetof(T, x##_invalid_result)));
   1312 
   1313   RUN_ROUND_TEST(round)
   1314   RUN_ROUND_TEST(floor)
   1315   RUN_ROUND_TEST(ceil)
   1316   RUN_ROUND_TEST(trunc)
   1317   RUN_ROUND_TEST(cvt)
   1318 
   1319   // Restore FCSR.
   1320   __ ctc1(a1, FCSR);
   1321 
   1322   __ jr(ra);
   1323   __ nop();
   1324 
   1325   CodeDesc desc;
   1326   assm.GetCode(&desc);
   1327   Handle<Code> code = isolate->factory()->NewCode(
   1328       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   1329   F3 f = FUNCTION_CAST<F3>(code->entry());
   1330 
   1331   t.round_up_in = 123.51;
   1332   t.round_down_in = 123.49;
   1333   t.neg_round_up_in = -123.5;
   1334   t.neg_round_down_in = -123.49;
   1335   t.err1_in = 123.51;
   1336   t.err2_in = 1;
   1337   t.err3_in = static_cast<double>(1) + 0xFFFFFFFF;
   1338   t.err4_in = NAN;
   1339 
   1340   Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
   1341   USE(dummy);
   1342 
   1343 #define GET_FPU_ERR(x) (static_cast<int>(x & kFCSRFlagMask))
   1344 #define CHECK_NAN2008(x) (x & kFCSRNaN2008FlagMask)
   1345 #define CHECK_ROUND_RESULT(type) \
   1346   CHECK(GET_FPU_ERR(t.type##_err1_out) & kFCSRInexactFlagMask); \
   1347   CHECK_EQ(0, GET_FPU_ERR(t.type##_err2_out)); \
   1348   CHECK(GET_FPU_ERR(t.type##_err3_out) & kFCSRInvalidOpFlagMask); \
   1349   CHECK(GET_FPU_ERR(t.type##_err4_out) & kFCSRInvalidOpFlagMask); \
   1350   if (CHECK_NAN2008(t.type##_isNaN2008) && kArchVariant == kMips64r6) { \
   1351     CHECK_EQ(static_cast<int32_t>(0), t.type##_invalid_result);\
   1352   } else { \
   1353     CHECK_EQ(static_cast<int32_t>(kFPUInvalidResult), t.type##_invalid_result);\
   1354   }
   1355 
   1356   CHECK_ROUND_RESULT(round);
   1357   CHECK_ROUND_RESULT(floor);
   1358   CHECK_ROUND_RESULT(ceil);
   1359   CHECK_ROUND_RESULT(cvt);
   1360 }
   1361 
   1362 
   1363 TEST(MIPS15) {
   1364   // Test chaining of label usages within instructions (issue 1644).
   1365   CcTest::InitializeVM();
   1366   Isolate* isolate = CcTest::i_isolate();
   1367   HandleScope scope(isolate);
   1368   Assembler assm(isolate, NULL, 0);
   1369 
   1370   Label target;
   1371   __ beq(v0, v1, &target);
   1372   __ nop();
   1373   __ bne(v0, v1, &target);
   1374   __ nop();
   1375   __ bind(&target);
   1376   __ nop();
   1377 }
   1378 
   1379 
   1380 // ----- mips64 tests -----------------------------------------------
   1381 
   1382 TEST(MIPS16) {
   1383   // Test 64-bit memory loads and stores.
   1384   CcTest::InitializeVM();
   1385   Isolate* isolate = CcTest::i_isolate();
   1386   HandleScope scope(isolate);
   1387 
   1388   typedef struct {
   1389     int64_t r1;
   1390     int64_t r2;
   1391     int64_t r3;
   1392     int64_t r4;
   1393     int64_t r5;
   1394     int64_t r6;
   1395     uint32_t ui;
   1396     int32_t si;
   1397   } T;
   1398   T t;
   1399 
   1400   Assembler assm(isolate, NULL, 0);
   1401   Label L, C;
   1402 
   1403   // Basic 32-bit word load/store, with un-signed data.
   1404   __ lw(a4, MemOperand(a0, offsetof(T, ui)));
   1405   __ sw(a4, MemOperand(a0, offsetof(T, r1)));
   1406 
   1407   // Check that the data got zero-extended into 64-bit a4.
   1408   __ sd(a4, MemOperand(a0, offsetof(T, r2)));
   1409 
   1410   // Basic 32-bit word load/store, with SIGNED data.
   1411   __ lw(a5, MemOperand(a0, offsetof(T, si)));
   1412   __ sw(a5, MemOperand(a0, offsetof(T, r3)));
   1413 
   1414   // Check that the data got sign-extended into 64-bit a4.
   1415   __ sd(a5, MemOperand(a0, offsetof(T, r4)));
   1416 
   1417   // 32-bit UNSIGNED word load/store, with SIGNED data.
   1418   __ lwu(a6, MemOperand(a0, offsetof(T, si)));
   1419   __ sw(a6, MemOperand(a0, offsetof(T, r5)));
   1420 
   1421   // Check that the data got zero-extended into 64-bit a4.
   1422   __ sd(a6, MemOperand(a0, offsetof(T, r6)));
   1423 
   1424   // lh with positive data.
   1425   __ lh(a5, MemOperand(a0, offsetof(T, ui)));
   1426   __ sw(a5, MemOperand(a0, offsetof(T, r2)));
   1427 
   1428   // lh with negative data.
   1429   __ lh(a6, MemOperand(a0, offsetof(T, si)));
   1430   __ sw(a6, MemOperand(a0, offsetof(T, r3)));
   1431 
   1432   // lhu with negative data.
   1433   __ lhu(a7, MemOperand(a0, offsetof(T, si)));
   1434   __ sw(a7, MemOperand(a0, offsetof(T, r4)));
   1435 
   1436   // lb with negative data.
   1437   __ lb(t0, MemOperand(a0, offsetof(T, si)));
   1438   __ sw(t0, MemOperand(a0, offsetof(T, r5)));
   1439 
   1440   // // sh writes only 1/2 of word.
   1441   __ lui(t1, 0x3333);
   1442   __ ori(t1, t1, 0x3333);
   1443   __ sw(t1, MemOperand(a0, offsetof(T, r6)));
   1444   __ lhu(t1, MemOperand(a0, offsetof(T, si)));
   1445   __ sh(t1, MemOperand(a0, offsetof(T, r6)));
   1446 
   1447   __ jr(ra);
   1448   __ nop();
   1449 
   1450   CodeDesc desc;
   1451   assm.GetCode(&desc);
   1452   Handle<Code> code = isolate->factory()->NewCode(
   1453       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   1454   F3 f = FUNCTION_CAST<F3>(code->entry());
   1455   t.ui = 0x44332211;
   1456   t.si = 0x99aabbcc;
   1457   t.r1 = 0x1111111111111111;
   1458   t.r2 = 0x2222222222222222;
   1459   t.r3 = 0x3333333333333333;
   1460   t.r4 = 0x4444444444444444;
   1461   t.r5 = 0x5555555555555555;
   1462   t.r6 = 0x6666666666666666;
   1463   Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
   1464   USE(dummy);
   1465 
   1466   // Unsigned data, 32 & 64.
   1467   CHECK_EQ(static_cast<int64_t>(0x1111111144332211L), t.r1);
   1468   CHECK_EQ(static_cast<int64_t>(0x0000000000002211L), t.r2);
   1469 
   1470   // Signed data, 32 & 64.
   1471   CHECK_EQ(static_cast<int64_t>(0x33333333ffffbbccL), t.r3);
   1472   CHECK_EQ(static_cast<int64_t>(0xffffffff0000bbccL), t.r4);
   1473 
   1474   // Signed data, 32 & 64.
   1475   CHECK_EQ(static_cast<int64_t>(0x55555555ffffffccL), t.r5);
   1476   CHECK_EQ(static_cast<int64_t>(0x000000003333bbccL), t.r6);
   1477 }
   1478 
   1479 
   1480 // ----------------------mips64r6 specific tests----------------------
   1481 TEST(seleqz_selnez) {
   1482   if (kArchVariant == kMips64r6) {
   1483     CcTest::InitializeVM();
   1484     Isolate* isolate = CcTest::i_isolate();
   1485     HandleScope scope(isolate);
   1486     MacroAssembler assm(isolate, NULL, 0,
   1487                         v8::internal::CodeObjectRequired::kYes);
   1488 
   1489     typedef struct test {
   1490       int a;
   1491       int b;
   1492       int c;
   1493       int d;
   1494       double e;
   1495       double f;
   1496       double g;
   1497       double h;
   1498       float i;
   1499       float j;
   1500       float k;
   1501       float l;
   1502     } Test;
   1503 
   1504     Test test;
   1505     // Integer part of test.
   1506     __ addiu(t1, zero_reg, 1);                      // t1 = 1
   1507     __ seleqz(t3, t1, zero_reg);                    // t3 = 1
   1508     __ sw(t3, MemOperand(a0, offsetof(Test, a)));  // a = 1
   1509     __ seleqz(t2, t1, t1);                          // t2 = 0
   1510     __ sw(t2, MemOperand(a0, offsetof(Test, b)));  // b = 0
   1511     __ selnez(t3, t1, zero_reg);                    // t3 = 1;
   1512     __ sw(t3, MemOperand(a0, offsetof(Test, c)));  // c = 0
   1513     __ selnez(t3, t1, t1);                          // t3 = 1
   1514     __ sw(t3, MemOperand(a0, offsetof(Test, d)));  // d = 1
   1515     // Floating point part of test.
   1516     __ ldc1(f0, MemOperand(a0, offsetof(Test, e)) );  // src
   1517     __ ldc1(f2, MemOperand(a0, offsetof(Test, f)) );  // test
   1518     __ lwc1(f8, MemOperand(a0, offsetof(Test, i)) );  // src
   1519     __ lwc1(f10, MemOperand(a0, offsetof(Test, j)) );  // test
   1520     __ seleqz_d(f4, f0, f2);
   1521     __ selnez_d(f6, f0, f2);
   1522     __ seleqz_s(f12, f8, f10);
   1523     __ selnez_s(f14, f8, f10);
   1524     __ sdc1(f4, MemOperand(a0, offsetof(Test, g)) );  // src
   1525     __ sdc1(f6, MemOperand(a0, offsetof(Test, h)) );  // src
   1526     __ swc1(f12, MemOperand(a0, offsetof(Test, k)) );  // src
   1527     __ swc1(f14, MemOperand(a0, offsetof(Test, l)) );  // src
   1528     __ jr(ra);
   1529     __ nop();
   1530     CodeDesc desc;
   1531     assm.GetCode(&desc);
   1532     Handle<Code> code = isolate->factory()->NewCode(
   1533         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   1534     F3 f = FUNCTION_CAST<F3>(code->entry());
   1535 
   1536     (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   1537 
   1538     CHECK_EQ(test.a, 1);
   1539     CHECK_EQ(test.b, 0);
   1540     CHECK_EQ(test.c, 0);
   1541     CHECK_EQ(test.d, 1);
   1542 
   1543     const int test_size = 3;
   1544     const int input_size = 5;
   1545 
   1546     double inputs_D[input_size] = {0.0, 65.2, -70.32,
   1547       18446744073709551621.0, -18446744073709551621.0};
   1548     double outputs_D[input_size] = {0.0, 65.2, -70.32,
   1549       18446744073709551621.0, -18446744073709551621.0};
   1550     double tests_D[test_size*2] = {2.8, 2.9, -2.8, -2.9,
   1551       18446744073709551616.0, 18446744073709555712.0};
   1552     float inputs_S[input_size] = {0.0, 65.2, -70.32,
   1553       18446744073709551621.0, -18446744073709551621.0};
   1554     float outputs_S[input_size] = {0.0, 65.2, -70.32,
   1555       18446744073709551621.0, -18446744073709551621.0};
   1556     float tests_S[test_size*2] = {2.9, 2.8, -2.9, -2.8,
   1557       18446744073709551616.0, 18446746272732807168.0};
   1558     for (int j=0; j < test_size; j+=2) {
   1559       for (int i=0; i < input_size; i++) {
   1560         test.e = inputs_D[i];
   1561         test.f = tests_D[j];
   1562         test.i = inputs_S[i];
   1563         test.j = tests_S[j];
   1564         (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   1565         CHECK_EQ(test.g, outputs_D[i]);
   1566         CHECK_EQ(test.h, 0);
   1567         CHECK_EQ(test.k, outputs_S[i]);
   1568         CHECK_EQ(test.l, 0);
   1569 
   1570         test.f = tests_D[j+1];
   1571         test.j = tests_S[j+1];
   1572         (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   1573         CHECK_EQ(test.g, 0);
   1574         CHECK_EQ(test.h, outputs_D[i]);
   1575         CHECK_EQ(test.k, 0);
   1576         CHECK_EQ(test.l, outputs_S[i]);
   1577       }
   1578     }
   1579   }
   1580 }
   1581 
   1582 
   1583 
   1584 TEST(min_max) {
   1585   if (kArchVariant == kMips64r6) {
   1586     CcTest::InitializeVM();
   1587     Isolate* isolate = CcTest::i_isolate();
   1588     HandleScope scope(isolate);
   1589     MacroAssembler assm(isolate, NULL, 0,
   1590                         v8::internal::CodeObjectRequired::kYes);
   1591 
   1592     typedef struct test_float {
   1593       double a;
   1594       double b;
   1595       double c;
   1596       double d;
   1597       float e;
   1598       float f;
   1599       float g;
   1600       float h;
   1601     } TestFloat;
   1602 
   1603     TestFloat test;
   1604     const double double_nan = std::numeric_limits<double>::quiet_NaN();
   1605     const float  float_nan = std::numeric_limits<float>::quiet_NaN();
   1606     const int kTableLength = 5;
   1607     double inputsa[kTableLength] = {2.0, 3.0, double_nan, 3.0, double_nan};
   1608     double inputsb[kTableLength] = {3.0, 2.0, 3.0, double_nan, double_nan};
   1609     double outputsdmin[kTableLength] = {2.0, 2.0, 3.0, 3.0, double_nan};
   1610     double outputsdmax[kTableLength] = {3.0, 3.0, 3.0, 3.0, double_nan};
   1611 
   1612     float inputse[kTableLength] = {2.0, 3.0, float_nan, 3.0, float_nan};
   1613     float inputsf[kTableLength] = {3.0, 2.0, 3.0, float_nan, float_nan};
   1614     float outputsfmin[kTableLength] = {2.0, 2.0, 3.0, 3.0, float_nan};
   1615     float outputsfmax[kTableLength] = {3.0, 3.0, 3.0, 3.0, float_nan};
   1616 
   1617     __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
   1618     __ ldc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
   1619     __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, e)));
   1620     __ lwc1(f6, MemOperand(a0, offsetof(TestFloat, f)));
   1621     __ min_d(f10, f4, f8);
   1622     __ max_d(f12, f4, f8);
   1623     __ min_s(f14, f2, f6);
   1624     __ max_s(f16, f2, f6);
   1625     __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, c)));
   1626     __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, d)));
   1627     __ swc1(f14, MemOperand(a0, offsetof(TestFloat, g)));
   1628     __ swc1(f16, MemOperand(a0, offsetof(TestFloat, h)));
   1629     __ jr(ra);
   1630     __ nop();
   1631 
   1632     CodeDesc desc;
   1633     assm.GetCode(&desc);
   1634     Handle<Code> code = isolate->factory()->NewCode(
   1635         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   1636     F3 f = FUNCTION_CAST<F3>(code->entry());
   1637     for (int i = 0; i < kTableLength; i++) {
   1638       test.a = inputsa[i];
   1639       test.b = inputsb[i];
   1640       test.e = inputse[i];
   1641       test.f = inputsf[i];
   1642 
   1643       (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   1644 
   1645       if (i < kTableLength - 1) {
   1646         CHECK_EQ(test.c, outputsdmin[i]);
   1647         CHECK_EQ(test.d, outputsdmax[i]);
   1648         CHECK_EQ(test.g, outputsfmin[i]);
   1649         CHECK_EQ(test.h, outputsfmax[i]);
   1650       } else {
   1651         CHECK(std::isnan(test.c));
   1652         CHECK(std::isnan(test.d));
   1653         CHECK(std::isnan(test.g));
   1654         CHECK(std::isnan(test.h));
   1655       }
   1656     }
   1657   }
   1658 }
   1659 
   1660 
   1661 TEST(rint_d)  {
   1662   if (kArchVariant == kMips64r6) {
   1663     const int kTableLength = 30;
   1664     CcTest::InitializeVM();
   1665     Isolate* isolate = CcTest::i_isolate();
   1666     HandleScope scope(isolate);
   1667     MacroAssembler assm(isolate, NULL, 0,
   1668                         v8::internal::CodeObjectRequired::kYes);
   1669 
   1670     typedef struct test_float {
   1671       double a;
   1672       double b;
   1673       int fcsr;
   1674     }TestFloat;
   1675 
   1676     TestFloat test;
   1677     double inputs[kTableLength] = {18446744073709551617.0,
   1678       4503599627370496.0, -4503599627370496.0,
   1679       1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
   1680       1.7976931348623157E+308, 6.27463370218383111104242366943E-307,
   1681       309485009821345068724781056.89,
   1682       2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
   1683       -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
   1684       37778931862957161709568.0, 37778931862957161709569.0,
   1685       37778931862957161709580.0, 37778931862957161709581.0,
   1686       37778931862957161709582.0, 37778931862957161709583.0,
   1687       37778931862957161709584.0, 37778931862957161709585.0,
   1688       37778931862957161709586.0, 37778931862957161709587.0};
   1689     double outputs_RN[kTableLength] = {18446744073709551617.0,
   1690       4503599627370496.0, -4503599627370496.0,
   1691       1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
   1692       1.7976931348623157E308, 0,
   1693       309485009821345068724781057.0,
   1694       2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
   1695       -2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
   1696       37778931862957161709568.0, 37778931862957161709569.0,
   1697       37778931862957161709580.0, 37778931862957161709581.0,
   1698       37778931862957161709582.0, 37778931862957161709583.0,
   1699       37778931862957161709584.0, 37778931862957161709585.0,
   1700       37778931862957161709586.0, 37778931862957161709587.0};
   1701     double outputs_RZ[kTableLength] = {18446744073709551617.0,
   1702       4503599627370496.0, -4503599627370496.0,
   1703       1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
   1704       1.7976931348623157E308, 0,
   1705       309485009821345068724781057.0,
   1706       2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
   1707       -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
   1708       37778931862957161709568.0, 37778931862957161709569.0,
   1709       37778931862957161709580.0, 37778931862957161709581.0,
   1710       37778931862957161709582.0, 37778931862957161709583.0,
   1711       37778931862957161709584.0, 37778931862957161709585.0,
   1712       37778931862957161709586.0, 37778931862957161709587.0};
   1713     double outputs_RP[kTableLength] = {18446744073709551617.0,
   1714       4503599627370496.0, -4503599627370496.0,
   1715       1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
   1716       1.7976931348623157E308, 1,
   1717       309485009821345068724781057.0,
   1718       3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
   1719       -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
   1720       37778931862957161709568.0, 37778931862957161709569.0,
   1721       37778931862957161709580.0, 37778931862957161709581.0,
   1722       37778931862957161709582.0, 37778931862957161709583.0,
   1723       37778931862957161709584.0, 37778931862957161709585.0,
   1724       37778931862957161709586.0, 37778931862957161709587.0};
   1725     double outputs_RM[kTableLength] = {18446744073709551617.0,
   1726       4503599627370496.0, -4503599627370496.0,
   1727       1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
   1728       1.7976931348623157E308, 0,
   1729       309485009821345068724781057.0,
   1730       2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
   1731       -3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
   1732       37778931862957161709568.0, 37778931862957161709569.0,
   1733       37778931862957161709580.0, 37778931862957161709581.0,
   1734       37778931862957161709582.0, 37778931862957161709583.0,
   1735       37778931862957161709584.0, 37778931862957161709585.0,
   1736       37778931862957161709586.0, 37778931862957161709587.0};
   1737     int fcsr_inputs[4] =
   1738       {kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf};
   1739     double* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM};
   1740     __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)) );
   1741     __ lw(t0, MemOperand(a0, offsetof(TestFloat, fcsr)) );
   1742     __ ctc1(t0, FCSR);
   1743     __ rint_d(f8, f4);
   1744     __ sdc1(f8, MemOperand(a0, offsetof(TestFloat, b)) );
   1745     __ jr(ra);
   1746     __ nop();
   1747 
   1748     CodeDesc desc;
   1749     assm.GetCode(&desc);
   1750     Handle<Code> code = isolate->factory()->NewCode(
   1751         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   1752     F3 f = FUNCTION_CAST<F3>(code->entry());
   1753 
   1754     for (int j = 0; j < 4; j++) {
   1755       test.fcsr = fcsr_inputs[j];
   1756       for (int i = 0; i < kTableLength; i++) {
   1757         test.a = inputs[i];
   1758         (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   1759         CHECK_EQ(test.b, outputs[j][i]);
   1760       }
   1761     }
   1762   }
   1763 }
   1764 
   1765 
   1766 TEST(sel) {
   1767   if (kArchVariant == kMips64r6) {
   1768     CcTest::InitializeVM();
   1769     Isolate* isolate = CcTest::i_isolate();
   1770     HandleScope scope(isolate);
   1771     MacroAssembler assm(isolate, NULL, 0,
   1772                         v8::internal::CodeObjectRequired::kYes);
   1773 
   1774     typedef struct test {
   1775       double dd;
   1776       double ds;
   1777       double dt;
   1778       float fd;
   1779       float fs;
   1780       float ft;
   1781     } Test;
   1782 
   1783     Test test;
   1784     __ ldc1(f0, MemOperand(a0, offsetof(Test, dd)) );  // test
   1785     __ ldc1(f2, MemOperand(a0, offsetof(Test, ds)) );  // src1
   1786     __ ldc1(f4, MemOperand(a0, offsetof(Test, dt)) );  // src2
   1787     __ lwc1(f6, MemOperand(a0, offsetof(Test, fd)) );  // test
   1788     __ lwc1(f8, MemOperand(a0, offsetof(Test, fs)) );  // src1
   1789     __ lwc1(f10, MemOperand(a0, offsetof(Test, ft)) );  // src2
   1790     __ sel_d(f0, f2, f4);
   1791     __ sel_s(f6, f8, f10);
   1792     __ sdc1(f0, MemOperand(a0, offsetof(Test, dd)) );
   1793     __ swc1(f6, MemOperand(a0, offsetof(Test, fd)) );
   1794     __ jr(ra);
   1795     __ nop();
   1796     CodeDesc desc;
   1797     assm.GetCode(&desc);
   1798     Handle<Code> code = isolate->factory()->NewCode(
   1799         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   1800     F3 f = FUNCTION_CAST<F3>(code->entry());
   1801 
   1802     const int test_size = 3;
   1803     const int input_size = 5;
   1804 
   1805     double inputs_dt[input_size] = {0.0, 65.2, -70.32,
   1806       18446744073709551621.0, -18446744073709551621.0};
   1807     double inputs_ds[input_size] = {0.1, 69.88, -91.325,
   1808       18446744073709551625.0, -18446744073709551625.0};
   1809     float inputs_ft[input_size] = {0.0, 65.2, -70.32,
   1810       18446744073709551621.0, -18446744073709551621.0};
   1811     float inputs_fs[input_size] = {0.1, 69.88, -91.325,
   1812       18446744073709551625.0, -18446744073709551625.0};
   1813     double tests_D[test_size*2] = {2.8, 2.9, -2.8, -2.9,
   1814       18446744073709551616.0, 18446744073709555712.0};
   1815     float tests_S[test_size*2] = {2.9, 2.8, -2.9, -2.8,
   1816       18446744073709551616.0, 18446746272732807168.0};
   1817     for (int j=0; j < test_size; j+=2) {
   1818       for (int i=0; i < input_size; i++) {
   1819         test.dt = inputs_dt[i];
   1820         test.dd = tests_D[j];
   1821         test.ds = inputs_ds[i];
   1822         test.ft = inputs_ft[i];
   1823         test.fd = tests_S[j];
   1824         test.fs = inputs_fs[i];
   1825         (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   1826         CHECK_EQ(test.dd, inputs_ds[i]);
   1827         CHECK_EQ(test.fd, inputs_fs[i]);
   1828 
   1829         test.dd = tests_D[j+1];
   1830         test.fd = tests_S[j+1];
   1831         (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   1832         CHECK_EQ(test.dd, inputs_dt[i]);
   1833         CHECK_EQ(test.fd, inputs_ft[i]);
   1834       }
   1835     }
   1836   }
   1837 }
   1838 
   1839 
   1840 TEST(rint_s)  {
   1841   if (kArchVariant == kMips64r6) {
   1842     const int kTableLength = 30;
   1843     CcTest::InitializeVM();
   1844     Isolate* isolate = CcTest::i_isolate();
   1845     HandleScope scope(isolate);
   1846     MacroAssembler assm(isolate, NULL, 0,
   1847                         v8::internal::CodeObjectRequired::kYes);
   1848 
   1849     typedef struct test_float {
   1850       float a;
   1851       float b;
   1852       int fcsr;
   1853     }TestFloat;
   1854 
   1855     TestFloat test;
   1856     float inputs[kTableLength] = {18446744073709551617.0,
   1857       4503599627370496.0, -4503599627370496.0,
   1858       1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
   1859       1.7976931348623157E+38, 6.27463370218383111104242366943E-37,
   1860       309485009821345068724781056.89,
   1861       2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
