1 /////////////////////////////////////////////////////////////////////////////////// 2 /// OpenGL Mathematics (glm.g-truc.net) 3 /// 4 /// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net) 5 /// Permission is hereby granted, free of charge, to any person obtaining a copy 6 /// of this software and associated documentation files (the "Software"), to deal 7 /// in the Software without restriction, including without limitation the rights 8 /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 /// copies of the Software, and to permit persons to whom the Software is 10 /// furnished to do so, subject to the following conditions: 11 /// 12 /// The above copyright notice and this permission notice shall be included in 13 /// all copies or substantial portions of the Software. 14 /// 15 /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 /// THE SOFTWARE. 22 /// 23 /// @ref gtc_matrix_inverse 24 /// @file glm/gtc/matrix_inverse.inl 25 /// @date 2005-12-21 / 2011-06-15 26 /// @author Christophe Riccio 27 /////////////////////////////////////////////////////////////////////////////////// 28 29 #include "../mat2x2.hpp" 30 #include "../mat3x3.hpp" 31 #include "../mat4x4.hpp" 32 33 namespace glm 34 { 35 template <typename T, precision P> 36 GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> affineInverse 37 ( 38 detail::tmat3x3<T, P> const & m 39 ) 40 { 41 detail::tmat3x3<T, P> Result(m); 42 Result[2] = detail::tvec3<T, P>(0, 0, 1); 43 Result = transpose(Result); 44 detail::tvec3<T, P> Translation = Result * detail::tvec3<T, P>(-detail::tvec2<T, P>(m[2]), m[2][2]); 45 Result[2] = Translation; 46 return Result; 47 } 48 49 template <typename T, precision P> 50 GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> affineInverse 51 ( 52 detail::tmat4x4<T, P> const & m 53 ) 54 { 55 detail::tmat4x4<T, P> Result(m); 56 Result[3] = detail::tvec4<T, P>(0, 0, 0, 1); 57 Result = transpose(Result); 58 detail::tvec4<T, P> Translation = Result * detail::tvec4<T, P>(-detail::tvec3<T, P>(m[3]), m[3][3]); 59 Result[3] = Translation; 60 return Result; 61 } 62 63 template <typename T, precision P> 64 GLM_FUNC_QUALIFIER detail::tmat2x2<T, P> inverseTranspose 65 ( 66 detail::tmat2x2<T, P> const & m 67 ) 68 { 69 T Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1]; 70 71 detail::tmat2x2<T, P> Inverse( 72 + m[1][1] / Determinant, 73 - m[0][1] / Determinant, 74 - m[1][0] / Determinant, 75 + m[0][0] / Determinant); 76 77 return Inverse; 78 } 79 80 template <typename T, precision P> 81 GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> inverseTranspose 82 ( 83 detail::tmat3x3<T, P> const & m 84 ) 85 { 86 T Determinant = 87 + m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1]) 88 - m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0]) 89 + m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]); 90 91 detail::tmat3x3<T, P> Inverse; 92 Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]); 93 Inverse[0][1] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]); 94 Inverse[0][2] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]); 95 Inverse[1][0] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]); 96 Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]); 97 Inverse[1][2] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]); 98 Inverse[2][0] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]); 99 Inverse[2][1] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]); 100 Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]); 101 Inverse /= Determinant; 102 103 return Inverse; 104 } 105 106 template <typename T, precision P> 107 GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> inverseTranspose 108 ( 109 detail::tmat4x4<T, P> const & m 110 ) 111 { 112 T SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3]; 113 T SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3]; 114 T SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2]; 115 T SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3]; 116 T SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2]; 117 T SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1]; 118 T SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3]; 119 T SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3]; 120 T SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2]; 121 T SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3]; 122 T SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2]; 123 T SubFactor11 = m[1][1] * m[3][3] - m[3][1] * m[1][3]; 124 T SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1]; 125 T SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3]; 126 T SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3]; 127 T SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2]; 128 T SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3]; 129 T SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2]; 130 T SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1]; 131 132 detail::tmat4x4<T, P> Inverse; 133 Inverse[0][0] = + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02); 134 Inverse[0][1] = - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04); 135 Inverse[0][2] = + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05); 136 Inverse[0][3] = - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05); 137 138 Inverse[1][0] = - (m[0][1] * SubFactor00 - m[0][2] * SubFactor01 + m[0][3] * SubFactor02); 139 Inverse[1][1] = + (m[0][0] * SubFactor00 - m[0][2] * SubFactor03 + m[0][3] * SubFactor04); 140 Inverse[1][2] = - (m[0][0] * SubFactor01 - m[0][1] * SubFactor03 + m[0][3] * SubFactor05); 141 Inverse[1][3] = + (m[0][0] * SubFactor02 - m[0][1] * SubFactor04 + m[0][2] * SubFactor05); 142 143 Inverse[2][0] = + (m[0][1] * SubFactor06 - m[0][2] * SubFactor07 + m[0][3] * SubFactor08); 144 Inverse[2][1] = - (m[0][0] * SubFactor06 - m[0][2] * SubFactor09 + m[0][3] * SubFactor10); 145 Inverse[2][2] = + (m[0][0] * SubFactor11 - m[0][1] * SubFactor09 + m[0][3] * SubFactor12); 146 Inverse[2][3] = - (m[0][0] * SubFactor08 - m[0][1] * SubFactor10 + m[0][2] * SubFactor12); 147 148 Inverse[3][0] = - (m[0][1] * SubFactor13 - m[0][2] * SubFactor14 + m[0][3] * SubFactor15); 149 Inverse[3][1] = + (m[0][0] * SubFactor13 - m[0][2] * SubFactor16 + m[0][3] * SubFactor17); 150 Inverse[3][2] = - (m[0][0] * SubFactor14 - m[0][1] * SubFactor16 + m[0][3] * SubFactor18); 151 Inverse[3][3] = + (m[0][0] * SubFactor15 - m[0][1] * SubFactor17 + m[0][2] * SubFactor18); 152 153 T Determinant = 154 + m[0][0] * Inverse[0][0] 155 + m[0][1] * Inverse[0][1] 156 + m[0][2] * Inverse[0][2] 157 + m[0][3] * Inverse[0][3]; 158 159 Inverse /= Determinant; 160 161 return Inverse; 162 } 163 }//namespace glm 164