Home | History | Annotate | Download | only in gtc
      1 ///////////////////////////////////////////////////////////////////////////////////
      2 /// OpenGL Mathematics (glm.g-truc.net)
      3 ///
      4 /// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
      5 /// Permission is hereby granted, free of charge, to any person obtaining a copy
      6 /// of this software and associated documentation files (the "Software"), to deal
      7 /// in the Software without restriction, including without limitation the rights
      8 /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
      9 /// copies of the Software, and to permit persons to whom the Software is
     10 /// furnished to do so, subject to the following conditions:
     11 /// 
     12 /// The above copyright notice and this permission notice shall be included in
     13 /// all copies or substantial portions of the Software.
     14 /// 
     15 /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16 /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17 /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     18 /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19 /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     20 /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     21 /// THE SOFTWARE.
     22 ///
     23 /// @ref gtc_matrix_inverse
     24 /// @file glm/gtc/matrix_inverse.inl
     25 /// @date 2005-12-21 / 2011-06-15
     26 /// @author Christophe Riccio
     27 ///////////////////////////////////////////////////////////////////////////////////
     28 
     29 #include "../mat2x2.hpp"
     30 #include "../mat3x3.hpp"
     31 #include "../mat4x4.hpp"
     32 
     33 namespace glm
     34 {
     35 	template <typename T, precision P>
     36 	GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> affineInverse
     37 	(
     38 		detail::tmat3x3<T, P> const & m
     39 	)
     40 	{
     41 		detail::tmat3x3<T, P> Result(m);
     42 		Result[2] = detail::tvec3<T, P>(0, 0, 1);
     43 		Result = transpose(Result);
     44 		detail::tvec3<T, P> Translation = Result * detail::tvec3<T, P>(-detail::tvec2<T, P>(m[2]), m[2][2]);
     45 		Result[2] = Translation;
     46 		return Result;
     47 	}
     48 
     49 	template <typename T, precision P>
     50 	GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> affineInverse
     51 	(
     52 		detail::tmat4x4<T, P> const & m
     53 	)
     54 	{
     55 		detail::tmat4x4<T, P> Result(m);
     56 		Result[3] = detail::tvec4<T, P>(0, 0, 0, 1);
     57 		Result = transpose(Result);
     58 		detail::tvec4<T, P> Translation = Result * detail::tvec4<T, P>(-detail::tvec3<T, P>(m[3]), m[3][3]);
     59 		Result[3] = Translation;
     60 		return Result;
     61 	}
     62 
     63 	template <typename T, precision P>
     64 	GLM_FUNC_QUALIFIER detail::tmat2x2<T, P> inverseTranspose
     65 	(
     66 		detail::tmat2x2<T, P> const & m
     67 	)
     68 	{
     69 		T Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1];
     70 
     71 		detail::tmat2x2<T, P> Inverse(
     72 			+ m[1][1] / Determinant,
     73 			- m[0][1] / Determinant,
     74 			- m[1][0] / Determinant,
     75 			+ m[0][0] / Determinant);
     76 
     77 		return Inverse;
     78 	}
     79 
     80 	template <typename T, precision P>
     81 	GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> inverseTranspose
     82 	(
     83 		detail::tmat3x3<T, P> const & m
     84 	)
     85 	{
     86 		T Determinant =
     87 			+ m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1])
     88 			- m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0])
     89 			+ m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
     90 
     91 		detail::tmat3x3<T, P> Inverse;
     92 		Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]);
     93 		Inverse[0][1] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]);
     94 		Inverse[0][2] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]);
     95 		Inverse[1][0] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]);
     96 		Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]);
     97 		Inverse[1][2] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]);
     98 		Inverse[2][0] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
     99 		Inverse[2][1] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]);
    100 		Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]);
    101 		Inverse /= Determinant;
    102 
    103 		return Inverse;
    104 	}
    105 
    106 	template <typename T, precision P>
    107 	GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> inverseTranspose
    108 	(
    109 		detail::tmat4x4<T, P> const & m
    110 	)
    111 	{
    112 		T SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
    113 		T SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
    114 		T SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
    115 		T SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
    116 		T SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
    117 		T SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
    118 		T SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
    119 		T SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
    120 		T SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
    121 		T SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
    122 		T SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
    123 		T SubFactor11 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
    124 		T SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
    125 		T SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
    126 		T SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
    127 		T SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
    128 		T SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
    129 		T SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
    130 		T SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
    131 
    132 		detail::tmat4x4<T, P> Inverse;
    133 		Inverse[0][0] = + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02);
    134 		Inverse[0][1] = - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04);
    135 		Inverse[0][2] = + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05);
    136 		Inverse[0][3] = - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05);
    137 
    138 		Inverse[1][0] = - (m[0][1] * SubFactor00 - m[0][2] * SubFactor01 + m[0][3] * SubFactor02);
    139 		Inverse[1][1] = + (m[0][0] * SubFactor00 - m[0][2] * SubFactor03 + m[0][3] * SubFactor04);
    140 		Inverse[1][2] = - (m[0][0] * SubFactor01 - m[0][1] * SubFactor03 + m[0][3] * SubFactor05);
    141 		Inverse[1][3] = + (m[0][0] * SubFactor02 - m[0][1] * SubFactor04 + m[0][2] * SubFactor05);
    142 
    143 		Inverse[2][0] = + (m[0][1] * SubFactor06 - m[0][2] * SubFactor07 + m[0][3] * SubFactor08);
    144 		Inverse[2][1] = - (m[0][0] * SubFactor06 - m[0][2] * SubFactor09 + m[0][3] * SubFactor10);
    145 		Inverse[2][2] = + (m[0][0] * SubFactor11 - m[0][1] * SubFactor09 + m[0][3] * SubFactor12);
    146 		Inverse[2][3] = - (m[0][0] * SubFactor08 - m[0][1] * SubFactor10 + m[0][2] * SubFactor12);
    147 
    148 		Inverse[3][0] = - (m[0][1] * SubFactor13 - m[0][2] * SubFactor14 + m[0][3] * SubFactor15);
    149 		Inverse[3][1] = + (m[0][0] * SubFactor13 - m[0][2] * SubFactor16 + m[0][3] * SubFactor17);
    150 		Inverse[3][2] = - (m[0][0] * SubFactor14 - m[0][1] * SubFactor16 + m[0][3] * SubFactor18);
    151 		Inverse[3][3] = + (m[0][0] * SubFactor15 - m[0][1] * SubFactor17 + m[0][2] * SubFactor18);
    152 
    153 		T Determinant =
    154 			+ m[0][0] * Inverse[0][0]
    155 			+ m[0][1] * Inverse[0][1]
    156 			+ m[0][2] * Inverse[0][2]
    157 			+ m[0][3] * Inverse[0][3];
    158 
    159 		Inverse /= Determinant;
    160 
    161 		return Inverse;
    162 	}
    163 }//namespace glm
    164