   1862       -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
   1863       37778931862957161709568.0, 37778931862957161709569.0,
   1864       37778931862957161709580.0, 37778931862957161709581.0,
   1865       37778931862957161709582.0, 37778931862957161709583.0,
   1866       37778931862957161709584.0, 37778931862957161709585.0,
   1867       37778931862957161709586.0, 37778931862957161709587.0};
   1868     float outputs_RN[kTableLength] = {18446744073709551617.0,
   1869       4503599627370496.0, -4503599627370496.0,
   1870       1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
   1871       1.7976931348623157E38, 0,
   1872       309485009821345068724781057.0,
   1873       2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
   1874       -2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
   1875       37778931862957161709568.0, 37778931862957161709569.0,
   1876       37778931862957161709580.0, 37778931862957161709581.0,
   1877       37778931862957161709582.0, 37778931862957161709583.0,
   1878       37778931862957161709584.0, 37778931862957161709585.0,
   1879       37778931862957161709586.0, 37778931862957161709587.0};
   1880     float outputs_RZ[kTableLength] = {18446744073709551617.0,
   1881       4503599627370496.0, -4503599627370496.0,
   1882       1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
   1883       1.7976931348623157E38, 0,
   1884       309485009821345068724781057.0,
   1885       2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
   1886       -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
   1887       37778931862957161709568.0, 37778931862957161709569.0,
   1888       37778931862957161709580.0, 37778931862957161709581.0,
   1889       37778931862957161709582.0, 37778931862957161709583.0,
   1890       37778931862957161709584.0, 37778931862957161709585.0,
   1891       37778931862957161709586.0, 37778931862957161709587.0};
   1892     float outputs_RP[kTableLength] = {18446744073709551617.0,
   1893       4503599627370496.0, -4503599627370496.0,
   1894       1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
   1895       1.7976931348623157E38, 1,
   1896       309485009821345068724781057.0,
   1897       3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
   1898       -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
   1899       37778931862957161709568.0, 37778931862957161709569.0,
   1900       37778931862957161709580.0, 37778931862957161709581.0,
   1901       37778931862957161709582.0, 37778931862957161709583.0,
   1902       37778931862957161709584.0, 37778931862957161709585.0,
   1903       37778931862957161709586.0, 37778931862957161709587.0};
   1904     float outputs_RM[kTableLength] = {18446744073709551617.0,
   1905       4503599627370496.0, -4503599627370496.0,
   1906       1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
   1907       1.7976931348623157E38, 0,
   1908       309485009821345068724781057.0,
   1909       2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
   1910       -3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
   1911       37778931862957161709568.0, 37778931862957161709569.0,
   1912       37778931862957161709580.0, 37778931862957161709581.0,
   1913       37778931862957161709582.0, 37778931862957161709583.0,
   1914       37778931862957161709584.0, 37778931862957161709585.0,
   1915       37778931862957161709586.0, 37778931862957161709587.0};
   1916     int fcsr_inputs[4] =
   1917       {kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf};
   1918     float* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM};
   1919     __ lwc1(f4, MemOperand(a0, offsetof(TestFloat, a)) );
   1920     __ lw(t0, MemOperand(a0, offsetof(TestFloat, fcsr)) );
   1921     __ cfc1(t1, FCSR);
   1922     __ ctc1(t0, FCSR);
   1923     __ rint_s(f8, f4);
   1924     __ swc1(f8, MemOperand(a0, offsetof(TestFloat, b)) );
   1925     __ ctc1(t1, FCSR);
   1926     __ jr(ra);
   1927     __ nop();
   1928 
   1929     CodeDesc desc;
   1930     assm.GetCode(&desc);
   1931     Handle<Code> code = isolate->factory()->NewCode(
   1932         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   1933     F3 f = FUNCTION_CAST<F3>(code->entry());
   1934 
   1935     for (int j = 0; j < 4; j++) {
   1936       test.fcsr = fcsr_inputs[j];
   1937       for (int i = 0; i < kTableLength; i++) {
   1938         test.a = inputs[i];
   1939         (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   1940         CHECK_EQ(test.b, outputs[j][i]);
   1941       }
   1942     }
   1943   }
   1944 }
   1945 
   1946 
   1947 TEST(mina_maxa) {
   1948   if (kArchVariant == kMips64r6) {
   1949     const int kTableLength = 15;
   1950     CcTest::InitializeVM();
   1951     Isolate* isolate = CcTest::i_isolate();
   1952     HandleScope scope(isolate);
   1953     MacroAssembler assm(isolate, NULL, 0,
   1954                         v8::internal::CodeObjectRequired::kYes);
   1955     const double double_nan = std::numeric_limits<double>::quiet_NaN();
   1956     const float  float_nan = std::numeric_limits<float>::quiet_NaN();
   1957 
   1958     typedef struct test_float {
   1959       double a;
   1960       double b;
   1961       double resd;
   1962       double resd1;
   1963       float c;
   1964       float d;
   1965       float resf;
   1966       float resf1;
   1967     }TestFloat;
   1968 
   1969     TestFloat test;
   1970     double inputsa[kTableLength] = {
   1971       5.3, 4.8, 6.1, 9.8, 9.8, 9.8, -10.0, -8.9,
   1972       -9.8, -10.0, -8.9, -9.8, double_nan, 3.0, double_nan
   1973     };
   1974     double inputsb[kTableLength] = {
   1975       4.8, 5.3, 6.1, -10.0, -8.9, -9.8, 9.8, 9.8,
   1976       9.8, -9.8, -11.2, -9.8, 3.0, double_nan, double_nan
   1977     };
   1978     double resd[kTableLength] = {
   1979       4.8, 4.8, 6.1, 9.8, -8.9, -9.8, 9.8, -8.9,
   1980       -9.8, -9.8, -8.9, -9.8, 3.0, 3.0, double_nan
   1981     };
   1982     double resd1[kTableLength] = {
   1983       5.3, 5.3, 6.1, -10.0, 9.8, 9.8, -10.0, 9.8,
   1984       9.8, -10.0, -11.2, -9.8, 3.0, 3.0, double_nan
   1985     };
   1986     float inputsc[kTableLength] = {
   1987       5.3, 4.8, 6.1, 9.8, 9.8, 9.8, -10.0, -8.9,
   1988       -9.8, -10.0, -8.9, -9.8, float_nan, 3.0, float_nan
   1989     };
   1990     float inputsd[kTableLength] = {
   1991       4.8, 5.3, 6.1, -10.0, -8.9, -9.8, 9.8, 9.8,
   1992       9.8, -9.8, -11.2, -9.8, 3.0, float_nan, float_nan
   1993     };
   1994     float resf[kTableLength] = {
   1995       4.8, 4.8, 6.1, 9.8, -8.9, -9.8, 9.8, -8.9,
   1996       -9.8, -9.8, -8.9, -9.8, 3.0, 3.0, float_nan
   1997     };
   1998     float resf1[kTableLength] = {
   1999       5.3, 5.3, 6.1, -10.0, 9.8, 9.8, -10.0, 9.8,
   2000       9.8, -10.0, -11.2, -9.8, 3.0, 3.0, float_nan
   2001     };
   2002 
   2003     __ ldc1(f2, MemOperand(a0, offsetof(TestFloat, a)) );
   2004     __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, b)) );
   2005     __ lwc1(f8, MemOperand(a0, offsetof(TestFloat, c)) );
   2006     __ lwc1(f10, MemOperand(a0, offsetof(TestFloat, d)) );
   2007     __ mina_d(f6, f2, f4);
   2008     __ mina_s(f12, f8, f10);
   2009     __ maxa_d(f14, f2, f4);
   2010     __ maxa_s(f16, f8, f10);
   2011     __ swc1(f12, MemOperand(a0, offsetof(TestFloat, resf)) );
   2012     __ sdc1(f6, MemOperand(a0, offsetof(TestFloat, resd)) );
   2013     __ swc1(f16, MemOperand(a0, offsetof(TestFloat, resf1)) );
   2014     __ sdc1(f14, MemOperand(a0, offsetof(TestFloat, resd1)) );
   2015     __ jr(ra);
   2016     __ nop();
   2017 
   2018     CodeDesc desc;
   2019     assm.GetCode(&desc);
   2020     Handle<Code> code = isolate->factory()->NewCode(
   2021         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   2022     F3 f = FUNCTION_CAST<F3>(code->entry());
   2023     for (int i = 0; i < kTableLength; i++) {
   2024       test.a = inputsa[i];
   2025       test.b = inputsb[i];
   2026       test.c = inputsc[i];
   2027       test.d = inputsd[i];
   2028       (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   2029 
   2030       if (i < kTableLength - 1) {
   2031         CHECK_EQ(test.resd, resd[i]);
   2032         CHECK_EQ(test.resf, resf[i]);
   2033         CHECK_EQ(test.resd1, resd1[i]);
   2034         CHECK_EQ(test.resf1, resf1[i]);
   2035       } else {
   2036         CHECK(std::isnan(test.resd));
   2037         CHECK(std::isnan(test.resf));
   2038         CHECK(std::isnan(test.resd1));
   2039         CHECK(std::isnan(test.resf1));
   2040       }
   2041     }
   2042   }
   2043 }
   2044 
   2045 
   2046 
   2047 // ----------------------mips64r2 specific tests----------------------
   2048 TEST(trunc_l) {
   2049   if (kArchVariant == kMips64r2) {
   2050     CcTest::InitializeVM();
   2051     Isolate* isolate = CcTest::i_isolate();
   2052     HandleScope scope(isolate);
   2053     MacroAssembler assm(isolate, NULL, 0,
   2054                         v8::internal::CodeObjectRequired::kYes);
   2055     const double dFPU64InvalidResult = static_cast<double>(kFPU64InvalidResult);
   2056     typedef struct test_float {
   2057       uint32_t isNaN2008;
   2058       double a;
   2059       float b;
   2060       int64_t c;  // a trunc result
   2061       int64_t d;  // b trunc result
   2062     }Test;
   2063     const int kTableLength = 15;
   2064     double inputs_D[kTableLength] = {
   2065         2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
   2066         -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
   2067         2147483648.0,
   2068         std::numeric_limits<double>::quiet_NaN(),
   2069         std::numeric_limits<double>::infinity()
   2070         };
   2071     float inputs_S[kTableLength] = {
   2072         2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
   2073         -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
   2074         2147483648.0,
   2075         std::numeric_limits<float>::quiet_NaN(),
   2076         std::numeric_limits<float>::infinity()
   2077         };
   2078     double outputs[kTableLength] = {
   2079         2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
   2080         -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
   2081         2147483648.0, dFPU64InvalidResult,
   2082         dFPU64InvalidResult};
   2083     double outputsNaN2008[kTableLength] = {
   2084         2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
   2085         -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
   2086         2147483648.0, dFPU64InvalidResult,
   2087         dFPU64InvalidResult};
   2088 
   2089     __ cfc1(t1, FCSR);
   2090     __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
   2091     __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
   2092     __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
   2093     __ trunc_l_d(f8, f4);
   2094     __ trunc_l_s(f10, f6);
   2095     __ sdc1(f8, MemOperand(a0, offsetof(Test, c)) );
   2096     __ sdc1(f10, MemOperand(a0, offsetof(Test, d)) );
   2097     __ jr(ra);
   2098     __ nop();
   2099     Test test;
   2100     CodeDesc desc;
   2101     assm.GetCode(&desc);
   2102     Handle<Code> code = isolate->factory()->NewCode(
   2103         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   2104     F3 f = FUNCTION_CAST<F3>(code->entry());
   2105     for (int i = 0; i < kTableLength; i++) {
   2106       test.a = inputs_D[i];
   2107       test.b = inputs_S[i];
   2108       (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   2109       if ((test.isNaN2008 & kFCSRNaN2008FlagMask) &&
   2110               kArchVariant == kMips64r6) {
   2111         CHECK_EQ(test.c, outputsNaN2008[i]);
   2112       } else {
   2113         CHECK_EQ(test.c, outputs[i]);
   2114       }
   2115       CHECK_EQ(test.d, test.c);
   2116     }
   2117   }
   2118 }
   2119 
   2120 
   2121 TEST(movz_movn) {
   2122   if (kArchVariant == kMips64r2) {
   2123     const int kTableLength = 4;
   2124     CcTest::InitializeVM();
   2125     Isolate* isolate = CcTest::i_isolate();
   2126     HandleScope scope(isolate);
   2127     MacroAssembler assm(isolate, NULL, 0,
   2128                         v8::internal::CodeObjectRequired::kYes);
   2129 
   2130     typedef struct test_float {
   2131       int64_t rt;
   2132       double a;
   2133       double b;
   2134       double bold;
   2135       double b1;
   2136       double bold1;
   2137       float c;
   2138       float d;
   2139       float dold;
   2140       float d1;
   2141       float dold1;
   2142     }TestFloat;
   2143 
   2144     TestFloat test;
   2145     double inputs_D[kTableLength] = {
   2146       5.3, -5.3, 5.3, -2.9
   2147     };
   2148     double inputs_S[kTableLength] = {
   2149       4.8, 4.8, -4.8, -0.29
   2150     };
   2151 
   2152     float outputs_S[kTableLength] = {
   2153       4.8, 4.8, -4.8, -0.29
   2154     };
   2155     double outputs_D[kTableLength] = {
   2156       5.3, -5.3, 5.3, -2.9
   2157     };
   2158 
   2159     __ ldc1(f2, MemOperand(a0, offsetof(TestFloat, a)) );
   2160     __ lwc1(f6, MemOperand(a0, offsetof(TestFloat, c)) );
   2161     __ lw(t0, MemOperand(a0, offsetof(TestFloat, rt)) );
   2162     __ Move(f12, 0.0);
   2163     __ Move(f10, 0.0);
   2164     __ Move(f16, 0.0);
   2165     __ Move(f14, 0.0);
   2166     __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, bold)) );
   2167     __ swc1(f10, MemOperand(a0, offsetof(TestFloat, dold)) );
   2168     __ sdc1(f16, MemOperand(a0, offsetof(TestFloat, bold1)) );
   2169     __ swc1(f14, MemOperand(a0, offsetof(TestFloat, dold1)) );
   2170     __ movz_s(f10, f6, t0);
   2171     __ movz_d(f12, f2, t0);
   2172     __ movn_s(f14, f6, t0);
   2173     __ movn_d(f16, f2, t0);
   2174     __ swc1(f10, MemOperand(a0, offsetof(TestFloat, d)) );
   2175     __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, b)) );
   2176     __ swc1(f14, MemOperand(a0, offsetof(TestFloat, d1)) );
   2177     __ sdc1(f16, MemOperand(a0, offsetof(TestFloat, b1)) );
   2178     __ jr(ra);
   2179     __ nop();
   2180 
   2181     CodeDesc desc;
   2182     assm.GetCode(&desc);
   2183     Handle<Code> code = isolate->factory()->NewCode(
   2184         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   2185     F3 f = FUNCTION_CAST<F3>(code->entry());
   2186     for (int i = 0; i < kTableLength; i++) {
   2187       test.a = inputs_D[i];
   2188       test.c = inputs_S[i];
   2189 
   2190       test.rt = 1;
   2191       (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   2192       CHECK_EQ(test.b, test.bold);
   2193       CHECK_EQ(test.d, test.dold);
   2194       CHECK_EQ(test.b1, outputs_D[i]);
   2195       CHECK_EQ(test.d1, outputs_S[i]);
   2196 
   2197       test.rt = 0;
   2198       (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   2199       CHECK_EQ(test.b, outputs_D[i]);
   2200       CHECK_EQ(test.d, outputs_S[i]);
   2201       CHECK_EQ(test.b1, test.bold1);
   2202       CHECK_EQ(test.d1, test.dold1);
   2203     }
   2204   }
   2205 }
   2206 
   2207 
   2208 TEST(movt_movd) {
   2209   if (kArchVariant == kMips64r2) {
   2210     const int kTableLength = 4;
   2211     CcTest::InitializeVM();
   2212     Isolate* isolate = CcTest::i_isolate();
   2213     typedef struct test_float {
   2214       double srcd;
   2215       double dstd;
   2216       double dstdold;
   2217       double dstd1;
   2218       double dstdold1;
   2219       float srcf;
   2220       float dstf;
   2221       float dstfold;
   2222       float dstf1;
   2223       float dstfold1;
   2224       int32_t cc;
   2225       int32_t fcsr;
   2226     }TestFloat;
   2227 
   2228     TestFloat test;
   2229     double inputs_D[kTableLength] = {
   2230       5.3, -5.3, 20.8, -2.9
   2231     };
   2232     double inputs_S[kTableLength] = {
   2233       4.88, 4.8, -4.8, -0.29
   2234     };
   2235 
   2236     float outputs_S[kTableLength] = {
   2237       4.88, 4.8, -4.8, -0.29
   2238     };
   2239     double outputs_D[kTableLength] = {
   2240       5.3, -5.3, 20.8, -2.9
   2241     };
   2242     int condition_flags[8] = {0, 1, 2, 3, 4, 5, 6, 7};
   2243 
   2244     for (int i = 0; i < kTableLength; i++) {
   2245       test.srcd = inputs_D[i];
   2246       test.srcf = inputs_S[i];
   2247 
   2248       for (int j = 0; j< 8; j++) {
   2249         test.cc = condition_flags[j];
   2250         if (test.cc == 0) {
   2251           test.fcsr = 1 << 23;
   2252         } else {
   2253           test.fcsr = 1 << (24+condition_flags[j]);
   2254         }
   2255         HandleScope scope(isolate);
   2256         MacroAssembler assm(isolate, NULL, 0,
   2257                             v8::internal::CodeObjectRequired::kYes);
   2258         __ ldc1(f2, MemOperand(a0, offsetof(TestFloat, srcd)) );
   2259         __ lwc1(f4, MemOperand(a0, offsetof(TestFloat, srcf)) );
   2260         __ lw(t1, MemOperand(a0, offsetof(TestFloat, fcsr)) );
   2261         __ cfc1(t0, FCSR);
   2262         __ ctc1(t1, FCSR);
   2263         __ li(t2, 0x0);
   2264         __ mtc1(t2, f12);
   2265         __ mtc1(t2, f10);
   2266         __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstdold)) );
   2267         __ swc1(f12, MemOperand(a0, offsetof(TestFloat, dstfold)) );
   2268         __ movt_s(f12, f4, test.cc);
   2269         __ movt_d(f10, f2, test.cc);
   2270         __ swc1(f12, MemOperand(a0, offsetof(TestFloat, dstf)) );
   2271         __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstd)) );
   2272         __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstdold1)) );
   2273         __ swc1(f12, MemOperand(a0, offsetof(TestFloat, dstfold1)) );
   2274         __ movf_s(f12, f4, test.cc);
   2275         __ movf_d(f10, f2, test.cc);
   2276         __ swc1(f12, MemOperand(a0, offsetof(TestFloat, dstf1)) );
   2277         __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstd1)) );
   2278         __ ctc1(t0, FCSR);
   2279         __ jr(ra);
   2280         __ nop();
   2281 
   2282         CodeDesc desc;
   2283         assm.GetCode(&desc);
   2284         Handle<Code> code = isolate->factory()->NewCode(
   2285             desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   2286         F3 f = FUNCTION_CAST<F3>(code->entry());
   2287 
   2288         (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   2289         CHECK_EQ(test.dstf, outputs_S[i]);
   2290         CHECK_EQ(test.dstd, outputs_D[i]);
   2291         CHECK_EQ(test.dstf1, test.dstfold1);
   2292         CHECK_EQ(test.dstd1, test.dstdold1);
   2293         test.fcsr = 0;
   2294         (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   2295         CHECK_EQ(test.dstf, test.dstfold);
   2296         CHECK_EQ(test.dstd, test.dstdold);
   2297         CHECK_EQ(test.dstf1, outputs_S[i]);
   2298         CHECK_EQ(test.dstd1, outputs_D[i]);
   2299       }
   2300     }
   2301   }
   2302 }
   2303 
   2304 
   2305 
   2306 // ----------------------tests for all archs--------------------------
   2307 TEST(cvt_w_d) {
   2308   CcTest::InitializeVM();
   2309   Isolate* isolate = CcTest::i_isolate();
   2310   HandleScope scope(isolate);
   2311   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   2312 
   2313   typedef struct test_float {
   2314     double a;
   2315     int32_t b;
   2316     int fcsr;
   2317   }Test;
   2318   const int kTableLength = 24;
   2319   double inputs[kTableLength] = {
   2320       2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
   2321       -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
   2322       2147483637.0, 2147483638.0, 2147483639.0,
   2323       2147483640.0, 2147483641.0, 2147483642.0,
   2324       2147483643.0, 2147483644.0, 2147483645.0,
   2325       2147483646.0, 2147483647.0, 2147483653.0
   2326       };
   2327   double outputs_RN[kTableLength] = {
   2328       2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
   2329       -2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
   2330       2147483637.0, 2147483638.0, 2147483639.0,
   2331       2147483640.0, 2147483641.0, 2147483642.0,
   2332       2147483643.0, 2147483644.0, 2147483645.0,
   2333       2147483646.0, 2147483647.0, kFPUInvalidResult};
   2334   double outputs_RZ[kTableLength] = {
   2335       2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
   2336       -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
   2337       2147483637.0, 2147483638.0, 2147483639.0,
   2338       2147483640.0, 2147483641.0, 2147483642.0,
   2339       2147483643.0, 2147483644.0, 2147483645.0,
   2340       2147483646.0, 2147483647.0, kFPUInvalidResult};
   2341   double outputs_RP[kTableLength] = {
   2342       3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
   2343       -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
   2344       2147483637.0, 2147483638.0, 2147483639.0,
   2345       2147483640.0, 2147483641.0, 2147483642.0,
   2346       2147483643.0, 2147483644.0, 2147483645.0,
   2347       2147483646.0, 2147483647.0, kFPUInvalidResult};
   2348   double outputs_RM[kTableLength] = {
   2349       2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
   2350       -3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
   2351       2147483637.0, 2147483638.0, 2147483639.0,
   2352       2147483640.0, 2147483641.0, 2147483642.0,
   2353       2147483643.0, 2147483644.0, 2147483645.0,
   2354       2147483646.0, 2147483647.0, kFPUInvalidResult};
   2355   int fcsr_inputs[4] =
   2356       {kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf};
   2357   double* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM};
   2358   __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
   2359   __ lw(t0, MemOperand(a0, offsetof(Test, fcsr)) );
   2360   __ cfc1(t1, FCSR);
   2361   __ ctc1(t0, FCSR);
   2362   __ cvt_w_d(f8, f4);
   2363   __ swc1(f8, MemOperand(a0, offsetof(Test, b)) );
   2364   __ ctc1(t1, FCSR);
   2365   __ jr(ra);
   2366   __ nop();
   2367   Test test;
   2368   CodeDesc desc;
   2369   assm.GetCode(&desc);
   2370   Handle<Code> code = isolate->factory()->NewCode(
   2371       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   2372   F3 f = FUNCTION_CAST<F3>(code->entry());
   2373   for (int j = 0; j < 4; j++) {
   2374     test.fcsr = fcsr_inputs[j];
   2375     for (int i = 0; i < kTableLength; i++) {
   2376       test.a = inputs[i];
   2377       (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   2378       CHECK_EQ(test.b, outputs[j][i]);
   2379     }
   2380   }
   2381 }
   2382 
   2383 
   2384 TEST(trunc_w) {
   2385   CcTest::InitializeVM();
   2386   Isolate* isolate = CcTest::i_isolate();
   2387   HandleScope scope(isolate);
   2388   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   2389 
   2390   typedef struct test_float {
   2391     uint32_t isNaN2008;
   2392     double a;
   2393     float b;
   2394     int32_t c;  // a trunc result
   2395     int32_t d;  // b trunc result
   2396   }Test;
   2397   const int kTableLength = 15;
   2398   double inputs_D[kTableLength] = {
   2399       2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
