1 /////////////////////////////////////////////////////////////////////////////////// 2 /// OpenGL Mathematics (glm.g-truc.net) 3 /// 4 /// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net) 5 /// Permission is hereby granted, free of charge, to any person obtaining a copy 6 /// of this software and associated documentation files (the "Software"), to deal 7 /// in the Software without restriction, including without limitation the rights 8 /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 /// copies of the Software, and to permit persons to whom the Software is 10 /// furnished to do so, subject to the following conditions: 11 /// 12 /// The above copyright notice and this permission notice shall be included in 13 /// all copies or substantial portions of the Software. 14 /// 15 /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 /// THE SOFTWARE. 22 /// 23 /// @ref gtx_constants 24 /// @file glm/gtx/constants.inl 25 /// @date 2011-10-14 / 2012-01-25 26 /// @author Christophe Riccio 27 /////////////////////////////////////////////////////////////////////////////////// 28 29 #include <limits> 30 31 namespace glm 32 { 33 template <typename genType> 34 GLM_FUNC_QUALIFIER genType epsilon() 35 { 36 return std::numeric_limits<genType>::epsilon(); 37 } 38 39 template <typename genType> 40 GLM_FUNC_QUALIFIER genType zero() 41 { 42 return genType(0); 43 } 44 45 template <typename genType> 46 GLM_FUNC_QUALIFIER genType one() 47 { 48 return genType(1); 49 } 50 51 template <typename genType> 52 GLM_FUNC_QUALIFIER genType pi() 53 { 54 return genType(3.14159265358979323846264338327950288); 55 } 56 57 template <typename genType> 58 GLM_FUNC_QUALIFIER genType root_pi() 59 { 60 return genType(1.772453850905516027); 61 } 62 63 template <typename genType> 64 GLM_FUNC_QUALIFIER genType half_pi() 65 { 66 return genType(1.57079632679489661923132169163975144); 67 } 68 69 template <typename genType> 70 GLM_FUNC_QUALIFIER genType quarter_pi() 71 { 72 return genType(0.785398163397448309615660845819875721); 73 } 74 75 template <typename genType> 76 GLM_FUNC_QUALIFIER genType one_over_pi() 77 { 78 return genType(0.318309886183790671537767526745028724); 79 } 80 81 template <typename genType> 82 GLM_FUNC_QUALIFIER genType two_over_pi() 83 { 84 return genType(0.636619772367581343075535053490057448); 85 } 86 87 template <typename genType> 88 GLM_FUNC_QUALIFIER genType two_over_root_pi() 89 { 90 return genType(1.12837916709551257389615890312154517); 91 } 92 93 template <typename genType> 94 GLM_FUNC_QUALIFIER genType one_over_root_two() 95 { 96 return genType(0.707106781186547524400844362104849039); 97 } 98 99 template <typename genType> 100 GLM_FUNC_QUALIFIER genType root_half_pi() 101 { 102 return genType(1.253314137315500251); 103 } 104 105 template <typename genType> 106 GLM_FUNC_QUALIFIER genType root_two_pi() 107 { 108 return genType(2.506628274631000502); 109 } 110 111 template <typename genType> 112 GLM_FUNC_QUALIFIER genType root_ln_four() 113 { 114 return genType(1.17741002251547469); 115 } 116 117 template <typename genType> 118 GLM_FUNC_QUALIFIER genType e() 119 { 120 return genType(2.71828182845904523536); 121 } 122 123 template <typename genType> 124 GLM_FUNC_QUALIFIER genType euler() 125 { 126 return genType(0.577215664901532860606); 127 } 128 129 template <typename genType> 130 GLM_FUNC_QUALIFIER genType root_two() 131 { 132 return genType(1.41421356237309504880168872420969808); 133 } 134 135 template <typename genType> 136 GLM_FUNC_QUALIFIER genType root_three() 137 { 138 return genType(1.73205080756887729352744634150587236); 139 } 140 141 template <typename genType> 142 GLM_FUNC_QUALIFIER genType root_five() 143 { 144 return genType(2.23606797749978969640917366873127623); 145 } 146 147 template <typename genType> 148 GLM_FUNC_QUALIFIER genType ln_two() 149 { 150 return genType(0.693147180559945309417232121458176568); 151 } 152 153 template <typename genType> 154 GLM_FUNC_QUALIFIER genType ln_ten() 155 { 156 return genType(2.30258509299404568401799145468436421); 157 } 158 159 template <typename genType> 160 GLM_FUNC_QUALIFIER genType ln_ln_two() 161 { 162 return genType(-0.3665129205816643); 163 } 164 165 template <typename genType> 166 GLM_FUNC_QUALIFIER genType third() 167 { 168 return genType(0.3333333333333333333333333333333333333333); 169 } 170 171 template <typename genType> 172 GLM_FUNC_QUALIFIER genType two_thirds() 173 { 174 return genType(0.666666666666666666666666666666666666667); 175 } 176 177 template <typename genType> 178 GLM_FUNC_QUALIFIER genType golden_ratio() 179 { 180 return genType(1.61803398874989484820458683436563811); 181 } 182 } //namespace glm 183