   2400       -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
   2401       2147483648.0,
   2402       std::numeric_limits<double>::quiet_NaN(),
   2403       std::numeric_limits<double>::infinity()
   2404       };
   2405   float inputs_S[kTableLength] = {
   2406       2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
   2407       -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
   2408       2147483648.0,
   2409       std::numeric_limits<float>::quiet_NaN(),
   2410       std::numeric_limits<float>::infinity()
   2411       };
   2412   double outputs[kTableLength] = {
   2413       2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
   2414       -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
   2415       kFPUInvalidResult, kFPUInvalidResult,
   2416       kFPUInvalidResult};
   2417   double outputsNaN2008[kTableLength] = {
   2418       2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
   2419       -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
   2420       kFPUInvalidResult,
   2421       0,
   2422       kFPUInvalidResult};
   2423 
   2424   __ cfc1(t1, FCSR);
   2425   __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
   2426   __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
   2427   __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
   2428   __ trunc_w_d(f8, f4);
   2429   __ trunc_w_s(f10, f6);
   2430   __ swc1(f8, MemOperand(a0, offsetof(Test, c)) );
   2431   __ swc1(f10, MemOperand(a0, offsetof(Test, d)) );
   2432   __ jr(ra);
   2433   __ nop();
   2434   Test test;
   2435   CodeDesc desc;
   2436   assm.GetCode(&desc);
   2437   Handle<Code> code = isolate->factory()->NewCode(
   2438       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   2439   F3 f = FUNCTION_CAST<F3>(code->entry());
   2440   for (int i = 0; i < kTableLength; i++) {
   2441     test.a = inputs_D[i];
   2442     test.b = inputs_S[i];
   2443     (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   2444     if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) {
   2445       CHECK_EQ(test.c, outputsNaN2008[i]);
   2446     } else {
   2447       CHECK_EQ(test.c, outputs[i]);
   2448     }
   2449     CHECK_EQ(test.d, test.c);
   2450   }
   2451 }
   2452 
   2453 
   2454 TEST(round_w) {
   2455   CcTest::InitializeVM();
   2456   Isolate* isolate = CcTest::i_isolate();
   2457   HandleScope scope(isolate);
   2458   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   2459 
   2460   typedef struct test_float {
   2461     uint32_t isNaN2008;
   2462     double a;
   2463     float b;
   2464     int32_t c;  // a trunc result
   2465     int32_t d;  // b trunc result
   2466   }Test;
   2467   const int kTableLength = 15;
   2468   double inputs_D[kTableLength] = {
   2469       2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
   2470       -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
   2471       2147483648.0,
   2472       std::numeric_limits<double>::quiet_NaN(),
   2473       std::numeric_limits<double>::infinity()
   2474       };
   2475   float inputs_S[kTableLength] = {
   2476       2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
   2477       -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
   2478       2147483648.0,
   2479       std::numeric_limits<float>::quiet_NaN(),
   2480       std::numeric_limits<float>::infinity()
   2481       };
   2482   double outputs[kTableLength] = {
   2483       2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
   2484       -2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
   2485       kFPUInvalidResult, kFPUInvalidResult,
   2486       kFPUInvalidResult};
   2487   double outputsNaN2008[kTableLength] = {
   2488       2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
   2489       -2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
   2490       kFPUInvalidResult, 0,
   2491       kFPUInvalidResult};
   2492 
   2493   __ cfc1(t1, FCSR);
   2494   __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
   2495   __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
   2496   __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
   2497   __ round_w_d(f8, f4);
   2498   __ round_w_s(f10, f6);
   2499   __ swc1(f8, MemOperand(a0, offsetof(Test, c)) );
   2500   __ swc1(f10, MemOperand(a0, offsetof(Test, d)) );
   2501   __ jr(ra);
   2502   __ nop();
   2503   Test test;
   2504   CodeDesc desc;
   2505   assm.GetCode(&desc);
   2506   Handle<Code> code = isolate->factory()->NewCode(
   2507       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   2508   F3 f = FUNCTION_CAST<F3>(code->entry());
   2509   for (int i = 0; i < kTableLength; i++) {
   2510     test.a = inputs_D[i];
   2511     test.b = inputs_S[i];
   2512     (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   2513     if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) {
   2514       CHECK_EQ(test.c, outputsNaN2008[i]);
   2515     } else {
   2516       CHECK_EQ(test.c, outputs[i]);
   2517     }
   2518     CHECK_EQ(test.d, test.c);
   2519   }
   2520 }
   2521 
   2522 
   2523 TEST(round_l) {
   2524     CcTest::InitializeVM();
   2525     Isolate* isolate = CcTest::i_isolate();
   2526     HandleScope scope(isolate);
   2527     MacroAssembler assm(isolate, NULL, 0,
   2528                         v8::internal::CodeObjectRequired::kYes);
   2529     const double dFPU64InvalidResult = static_cast<double>(kFPU64InvalidResult);
   2530     typedef struct test_float {
   2531       uint32_t isNaN2008;
   2532       double a;
   2533       float b;
   2534       int64_t c;
   2535       int64_t d;
   2536     }Test;
   2537     const int kTableLength = 15;
   2538     double inputs_D[kTableLength] = {
   2539         2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
   2540         -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
   2541         2147483648.0,
   2542         std::numeric_limits<double>::quiet_NaN(),
   2543         std::numeric_limits<double>::infinity()
   2544         };
   2545     float inputs_S[kTableLength] = {
   2546         2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
   2547         -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
   2548         2147483648.0,
   2549         std::numeric_limits<float>::quiet_NaN(),
   2550         std::numeric_limits<float>::infinity()
   2551         };
   2552     double outputs[kTableLength] = {
   2553         2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
   2554         -2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
   2555         2147483648.0, dFPU64InvalidResult,
   2556         dFPU64InvalidResult};
   2557     double outputsNaN2008[kTableLength] = {
   2558         2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
   2559         -2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
   2560         2147483648.0,
   2561         0,
   2562         dFPU64InvalidResult};
   2563 
   2564     __ cfc1(t1, FCSR);
   2565     __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
   2566     __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
   2567     __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
   2568     __ round_l_d(f8, f4);
   2569     __ round_l_s(f10, f6);
   2570     __ sdc1(f8, MemOperand(a0, offsetof(Test, c)) );
   2571     __ sdc1(f10, MemOperand(a0, offsetof(Test, d)) );
   2572     __ jr(ra);
   2573     __ nop();
   2574     Test test;
   2575     CodeDesc desc;
   2576     assm.GetCode(&desc);
   2577     Handle<Code> code = isolate->factory()->NewCode(
   2578         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   2579     F3 f = FUNCTION_CAST<F3>(code->entry());
   2580     for (int i = 0; i < kTableLength; i++) {
   2581       test.a = inputs_D[i];
   2582       test.b = inputs_S[i];
   2583       (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   2584       if ((test.isNaN2008 & kFCSRNaN2008FlagMask) &&
   2585               kArchVariant == kMips64r6) {
   2586         CHECK_EQ(test.c, outputsNaN2008[i]);
   2587       } else {
   2588         CHECK_EQ(test.c, outputs[i]);
   2589       }
   2590       CHECK_EQ(test.d, test.c);
   2591     }
   2592 }
   2593 
   2594 
   2595 TEST(sub) {
   2596   const int kTableLength = 12;
   2597   CcTest::InitializeVM();
   2598   Isolate* isolate = CcTest::i_isolate();
   2599   HandleScope scope(isolate);
   2600   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   2601 
   2602   typedef struct test_float {
   2603     float a;
   2604     float b;
   2605     float resultS;
   2606     double c;
   2607     double d;
   2608     double resultD;
   2609   }TestFloat;
   2610 
   2611   TestFloat test;
   2612   double inputfs_D[kTableLength] = {
   2613     5.3, 4.8, 2.9, -5.3, -4.8, -2.9,
   2614     5.3, 4.8, 2.9, -5.3, -4.8, -2.9
   2615   };
   2616   double inputft_D[kTableLength] = {
   2617     4.8, 5.3, 2.9, 4.8, 5.3, 2.9,
   2618     -4.8, -5.3, -2.9, -4.8, -5.3, -2.9
   2619   };
   2620   double outputs_D[kTableLength] = {
   2621     0.5, -0.5, 0.0, -10.1, -10.1, -5.8,
   2622     10.1, 10.1, 5.8, -0.5, 0.5, 0.0
   2623   };
   2624   float inputfs_S[kTableLength] = {
   2625     5.3, 4.8, 2.9, -5.3, -4.8, -2.9,
   2626     5.3, 4.8, 2.9, -5.3, -4.8, -2.9
   2627   };
   2628   float inputft_S[kTableLength] = {
   2629     4.8, 5.3, 2.9, 4.8, 5.3, 2.9,
   2630     -4.8, -5.3, -2.9, -4.8, -5.3, -2.9
   2631   };
   2632   float outputs_S[kTableLength] = {
   2633     0.5, -0.5, 0.0, -10.1, -10.1, -5.8,
   2634     10.1, 10.1, 5.8, -0.5, 0.5, 0.0
   2635   };
   2636   __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, a)) );
   2637   __ lwc1(f4, MemOperand(a0, offsetof(TestFloat, b)) );
   2638   __ ldc1(f8, MemOperand(a0, offsetof(TestFloat, c)) );
   2639   __ ldc1(f10, MemOperand(a0, offsetof(TestFloat, d)) );
   2640   __ sub_s(f6, f2, f4);
   2641   __ sub_d(f12, f8, f10);
   2642   __ swc1(f6, MemOperand(a0, offsetof(TestFloat, resultS)) );
   2643   __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD)) );
   2644   __ jr(ra);
   2645   __ nop();
   2646 
   2647   CodeDesc desc;
   2648   assm.GetCode(&desc);
   2649   Handle<Code> code = isolate->factory()->NewCode(
   2650       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   2651   F3 f = FUNCTION_CAST<F3>(code->entry());
   2652   for (int i = 0; i < kTableLength; i++) {
   2653     test.a = inputfs_S[i];
   2654     test.b = inputft_S[i];
   2655     test.c = inputfs_D[i];
   2656     test.d = inputft_D[i];
   2657     (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   2658     CHECK_EQ(test.resultS, outputs_S[i]);
   2659     CHECK_EQ(test.resultD, outputs_D[i]);
   2660   }
   2661 }
   2662 
   2663 
   2664 TEST(sqrt_rsqrt_recip) {
   2665   const int kTableLength = 4;
   2666   const double deltaDouble = 2E-15;
   2667   const float deltaFloat = 2E-7;
   2668   const float sqrt2_s = sqrt(2);
   2669   const double sqrt2_d = sqrt(2);
   2670   CcTest::InitializeVM();
   2671   Isolate* isolate = CcTest::i_isolate();
   2672   HandleScope scope(isolate);
   2673   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   2674 
   2675   typedef struct test_float {
   2676     float a;
   2677     float resultS;
   2678     float resultS1;
   2679     float resultS2;
   2680     double c;
   2681     double resultD;
   2682     double resultD1;
   2683     double resultD2;
   2684   }TestFloat;
   2685   TestFloat test;
   2686 
   2687   double inputs_D[kTableLength] = {
   2688     0.0L, 4.0L, 2.0L, 4e-28L
   2689   };
   2690 
   2691   double outputs_D[kTableLength] = {
   2692     0.0L, 2.0L, sqrt2_d, 2e-14L
   2693   };
   2694   float inputs_S[kTableLength] = {
   2695     0.0, 4.0, 2.0, 4e-28
   2696   };
   2697 
   2698   float outputs_S[kTableLength] = {
   2699     0.0, 2.0, sqrt2_s, 2e-14
   2700   };
   2701 
   2702 
   2703   __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, a)) );
   2704   __ ldc1(f8, MemOperand(a0, offsetof(TestFloat, c)) );
   2705   __ sqrt_s(f6, f2);
   2706   __ sqrt_d(f12, f8);
   2707   __ rsqrt_d(f14, f8);
   2708   __ rsqrt_s(f16, f2);
   2709   __ recip_d(f18, f8);
   2710   __ recip_s(f4, f2);
   2711   __ swc1(f6, MemOperand(a0, offsetof(TestFloat, resultS)) );
   2712   __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD)) );
   2713   __ swc1(f16, MemOperand(a0, offsetof(TestFloat, resultS1)) );
   2714   __ sdc1(f14, MemOperand(a0, offsetof(TestFloat, resultD1)) );
   2715   __ swc1(f4, MemOperand(a0, offsetof(TestFloat, resultS2)) );
   2716   __ sdc1(f18, MemOperand(a0, offsetof(TestFloat, resultD2)) );
   2717   __ jr(ra);
   2718   __ nop();
   2719 
   2720   CodeDesc desc;
   2721   assm.GetCode(&desc);
   2722   Handle<Code> code = isolate->factory()->NewCode(
   2723       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   2724   F3 f = FUNCTION_CAST<F3>(code->entry());
   2725 
   2726   for (int i = 0; i < kTableLength; i++) {
   2727     float f1;
   2728     double d1;
   2729     test.a = inputs_S[i];
   2730     test.c = inputs_D[i];
   2731 
   2732     (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   2733 
   2734     CHECK_EQ(test.resultS, outputs_S[i]);
   2735     CHECK_EQ(test.resultD, outputs_D[i]);
   2736 
   2737     if (i != 0) {
   2738       f1 = test.resultS1 - 1.0F/outputs_S[i];
   2739       f1 = (f1 < 0) ? f1 : -f1;
   2740       CHECK(f1 <= deltaFloat);
   2741       d1 = test.resultD1 - 1.0L/outputs_D[i];
   2742       d1 = (d1 < 0) ? d1 : -d1;
   2743       CHECK(d1 <= deltaDouble);
   2744       f1 = test.resultS2 - 1.0F/inputs_S[i];
   2745       f1 = (f1 < 0) ? f1 : -f1;
   2746       CHECK(f1 <= deltaFloat);
   2747       d1 = test.resultD2 - 1.0L/inputs_D[i];
   2748       d1 = (d1 < 0) ? d1 : -d1;
   2749       CHECK(d1 <= deltaDouble);
   2750     } else {
   2751       CHECK_EQ(test.resultS1, 1.0F/outputs_S[i]);
   2752       CHECK_EQ(test.resultD1, 1.0L/outputs_D[i]);
   2753       CHECK_EQ(test.resultS2, 1.0F/inputs_S[i]);
   2754       CHECK_EQ(test.resultD2, 1.0L/inputs_D[i]);
   2755     }
   2756   }
   2757 }
   2758 
   2759 
   2760 TEST(neg) {
   2761   const int kTableLength = 2;
   2762   CcTest::InitializeVM();
   2763   Isolate* isolate = CcTest::i_isolate();
   2764   HandleScope scope(isolate);
   2765   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   2766 
   2767   typedef struct test_float {
   2768     float a;
   2769     float resultS;
   2770     double c;
   2771     double resultD;
   2772   }TestFloat;
   2773 
   2774   TestFloat test;
   2775   double inputs_D[kTableLength] = {
   2776     4.0, -2.0
   2777   };
   2778 
   2779   double outputs_D[kTableLength] = {
   2780     -4.0, 2.0
   2781   };
   2782   float inputs_S[kTableLength] = {
   2783     4.0, -2.0
   2784   };
   2785 
   2786   float outputs_S[kTableLength] = {
   2787     -4.0, 2.0
   2788   };
   2789   __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, a)) );
   2790   __ ldc1(f8, MemOperand(a0, offsetof(TestFloat, c)) );
   2791   __ neg_s(f6, f2);
   2792   __ neg_d(f12, f8);
   2793   __ swc1(f6, MemOperand(a0, offsetof(TestFloat, resultS)) );
   2794   __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD)) );
   2795   __ jr(ra);
   2796   __ nop();
   2797 
   2798   CodeDesc desc;
   2799   assm.GetCode(&desc);
   2800   Handle<Code> code = isolate->factory()->NewCode(
   2801       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   2802   F3 f = FUNCTION_CAST<F3>(code->entry());
   2803   for (int i = 0; i < kTableLength; i++) {
   2804     test.a = inputs_S[i];
   2805     test.c = inputs_D[i];
   2806     (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   2807     CHECK_EQ(test.resultS, outputs_S[i]);
   2808     CHECK_EQ(test.resultD, outputs_D[i]);
   2809   }
   2810 }
   2811 
   2812 
   2813 
   2814 TEST(mul) {
   2815   const int kTableLength = 4;
   2816   CcTest::InitializeVM();
   2817   Isolate* isolate = CcTest::i_isolate();
   2818   HandleScope scope(isolate);
   2819   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   2820 
   2821   typedef struct test_float {
   2822     float a;
   2823     float b;
   2824     float resultS;
   2825     double c;
   2826     double d;
   2827     double resultD;
   2828   }TestFloat;
   2829 
   2830   TestFloat test;
   2831   double inputfs_D[kTableLength] = {
   2832     5.3, -5.3, 5.3, -2.9
   2833   };
   2834   double inputft_D[kTableLength] = {
   2835     4.8, 4.8, -4.8, -0.29
   2836   };
   2837 
   2838   float inputfs_S[kTableLength] = {
   2839     5.3, -5.3, 5.3, -2.9
   2840   };
   2841   float inputft_S[kTableLength] = {
   2842     4.8, 4.8, -4.8, -0.29
   2843   };
   2844 
   2845   __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, a)) );
   2846   __ lwc1(f4, MemOperand(a0, offsetof(TestFloat, b)) );
   2847   __ ldc1(f6, MemOperand(a0, offsetof(TestFloat, c)) );
   2848   __ ldc1(f8, MemOperand(a0, offsetof(TestFloat, d)) );
   2849   __ mul_s(f10, f2, f4);
   2850   __ mul_d(f12, f6, f8);
   2851   __ swc1(f10, MemOperand(a0, offsetof(TestFloat, resultS)) );
   2852   __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD)) );
   2853   __ jr(ra);
   2854   __ nop();
   2855 
   2856   CodeDesc desc;
   2857   assm.GetCode(&desc);
   2858   Handle<Code> code = isolate->factory()->NewCode(
   2859       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   2860   F3 f = FUNCTION_CAST<F3>(code->entry());
   2861   for (int i = 0; i < kTableLength; i++) {
   2862     test.a = inputfs_S[i];
   2863     test.b = inputft_S[i];
   2864     test.c = inputfs_D[i];
   2865     test.d = inputft_D[i];
   2866     (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   2867     CHECK_EQ(test.resultS, inputfs_S[i]*inputft_S[i]);
   2868     CHECK_EQ(test.resultD, inputfs_D[i]*inputft_D[i]);
   2869   }
   2870 }
   2871 
   2872 
   2873 TEST(mov) {
   2874   const int kTableLength = 4;
   2875   CcTest::InitializeVM();
   2876   Isolate* isolate = CcTest::i_isolate();
   2877   HandleScope scope(isolate);
   2878   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   2879 
   2880   typedef struct test_float {
   2881     double a;
   2882     double b;
   2883     float c;
   2884     float d;
   2885   }TestFloat;
   2886 
   2887   TestFloat test;
   2888   double inputs_D[kTableLength] = {
   2889     5.3, -5.3, 5.3, -2.9
   2890   };
   2891   double inputs_S[kTableLength] = {
   2892     4.8, 4.8, -4.8, -0.29
   2893   };
   2894 
   2895   float outputs_S[kTableLength] = {
   2896     4.8, 4.8, -4.8, -0.29
   2897   };
   2898   double outputs_D[kTableLength] = {
   2899     5.3, -5.3, 5.3, -2.9
   2900   };
   2901 
   2902   __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)) );
   2903   __ lwc1(f6, MemOperand(a0, offsetof(TestFloat, c)) );
   2904   __ mov_s(f8, f6);
   2905   __ mov_d(f10, f4);
   2906   __ swc1(f8, MemOperand(a0, offsetof(TestFloat, d)) );
   2907   __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, b)) );
   2908   __ jr(ra);
   2909   __ nop();
   2910 
   2911   CodeDesc desc;
   2912   assm.GetCode(&desc);
   2913   Handle<Code> code = isolate->factory()->NewCode(
   2914       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   2915   F3 f = FUNCTION_CAST<F3>(code->entry());
   2916   for (int i = 0; i < kTableLength; i++) {
   2917     test.a = inputs_D[i];
   2918     test.c = inputs_S[i];
   2919 
   2920     (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   2921     CHECK_EQ(test.b, outputs_D[i]);
   2922     CHECK_EQ(test.d, outputs_S[i]);
   2923   }
   2924 }
   2925 
   2926 
   2927 TEST(floor_w) {
   2928   CcTest::InitializeVM();
   2929   Isolate* isolate = CcTest::i_isolate();
   2930   HandleScope scope(isolate);
   2931   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   2932 
   2933   typedef struct test_float {
   2934     uint32_t isNaN2008;
   2935     double a;
   2936     float b;
   2937     int32_t c;  // a floor result
   2938     int32_t d;  // b floor result
   2939   }Test;
   2940   const int kTableLength = 15;
   2941   double inputs_D[kTableLength] = {
   2942       2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
   2943       -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
   2944       2147483648.0,
   2945       std::numeric_limits<double>::quiet_NaN(),
   2946       std::numeric_limits<double>::infinity()
   2947       };
   2948   float inputs_S[kTableLength] = {
   2949       2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
   2950       -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
   2951       2147483648.0,
   2952       std::numeric_limits<float>::quiet_NaN(),
   2953       std::numeric_limits<float>::infinity()
   2954       };
   2955   double outputs[kTableLength] = {
   2956       2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
   2957       -3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
   2958       kFPUInvalidResult, kFPUInvalidResult,
   2959       kFPUInvalidResult};
   2960   double outputsNaN2008[kTableLength] = {
   2961       2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
   2962       -3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
   2963       kFPUInvalidResult,
   2964       0,
   2965       kFPUInvalidResult};
   2966 
   2967   __ cfc1(t1, FCSR);
   2968   __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
   2969   __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
   2970   __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
   2971   __ floor_w_d(f8, f4);
   2972   __ floor_w_s(f10, f6);
   2973   __ swc1(f8, MemOperand(a0, offsetof(Test, c)) );
   2974   __ swc1(f10, MemOperand(a0, offsetof(Test, d)) );
   2975   __ jr(ra);
   2976   __ nop();
   2977   Test test;
   2978   CodeDesc desc;
   2979   assm.GetCode(&desc);
   2980   Handle<Code> code = isolate->factory()->NewCode(
   2981       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   2982   F3 f = FUNCTION_CAST<F3>(code->entry());
   2983   for (int i = 0; i < kTableLength; i++) {
   2984     test.a = inputs_D[i];
   2985     test.b = inputs_S[i];
   2986     (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   2987     if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) {
   2988       CHECK_EQ(test.c, outputsNaN2008[i]);
   2989     } else {
   2990       CHECK_EQ(test.c, outputs[i]);
   2991     }
   2992     CHECK_EQ(test.d, test.c);
   2993   }
   2994 }
   2995 
   2996 
   2997 TEST(floor_l) {
   2998     CcTest::InitializeVM();
   2999     Isolate* isolate = CcTest::i_isolate();
   3000     HandleScope scope(isolate);
   3001     MacroAssembler assm(isolate, NULL, 0,
   3002                         v8::internal::CodeObjectRequired::kYes);
   3003     const double dFPU64InvalidResult = static_cast<double>(kFPU64InvalidResult);
   3004     typedef struct test_float {
   3005       uint32_t isNaN2008;
   3006       double a;
   3007       float b;
   3008       int64_t c;
   3009       int64_t d;
   3010     }Test;
   3011     const int kTableLength = 15;
   3012     double inputs_D[kTableLength] = {
   3013         2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
   3014         -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
   3015         2147483648.0,
   3016         std::numeric_limits<double>::quiet_NaN(),
   3017         std::numeric_limits<double>::infinity()
   3018         };
   3019     float inputs_S[kTableLength] = {
   3020         2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
   3021         -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
   3022         2147483648.0,
   3023         std::numeric_limits<float>::quiet_NaN(),
   3024         std::numeric_limits<float>::infinity()
   3025         };
   3026     double outputs[kTableLength] = {
   3027         2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
   3028         -3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
   3029         2147483648.0, dFPU64InvalidResult,
   3030         dFPU64InvalidResult};
   3031     double outputsNaN2008[kTableLength] = {
   3032         2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
   3033         -3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
   3034         2147483648.0,
   3035         0,
   3036         dFPU64InvalidResult};
   3037 
   3038     __ cfc1(t1, FCSR);
   3039     __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
   3040     __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
   3041     __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
   3042     __ floor_l_d(f8, f4);
   3043     __ floor_l_s(f10, f6);
   3044     __ sdc1(f8, MemOperand(a0, offsetof(Test, c)) );
   3045     __ sdc1(f10, MemOperand(a0, offsetof(Test, d)) );
   3046     __ jr(ra);
   3047     __ nop();
   3048     Test test;
   3049     CodeDesc desc;
   3050     assm.GetCode(&desc);
   3051     Handle<Code> code = isolate->factory()->NewCode(
   3052         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   3053     F3 f = FUNCTION_CAST<F3>(code->entry());
   3054     for (int i = 0; i < kTableLength; i++) {
   3055       test.a = inputs_D[i];
   3056       test.b = inputs_S[i];
   3057       (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   3058       if ((test.isNaN2008 & kFCSRNaN2008FlagMask) &&
   3059               kArchVariant == kMips64r6) {
   3060         CHECK_EQ(test.c, outputsNaN2008[i]);
   3061       } else {
   3062         CHECK_EQ(test.c, outputs[i]);
   3063       }
   3064       CHECK_EQ(test.d, test.c);
   3065     }
   3066 }
   3067 
   3068 
   3069 TEST(ceil_w) {
   3070   CcTest::InitializeVM();
   3071   Isolate* isolate = CcTest::i_isolate();
   3072   HandleScope scope(isolate);
   3073   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   3074 
   3075   typedef struct test_float {
   3076     uint32_t isNaN2008;
   3077     double a;
   3078     float b;
   3079     int32_t c;  // a floor result
   3080     int32_t d;  // b floor result
   3081   }Test;
   3082   const int kTableLength = 15;
   3083   double inputs_D[kTableLength] = {
   3084       2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
   3085       -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
   3086       2147483648.0,
   3087       std::numeric_limits<double>::quiet_NaN(),
   3088       std::numeric_limits<double>::infinity()
   3089       };
   3090   float inputs_S[kTableLength] = {
   3091       2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
   3092       -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
   3093       2147483648.0,
   3094       std::numeric_limits<float>::quiet_NaN(),
   3095       std::numeric_limits<float>::infinity()
   3096       };
   3097   double outputs[kTableLength] = {
   3098       3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
   3099       -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
   3100       kFPUInvalidResult, kFPUInvalidResult,
   3101       kFPUInvalidResult};
   3102   double outputsNaN2008[kTableLength] = {
   3103       3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
   3104       -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
   3105       kFPUInvalidResult,
   3106       0,
   3107       kFPUInvalidResult};
   3108 
   3109   __ cfc1(t1, FCSR);
   3110   __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
   3111   __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
   3112   __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
   3113   __ ceil_w_d(f8, f4);
   3114   __ ceil_w_s(f10, f6);
   3115   __ swc1(f8, MemOperand(a0, offsetof(Test, c)) );
   3116   __ swc1(f10, MemOperand(a0, offsetof(Test, d)) );
   3117   __ jr(ra);
   3118   __ nop();
   3119   Test test;
   3120   CodeDesc desc;
   3121   assm.GetCode(&desc);
   3122   Handle<Code> code = isolate->factory()->NewCode(
   3123       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   3124   F3 f = FUNCTION_CAST<F3>(code->entry());
   3125   for (int i = 0; i < kTableLength; i++) {
   3126     test.a = inputs_D[i];
   3127     test.b = inputs_S[i];
   3128     (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   3129     if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) {
   3130       CHECK_EQ(test.c, outputsNaN2008[i]);
   3131     } else {
   3132       CHECK_EQ(test.c, outputs[i]);
   3133     }
   3134     CHECK_EQ(test.d, test.c);
   3135   }
   3136 }
   3137 
   3138 
   3139 TEST(ceil_l) {
   3140     CcTest::InitializeVM();
   3141     Isolate* isolate = CcTest::i_isolate();
   3142     HandleScope scope(isolate);
   3143     MacroAssembler assm(isolate, NULL, 0,
   3144                         v8::internal::CodeObjectRequired::kYes);
   3145     const double dFPU64InvalidResult = static_cast<double>(kFPU64InvalidResult);
   3146     typedef struct test_float {
   3147       uint32_t isNaN2008;
   3148       double a;
   3149       float b;
   3150       int64_t c;
   3151       int64_t d;
   3152     }Test;
   3153     const int kTableLength = 15;
   3154     double inputs_D[kTableLength] = {
   3155         2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
   3156         -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
   3157         2147483648.0,
   3158         std::numeric_limits<double>::quiet_NaN(),
   3159         std::numeric_limits<double>::infinity()
   3160         };
   3161     float inputs_S[kTableLength] = {
   3162         2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
   3163         -2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
   3164         2147483648.0,
   3165         std::numeric_limits<float>::quiet_NaN(),
   3166         std::numeric_limits<float>::infinity()
   3167         };
   3168     double outputs[kTableLength] = {
   3169         3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
   3170         -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
   3171         2147483648.0, dFPU64InvalidResult,
   3172         dFPU64InvalidResult};
   3173     double outputsNaN2008[kTableLength] = {
   3174         3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
   3175         -2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
   3176         2147483648.0,
   3177         0,
   3178         dFPU64InvalidResult};
   3179 
   3180     __ cfc1(t1, FCSR);
   3181     __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
   3182     __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
   3183     __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
   3184     __ ceil_l_d(f8, f4);
   3185     __ ceil_l_s(f10, f6);
   3186     __ sdc1(f8, MemOperand(a0, offsetof(Test, c)) );
   3187     __ sdc1(f10, MemOperand(a0, offsetof(Test, d)) );
   3188     __ jr(ra);
   3189     __ nop();
   3190     Test test;
   3191     CodeDesc desc;
   3192     assm.GetCode(&desc);
   3193     Handle<Code> code = isolate->factory()->NewCode(
   3194         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   3195     F3 f = FUNCTION_CAST<F3>(code->entry());
   3196     for (int i = 0; i < kTableLength; i++) {
   3197       test.a = inputs_D[i];
   3198       test.b = inputs_S[i];
   3199       (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   3200       if ((test.isNaN2008 & kFCSRNaN2008FlagMask) &&
   3201               kArchVariant == kMips64r6) {
   3202         CHECK_EQ(test.c, outputsNaN2008[i]);
   3203       } else {
   3204         CHECK_EQ(test.c, outputs[i]);
   3205       }
   3206       CHECK_EQ(test.d, test.c);
   3207     }
   3208 }
   3209 
   3210 
   3211 TEST(jump_tables1) {
   3212   // Test jump tables with forward jumps.
   3213   CcTest::InitializeVM();
   3214   Isolate* isolate = CcTest::i_isolate();
   3215   HandleScope scope(isolate);
   3216   Assembler assm(isolate, nullptr, 0);
   3217 
   3218   const int kNumCases = 512;
   3219   int values[kNumCases];
   3220   isolate->random_number_generator()->NextBytes(values, sizeof(values));
   3221   Label labels[kNumCases];
   3222 
   3223   __ daddiu(sp, sp, -8);
   3224   __ sd(ra, MemOperand(sp));
   3225   __ Align(8);
   3226 
   3227   Label done;
   3228   {
   3229     __ BlockTrampolinePoolFor(kNumCases * 2 + 6);
   3230     PredictableCodeSizeScope predictable(
   3231         &assm, (kNumCases * 2 + 6) * Assembler::kInstrSize);
   3232     Label here;
   3233 
   3234     __ bal(&here);
   3235     __ dsll(at, a0, 3);  // In delay slot.
   3236     __ bind(&here);
   3237     __ daddu(at, at, ra);
   3238     __ ld(at, MemOperand(at, 4 * Assembler::kInstrSize));
   3239     __ jr(at);
   3240     __ nop();
   3241     for (int i = 0; i < kNumCases; ++i) {
   3242       __ dd(&labels[i]);
   3243     }
   3244   }
   3245 
   3246   for (int i = 0; i < kNumCases; ++i) {
   3247     __ bind(&labels[i]);
   3248     __ lui(v0, (values[i] >> 16) & 0xffff);
   3249     __ ori(v0, v0, values[i] & 0xffff);
   3250     __ b(&done);
   3251     __ nop();
   3252   }
   3253 
   3254   __ bind(&done);
   3255   __ ld(ra, MemOperand(sp));
   3256   __ daddiu(sp, sp, 8);
   3257   __ jr(ra);
   3258   __ nop();
   3259 
   3260   CodeDesc desc;
   3261   assm.GetCode(&desc);
   3262   Handle<Code> code = isolate->factory()->NewCode(
   3263       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   3264 #ifdef OBJECT_PRINT
   3265   code->Print(std::cout);
   3266 #endif
   3267   F1 f = FUNCTION_CAST<F1>(code->entry());
   3268   for (int i = 0; i < kNumCases; ++i) {
   3269     int64_t res = reinterpret_cast<int64_t>(
   3270         CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0));
   3271     ::printf("f(%d) = %" PRId64 "\n", i, res);
   3272     CHECK_EQ(values[i], static_cast<int>(res));
   3273   }
   3274 }
   3275 
   3276 
   3277 TEST(jump_tables2) {
   3278   // Test jump tables with backward jumps.
   3279   CcTest::InitializeVM();
   3280   Isolate* isolate = CcTest::i_isolate();
   3281   HandleScope scope(isolate);
   3282   Assembler assm(isolate, nullptr, 0);
   3283 
   3284   const int kNumCases = 512;
   3285   int values[kNumCases];
   3286   isolate->random_number_generator()->NextBytes(values, sizeof(values));
   3287   Label labels[kNumCases];
   3288 
   3289   __ daddiu(sp, sp, -8);
   3290   __ sd(ra, MemOperand(sp));
   3291 
   3292   Label done, dispatch;
   3293   __ b(&dispatch);
   3294   __ nop();
   3295 
   3296   for (int i = 0; i < kNumCases; ++i) {
   3297     __ bind(&labels[i]);
   3298     __ lui(v0, (values[i] >> 16) & 0xffff);
   3299     __ ori(v0, v0, values[i] & 0xffff);
   3300     __ b(&done);
   3301     __ nop();
   3302   }
   3303 
   3304   __ Align(8);
   3305   __ bind(&dispatch);
   3306   {
   3307     __ BlockTrampolinePoolFor(kNumCases * 2 + 6);
   3308     PredictableCodeSizeScope predictable(
   3309         &assm, (kNumCases * 2 + 6) * Assembler::kInstrSize);
   3310     Label here;
   3311 
   3312     __ bal(&here);
   3313     __ dsll(at, a0, 3);  // In delay slot.
   3314     __ bind(&here);
   3315     __ daddu(at, at, ra);
   3316     __ ld(at, MemOperand(at, 4 * Assembler::kInstrSize));
   3317     __ jr(at);
   3318     __ nop();
   3319     for (int i = 0; i < kNumCases; ++i) {
   3320       __ dd(&labels[i]);
   3321     }
   3322   }
   3323 
   3324   __ bind(&done);
   3325   __ ld(ra, MemOperand(sp));
   3326   __ daddiu(sp, sp, 8);
   3327   __ jr(ra);
   3328   __ nop();
   3329 
   3330   CodeDesc desc;
   3331   assm.GetCode(&desc);
   3332   Handle<Code> code = isolate->factory()->NewCode(
   3333       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   3334 #ifdef OBJECT_PRINT
   3335   code->Print(std::cout);
   3336 #endif
   3337   F1 f = FUNCTION_CAST<F1>(code->entry());
   3338   for (int i = 0; i < kNumCases; ++i) {
   3339     int64_t res = reinterpret_cast<int64_t>(
   3340         CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0));
   3341     ::printf("f(%d) = %" PRId64 "\n", i, res);
   3342     CHECK_EQ(values[i], res);
   3343   }
   3344 }
   3345 
   3346 
   3347 TEST(jump_tables3) {
   3348   // Test jump tables with backward jumps and embedded heap objects.
   3349   CcTest::InitializeVM();
   3350   Isolate* isolate = CcTest::i_isolate();
   3351   HandleScope scope(isolate);
   3352   Assembler assm(isolate, nullptr, 0);
   3353 
   3354   const int kNumCases = 512;
   3355   Handle<Object> values[kNumCases];
   3356   for (int i = 0; i < kNumCases; ++i) {
   3357     double value = isolate->random_number_generator()->NextDouble();
   3358     values[i] = isolate->factory()->NewHeapNumber(value, IMMUTABLE, TENURED);
   3359   }
   3360   Label labels[kNumCases];
   3361   Object* obj;
   3362   int64_t imm64;
   3363 
   3364   __ daddiu(sp, sp, -8);
   3365   __ sd(ra, MemOperand(sp));
   3366 
   3367   Label done, dispatch;
   3368   __ b(&dispatch);
   3369   __ nop();
   3370 
   3371 
   3372   for (int i = 0; i < kNumCases; ++i) {
   3373     __ bind(&labels[i]);
   3374     obj = *values[i];
   3375     imm64 = reinterpret_cast<intptr_t>(obj);
   3376     __ lui(v0, (imm64 >> 32) & kImm16Mask);
   3377     __ ori(v0, v0, (imm64 >> 16) & kImm16Mask);
   3378     __ dsll(v0, v0, 16);
   3379     __ ori(v0, v0, imm64 & kImm16Mask);
   3380     __ b(&done);
   3381     __ nop();
   3382   }
   3383 
   3384   __ Align(8);
   3385   __ bind(&dispatch);
   3386   {
   3387     __ BlockTrampolinePoolFor(kNumCases * 2 + 6);
   3388     PredictableCodeSizeScope predictable(
   3389         &assm, (kNumCases * 2 + 6) * Assembler::kInstrSize);
   3390     Label here;
   3391 
   3392     __ bal(&here);
   3393     __ dsll(at, a0, 3);  // In delay slot.
   3394     __ bind(&here);
   3395     __ daddu(at, at, ra);
   3396     __ ld(at, MemOperand(at, 4 * Assembler::kInstrSize));
   3397     __ jr(at);
   3398     __ nop();
   3399     for (int i = 0; i < kNumCases; ++i) {
   3400       __ dd(&labels[i]);
   3401     }
   3402   }
   3403 
   3404   __ bind(&done);
   3405   __ ld(ra, MemOperand(sp));
   3406   __ daddiu(sp, sp, 8);
   3407   __ jr(ra);
   3408   __ nop();
   3409 
   3410   CodeDesc desc;
   3411   assm.GetCode(&desc);
   3412   Handle<Code> code = isolate->factory()->NewCode(
   3413       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   3414 #ifdef OBJECT_PRINT
   3415   code->Print(std::cout);
   3416 #endif
   3417   F1 f = FUNCTION_CAST<F1>(code->entry());
   3418   for (int i = 0; i < kNumCases; ++i) {
   3419     Handle<Object> result(
   3420         CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0), isolate);
   3421 #ifdef OBJECT_PRINT
   3422     ::printf("f(%d) = ", i);
   3423     result->Print(std::cout);
   3424     ::printf("\n");
   3425 #endif
   3426     CHECK(values[i].is_identical_to(result));
   3427   }
   3428 }
   3429 
   3430 
   3431 TEST(BITSWAP) {
   3432   // Test BITSWAP
   3433   if (kArchVariant == kMips64r6) {
   3434     CcTest::InitializeVM();
   3435     Isolate* isolate = CcTest::i_isolate();
   3436     HandleScope scope(isolate);
   3437 
   3438     typedef struct {
   3439       int64_t r1;
   3440       int64_t r2;
   3441       int64_t r3;
   3442       int64_t r4;
   3443       int64_t r5;
   3444       int64_t r6;
   3445     } T;
   3446     T t;
   3447 
   3448     Assembler assm(isolate, NULL, 0);
   3449 
   3450     __ ld(a4, MemOperand(a0, offsetof(T, r1)));
   3451     __ nop();
   3452     __ bitswap(a6, a4);
   3453     __ sd(a6, MemOperand(a0, offsetof(T, r1)));
   3454 
   3455     __ ld(a4, MemOperand(a0, offsetof(T, r2)));
   3456     __ nop();
   3457     __ bitswap(a6, a4);
   3458     __ sd(a6, MemOperand(a0, offsetof(T, r2)));
   3459 
   3460     __ ld(a4, MemOperand(a0, offsetof(T, r3)));
   3461     __ nop();
   3462     __ bitswap(a6, a4);
   3463     __ sd(a6, MemOperand(a0, offsetof(T, r3)));
   3464 
   3465     __ ld(a4, MemOperand(a0, offsetof(T, r4)));
   3466     __ nop();
   3467     __ bitswap(a6, a4);
   3468     __ sd(a6, MemOperand(a0, offsetof(T, r4)));
   3469 
   3470     __ ld(a4, MemOperand(a0, offsetof(T, r5)));
   3471     __ nop();
   3472     __ dbitswap(a6, a4);
   3473     __ sd(a6, MemOperand(a0, offsetof(T, r5)));
   3474 
   3475     __ ld(a4, MemOperand(a0, offsetof(T, r6)));
   3476     __ nop();
   3477     __ dbitswap(a6, a4);
   3478     __ sd(a6, MemOperand(a0, offsetof(T, r6)));
   3479 
   3480     __ jr(ra);
   3481     __ nop();
   3482 
   3483     CodeDesc desc;
   3484     assm.GetCode(&desc);
   3485     Handle<Code> code = isolate->factory()->NewCode(
   3486         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   3487     F3 f = FUNCTION_CAST<F3>(code->entry());
   3488     t.r1 = 0x00102100781A15C3;
   3489     t.r2 = 0x001021008B71FCDE;
   3490     t.r3 = 0xFF8017FF781A15C3;
   3491     t.r4 = 0xFF8017FF8B71FCDE;
   3492     t.r5 = 0x10C021098B71FCDE;
   3493     t.r6 = 0xFB8017FF781A15C3;
   3494     Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
   3495     USE(dummy);
   3496 
   3497     CHECK_EQ(static_cast<int64_t>(0x000000001E58A8C3L), t.r1);
   3498     CHECK_EQ(static_cast<int64_t>(0xFFFFFFFFD18E3F7BL), t.r2);
   3499     CHECK_EQ(static_cast<int64_t>(0x000000001E58A8C3L), t.r3);
   3500     CHECK_EQ(static_cast<int64_t>(0xFFFFFFFFD18E3F7BL), t.r4);
   3501     CHECK_EQ(static_cast<int64_t>(0x08038490D18E3F7BL), t.r5);
   3502     CHECK_EQ(static_cast<int64_t>(0xDF01E8FF1E58A8C3L), t.r6);
   3503   }
   3504 }
   3505 
   3506 
   3507 TEST(class_fmt) {
   3508   if (kArchVariant == kMips64r6) {
   3509     // Test CLASS.fmt instruction.
   3510     CcTest::InitializeVM();
   3511     Isolate* isolate = CcTest::i_isolate();
   3512     HandleScope scope(isolate);
   3513 
   3514     typedef struct {
   3515       double dSignalingNan;
   3516       double dQuietNan;
   3517       double dNegInf;
   3518       double dNegNorm;
   3519       double dNegSubnorm;
   3520       double dNegZero;
   3521       double dPosInf;
   3522       double dPosNorm;
   3523       double dPosSubnorm;
   3524       double dPosZero;
   3525       float  fSignalingNan;
   3526       float  fQuietNan;
   3527       float  fNegInf;
   3528       float  fNegNorm;
   3529       float  fNegSubnorm;
   3530       float  fNegZero;
   3531       float  fPosInf;
   3532       float  fPosNorm;
   3533       float  fPosSubnorm;
   3534       float  fPosZero;  } T;
   3535     T t;
   3536 
   3537     // Create a function that accepts &t, and loads, manipulates, and stores
   3538     // the doubles t.a ... t.f.
   3539     MacroAssembler assm(isolate, NULL, 0,
   3540                         v8::internal::CodeObjectRequired::kYes);
   3541 
   3542     __ ldc1(f4, MemOperand(a0, offsetof(T, dSignalingNan)));
   3543     __ class_d(f6, f4);
   3544     __ sdc1(f6, MemOperand(a0, offsetof(T, dSignalingNan)));
   3545 
   3546     __ ldc1(f4, MemOperand(a0, offsetof(T, dQuietNan)));
   3547     __ class_d(f6, f4);
   3548     __ sdc1(f6, MemOperand(a0, offsetof(T, dQuietNan)));
   3549 
   3550     __ ldc1(f4, MemOperand(a0, offsetof(T, dNegInf)));
   3551     __ class_d(f6, f4);
   3552     __ sdc1(f6, MemOperand(a0, offsetof(T, dNegInf)));
   3553 
   3554     __ ldc1(f4, MemOperand(a0, offsetof(T, dNegNorm)));
   3555     __ class_d(f6, f4);
   3556     __ sdc1(f6, MemOperand(a0, offsetof(T, dNegNorm)));
   3557 
   3558     __ ldc1(f4, MemOperand(a0, offsetof(T, dNegSubnorm)));
   3559     __ class_d(f6, f4);
   3560     __ sdc1(f6, MemOperand(a0, offsetof(T, dNegSubnorm)));
   3561 
   3562     __ ldc1(f4, MemOperand(a0, offsetof(T, dNegZero)));
   3563     __ class_d(f6, f4);
   3564     __ sdc1(f6, MemOperand(a0, offsetof(T, dNegZero)));
   3565 
   3566     __ ldc1(f4, MemOperand(a0, offsetof(T, dPosInf)));
   3567     __ class_d(f6, f4);
   3568     __ sdc1(f6, MemOperand(a0, offsetof(T, dPosInf)));
   3569 
   3570     __ ldc1(f4, MemOperand(a0, offsetof(T, dPosNorm)));
   3571     __ class_d(f6, f4);
   3572     __ sdc1(f6, MemOperand(a0, offsetof(T, dPosNorm)));
   3573 
   3574     __ ldc1(f4, MemOperand(a0, offsetof(T, dPosSubnorm)));
   3575     __ class_d(f6, f4);
   3576     __ sdc1(f6, MemOperand(a0, offsetof(T, dPosSubnorm)));
   3577 
   3578     __ ldc1(f4, MemOperand(a0, offsetof(T, dPosZero)));
   3579     __ class_d(f6, f4);
   3580     __ sdc1(f6, MemOperand(a0, offsetof(T, dPosZero)));
   3581 
   3582     // Testing instruction CLASS.S
   3583     __ lwc1(f4, MemOperand(a0, offsetof(T, fSignalingNan)));
   3584     __ class_s(f6, f4);
   3585     __ swc1(f6, MemOperand(a0, offsetof(T, fSignalingNan)));
   3586 
   3587     __ lwc1(f4, MemOperand(a0, offsetof(T, fQuietNan)));
   3588     __ class_s(f6, f4);
   3589     __ swc1(f6, MemOperand(a0, offsetof(T, fQuietNan)));
   3590 
   3591     __ lwc1(f4, MemOperand(a0, offsetof(T, fNegInf)));
   3592     __ class_s(f6, f4);
   3593     __ swc1(f6, MemOperand(a0, offsetof(T, fNegInf)));
   3594 
   3595     __ lwc1(f4, MemOperand(a0, offsetof(T, fNegNorm)));
   3596     __ class_s(f6, f4);
   3597     __ swc1(f6, MemOperand(a0, offsetof(T, fNegNorm)));
   3598 
   3599     __ lwc1(f4, MemOperand(a0, offsetof(T, fNegSubnorm)));
   3600     __ class_s(f6, f4);
   3601     __ swc1(f6, MemOperand(a0, offsetof(T, fNegSubnorm)));
   3602 
   3603     __ lwc1(f4, MemOperand(a0, offsetof(T, fNegZero)));
   3604     __ class_s(f6, f4);
   3605     __ swc1(f6, MemOperand(a0, offsetof(T, fNegZero)));
   3606 
   3607     __ lwc1(f4, MemOperand(a0, offsetof(T, fPosInf)));
   3608     __ class_s(f6, f4);
   3609     __ swc1(f6, MemOperand(a0, offsetof(T, fPosInf)));
   3610 
   3611     __ lwc1(f4, MemOperand(a0, offsetof(T, fPosNorm)));
   3612     __ class_s(f6, f4);
   3613     __ swc1(f6, MemOperand(a0, offsetof(T, fPosNorm)));
   3614 
   3615     __ lwc1(f4, MemOperand(a0, offsetof(T, fPosSubnorm)));
   3616     __ class_s(f6, f4);
   3617     __ swc1(f6, MemOperand(a0, offsetof(T, fPosSubnorm)));
   3618 
   3619     __ lwc1(f4, MemOperand(a0, offsetof(T, fPosZero)));
   3620     __ class_s(f6, f4);
   3621     __ swc1(f6, MemOperand(a0, offsetof(T, fPosZero)));
   3622 
   3623     __ jr(ra);
   3624     __ nop();
   3625 
   3626     CodeDesc desc;
   3627     assm.GetCode(&desc);
   3628     Handle<Code> code = isolate->factory()->NewCode(
   3629         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   3630     F3 f = FUNCTION_CAST<F3>(code->entry());
   3631 
   3632     // Double test values.
   3633     t.dSignalingNan =  std::numeric_limits<double>::signaling_NaN();
   3634     t.dQuietNan = std::numeric_limits<double>::quiet_NaN();
   3635     t.dNegInf       = -1.0 / 0.0;
   3636     t.dNegNorm      = -5.0;
   3637     t.dNegSubnorm   = -DBL_MIN / 2.0;
   3638     t.dNegZero      = -0.0;
   3639     t.dPosInf       = 2.0 / 0.0;
   3640     t.dPosNorm      = 275.35;
   3641     t.dPosSubnorm   = DBL_MIN / 2.0;
   3642     t.dPosZero      = +0.0;
   3643     // Float test values
   3644 
   3645     t.fSignalingNan = std::numeric_limits<float>::signaling_NaN();
   3646     t.fQuietNan     = std::numeric_limits<float>::quiet_NaN();
   3647     t.fNegInf       = -0.5/0.0;
   3648     t.fNegNorm      = -FLT_MIN;
   3649     t.fNegSubnorm   = -FLT_MIN / 1.5;
   3650     t.fNegZero      = -0.0;
   3651     t.fPosInf       = 100000.0 / 0.0;
   3652     t.fPosNorm      = FLT_MAX;
   3653     t.fPosSubnorm   = FLT_MIN / 20.0;
   3654     t.fPosZero      = +0.0;
   3655 
   3656     Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
   3657     USE(dummy);
   3658     // Expected double results.
   3659     CHECK_EQ(bit_cast<int64_t>(t.dSignalingNan), 0x001);
   3660     CHECK_EQ(bit_cast<int64_t>(t.dQuietNan),     0x002);
   3661     CHECK_EQ(bit_cast<int64_t>(t.dNegInf),       0x004);
   3662     CHECK_EQ(bit_cast<int64_t>(t.dNegNorm),      0x008);
   3663     CHECK_EQ(bit_cast<int64_t>(t.dNegSubnorm),   0x010);
   3664     CHECK_EQ(bit_cast<int64_t>(t.dNegZero),      0x020);
   3665     CHECK_EQ(bit_cast<int64_t>(t.dPosInf),       0x040);
   3666     CHECK_EQ(bit_cast<int64_t>(t.dPosNorm),      0x080);
   3667     CHECK_EQ(bit_cast<int64_t>(t.dPosSubnorm),   0x100);
   3668     CHECK_EQ(bit_cast<int64_t>(t.dPosZero),      0x200);
   3669 
   3670     // Expected float results.
   3671     CHECK_EQ(bit_cast<int32_t>(t.fSignalingNan), 0x001);
   3672     CHECK_EQ(bit_cast<int32_t>(t.fQuietNan),     0x002);
   3673     CHECK_EQ(bit_cast<int32_t>(t.fNegInf),       0x004);
   3674     CHECK_EQ(bit_cast<int32_t>(t.fNegNorm),      0x008);
   3675     CHECK_EQ(bit_cast<int32_t>(t.fNegSubnorm),   0x010);
   3676     CHECK_EQ(bit_cast<int32_t>(t.fNegZero),      0x020);
   3677     CHECK_EQ(bit_cast<int32_t>(t.fPosInf),       0x040);
   3678     CHECK_EQ(bit_cast<int32_t>(t.fPosNorm),      0x080);
   3679     CHECK_EQ(bit_cast<int32_t>(t.fPosSubnorm),   0x100);
   3680     CHECK_EQ(bit_cast<int32_t>(t.fPosZero),      0x200);
   3681   }
   3682 }
   3683 
   3684 
   3685 TEST(ABS) {
   3686   CcTest::InitializeVM();
   3687   Isolate* isolate = CcTest::i_isolate();
   3688   HandleScope scope(isolate);
   3689   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   3690 
   3691   typedef struct test_float {
   3692     int64_t fir;
   3693     double a;
   3694     float b;
   3695     double fcsr;
   3696   } TestFloat;
   3697 
   3698   TestFloat test;
   3699 
   3700   // Save FIR.
   3701   __ cfc1(a1, FCSR);
   3702   __ sd(a1, MemOperand(a0, offsetof(TestFloat, fcsr)));
   3703   // Disable FPU exceptions.
   3704   __ ctc1(zero_reg, FCSR);
   3705 
   3706   __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
   3707   __ abs_d(f10, f4);
   3708   __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, a)));
   3709 
   3710   __ lwc1(f4, MemOperand(a0, offsetof(TestFloat, b)));
   3711   __ abs_s(f10, f4);
   3712   __ swc1(f10, MemOperand(a0, offsetof(TestFloat, b)));
   3713 
   3714   // Restore FCSR.
   3715   __ ctc1(a1, FCSR);
   3716 
   3717   __ jr(ra);
   3718   __ nop();
   3719 
   3720   CodeDesc desc;
   3721   assm.GetCode(&desc);
   3722   Handle<Code> code = isolate->factory()->NewCode(
   3723       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   3724   F3 f = FUNCTION_CAST<F3>(code->entry());
   3725   test.a = -2.0;
   3726   test.b = -2.0;
   3727   (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   3728   CHECK_EQ(test.a, 2.0);
   3729   CHECK_EQ(test.b, 2.0);
   3730 
   3731   test.a = 2.0;
   3732   test.b = 2.0;
   3733   (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   3734   CHECK_EQ(test.a, 2.0);
   3735   CHECK_EQ(test.b, 2.0);
   3736 
   3737   // Testing biggest positive number
   3738   test.a = std::numeric_limits<double>::max();
   3739   test.b = std::numeric_limits<float>::max();
   3740   (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   3741   CHECK_EQ(test.a, std::numeric_limits<double>::max());
   3742   CHECK_EQ(test.b, std::numeric_limits<float>::max());
   3743 
   3744   // Testing smallest negative number
   3745   test.a = -std::numeric_limits<double>::max();  // lowest()
   3746   test.b = -std::numeric_limits<float>::max();   // lowest()
   3747   (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   3748   CHECK_EQ(test.a, std::numeric_limits<double>::max());
   3749   CHECK_EQ(test.b, std::numeric_limits<float>::max());
   3750 
   3751   // Testing smallest positive number
   3752   test.a = -std::numeric_limits<double>::min();
   3753   test.b = -std::numeric_limits<float>::min();
   3754   (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   3755   CHECK_EQ(test.a, std::numeric_limits<double>::min());
   3756   CHECK_EQ(test.b, std::numeric_limits<float>::min());
   3757 
   3758   // Testing infinity
   3759   test.a = -std::numeric_limits<double>::max()
   3760           / std::numeric_limits<double>::min();
   3761   test.b = -std::numeric_limits<float>::max()
   3762           / std::numeric_limits<float>::min();
   3763   (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   3764   CHECK_EQ(test.a, std::numeric_limits<double>::max()
   3765                  / std::numeric_limits<double>::min());
   3766   CHECK_EQ(test.b, std::numeric_limits<float>::max()
   3767                  / std::numeric_limits<float>::min());
   3768 
   3769   test.a = std::numeric_limits<double>::quiet_NaN();
   3770   test.b = std::numeric_limits<float>::quiet_NaN();
   3771   (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   3772   CHECK_EQ(std::isnan(test.a), true);
   3773   CHECK_EQ(std::isnan(test.b), true);
   3774 
   3775   test.a = std::numeric_limits<double>::signaling_NaN();
   3776   test.b = std::numeric_limits<float>::signaling_NaN();
   3777   (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   3778   CHECK_EQ(std::isnan(test.a), true);
   3779   CHECK_EQ(std::isnan(test.b), true);
   3780 }
   3781 
   3782 
   3783 TEST(ADD_FMT) {
   3784   CcTest::InitializeVM();
   3785   Isolate* isolate = CcTest::i_isolate();
   3786   HandleScope scope(isolate);
   3787   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   3788 
   3789   typedef struct test_float {
   3790     double a;
   3791     double b;
   3792     double c;
   3793     float fa;
   3794     float fb;
   3795     float fc;
   3796   } TestFloat;
   3797 
   3798   TestFloat test;
   3799 
   3800   __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
   3801   __ ldc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
   3802   __ add_d(f10, f8, f4);
   3803   __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, c)));
   3804 
   3805   __ lwc1(f4, MemOperand(a0, offsetof(TestFloat, fa)));
   3806   __ lwc1(f8, MemOperand(a0, offsetof(TestFloat, fb)));
   3807   __ add_s(f10, f8, f4);
   3808   __ swc1(f10, MemOperand(a0, offsetof(TestFloat, fc)));
   3809 
   3810   __ jr(ra);
   3811   __ nop();
   3812 
   3813   CodeDesc desc;
   3814   assm.GetCode(&desc);
   3815   Handle<Code> code = isolate->factory()->NewCode(
   3816       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   3817   F3 f = FUNCTION_CAST<F3>(code->entry());
   3818   test.a = 2.0;
   3819   test.b = 3.0;
   3820   test.fa = 2.0;
   3821   test.fb = 3.0;
   3822   (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   3823   CHECK_EQ(test.c, 5.0);
   3824   CHECK_EQ(test.fc, 5.0);
   3825 
   3826   test.a = std::numeric_limits<double>::max();
   3827   test.b = -std::numeric_limits<double>::max();  // lowest()
   3828   test.fa = std::numeric_limits<float>::max();
   3829   test.fb = -std::numeric_limits<float>::max();  // lowest()
   3830   (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   3831   CHECK_EQ(test.c, 0.0);
   3832   CHECK_EQ(test.fc, 0.0);
   3833 
   3834   test.a = std::numeric_limits<double>::max();
   3835   test.b = std::numeric_limits<double>::max();
   3836   test.fa = std::numeric_limits<float>::max();
   3837   test.fb = std::numeric_limits<float>::max();
   3838   (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   3839   CHECK_EQ(std::isfinite(test.c), false);
   3840   CHECK_EQ(std::isfinite(test.fc), false);
   3841 
   3842   test.a = 5.0;
   3843   test.b = std::numeric_limits<double>::signaling_NaN();
   3844   test.fa = 5.0;
   3845   test.fb = std::numeric_limits<float>::signaling_NaN();
   3846   (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   3847   CHECK_EQ(std::isnan(test.c), true);
   3848   CHECK_EQ(std::isnan(test.fc), true);
   3849 }
   3850 
   3851 
   3852 TEST(C_COND_FMT) {
   3853   if (kArchVariant == kMips64r2) {
   3854     CcTest::InitializeVM();
   3855     Isolate* isolate = CcTest::i_isolate();
   3856     HandleScope scope(isolate);
   3857     MacroAssembler assm(isolate, NULL, 0,
   3858                         v8::internal::CodeObjectRequired::kYes);
   3859 
   3860     typedef struct test_float {
   3861       double dOp1;
   3862       double dOp2;
   3863       uint32_t dF;
   3864       uint32_t dUn;
   3865       uint32_t dEq;
   3866       uint32_t dUeq;
   3867       uint32_t dOlt;
   3868       uint32_t dUlt;
   3869       uint32_t dOle;
   3870       uint32_t dUle;
   3871       float fOp1;
   3872       float fOp2;
   3873       uint32_t fF;
   3874       uint32_t fUn;
   3875       uint32_t fEq;
   3876       uint32_t fUeq;
   3877       uint32_t fOlt;
   3878       uint32_t fUlt;
   3879       uint32_t fOle;
   3880       uint32_t fUle;
   3881     } TestFloat;
   3882 
   3883     TestFloat test;
   3884 
   3885     __ li(t1, 1);
   3886 
   3887     __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, dOp1)));
   3888     __ ldc1(f6, MemOperand(a0, offsetof(TestFloat, dOp2)));
   3889 
   3890     __ lwc1(f14, MemOperand(a0, offsetof(TestFloat, fOp1)));
   3891     __ lwc1(f16, MemOperand(a0, offsetof(TestFloat, fOp2)));
   3892 
   3893     __ mov(t2, zero_reg);
   3894     __ mov(t3, zero_reg);
   3895     __ c_d(F, f4, f6, 0);
   3896     __ c_s(F, f14, f16, 2);
   3897     __ movt(t2, t1, 0);
   3898     __ movt(t3, t1, 2);
   3899     __ sw(t2, MemOperand(a0, offsetof(TestFloat, dF)) );
   3900     __ sw(t3, MemOperand(a0, offsetof(TestFloat, fF)) );
   3901 
   3902     __ mov(t2, zero_reg);
   3903     __ mov(t3, zero_reg);
   3904     __ c_d(UN, f4, f6, 2);
   3905     __ c_s(UN, f14, f16, 4);
   3906     __ movt(t2, t1, 2);
   3907     __ movt(t3, t1, 4);
   3908     __ sw(t2, MemOperand(a0, offsetof(TestFloat, dUn)) );
   3909     __ sw(t3, MemOperand(a0, offsetof(TestFloat, fUn)) );
   3910 
   3911     __ mov(t2, zero_reg);
   3912     __ mov(t3, zero_reg);
   3913     __ c_d(EQ, f4, f6, 4);
   3914     __ c_s(EQ, f14, f16, 6);
   3915     __ movt(t2, t1, 4);
   3916     __ movt(t3, t1, 6);
   3917     __ sw(t2, MemOperand(a0, offsetof(TestFloat, dEq)) );
   3918     __ sw(t3, MemOperand(a0, offsetof(TestFloat, fEq)) );
   3919 
   3920     __ mov(t2, zero_reg);
   3921     __ mov(t3, zero_reg);
   3922     __ c_d(UEQ, f4, f6, 6);
   3923     __ c_s(UEQ, f14, f16, 0);
   3924     __ movt(t2, t1, 6);
   3925     __ movt(t3, t1, 0);
   3926     __ sw(t2, MemOperand(a0, offsetof(TestFloat, dUeq)) );
   3927     __ sw(t3, MemOperand(a0, offsetof(TestFloat, fUeq)) );
   3928 
   3929     __ mov(t2, zero_reg);
   3930     __ mov(t3, zero_reg);
   3931     __ c_d(OLT, f4, f6, 0);
   3932     __ c_s(OLT, f14, f16, 2);
   3933     __ movt(t2, t1, 0);
   3934     __ movt(t3, t1, 2);
   3935     __ sw(t2, MemOperand(a0, offsetof(TestFloat, dOlt)) );
   3936     __ sw(t3, MemOperand(a0, offsetof(TestFloat, fOlt)) );
   3937 
   3938     __ mov(t2, zero_reg);
   3939     __ mov(t3, zero_reg);
   3940     __ c_d(ULT, f4, f6, 2);
   3941     __ c_s(ULT, f14, f16, 4);
   3942     __ movt(t2, t1, 2);
   3943     __ movt(t3, t1, 4);
   3944     __ sw(t2, MemOperand(a0, offsetof(TestFloat, dUlt)) );
   3945     __ sw(t3, MemOperand(a0, offsetof(TestFloat, fUlt)) );
   3946 
   3947     __ mov(t2, zero_reg);
   3948     __ mov(t3, zero_reg);
   3949     __ c_d(OLE, f4, f6, 4);
   3950     __ c_s(OLE, f14, f16, 6);
   3951     __ movt(t2, t1, 4);
   3952     __ movt(t3, t1, 6);
   3953     __ sw(t2, MemOperand(a0, offsetof(TestFloat, dOle)) );
   3954     __ sw(t3, MemOperand(a0, offsetof(TestFloat, fOle)) );
   3955 
   3956     __ mov(t2, zero_reg);
   3957     __ mov(t3, zero_reg);
   3958     __ c_d(ULE, f4, f6, 6);
   3959     __ c_s(ULE, f14, f16, 0);
   3960     __ movt(t2, t1, 6);
   3961     __ movt(t3, t1, 0);
   3962     __ sw(t2, MemOperand(a0, offsetof(TestFloat, dUle)) );
   3963     __ sw(t3, MemOperand(a0, offsetof(TestFloat, fUle)) );
   3964 
   3965     __ jr(ra);
   3966     __ nop();
   3967 
   3968     CodeDesc desc;
   3969     assm.GetCode(&desc);
   3970     Handle<Code> code = isolate->factory()->NewCode(
   3971         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   3972     F3 f = FUNCTION_CAST<F3>(code->entry());
   3973     test.dOp1 = 2.0;
   3974     test.dOp2 = 3.0;
   3975     test.fOp1 = 2.0;
   3976     test.fOp2 = 3.0;
   3977     (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   3978     CHECK_EQ(test.dF, 0U);
   3979     CHECK_EQ(test.dUn, 0U);
   3980     CHECK_EQ(test.dEq, 0U);
   3981     CHECK_EQ(test.dUeq, 0U);
   3982     CHECK_EQ(test.dOlt, 1U);
   3983     CHECK_EQ(test.dUlt, 1U);
   3984     CHECK_EQ(test.dOle, 1U);
   3985     CHECK_EQ(test.dUle, 1U);
   3986     CHECK_EQ(test.fF, 0U);
   3987     CHECK_EQ(test.fUn, 0U);
   3988     CHECK_EQ(test.fEq, 0U);
   3989     CHECK_EQ(test.fUeq, 0U);
   3990     CHECK_EQ(test.fOlt, 1U);
   3991     CHECK_EQ(test.fUlt, 1U);
   3992     CHECK_EQ(test.fOle, 1U);
   3993     CHECK_EQ(test.fUle, 1U);
   3994 
   3995     test.dOp1 = std::numeric_limits<double>::max();
   3996     test.dOp2 = std::numeric_limits<double>::min();
   3997     test.fOp1 = std::numeric_limits<float>::min();
   3998     test.fOp2 = -std::numeric_limits<float>::max();  // lowest()
   3999     (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   4000     CHECK_EQ(test.dF, 0U);
   4001     CHECK_EQ(test.dUn, 0U);
   4002     CHECK_EQ(test.dEq, 0U);
   4003     CHECK_EQ(test.dUeq, 0U);
   4004     CHECK_EQ(test.dOlt, 0U);
   4005     CHECK_EQ(test.dUlt, 0U);
   4006     CHECK_EQ(test.dOle, 0U);
   4007     CHECK_EQ(test.dUle, 0U);
   4008     CHECK_EQ(test.fF, 0U);
   4009     CHECK_EQ(test.fUn, 0U);
   4010     CHECK_EQ(test.fEq, 0U);
   4011     CHECK_EQ(test.fUeq, 0U);
   4012     CHECK_EQ(test.fOlt, 0U);
   4013     CHECK_EQ(test.fUlt, 0U);
   4014     CHECK_EQ(test.fOle, 0U);
   4015     CHECK_EQ(test.fUle, 0U);
   4016 
   4017     test.dOp1 = -std::numeric_limits<double>::max();  // lowest()
   4018     test.dOp2 = -std::numeric_limits<double>::max();  // lowest()
   4019     test.fOp1 = std::numeric_limits<float>::max();
   4020     test.fOp2 = std::numeric_limits<float>::max();
   4021     (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   4022     CHECK_EQ(test.dF, 0U);
   4023     CHECK_EQ(test.dUn, 0U);
   4024     CHECK_EQ(test.dEq, 1U);
   4025     CHECK_EQ(test.dUeq, 1U);
   4026     CHECK_EQ(test.dOlt, 0U);
   4027     CHECK_EQ(test.dUlt, 0U);
   4028     CHECK_EQ(test.dOle, 1U);
   4029     CHECK_EQ(test.dUle, 1U);
   4030     CHECK_EQ(test.fF, 0U);
   4031     CHECK_EQ(test.fUn, 0U);
   4032     CHECK_EQ(test.fEq, 1U);
   4033     CHECK_EQ(test.fUeq, 1U);
   4034     CHECK_EQ(test.fOlt, 0U);
   4035     CHECK_EQ(test.fUlt, 0U);
   4036     CHECK_EQ(test.fOle, 1U);
   4037     CHECK_EQ(test.fUle, 1U);
   4038 
   4039     test.dOp1 = std::numeric_limits<double>::quiet_NaN();
   4040     test.dOp2 = 0.0;
   4041     test.fOp1 = std::numeric_limits<float>::quiet_NaN();
   4042     test.fOp2 = 0.0;
   4043     (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   4044     CHECK_EQ(test.dF, 0U);
   4045     CHECK_EQ(test.dUn, 1U);
   4046     CHECK_EQ(test.dEq, 0U);
   4047     CHECK_EQ(test.dUeq, 1U);
   4048     CHECK_EQ(test.dOlt, 0U);
   4049     CHECK_EQ(test.dUlt, 1U);
   4050     CHECK_EQ(test.dOle, 0U);
   4051     CHECK_EQ(test.dUle, 1U);
   4052     CHECK_EQ(test.fF, 0U);
   4053     CHECK_EQ(test.fUn, 1U);
   4054     CHECK_EQ(test.fEq, 0U);
   4055     CHECK_EQ(test.fUeq, 1U);
   4056     CHECK_EQ(test.fOlt, 0U);
   4057     CHECK_EQ(test.fUlt, 1U);
   4058     CHECK_EQ(test.fOle, 0U);
   4059     CHECK_EQ(test.fUle, 1U);
   4060   }
   4061 }
   4062 
   4063 
   4064 TEST(CMP_COND_FMT) {
   4065   if (kArchVariant == kMips64r6) {
   4066     CcTest::InitializeVM();
   4067     Isolate* isolate = CcTest::i_isolate();
   4068     HandleScope scope(isolate);
   4069     MacroAssembler assm(isolate, NULL, 0,
   4070                         v8::internal::CodeObjectRequired::kYes);
   4071 
   4072     typedef struct test_float {
   4073       double dOp1;
   4074       double dOp2;
   4075       double dF;
   4076       double dUn;
   4077       double dEq;
   4078       double dUeq;
   4079       double dOlt;
   4080       double dUlt;
   4081       double dOle;
   4082       double dUle;
   4083       double dOr;
   4084       double dUne;
   4085       double dNe;
   4086       float fOp1;
   4087       float fOp2;
   4088       float fF;
   4089       float fUn;
   4090       float fEq;
   4091       float fUeq;
   4092       float fOlt;
   4093       float fUlt;
   4094       float fOle;
   4095       float fUle;
   4096       float fOr;
   4097       float fUne;
   4098       float fNe;
   4099     } TestFloat;
   4100 
   4101     TestFloat test;
   4102 
   4103     __ li(t1, 1);
   4104 
   4105     __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, dOp1)));
   4106     __ ldc1(f6, MemOperand(a0, offsetof(TestFloat, dOp2)));
   4107 
   4108     __ lwc1(f14, MemOperand(a0, offsetof(TestFloat, fOp1)));
   4109     __ lwc1(f16, MemOperand(a0, offsetof(TestFloat, fOp2)));
   4110 
   4111     __ cmp_d(F, f2, f4, f6);
   4112     __ cmp_s(F, f12, f14, f16);
   4113     __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dF)) );
   4114     __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fF)) );
   4115 
   4116     __ cmp_d(UN, f2, f4, f6);
   4117     __ cmp_s(UN, f12, f14, f16);
   4118     __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUn)) );
   4119     __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fUn)) );
   4120 
   4121     __ cmp_d(EQ, f2, f4, f6);
   4122     __ cmp_s(EQ, f12, f14, f16);
   4123     __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dEq)) );
   4124     __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fEq)) );
   4125 
   4126     __ cmp_d(UEQ, f2, f4, f6);
   4127     __ cmp_s(UEQ, f12, f14, f16);
   4128     __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUeq)) );
   4129     __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fUeq)) );
   4130 
   4131     __ cmp_d(LT, f2, f4, f6);
   4132     __ cmp_s(LT, f12, f14, f16);
   4133     __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dOlt)) );
   4134     __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fOlt)) );
   4135 
   4136     __ cmp_d(ULT, f2, f4, f6);
   4137     __ cmp_s(ULT, f12, f14, f16);
   4138     __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUlt)) );
   4139     __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fUlt)) );
   4140 
   4141     __ cmp_d(LE, f2, f4, f6);
   4142     __ cmp_s(LE, f12, f14, f16);
   4143     __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dOle)) );
   4144     __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fOle)) );
   4145 
   4146     __ cmp_d(ULE, f2, f4, f6);
   4147     __ cmp_s(ULE, f12, f14, f16);
   4148     __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUle)) );
   4149     __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fUle)) );
   4150 
   4151     __ cmp_d(ORD, f2, f4, f6);
   4152     __ cmp_s(ORD, f12, f14, f16);
   4153     __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dOr)) );
   4154     __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fOr)) );
   4155 
   4156     __ cmp_d(UNE, f2, f4, f6);
   4157     __ cmp_s(UNE, f12, f14, f16);
   4158     __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUne)) );
   4159     __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fUne)) );
   4160 
   4161     __ cmp_d(NE, f2, f4, f6);
   4162     __ cmp_s(NE, f12, f14, f16);
   4163     __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dNe)) );
   4164     __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fNe)) );
   4165 
   4166     __ jr(ra);
   4167     __ nop();
   4168 
   4169     CodeDesc desc;
   4170     assm.GetCode(&desc);
   4171     Handle<Code> code = isolate->factory()->NewCode(
   4172         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   4173     F3 f = FUNCTION_CAST<F3>(code->entry());
   4174     uint64_t dTrue  = 0xFFFFFFFFFFFFFFFF;
   4175     uint64_t dFalse = 0x0000000000000000;
   4176     uint32_t fTrue  = 0xFFFFFFFF;
   4177     uint32_t fFalse = 0x00000000;
   4178 
   4179     test.dOp1 = 2.0;
   4180     test.dOp2 = 3.0;
   4181     test.fOp1 = 2.0;
   4182     test.fOp2 = 3.0;
   4183     (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   4184     CHECK_EQ(bit_cast<uint64_t>(test.dF), dFalse);
   4185     CHECK_EQ(bit_cast<uint64_t>(test.dUn), dFalse);
   4186     CHECK_EQ(bit_cast<uint64_t>(test.dEq), dFalse);
   4187     CHECK_EQ(bit_cast<uint64_t>(test.dUeq), dFalse);
   4188     CHECK_EQ(bit_cast<uint64_t>(test.dOlt), dTrue);
   4189     CHECK_EQ(bit_cast<uint64_t>(test.dUlt), dTrue);
   4190     CHECK_EQ(bit_cast<uint64_t>(test.dOle), dTrue);
   4191     CHECK_EQ(bit_cast<uint64_t>(test.dUle), dTrue);
   4192     CHECK_EQ(bit_cast<uint64_t>(test.dOr), dTrue);
   4193     CHECK_EQ(bit_cast<uint64_t>(test.dUne), dTrue);
   4194     CHECK_EQ(bit_cast<uint64_t>(test.dNe), dTrue);
   4195     CHECK_EQ(bit_cast<uint32_t>(test.fF), fFalse);
   4196     CHECK_EQ(bit_cast<uint32_t>(test.fUn), fFalse);
   4197     CHECK_EQ(bit_cast<uint32_t>(test.fEq), fFalse);
   4198     CHECK_EQ(bit_cast<uint32_t>(test.fUeq), fFalse);
   4199     CHECK_EQ(bit_cast<uint32_t>(test.fOlt), fTrue);
   4200     CHECK_EQ(bit_cast<uint32_t>(test.fUlt), fTrue);
   4201     CHECK_EQ(bit_cast<uint32_t>(test.fOle), fTrue);
   4202     CHECK_EQ(bit_cast<uint32_t>(test.fUle), fTrue);
   4203 
   4204     test.dOp1 = std::numeric_limits<double>::max();
   4205     test.dOp2 = std::numeric_limits<double>::min();
   4206     test.fOp1 = std::numeric_limits<float>::min();
   4207     test.fOp2 = -std::numeric_limits<float>::max();  // lowest()
   4208     (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   4209     CHECK_EQ(bit_cast<uint64_t>(test.dF), dFalse);
   4210     CHECK_EQ(bit_cast<uint64_t>(test.dUn), dFalse);
   4211     CHECK_EQ(bit_cast<uint64_t>(test.dEq), dFalse);
   4212     CHECK_EQ(bit_cast<uint64_t>(test.dUeq), dFalse);
   4213     CHECK_EQ(bit_cast<uint64_t>(test.dOlt), dFalse);
   4214     CHECK_EQ(bit_cast<uint64_t>(test.dUlt), dFalse);
   4215     CHECK_EQ(bit_cast<uint64_t>(test.dOle), dFalse);
   4216     CHECK_EQ(bit_cast<uint64_t>(test.dUle), dFalse);
   4217     CHECK_EQ(bit_cast<uint64_t>(test.dOr), dTrue);
   4218     CHECK_EQ(bit_cast<uint64_t>(test.dUne), dTrue);
   4219     CHECK_EQ(bit_cast<uint64_t>(test.dNe), dTrue);
   4220     CHECK_EQ(bit_cast<uint32_t>(test.fF), fFalse);
   4221     CHECK_EQ(bit_cast<uint32_t>(test.fUn), fFalse);
   4222     CHECK_EQ(bit_cast<uint32_t>(test.fEq), fFalse);
   4223     CHECK_EQ(bit_cast<uint32_t>(test.fUeq), fFalse);
   4224     CHECK_EQ(bit_cast<uint32_t>(test.fOlt), fFalse);
   4225     CHECK_EQ(bit_cast<uint32_t>(test.fUlt), fFalse);
   4226     CHECK_EQ(bit_cast<uint32_t>(test.fOle), fFalse);
   4227     CHECK_EQ(bit_cast<uint32_t>(test.fUle), fFalse);
   4228 
   4229     test.dOp1 = -std::numeric_limits<double>::max();  // lowest()
   4230     test.dOp2 = -std::numeric_limits<double>::max();  // lowest()
   4231     test.fOp1 = std::numeric_limits<float>::max();
   4232     test.fOp2 = std::numeric_limits<float>::max();
   4233     (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   4234     CHECK_EQ(bit_cast<uint64_t>(test.dF), dFalse);
   4235     CHECK_EQ(bit_cast<uint64_t>(test.dUn), dFalse);
   4236     CHECK_EQ(bit_cast<uint64_t>(test.dEq), dTrue);
   4237     CHECK_EQ(bit_cast<uint64_t>(test.dUeq), dTrue);
   4238     CHECK_EQ(bit_cast<uint64_t>(test.dOlt), dFalse);
   4239     CHECK_EQ(bit_cast<uint64_t>(test.dUlt), dFalse);
   4240     CHECK_EQ(bit_cast<uint64_t>(test.dOle), dTrue);
   4241     CHECK_EQ(bit_cast<uint64_t>(test.dUle), dTrue);
   4242     CHECK_EQ(bit_cast<uint64_t>(test.dOr), dTrue);
   4243     CHECK_EQ(bit_cast<uint64_t>(test.dUne), dFalse);
   4244     CHECK_EQ(bit_cast<uint64_t>(test.dNe), dFalse);
   4245     CHECK_EQ(bit_cast<uint32_t>(test.fF), fFalse);
   4246     CHECK_EQ(bit_cast<uint32_t>(test.fUn), fFalse);
   4247     CHECK_EQ(bit_cast<uint32_t>(test.fEq), fTrue);
   4248     CHECK_EQ(bit_cast<uint32_t>(test.fUeq), fTrue);
   4249     CHECK_EQ(bit_cast<uint32_t>(test.fOlt), fFalse);
   4250     CHECK_EQ(bit_cast<uint32_t>(test.fUlt), fFalse);
   4251     CHECK_EQ(bit_cast<uint32_t>(test.fOle), fTrue);
   4252     CHECK_EQ(bit_cast<uint32_t>(test.fUle), fTrue);
   4253 
   4254     test.dOp1 = std::numeric_limits<double>::quiet_NaN();
   4255     test.dOp2 = 0.0;
   4256     test.fOp1 = std::numeric_limits<float>::quiet_NaN();
   4257     test.fOp2 = 0.0;
   4258     (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   4259     CHECK_EQ(bit_cast<uint64_t>(test.dF), dFalse);
   4260     CHECK_EQ(bit_cast<uint64_t>(test.dUn), dTrue);
   4261     CHECK_EQ(bit_cast<uint64_t>(test.dEq), dFalse);
   4262     CHECK_EQ(bit_cast<uint64_t>(test.dUeq), dTrue);
   4263     CHECK_EQ(bit_cast<uint64_t>(test.dOlt), dFalse);
   4264     CHECK_EQ(bit_cast<uint64_t>(test.dUlt), dTrue);
   4265     CHECK_EQ(bit_cast<uint64_t>(test.dOle), dFalse);
   4266     CHECK_EQ(bit_cast<uint64_t>(test.dUle), dTrue);
   4267     CHECK_EQ(bit_cast<uint64_t>(test.dOr), dFalse);
   4268     CHECK_EQ(bit_cast<uint64_t>(test.dUne), dTrue);
   4269     CHECK_EQ(bit_cast<uint64_t>(test.dNe), dFalse);
   4270     CHECK_EQ(bit_cast<uint32_t>(test.fF), fFalse);
   4271     CHECK_EQ(bit_cast<uint32_t>(test.fUn), fTrue);
   4272     CHECK_EQ(bit_cast<uint32_t>(test.fEq), fFalse);
   4273     CHECK_EQ(bit_cast<uint32_t>(test.fUeq), fTrue);
   4274     CHECK_EQ(bit_cast<uint32_t>(test.fOlt), fFalse);
   4275     CHECK_EQ(bit_cast<uint32_t>(test.fUlt), fTrue);
   4276     CHECK_EQ(bit_cast<uint32_t>(test.fOle), fFalse);
   4277     CHECK_EQ(bit_cast<uint32_t>(test.fUle), fTrue);
   4278   }
   4279 }
   4280 
   4281 
   4282 TEST(CVT) {
   4283   CcTest::InitializeVM();
   4284   Isolate* isolate = CcTest::i_isolate();
   4285   HandleScope scope(isolate);
   4286   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   4287 
   4288   typedef struct test_float {
   4289     float    cvt_d_s_in;
   4290     double   cvt_d_s_out;
   4291     int32_t  cvt_d_w_in;
   4292     double   cvt_d_w_out;
   4293     int64_t  cvt_d_l_in;
   4294     double   cvt_d_l_out;
   4295 
   4296     float    cvt_l_s_in;
   4297     int64_t  cvt_l_s_out;
   4298     double   cvt_l_d_in;
   4299     int64_t  cvt_l_d_out;
   4300 
   4301     double   cvt_s_d_in;
   4302     float    cvt_s_d_out;
   4303     int32_t  cvt_s_w_in;
   4304     float    cvt_s_w_out;
   4305     int64_t  cvt_s_l_in;
   4306     float    cvt_s_l_out;
   4307 
   4308     float    cvt_w_s_in;
   4309     int32_t  cvt_w_s_out;
   4310     double   cvt_w_d_in;
   4311     int32_t  cvt_w_d_out;
   4312   } TestFloat;
   4313 
   4314   TestFloat test;
   4315 
   4316   // Save FCSR.
   4317   __ cfc1(a1, FCSR);
   4318   // Disable FPU exceptions.
   4319   __ ctc1(zero_reg, FCSR);
   4320 
   4321 #define GENERATE_CVT_TEST(x, y, z) \
   4322   __ y##c1(f0, MemOperand(a0, offsetof(TestFloat, x##_in))); \
   4323   __ x(f0, f0); \
   4324   __ nop(); \
   4325   __ z##c1(f0, MemOperand(a0, offsetof(TestFloat, x##_out)));
   4326 
   4327   GENERATE_CVT_TEST(cvt_d_s, lw, sd)
   4328   GENERATE_CVT_TEST(cvt_d_w, lw, sd)
   4329   GENERATE_CVT_TEST(cvt_d_l, ld, sd)
   4330 
   4331   GENERATE_CVT_TEST(cvt_l_s, lw, sd)
   4332   GENERATE_CVT_TEST(cvt_l_d, ld, sd)
   4333 
   4334   GENERATE_CVT_TEST(cvt_s_d, ld, sw)
   4335   GENERATE_CVT_TEST(cvt_s_w, lw, sw)
   4336   GENERATE_CVT_TEST(cvt_s_l, ld, sw)
   4337 
   4338   GENERATE_CVT_TEST(cvt_w_s, lw, sw)
   4339   GENERATE_CVT_TEST(cvt_w_d, ld, sw)
   4340 
   4341   // Restore FCSR.
   4342   __ ctc1(a1, FCSR);
   4343 
   4344   __ jr(ra);
   4345   __ nop();
   4346 
   4347   CodeDesc desc;
   4348   assm.GetCode(&desc);
   4349   Handle<Code> code = isolate->factory()->NewCode(
   4350       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   4351   F3 f = FUNCTION_CAST<F3>(code->entry());
   4352 
   4353   test.cvt_d_s_in = -0.51;
   4354   test.cvt_d_w_in = -1;
   4355   test.cvt_d_l_in = -1;
   4356   test.cvt_l_s_in = -0.51;
   4357   test.cvt_l_d_in = -0.51;
   4358   test.cvt_s_d_in = -0.51;
   4359   test.cvt_s_w_in = -1;
   4360   test.cvt_s_l_in = -1;
   4361   test.cvt_w_s_in = -0.51;
   4362   test.cvt_w_d_in = -0.51;
   4363 
   4364   (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   4365   CHECK_EQ(test.cvt_d_s_out, static_cast<double>(test.cvt_d_s_in));
   4366   CHECK_EQ(test.cvt_d_w_out, static_cast<double>(test.cvt_d_w_in));
   4367   CHECK_EQ(test.cvt_d_l_out, static_cast<double>(test.cvt_d_l_in));
   4368   CHECK_EQ(test.cvt_l_s_out, -1);
   4369   CHECK_EQ(test.cvt_l_d_out, -1);
   4370   CHECK_EQ(test.cvt_s_d_out, static_cast<float>(test.cvt_s_d_in));
   4371   CHECK_EQ(test.cvt_s_w_out, static_cast<float>(test.cvt_s_w_in));
   4372   CHECK_EQ(test.cvt_s_l_out, static_cast<float>(test.cvt_s_l_in));
   4373   CHECK_EQ(test.cvt_w_s_out, -1);
   4374   CHECK_EQ(test.cvt_w_d_out, -1);
   4375 
   4376 
   4377   test.cvt_d_s_in = 0.49;
   4378   test.cvt_d_w_in = 1;
   4379   test.cvt_d_l_in = 1;
   4380   test.cvt_l_s_in = 0.49;
   4381   test.cvt_l_d_in = 0.49;
   4382   test.cvt_s_d_in = 0.49;
   4383   test.cvt_s_w_in = 1;
   4384   test.cvt_s_l_in = 1;
   4385   test.cvt_w_s_in = 0.49;
   4386   test.cvt_w_d_in = 0.49;
   4387 
   4388   (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   4389   CHECK_EQ(test.cvt_d_s_out, static_cast<double>(test.cvt_d_s_in));
   4390   CHECK_EQ(test.cvt_d_w_out, static_cast<double>(test.cvt_d_w_in));
   4391   CHECK_EQ(test.cvt_d_l_out, static_cast<double>(test.cvt_d_l_in));
   4392   CHECK_EQ(test.cvt_l_s_out, 0);
   4393   CHECK_EQ(test.cvt_l_d_out, 0);
   4394   CHECK_EQ(test.cvt_s_d_out, static_cast<float>(test.cvt_s_d_in));
   4395   CHECK_EQ(test.cvt_s_w_out, static_cast<float>(test.cvt_s_w_in));
   4396   CHECK_EQ(test.cvt_s_l_out, static_cast<float>(test.cvt_s_l_in));
   4397   CHECK_EQ(test.cvt_w_s_out, 0);
   4398   CHECK_EQ(test.cvt_w_d_out, 0);
   4399 
   4400   test.cvt_d_s_in = std::numeric_limits<float>::max();
   4401   test.cvt_d_w_in = std::numeric_limits<int32_t>::max();
   4402   test.cvt_d_l_in = std::numeric_limits<int64_t>::max();
   4403   test.cvt_l_s_in = std::numeric_limits<float>::max();
   4404   test.cvt_l_d_in = std::numeric_limits<double>::max();
   4405   test.cvt_s_d_in = std::numeric_limits<double>::max();
   4406   test.cvt_s_w_in = std::numeric_limits<int32_t>::max();
   4407   test.cvt_s_l_in = std::numeric_limits<int64_t>::max();
   4408   test.cvt_w_s_in = std::numeric_limits<float>::max();
   4409   test.cvt_w_d_in = std::numeric_limits<double>::max();
   4410 
   4411   (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   4412   CHECK_EQ(test.cvt_d_s_out, static_cast<double>(test.cvt_d_s_in));
   4413   CHECK_EQ(test.cvt_d_w_out, static_cast<double>(test.cvt_d_w_in));
   4414   CHECK_EQ(test.cvt_d_l_out, static_cast<double>(test.cvt_d_l_in));
   4415   CHECK_EQ(test.cvt_l_s_out, std::numeric_limits<int64_t>::max());
   4416   CHECK_EQ(test.cvt_l_d_out, std::numeric_limits<int64_t>::max());
   4417   CHECK_EQ(test.cvt_s_d_out, static_cast<float>(test.cvt_s_d_in));
   4418   CHECK_EQ(test.cvt_s_w_out, static_cast<float>(test.cvt_s_w_in));
   4419   CHECK_EQ(test.cvt_s_l_out, static_cast<float>(test.cvt_s_l_in));
   4420   CHECK_EQ(test.cvt_w_s_out, std::numeric_limits<int32_t>::max());
   4421   CHECK_EQ(test.cvt_w_d_out, std::numeric_limits<int32_t>::max());
   4422 
   4423 
   4424   test.cvt_d_s_in = -std::numeric_limits<float>::max();   // lowest()
   4425   test.cvt_d_w_in = std::numeric_limits<int32_t>::min();  // lowest()
   4426   test.cvt_d_l_in = std::numeric_limits<int64_t>::min();  // lowest()
   4427   test.cvt_l_s_in = -std::numeric_limits<float>::max();   // lowest()
   4428   test.cvt_l_d_in = -std::numeric_limits<double>::max();  // lowest()
   4429   test.cvt_s_d_in = -std::numeric_limits<double>::max();  // lowest()
   4430   test.cvt_s_w_in = std::numeric_limits<int32_t>::min();  // lowest()
   4431   test.cvt_s_l_in = std::numeric_limits<int64_t>::min();  // lowest()
   4432   test.cvt_w_s_in = -std::numeric_limits<float>::max();   // lowest()
   4433   test.cvt_w_d_in = -std::numeric_limits<double>::max();  // lowest()
   4434 
   4435   (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   4436   CHECK_EQ(test.cvt_d_s_out, static_cast<double>(test.cvt_d_s_in));
   4437   CHECK_EQ(test.cvt_d_w_out, static_cast<double>(test.cvt_d_w_in));
   4438   CHECK_EQ(test.cvt_d_l_out, static_cast<double>(test.cvt_d_l_in));
   4439   // The returned value when converting from fixed-point to float-point
   4440   // is not consistent between board, simulator and specification
   4441   // in this test case, therefore modifying the test
   4442   CHECK(test.cvt_l_s_out == std::numeric_limits<int64_t>::min() ||
   4443        test.cvt_l_s_out == std::numeric_limits<int64_t>::max());
   4444   CHECK(test.cvt_l_d_out == std::numeric_limits<int64_t>::min() ||
   4445         test.cvt_l_d_out == std::numeric_limits<int64_t>::max());
   4446   CHECK_EQ(test.cvt_s_d_out, static_cast<float>(test.cvt_s_d_in));
   4447   CHECK_EQ(test.cvt_s_w_out, static_cast<float>(test.cvt_s_w_in));
   4448   CHECK_EQ(test.cvt_s_l_out, static_cast<float>(test.cvt_s_l_in));
   4449   CHECK(test.cvt_w_s_out == std::numeric_limits<int32_t>::min() ||
   4450         test.cvt_w_s_out == std::numeric_limits<int32_t>::max());
   4451   CHECK(test.cvt_w_d_out == std::numeric_limits<int32_t>::min() ||
   4452         test.cvt_w_d_out == std::numeric_limits<int32_t>::max());
   4453 
   4454 
   4455   test.cvt_d_s_in = std::numeric_limits<float>::min();
   4456   test.cvt_d_w_in = std::numeric_limits<int32_t>::min();
   4457   test.cvt_d_l_in = std::numeric_limits<int64_t>::min();
   4458   test.cvt_l_s_in = std::numeric_limits<float>::min();
   4459   test.cvt_l_d_in = std::numeric_limits<double>::min();
   4460   test.cvt_s_d_in = std::numeric_limits<double>::min();
   4461   test.cvt_s_w_in = std::numeric_limits<int32_t>::min();
   4462   test.cvt_s_l_in = std::numeric_limits<int64_t>::min();
   4463   test.cvt_w_s_in = std::numeric_limits<float>::min();
   4464   test.cvt_w_d_in = std::numeric_limits<double>::min();
   4465 
   4466   (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   4467   CHECK_EQ(test.cvt_d_s_out, static_cast<double>(test.cvt_d_s_in));
   4468   CHECK_EQ(test.cvt_d_w_out, static_cast<double>(test.cvt_d_w_in));
   4469   CHECK_EQ(test.cvt_d_l_out, static_cast<double>(test.cvt_d_l_in));
   4470   CHECK_EQ(test.cvt_l_s_out, 0);
   4471   CHECK_EQ(test.cvt_l_d_out, 0);
   4472   CHECK_EQ(test.cvt_s_d_out, static_cast<float>(test.cvt_s_d_in));
   4473   CHECK_EQ(test.cvt_s_w_out, static_cast<float>(test.cvt_s_w_in));
   4474   CHECK_EQ(test.cvt_s_l_out, static_cast<float>(test.cvt_s_l_in));
   4475   CHECK_EQ(test.cvt_w_s_out, 0);
   4476   CHECK_EQ(test.cvt_w_d_out, 0);
   4477 }
   4478 
   4479 
   4480 TEST(DIV_FMT) {
   4481   CcTest::InitializeVM();
   4482   Isolate* isolate = CcTest::i_isolate();
   4483   HandleScope scope(isolate);
   4484   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   4485 
   4486   typedef struct test {
   4487     double dOp1;
   4488     double dOp2;
   4489     double dRes;
   4490     float  fOp1;
   4491     float  fOp2;
   4492     float  fRes;
   4493   } Test;
   4494 
   4495   Test test;
   4496 
   4497   // Save FCSR.
   4498   __ cfc1(a1, FCSR);
   4499   // Disable FPU exceptions.
   4500   __ ctc1(zero_reg, FCSR);
   4501 
   4502   __ ldc1(f4, MemOperand(a0, offsetof(Test, dOp1)) );
   4503   __ ldc1(f2, MemOperand(a0, offsetof(Test, dOp2)) );
   4504   __ nop();
   4505   __ div_d(f6, f4, f2);
   4506   __ sdc1(f6, MemOperand(a0, offsetof(Test, dRes)) );
   4507 
   4508   __ lwc1(f4, MemOperand(a0, offsetof(Test, fOp1)) );
   4509   __ lwc1(f2, MemOperand(a0, offsetof(Test, fOp2)) );
   4510   __ nop();
   4511   __ div_s(f6, f4, f2);
   4512   __ swc1(f6, MemOperand(a0, offsetof(Test, fRes)) );
   4513 
   4514     // Restore FCSR.
   4515   __ ctc1(a1, FCSR);
   4516 
   4517   __ jr(ra);
   4518   __ nop();
   4519   CodeDesc desc;
   4520   assm.GetCode(&desc);
   4521   Handle<Code> code = isolate->factory()->NewCode(
   4522       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   4523   F3 f = FUNCTION_CAST<F3>(code->entry());
   4524 
   4525   (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   4526 
   4527   const int test_size = 3;
   4528 
   4529   double dOp1[test_size] = {
   4530     5.0,
   4531     DBL_MAX,
   4532     DBL_MAX,
   4533   };
   4534   double dOp2[test_size] = {
   4535     2.0,
   4536     2.0,
   4537     -DBL_MAX,
   4538   };
   4539   double dRes[test_size] = {
   4540     2.5,
   4541     DBL_MAX / 2.0,
   4542     -1.0,
   4543   };
   4544   float fOp1[test_size] = {
   4545     5.0,
   4546     FLT_MAX,
   4547     FLT_MAX,
   4548   };
   4549   float fOp2[test_size] = {
   4550     2.0,
   4551     2.0,
   4552     -FLT_MAX,
   4553   };
   4554   float fRes[test_size] = {
   4555     2.5,
   4556     FLT_MAX / 2.0,
   4557     -1.0,
   4558   };
   4559 
   4560   for (int i = 0; i < test_size; i++) {
   4561     test.dOp1 = dOp1[i];
   4562     test.dOp2 = dOp2[i];
   4563     test.fOp1 = fOp1[i];
   4564     test.fOp2 = fOp2[i];
   4565 
   4566     (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   4567     CHECK_EQ(test.dRes, dRes[i]);
   4568     CHECK_EQ(test.fRes, fRes[i]);
   4569   }
   4570 
   4571   test.dOp1 = DBL_MAX;
   4572   test.dOp2 = -0.0;
   4573   test.fOp1 = FLT_MAX;
   4574   test.fOp2 = -0.0;
   4575 
   4576   (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   4577   CHECK_EQ(false, std::isfinite(test.dRes));
   4578   CHECK_EQ(false, std::isfinite(test.fRes));
   4579 
   4580   test.dOp1 = 0.0;
   4581   test.dOp2 = -0.0;
   4582   test.fOp1 = 0.0;
   4583   test.fOp2 = -0.0;
   4584 
   4585   (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   4586   CHECK_EQ(true, std::isnan(test.dRes));
   4587   CHECK_EQ(true, std::isnan(test.fRes));
   4588 
   4589   test.dOp1 = std::numeric_limits<double>::quiet_NaN();
   4590   test.dOp2 = -5.0;
   4591   test.fOp1 = std::numeric_limits<float>::quiet_NaN();
   4592   test.fOp2 = -5.0;
   4593 
   4594   (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
   4595   CHECK_EQ(true, std::isnan(test.dRes));
   4596   CHECK_EQ(true, std::isnan(test.fRes));
   4597 }
   4598 
   4599 
   4600 uint64_t run_align(uint64_t rs_value, uint64_t rt_value, uint8_t bp) {
   4601   Isolate* isolate = CcTest::i_isolate();
   4602   HandleScope scope(isolate);
   4603 
   4604   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   4605 
   4606   __ align(v0, a0, a1, bp);
   4607   __ jr(ra);
   4608   __ nop();
   4609 
   4610   CodeDesc desc;
   4611   assm.GetCode(&desc);
   4612   Handle<Code> code = isolate->factory()->NewCode(
   4613       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   4614 
   4615   F4 f = FUNCTION_CAST<F4>(code->entry());
   4616 
   4617   uint64_t res = reinterpret_cast<uint64_t>(
   4618       CALL_GENERATED_CODE(isolate, f, rs_value, rt_value, 0, 0, 0));
   4619 
   4620   return res;
   4621 }
   4622 
   4623 
   4624 TEST(r6_align) {
   4625   if (kArchVariant == kMips64r6) {
   4626     CcTest::InitializeVM();
   4627 
   4628     struct TestCaseAlign {
   4629       uint64_t  rs_value;
   4630       uint64_t  rt_value;
   4631       uint8_t   bp;
   4632       uint64_t  expected_res;
   4633     };
   4634 
   4635     struct TestCaseAlign tc[] = {
   4636       // rs_value,    rt_value,    bp, expected_res
   4637       {  0x11223344,  0xaabbccdd,   0, 0xffffffffaabbccdd },
   4638       {  0x11223344,  0xaabbccdd,   1, 0xffffffffbbccdd11 },
   4639       {  0x11223344,  0xaabbccdd,   2, 0xffffffffccdd1122 },
   4640       {  0x11223344,  0xaabbccdd,   3, 0xffffffffdd112233 },
   4641     };
   4642 
   4643     size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAlign);
   4644     for (size_t i = 0; i < nr_test_cases; ++i) {
   4645       CHECK_EQ(tc[i].expected_res, run_align(tc[i].rs_value,
   4646                                               tc[i].rt_value,
   4647                                               tc[i].bp));
   4648     }
   4649   }
   4650 }
   4651 
   4652 
   4653 uint64_t run_dalign(uint64_t rs_value, uint64_t rt_value, uint8_t bp) {
   4654   Isolate* isolate = CcTest::i_isolate();
   4655   HandleScope scope(isolate);
   4656 
   4657   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   4658 
   4659   __ dalign(v0, a0, a1, bp);
   4660   __ jr(ra);
   4661   __ nop();
   4662 
   4663   CodeDesc desc;
   4664   assm.GetCode(&desc);
   4665   Handle<Code> code = isolate->factory()->NewCode(
   4666       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   4667 
   4668   F4 f = FUNCTION_CAST<F4>(code->entry());
   4669   uint64_t res = reinterpret_cast<uint64_t>(
   4670       CALL_GENERATED_CODE(isolate, f, rs_value, rt_value, 0, 0, 0));
   4671 
   4672   return res;
   4673 }
   4674 
   4675 
   4676 TEST(r6_dalign) {
   4677   if (kArchVariant == kMips64r6) {
   4678     CcTest::InitializeVM();
   4679 
   4680     struct TestCaseDalign {
   4681       uint64_t  rs_value;
   4682       uint64_t  rt_value;
   4683       uint8_t   bp;
   4684       uint64_t  expected_res;
   4685     };
   4686 
   4687     struct TestCaseDalign tc[] = {
   4688       // rs_value,           rt_value,            bp, expected_res
   4689       { 0x1122334455667700,  0xaabbccddeeff8899,   0, 0xaabbccddeeff8899 },
   4690       { 0x1122334455667700,  0xaabbccddeeff8899,   1, 0xbbccddeeff889911 },
   4691       { 0x1122334455667700,  0xaabbccddeeff8899,   2, 0xccddeeff88991122 },
   4692       { 0x1122334455667700,  0xaabbccddeeff8899,   3, 0xddeeff8899112233 },
   4693       { 0x1122334455667700,  0xaabbccddeeff8899,   4, 0xeeff889911223344 },
   4694       { 0x1122334455667700,  0xaabbccddeeff8899,   5, 0xff88991122334455 },
   4695       { 0x1122334455667700,  0xaabbccddeeff8899,   6, 0x8899112233445566 },
   4696       { 0x1122334455667700,  0xaabbccddeeff8899,   7, 0x9911223344556677 }
   4697     };
   4698 
   4699     size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseDalign);
   4700     for (size_t i = 0; i < nr_test_cases; ++i) {
   4701       CHECK_EQ(tc[i].expected_res, run_dalign(tc[i].rs_value,
   4702                                               tc[i].rt_value,
   4703                                               tc[i].bp));
   4704     }
   4705   }
   4706 }
   4707 
   4708 
   4709 uint64_t PC;  // The program counter.
   4710 
   4711 uint64_t run_aluipc(int16_t offset) {
   4712   Isolate* isolate = CcTest::i_isolate();
   4713   HandleScope scope(isolate);
   4714 
   4715   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   4716 
   4717   __ aluipc(v0, offset);
   4718   __ jr(ra);
   4719   __ nop();
   4720 
   4721   CodeDesc desc;
   4722   assm.GetCode(&desc);
   4723   Handle<Code> code = isolate->factory()->NewCode(
   4724       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   4725 
   4726   F2 f = FUNCTION_CAST<F2>(code->entry());
   4727   PC = (uint64_t) f;  // Set the program counter.
   4728 
   4729   uint64_t res = reinterpret_cast<uint64_t>(
   4730       CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
   4731 
   4732   return res;
   4733 }
   4734 
   4735 
   4736 TEST(r6_aluipc) {
   4737   if (kArchVariant == kMips64r6) {
   4738     CcTest::InitializeVM();
   4739 
   4740     struct TestCaseAluipc {
   4741       int16_t   offset;
   4742     };
   4743 
   4744     struct TestCaseAluipc tc[] = {
   4745       // offset
   4746       { -32768 },   // 0x8000
   4747       {     -1 },   // 0xFFFF
   4748       {      0 },
   4749       {      1 },
   4750       {  32767 },   // 0x7FFF
   4751     };
   4752 
   4753     size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAluipc);
   4754     for (size_t i = 0; i < nr_test_cases; ++i) {
   4755       PC = 0;
   4756       uint64_t res = run_aluipc(tc[i].offset);
   4757       // Now, the program_counter (PC) is set.
   4758       uint64_t expected_res = ~0x0FFFF & (PC + (tc[i].offset << 16));
   4759       CHECK_EQ(expected_res, res);
   4760     }
   4761   }
   4762 }
   4763 
   4764 
   4765 uint64_t run_auipc(int16_t offset) {
   4766   Isolate* isolate = CcTest::i_isolate();
   4767   HandleScope scope(isolate);
   4768 
   4769   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   4770 
   4771   __ auipc(v0, offset);
   4772   __ jr(ra);
   4773   __ nop();
   4774 
   4775   CodeDesc desc;
   4776   assm.GetCode(&desc);
   4777   Handle<Code> code = isolate->factory()->NewCode(
   4778       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   4779 
   4780   F2 f = FUNCTION_CAST<F2>(code->entry());
   4781   PC = (uint64_t) f;  // Set the program counter.
   4782 
   4783   uint64_t res = reinterpret_cast<uint64_t>(
   4784       CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
   4785 
   4786   return res;
   4787 }
   4788 
   4789 
   4790 TEST(r6_auipc) {
   4791   if (kArchVariant == kMips64r6) {
   4792     CcTest::InitializeVM();
   4793 
   4794     struct TestCaseAuipc {
   4795       int16_t   offset;
   4796     };
   4797 
   4798     struct TestCaseAuipc tc[] = {
   4799       // offset
   4800       { -32768 },   // 0x8000
   4801       {     -1 },   // 0xFFFF
   4802       {      0 },
   4803       {      1 },
   4804       {  32767 },   // 0x7FFF
   4805     };
   4806 
   4807     size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAuipc);
   4808     for (size_t i = 0; i < nr_test_cases; ++i) {
   4809       PC = 0;
   4810       uint64_t res = run_auipc(tc[i].offset);
   4811       // Now, the program_counter (PC) is set.
   4812       uint64_t expected_res = PC + (tc[i].offset << 16);
   4813       CHECK_EQ(expected_res, res);
   4814     }
   4815   }
   4816 }
   4817 
   4818 
   4819 uint64_t run_aui(uint64_t rs, uint16_t offset) {
   4820   Isolate* isolate = CcTest::i_isolate();
   4821   HandleScope scope(isolate);
   4822 
   4823   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   4824 
   4825   __ li(t0, rs);
   4826   __ aui(v0, t0, offset);
   4827   __ jr(ra);
   4828   __ nop();
   4829 
   4830   CodeDesc desc;
   4831   assm.GetCode(&desc);
   4832   Handle<Code> code = isolate->factory()->NewCode(
   4833       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   4834 
   4835   F2 f = FUNCTION_CAST<F2>(code->entry());
   4836 
   4837   uint64_t res =
   4838     reinterpret_cast<uint64_t>
   4839     (CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
   4840 
   4841   return res;
   4842 }
   4843 
   4844 
   4845 uint64_t run_daui(uint64_t rs, uint16_t offset) {
   4846   Isolate* isolate = CcTest::i_isolate();
   4847   HandleScope scope(isolate);
   4848 
   4849   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   4850 
   4851   __ li(t0, rs);
   4852   __ daui(v0, t0, offset);
   4853   __ jr(ra);
   4854   __ nop();
   4855 
   4856   CodeDesc desc;
   4857   assm.GetCode(&desc);
   4858   Handle<Code> code = isolate->factory()->NewCode(
   4859       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   4860 
   4861   F2 f = FUNCTION_CAST<F2>(code->entry());
   4862 
   4863   uint64_t res =
   4864     reinterpret_cast<uint64_t>
   4865     (CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
   4866 
   4867   return res;
   4868 }
   4869 
   4870 
   4871 uint64_t run_dahi(uint64_t rs, uint16_t offset) {
   4872   Isolate* isolate = CcTest::i_isolate();
   4873   HandleScope scope(isolate);
   4874 
   4875   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   4876 
   4877   __ li(v0, rs);
   4878   __ dahi(v0, offset);
   4879   __ jr(ra);
   4880   __ nop();
   4881 
   4882   CodeDesc desc;
   4883   assm.GetCode(&desc);
   4884   Handle<Code> code = isolate->factory()->NewCode(
   4885       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   4886 
   4887   F2 f = FUNCTION_CAST<F2>(code->entry());
   4888 
   4889   uint64_t res =
   4890     reinterpret_cast<uint64_t>
   4891     (CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
   4892 
   4893   return res;
   4894 }
   4895 
   4896 
   4897 uint64_t run_dati(uint64_t rs, uint16_t offset) {
   4898   Isolate* isolate = CcTest::i_isolate();
   4899   HandleScope scope(isolate);
   4900 
   4901   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   4902 
   4903   __ li(v0, rs);
   4904   __ dati(v0, offset);
   4905   __ jr(ra);
   4906   __ nop();
   4907 
   4908   CodeDesc desc;
   4909   assm.GetCode(&desc);
   4910   Handle<Code> code = isolate->factory()->NewCode(
   4911       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   4912 
   4913   F2 f = FUNCTION_CAST<F2>(code->entry());
   4914 
   4915   uint64_t res =
   4916     reinterpret_cast<uint64_t>
   4917     (CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
   4918 
   4919   return res;
   4920 }
   4921 
   4922 
   4923 TEST(r6_aui_family) {
   4924   if (kArchVariant == kMips64r6) {
   4925     CcTest::InitializeVM();
   4926 
   4927     struct TestCaseAui {
   4928       uint64_t   rs;
   4929       uint16_t   offset;
   4930       uint64_t   ref_res;
   4931     };
   4932 
   4933     // AUI test cases.
   4934     struct TestCaseAui aui_tc[] = {
   4935       {0xfffeffff, 0x1, 0xffffffffffffffff},
   4936       {0xffffffff, 0x0, 0xffffffffffffffff},
   4937       {0, 0xffff, 0xffffffffffff0000},
   4938       {0x0008ffff, 0xfff7, 0xffffffffffffffff},
   4939       {32767, 32767, 0x000000007fff7fff},
   4940       {0x00000000ffffffff, 0x1, 0x000000000000ffff},
   4941       {0xffffffff, 0xffff, 0xfffffffffffeffff},
   4942     };
   4943 
   4944     size_t nr_test_cases = sizeof(aui_tc) / sizeof(TestCaseAui);
   4945     for (size_t i = 0; i < nr_test_cases; ++i) {
   4946       uint64_t res = run_aui(aui_tc[i].rs, aui_tc[i].offset);
   4947       CHECK_EQ(aui_tc[i].ref_res, res);
   4948     }
   4949 
   4950     // DAUI test cases.
   4951     struct TestCaseAui daui_tc[] = {
   4952       {0xfffffffffffeffff, 0x1, 0xffffffffffffffff},
   4953       {0xffffffffffffffff, 0x0, 0xffffffffffffffff},
   4954       {0, 0xffff, 0xffffffffffff0000},
   4955       {0x0008ffff, 0xfff7, 0xffffffffffffffff},
   4956       {32767, 32767, 0x000000007fff7fff},
   4957       {0x00000000ffffffff, 0x1, 0x000000010000ffff},
   4958       {0xffffffff, 0xffff, 0x00000000fffeffff},
   4959     };
   4960 
   4961     nr_test_cases = sizeof(daui_tc) / sizeof(TestCaseAui);
   4962     for (size_t i = 0; i < nr_test_cases; ++i) {
   4963       uint64_t res = run_daui(daui_tc[i].rs, daui_tc[i].offset);
   4964       CHECK_EQ(daui_tc[i].ref_res, res);
   4965     }
   4966 
   4967     // DATI test cases.
   4968     struct TestCaseAui dati_tc[] = {
   4969       {0xfffffffffffeffff, 0x1, 0x0000fffffffeffff},
   4970       {0xffffffffffffffff, 0x0, 0xffffffffffffffff},
   4971       {0, 0xffff, 0xffff000000000000},
   4972       {0x0008ffff, 0xfff7, 0xfff700000008ffff},
   4973       {32767, 32767, 0x7fff000000007fff},
   4974       {0x00000000ffffffff, 0x1, 0x00010000ffffffff},
   4975       {0xffffffffffff, 0xffff, 0xffffffffffffffff},
   4976     };
   4977 
   4978     nr_test_cases = sizeof(dati_tc) / sizeof(TestCaseAui);
   4979     for (size_t i = 0; i < nr_test_cases; ++i) {
   4980       uint64_t res = run_dati(dati_tc[i].rs, dati_tc[i].offset);
   4981       CHECK_EQ(dati_tc[i].ref_res, res);
   4982     }
   4983 
   4984     // DAHI test cases.
   4985     struct TestCaseAui dahi_tc[] = {
   4986       {0xfffffffeffffffff, 0x1, 0xffffffffffffffff},
   4987       {0xffffffffffffffff, 0x0, 0xffffffffffffffff},
   4988       {0, 0xffff, 0xffffffff00000000},
   4989     };
   4990 
   4991     nr_test_cases = sizeof(dahi_tc) / sizeof(TestCaseAui);
   4992     for (size_t i = 0; i < nr_test_cases; ++i) {
   4993       uint64_t res = run_dahi(dahi_tc[i].rs, dahi_tc[i].offset);
   4994       CHECK_EQ(dahi_tc[i].ref_res, res);
   4995     }
   4996   }
   4997 }
   4998 
   4999 
   5000 uint64_t run_lwpc(int offset) {
   5001   Isolate* isolate = CcTest::i_isolate();
   5002   HandleScope scope(isolate);
   5003 
   5004   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   5005 
   5006   // 256k instructions; 2^8k
   5007   // addiu t3, a4, 0xffff;  (0x250fffff)
   5008   // ...
   5009   // addiu t0, a4, 0x0000;  (0x250c0000)
   5010   uint32_t addiu_start_1 = 0x25000000;
   5011   for (int32_t i = 0xfffff; i >= 0xc0000; --i) {
   5012     uint32_t addiu_new = addiu_start_1 + i;
   5013     __ dd(addiu_new);
   5014   }
   5015 
   5016   __ lwpc(t8, offset);         // offset 0; 0xef080000 (t8 register)
   5017   __ mov(v0, t8);
   5018 
   5019   // 256k instructions; 2^8k
   5020   // addiu a4, a4, 0x0000;  (0x25080000)
   5021   // ...
   5022   // addiu a7, a4, 0xffff;  (0x250bffff)
   5023   uint32_t addiu_start_2 = 0x25000000;
   5024   for (int32_t i = 0x80000; i <= 0xbffff; ++i) {
   5025     uint32_t addiu_new = addiu_start_2 + i;
   5026     __ dd(addiu_new);
   5027   }
   5028 
   5029   __ jr(ra);
   5030   __ nop();
   5031 
   5032   CodeDesc desc;
   5033   assm.GetCode(&desc);
   5034   Handle<Code> code = isolate->factory()->NewCode(
   5035       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   5036 
   5037   F2 f = FUNCTION_CAST<F2>(code->entry());
   5038 
   5039   uint64_t res = reinterpret_cast<uint64_t>(
   5040       CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
   5041 
   5042   return res;
   5043 }
   5044 
   5045 
   5046 TEST(r6_lwpc) {
   5047   if (kArchVariant == kMips64r6) {
   5048     CcTest::InitializeVM();
   5049 
   5050     struct TestCaseLwpc {
   5051       int       offset;
   5052       uint64_t  expected_res;
   5053     };
   5054 
   5055     struct TestCaseLwpc tc[] = {
   5056       // offset,   expected_res
   5057       { -262144,   0x250fffff         },   // offset 0x40000
   5058       {      -4,   0x250c0003         },
   5059       {      -1,   0x250c0000         },
   5060       {       0,   0xffffffffef080000 },
   5061       {       1,   0x03001025         },   // mov(v0, t8)
   5062       {       2,   0x25080000         },
   5063       {       4,   0x25080002         },
   5064       {  262143,   0x250bfffd         },   // offset 0x3ffff
   5065     };
   5066 
   5067     size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLwpc);
   5068     for (size_t i = 0; i < nr_test_cases; ++i) {
   5069       uint64_t res = run_lwpc(tc[i].offset);
   5070       CHECK_EQ(tc[i].expected_res, res);
   5071     }
   5072   }
   5073 }
   5074 
   5075 
   5076 uint64_t run_lwupc(int offset) {
   5077   Isolate* isolate = CcTest::i_isolate();
   5078   HandleScope scope(isolate);
   5079 
   5080   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   5081 
   5082   // 256k instructions; 2^8k
   5083   // addiu t3, a4, 0xffff;  (0x250fffff)
   5084   // ...
   5085   // addiu t0, a4, 0x0000;  (0x250c0000)
   5086   uint32_t addiu_start_1 = 0x25000000;
   5087   for (int32_t i = 0xfffff; i >= 0xc0000; --i) {
   5088     uint32_t addiu_new = addiu_start_1 + i;
   5089     __ dd(addiu_new);
   5090   }
   5091 
   5092   __ lwupc(t8, offset);         // offset 0; 0xef080000 (t8 register)
   5093   __ mov(v0, t8);
   5094 
   5095   // 256k instructions; 2^8k
   5096   // addiu a4, a4, 0x0000;  (0x25080000)
   5097   // ...
   5098   // addiu a7, a4, 0xffff;  (0x250bffff)
   5099   uint32_t addiu_start_2 = 0x25000000;
   5100   for (int32_t i = 0x80000; i <= 0xbffff; ++i) {
   5101     uint32_t addiu_new = addiu_start_2 + i;
   5102     __ dd(addiu_new);
   5103   }
   5104 
   5105   __ jr(ra);
   5106   __ nop();
   5107 
   5108   CodeDesc desc;
   5109   assm.GetCode(&desc);
   5110   Handle<Code> code = isolate->factory()->NewCode(
   5111       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   5112 
   5113   F2 f = FUNCTION_CAST<F2>(code->entry());
   5114 
   5115   uint64_t res = reinterpret_cast<uint64_t>(
   5116       CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
   5117 
   5118   return res;
   5119 }
   5120 
   5121 
   5122 TEST(r6_lwupc) {
   5123   if (kArchVariant == kMips64r6) {
   5124     CcTest::InitializeVM();
   5125 
   5126     struct TestCaseLwupc {
   5127       int       offset;
   5128       uint64_t  expected_res;
   5129     };
   5130 
   5131     struct TestCaseLwupc tc[] = {
   5132       // offset,    expected_res
   5133       { -262144,    0x250fffff },   // offset 0x40000
   5134       {      -4,    0x250c0003 },
   5135       {      -1,    0x250c0000 },
   5136       {       0,    0xef100000 },
   5137       {       1,    0x03001025 },   // mov(v0, t8)
   5138       {       2,    0x25080000 },
   5139       {       4,    0x25080002 },
   5140       {  262143,    0x250bfffd },   // offset 0x3ffff
   5141     };
   5142 
   5143     size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLwupc);
   5144     for (size_t i = 0; i < nr_test_cases; ++i) {
   5145       uint64_t res = run_lwupc(tc[i].offset);
   5146       CHECK_EQ(tc[i].expected_res, res);
   5147     }
   5148   }
   5149 }
   5150 
   5151 
   5152 uint64_t run_jic(int16_t offset) {
   5153   Isolate* isolate = CcTest::i_isolate();
   5154   HandleScope scope(isolate);
   5155 
   5156   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   5157 
   5158   Label get_program_counter, stop_execution;
   5159   __ push(ra);
   5160   __ li(v0, 0);
   5161   __ li(t1, 0x66);
   5162 
   5163   __ addiu(v0, v0, 0x1);        // <-- offset = -32
   5164   __ addiu(v0, v0, 0x2);
   5165   __ addiu(v0, v0, 0x10);
   5166   __ addiu(v0, v0, 0x20);
   5167   __ beq(v0, t1, &stop_execution);
   5168   __ nop();
   5169 
   5170   __ bal(&get_program_counter);  // t0 <- program counter
   5171   __ nop();
   5172   __ jic(t0, offset);
   5173 
   5174   __ addiu(v0, v0, 0x100);
   5175   __ addiu(v0, v0, 0x200);
   5176   __ addiu(v0, v0, 0x1000);
   5177   __ addiu(v0, v0, 0x2000);   // <--- offset = 16
   5178   __ pop(ra);
   5179   __ jr(ra);
   5180   __ nop();
   5181 
   5182   __ bind(&get_program_counter);
   5183   __ mov(t0, ra);
   5184   __ jr(ra);
   5185   __ nop();
   5186 
   5187   __ bind(&stop_execution);
   5188   __ pop(ra);
   5189   __ jr(ra);
   5190   __ nop();
   5191 
   5192   CodeDesc desc;
   5193   assm.GetCode(&desc);
   5194   Handle<Code> code = isolate->factory()->NewCode(
   5195       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   5196 
   5197   F2 f = FUNCTION_CAST<F2>(code->entry());
   5198 
   5199   uint64_t res = reinterpret_cast<uint64_t>(
   5200       CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
   5201 
   5202   return res;
   5203 }
   5204 
   5205 
   5206 TEST(r6_jic) {
   5207   if (kArchVariant == kMips64r6) {
   5208     CcTest::InitializeVM();
   5209 
   5210     struct TestCaseJic {
   5211       // As rt will be used t0 register which will have value of
   5212       // the program counter for the jic instruction.
   5213       int16_t   offset;
   5214       uint32_t  expected_res;
   5215     };
   5216 
   5217     struct TestCaseJic tc[] = {
   5218       // offset,   expected_result
   5219       {      16,            0x2033 },
   5220       {       4,            0x3333 },
   5221       {     -32,              0x66 },
   5222     };
   5223 
   5224     size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseJic);
   5225     for (size_t i = 0; i < nr_test_cases; ++i) {
   5226       uint64_t res = run_jic(tc[i].offset);
   5227       CHECK_EQ(tc[i].expected_res, res);
   5228     }
   5229   }
   5230 }
   5231 
   5232 
   5233 uint64_t run_beqzc(int32_t value, int32_t offset) {
   5234   Isolate* isolate = CcTest::i_isolate();
   5235   HandleScope scope(isolate);
   5236 
   5237   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   5238 
   5239   Label stop_execution;
   5240   __ li(v0, 0);
   5241   __ li(t1, 0x66);
   5242 
   5243   __ addiu(v0, v0, 0x1);        // <-- offset = -8
   5244   __ addiu(v0, v0, 0x2);
   5245   __ addiu(v0, v0, 0x10);
   5246   __ addiu(v0, v0, 0x20);
   5247   __ beq(v0, t1, &stop_execution);
   5248   __ nop();
   5249 
   5250   __ beqzc(a0, offset);
   5251 
   5252   __ addiu(v0, v0,    0x1);
   5253   __ addiu(v0, v0,  0x100);
   5254   __ addiu(v0, v0,  0x200);
   5255   __ addiu(v0, v0, 0x1000);
   5256   __ addiu(v0, v0, 0x2000);   // <--- offset = 4
   5257   __ jr(ra);
   5258   __ nop();
   5259 
   5260   __ bind(&stop_execution);
   5261   __ jr(ra);
   5262   __ nop();
   5263 
   5264   CodeDesc desc;
   5265   assm.GetCode(&desc);
   5266   Handle<Code> code = isolate->factory()->NewCode(
   5267       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   5268 
   5269   F2 f = FUNCTION_CAST<F2>(code->entry());
   5270 
   5271   uint64_t res = reinterpret_cast<uint64_t>(
   5272       CALL_GENERATED_CODE(isolate, f, value, 0, 0, 0, 0));
   5273 
   5274   return res;
   5275 }
   5276 
   5277 
   5278 TEST(r6_beqzc) {
   5279   if (kArchVariant == kMips64r6) {
   5280     CcTest::InitializeVM();
   5281 
   5282     struct TestCaseBeqzc {
   5283       uint32_t  value;
   5284       int32_t   offset;
   5285       uint32_t  expected_res;
   5286     };
   5287 
   5288     struct TestCaseBeqzc tc[] = {
   5289       //    value,    offset,   expected_res
   5290       {       0x0,        -8,           0x66 },
   5291       {       0x0,         0,         0x3334 },
   5292       {       0x0,         1,         0x3333 },
   5293       {     0xabc,         1,         0x3334 },
   5294       {       0x0,         4,         0x2033 },
   5295     };
   5296 
   5297     size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBeqzc);
   5298     for (size_t i = 0; i < nr_test_cases; ++i) {
   5299       uint64_t res = run_beqzc(tc[i].value, tc[i].offset);
   5300       CHECK_EQ(tc[i].expected_res, res);
   5301     }
   5302   }
   5303 }
   5304 
   5305 
   5306 uint64_t run_jialc(int16_t offset) {
   5307   Isolate* isolate = CcTest::i_isolate();
   5308   HandleScope scope(isolate);
   5309 
   5310   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   5311 
   5312   Label main_block, get_program_counter;
   5313   __ push(ra);
   5314   __ li(v0, 0);
   5315   __ beq(v0, v0, &main_block);
   5316   __ nop();
   5317 
   5318   // Block 1
   5319   __ addiu(v0, v0, 0x1);        // <-- offset = -40
   5320   __ addiu(v0, v0, 0x2);
   5321   __ jr(ra);
   5322   __ nop();
   5323 
   5324   // Block 2
   5325   __ addiu(v0, v0, 0x10);        // <-- offset = -24
   5326   __ addiu(v0, v0, 0x20);
   5327   __ jr(ra);
   5328   __ nop();
   5329 
   5330   // Block 3 (Main)
   5331   __ bind(&main_block);
   5332   __ bal(&get_program_counter);  // t0 <- program counter
   5333   __ nop();
   5334   __ jialc(t0, offset);
   5335   __ addiu(v0, v0, 0x4);
   5336   __ pop(ra);
   5337   __ jr(ra);
   5338   __ nop();
   5339 
   5340   // Block 4
   5341   __ addiu(v0, v0, 0x100);      // <-- offset = 20
   5342   __ addiu(v0, v0, 0x200);
   5343   __ jr(ra);
   5344   __ nop();
   5345 
   5346   // Block 5
   5347   __ addiu(v0, v0, 0x1000);     // <--- offset = 36
   5348   __ addiu(v0, v0, 0x2000);
   5349   __ jr(ra);
   5350   __ nop();
   5351 
   5352   __ bind(&get_program_counter);
   5353   __ mov(t0, ra);
   5354   __ jr(ra);
   5355   __ nop();
   5356 
   5357 
   5358   CodeDesc desc;
   5359   assm.GetCode(&desc);
   5360   Handle<Code> code = isolate->factory()->NewCode(
   5361       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   5362 
   5363   F2 f = FUNCTION_CAST<F2>(code->entry());
   5364 
   5365   uint64_t res = reinterpret_cast<uint64_t>(
   5366       CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
   5367 
   5368   return res;
   5369 }
   5370 
   5371 
   5372 TEST(r6_jialc) {
   5373   if (kArchVariant == kMips64r6) {
   5374     CcTest::InitializeVM();
   5375 
   5376     struct TestCaseJialc {
   5377       // As rt will be used t0 register which will have value of
   5378       // the program counter for the jialc instruction.
   5379       int16_t   offset;
   5380       uint32_t  expected_res;
   5381     };
   5382 
   5383     struct TestCaseJialc tc[] = {
   5384       // offset,   expected_res
   5385       {     -40,            0x7 },
   5386       {     -24,           0x34 },
   5387       {      20,          0x304 },
   5388       {      36,         0x3004 }
   5389     };
   5390 
   5391     size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseJialc);
   5392     for (size_t i = 0; i < nr_test_cases; ++i) {
   5393       uint64_t res = run_jialc(tc[i].offset);
   5394       CHECK_EQ(tc[i].expected_res, res);
   5395     }
   5396   }
   5397 }
   5398 
   5399 
   5400 uint64_t run_addiupc(int32_t imm19) {
   5401   Isolate* isolate = CcTest::i_isolate();
   5402   HandleScope scope(isolate);
   5403 
   5404   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   5405 
   5406   __ addiupc(v0, imm19);
   5407   __ jr(ra);
   5408   __ nop();
   5409 
   5410   CodeDesc desc;
   5411   assm.GetCode(&desc);
   5412   Handle<Code> code = isolate->factory()->NewCode(
   5413       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   5414 
   5415   F2 f = FUNCTION_CAST<F2>(code->entry());
   5416   PC = (uint64_t) f;  // Set the program counter.
   5417 
   5418   uint64_t res = reinterpret_cast<uint64_t>(
   5419       CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
   5420 
   5421   return res;
   5422 }
   5423 
   5424 
   5425 TEST(r6_addiupc) {
   5426   if (kArchVariant == kMips64r6) {
   5427     CcTest::InitializeVM();
   5428 
   5429     struct TestCaseAddiupc {
   5430       int32_t   imm19;
   5431     };
   5432 
   5433     struct TestCaseAddiupc tc[] = {
   5434       //  imm19
   5435       { -262144 },   // 0x40000
   5436       {      -1 },   // 0x7FFFF
   5437       {       0 },
   5438       {       1 },   // 0x00001
   5439       {  262143 }    // 0x3FFFF
   5440     };
   5441 
   5442     size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAddiupc);
   5443     for (size_t i = 0; i < nr_test_cases; ++i) {
   5444       PC = 0;
   5445       uint64_t res = run_addiupc(tc[i].imm19);
   5446       // Now, the program_counter (PC) is set.
   5447       uint64_t expected_res = PC + (tc[i].imm19 << 2);
   5448       CHECK_EQ(expected_res, res);
   5449     }
   5450   }
   5451 }
   5452 
   5453 
   5454 uint64_t run_ldpc(int offset) {
   5455   Isolate* isolate = CcTest::i_isolate();
   5456   HandleScope scope(isolate);
   5457 
   5458   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   5459 
   5460   // 256k instructions; 2 * 2^7k = 2^8k
   5461   // addiu t3, a4, 0xffff;  (0x250fffff)
   5462   // ...
   5463   // addiu t0, a4, 0x0000;  (0x250c0000)
   5464   uint32_t addiu_start_1 = 0x25000000;
   5465   for (int32_t i = 0xfffff; i >= 0xc0000; --i) {
   5466     uint32_t addiu_new = addiu_start_1 + i;
   5467     __ dd(addiu_new);
   5468   }
   5469 
   5470   __ ldpc(t8, offset);         // offset 0; 0xef080000 (t8 register)
   5471   __ mov(v0, t8);
   5472 
   5473   // 256k instructions; 2 * 2^7k = 2^8k
   5474   // addiu a4, a4, 0x0000;  (0x25080000)
   5475   // ...
   5476   // addiu a7, a4, 0xffff;  (0x250bffff)
   5477   uint32_t addiu_start_2 = 0x25000000;
   5478   for (int32_t i = 0x80000; i <= 0xbffff; ++i) {
   5479     uint32_t addiu_new = addiu_start_2 + i;
   5480     __ dd(addiu_new);
   5481   }
   5482 
   5483   __ jr(ra);
   5484   __ nop();
   5485 
   5486   CodeDesc desc;
   5487   assm.GetCode(&desc);
   5488   Handle<Code> code = isolate->factory()->NewCode(
   5489       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   5490 
   5491   F2 f = FUNCTION_CAST<F2>(code->entry());
   5492 
   5493   uint64_t res = reinterpret_cast<uint64_t>(
   5494       CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
   5495 
   5496   return res;
   5497 }
   5498 
   5499 
   5500 TEST(r6_ldpc) {
   5501   if (kArchVariant == kMips64r6) {
   5502     CcTest::InitializeVM();
   5503 
   5504     struct TestCaseLdpc {
   5505       int       offset;
   5506       uint64_t  expected_res;
   5507     };
   5508 
   5509     struct TestCaseLdpc tc[] = {
   5510       // offset,         expected_res
   5511       { -131072,         0x250ffffe250fffff },
   5512       {      -4,         0x250c0006250c0007 },
   5513       {      -1,         0x250c0000250c0001 },
   5514       {       0,         0x03001025ef180000 },
   5515       {       1,         0x2508000125080000 },
   5516       {       4,         0x2508000725080006 },
   5517       {  131071,         0x250bfffd250bfffc },
   5518     };
   5519 
   5520     size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLdpc);
   5521     for (size_t i = 0; i < nr_test_cases; ++i) {
   5522       uint64_t res = run_ldpc(tc[i].offset);
   5523       CHECK_EQ(tc[i].expected_res, res);
   5524     }
   5525   }
   5526 }
   5527 
   5528 
   5529 int64_t run_bc(int32_t offset) {
   5530   Isolate* isolate = CcTest::i_isolate();
   5531   HandleScope scope(isolate);
   5532 
   5533   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   5534 
   5535   Label continue_1, stop_execution;
   5536   __ push(ra);
   5537   __ li(v0, 0);
   5538   __ li(t8, 0);
   5539   __ li(t9, 2);   // Condition for the stopping execution.
   5540 
   5541   for (int32_t i = -100; i <= -11; ++i) {
   5542     __ addiu(v0, v0, 1);
   5543   }
   5544 
   5545   __ addiu(t8, t8, 1);              // -10
   5546 
   5547   __ beq(t8, t9, &stop_execution);  // -9
   5548   __ nop();                         // -8
   5549   __ beq(t8, t8, &continue_1);      // -7
   5550   __ nop();                         // -6
   5551 
   5552   __ bind(&stop_execution);
   5553   __ pop(ra);                       // -5, -4
   5554   __ jr(ra);                        // -3
   5555   __ nop();                         // -2
   5556 
   5557   __ bind(&continue_1);
   5558   __ bc(offset);                    // -1
   5559 
   5560   for (int32_t i = 0; i <= 99; ++i) {
   5561     __ addiu(v0, v0, 1);
   5562   }
   5563 
   5564   __ pop(ra);
   5565   __ jr(ra);
   5566   __ nop();
   5567 
   5568   CodeDesc desc;
   5569   assm.GetCode(&desc);
   5570   Handle<Code> code = isolate->factory()->NewCode(
   5571       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   5572 
   5573   F2 f = FUNCTION_CAST<F2>(code->entry());
   5574 
   5575   int64_t res = reinterpret_cast<int64_t>(
   5576       CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
   5577 
   5578   return res;
   5579 }
   5580 
   5581 
   5582 TEST(r6_bc) {
   5583   if (kArchVariant == kMips64r6) {
   5584     CcTest::InitializeVM();
   5585 
   5586     struct TestCaseBc {
   5587       int32_t   offset;
   5588       int64_t   expected_res;
   5589     };
   5590 
   5591     struct TestCaseBc tc[] = {
   5592       //    offset,   expected_result
   5593       {       -100,   (abs(-100) - 10) * 2      },
   5594       {        -11,   (abs(-100) - 10 + 1)      },
   5595       {          0,   (abs(-100) - 10 + 1 + 99) },
   5596       {          1,   (abs(-100) - 10 + 99)     },
   5597       {         99,   (abs(-100) - 10 + 1)      },
   5598     };
   5599 
   5600     size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBc);
   5601     for (size_t i = 0; i < nr_test_cases; ++i) {
   5602       int64_t res = run_bc(tc[i].offset);
   5603       CHECK_EQ(tc[i].expected_res, res);
   5604     }
   5605   }
   5606 }
   5607 
   5608 
   5609 int64_t run_balc(int32_t offset) {
   5610   Isolate* isolate = CcTest::i_isolate();
   5611   HandleScope scope(isolate);
   5612 
   5613   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   5614 
   5615   Label continue_1, stop_execution;
   5616   __ push(ra);
   5617   __ li(v0, 0);
   5618   __ li(t8, 0);
   5619   __ li(t9, 2);   // Condition for stopping execution.
   5620 
   5621   __ beq(t8, t8, &continue_1);
   5622   __ nop();
   5623 
   5624   uint32_t instruction_addiu = 0x24420001;  // addiu v0, v0, 1
   5625   for (int32_t i = -117; i <= -57; ++i) {
   5626     __ dd(instruction_addiu);
   5627   }
   5628   __ jr(ra);                        // -56
   5629   __ nop();                         // -55
   5630 
   5631   for (int32_t i = -54; i <= -4; ++i) {
   5632     __ dd(instruction_addiu);
   5633   }
   5634   __ jr(ra);                        // -3
   5635   __ nop();                         // -2
   5636 
   5637   __ bind(&continue_1);
   5638   __ balc(offset);                    // -1
   5639 
   5640   __ pop(ra);                         // 0, 1
   5641   __ jr(ra);                          // 2
   5642   __ nop();                           // 3
   5643 
   5644   for (int32_t i = 4; i <= 44; ++i) {
   5645     __ dd(instruction_addiu);
   5646   }
   5647   __ jr(ra);
   5648   __ nop();
   5649 
   5650   CodeDesc desc;
   5651   assm.GetCode(&desc);
   5652   Handle<Code> code = isolate->factory()->NewCode(
   5653       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   5654 
   5655   F2 f = FUNCTION_CAST<F2>(code->entry());
   5656 
   5657   int64_t res = reinterpret_cast<int64_t>(
   5658       CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
   5659 
   5660   return res;
   5661 }
   5662 
   5663 
   5664 TEST(r6_balc) {
   5665   if (kArchVariant == kMips64r6) {
   5666     CcTest::InitializeVM();
   5667 
   5668     struct TestCaseBalc {
   5669       int32_t   offset;
   5670       int64_t   expected_res;
   5671     };
   5672 
   5673     struct TestCaseBalc tc[] = {
   5674       //  offset,   expected_result
   5675       {     -117,   61  },
   5676       {      -54,   51  },
   5677       {        0,   0   },
   5678       {        4,   41  },
   5679     };
   5680 
   5681     size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBalc);
   5682     for (size_t i = 0; i < nr_test_cases; ++i) {
   5683       int64_t res = run_balc(tc[i].offset);
   5684       CHECK_EQ(tc[i].expected_res, res);
   5685     }
   5686   }
   5687 }
   5688 
   5689 
   5690 uint64_t run_dsll(uint64_t rt_value, uint16_t sa_value) {
   5691   Isolate* isolate = CcTest::i_isolate();
   5692   HandleScope scope(isolate);
   5693 
   5694   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   5695 
   5696   __ dsll(v0, a0, sa_value);
   5697   __ jr(ra);
   5698   __ nop();
   5699 
   5700   CodeDesc desc;
   5701   assm.GetCode(&desc);
   5702   Handle<Code> code = isolate->factory()->NewCode(
   5703       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   5704 
   5705   F4 f = FUNCTION_CAST<F4>(code->entry());
   5706 
   5707   uint64_t res = reinterpret_cast<uint64_t>(
   5708       CALL_GENERATED_CODE(isolate, f, rt_value, 0, 0, 0, 0));
   5709 
   5710   return res;
   5711 }
   5712 
   5713 
   5714 TEST(dsll) {
   5715   CcTest::InitializeVM();
   5716 
   5717   struct TestCaseDsll {
   5718     uint64_t  rt_value;
   5719     uint16_t  sa_value;
   5720     uint64_t  expected_res;
   5721   };
   5722 
   5723   struct TestCaseDsll tc[] = {
   5724     // rt_value,           sa_value, expected_res
   5725     {  0xffffffffffffffff,    0,      0xffffffffffffffff },
   5726     {  0xffffffffffffffff,   16,      0xffffffffffff0000 },
   5727     {  0xffffffffffffffff,   31,      0xffffffff80000000 },
   5728   };
   5729 
   5730   size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseDsll);
   5731   for (size_t i = 0; i < nr_test_cases; ++i) {
   5732     CHECK_EQ(tc[i].expected_res,
   5733             run_dsll(tc[i].rt_value, tc[i].sa_value));
   5734   }
   5735 }
   5736 
   5737 
   5738 uint64_t run_bal(int16_t offset) {
   5739   Isolate* isolate = CcTest::i_isolate();
   5740   HandleScope scope(isolate);
   5741 
   5742   MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
   5743 
   5744   __ mov(t0, ra);
   5745   __ bal(offset);       // Equivalent for "BGEZAL zero_reg, offset".
   5746   __ nop();
   5747 
   5748   __ mov(ra, t0);
   5749   __ jr(ra);
   5750   __ nop();
   5751 
   5752   __ li(v0, 1);
   5753   __ jr(ra);
   5754   __ nop();
   5755 
   5756   CodeDesc desc;
   5757   assm.GetCode(&desc);
   5758   Handle<Code> code = isolate->factory()->NewCode(
   5759       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   5760 
   5761   F2 f = FUNCTION_CAST<F2>(code->entry());
   5762 
   5763   uint64_t res = reinterpret_cast<uint64_t>(
   5764       CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
   5765 
   5766   return res;
   5767 }
   5768 
   5769 
   5770 TEST(bal) {
   5771   CcTest::InitializeVM();
   5772 
   5773   struct TestCaseBal {
   5774     int16_t  offset;
   5775     uint64_t  expected_res;
   5776   };
   5777 
   5778   struct TestCaseBal tc[] = {
   5779     // offset, expected_res
   5780     {       4,      1 },
   5781   };
   5782 
   5783   size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBal);
   5784   for (size_t i = 0; i < nr_test_cases; ++i) {
   5785     CHECK_EQ(tc[i].expected_res, run_bal(tc[i].offset));
   5786   }
   5787 }
   5788 
   5789 
   5790 TEST(Trampoline) {
   5791   // Private member of Assembler class.
   5792   static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
   5793 
   5794   CcTest::InitializeVM();
   5795   Isolate* isolate = CcTest::i_isolate();
   5796   HandleScope scope(isolate);
   5797 
   5798   MacroAssembler assm(isolate, nullptr, 0,
   5799                       v8::internal::CodeObjectRequired::kYes);
   5800   Label done;
   5801   size_t nr_calls = kMaxBranchOffset / (2 * Instruction::kInstrSize) + 2;
   5802 
   5803   for (size_t i = 0; i < nr_calls; ++i) {
   5804     __ BranchShort(&done, eq, a0, Operand(a1));
   5805   }
   5806   __ bind(&done);
   5807   __ Ret(USE_DELAY_SLOT);
   5808   __ mov(v0, zero_reg);
   5809 
   5810   CodeDesc desc;
   5811   assm.GetCode(&desc);
   5812   Handle<Code> code = isolate->factory()->NewCode(
   5813       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   5814   F2 f = FUNCTION_CAST<F2>(code->entry());
   5815 
   5816   int64_t res = reinterpret_cast<int64_t>(
   5817       CALL_GENERATED_CODE(isolate, f, 42, 42, 0, 0, 0));
   5818   CHECK_EQ(res, 0);
   5819 }
   5820 
   5821 
   5822 #undef __
   5823