Home | History | Annotate | Download | only in gtx
      1 ///////////////////////////////////////////////////////////////////////////////////////////////////
      2 // OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
      3 ///////////////////////////////////////////////////////////////////////////////////////////////////
      4 // Created : 2005-12-24
      5 // Updated : 2011-10-13
      6 // Licence : This source is under MIT License
      7 // File    : glm/gtx/integer.inl
      8 ///////////////////////////////////////////////////////////////////////////////////////////////////
      9 
     10 namespace glm
     11 {
     12 	// pow
     13 	GLM_FUNC_QUALIFIER int pow(int x, int y)
     14 	{
     15 		if(y == 0)
     16 			return 1;
     17 		int result = x;
     18 		for(int i = 1; i < y; ++i)
     19 			result *= x;
     20 		return result;
     21 	}
     22 
     23 	// sqrt: From Christopher J. Musial, An integer square root, Graphics Gems, 1990, page 387
     24 	GLM_FUNC_QUALIFIER int sqrt(int x)
     25 	{
     26 		if(x <= 1) return x;
     27 
     28 		int NextTrial = x >> 1;
     29 		int CurrentAnswer;
     30 
     31 		do
     32 		{
     33 			CurrentAnswer = NextTrial;
     34 			NextTrial = (NextTrial + x / NextTrial) >> 1;
     35 		} while(NextTrial < CurrentAnswer);
     36 
     37 		return CurrentAnswer;
     38 	}
     39 
     40 // Henry Gordon Dietz: http://aggregate.org/MAGIC/
     41 namespace detail
     42 {
     43 	GLM_FUNC_QUALIFIER unsigned int ones32(unsigned int x)
     44 	{
     45 		/* 32-bit recursive reduction using SWAR...
     46 		but first step is mapping 2-bit values
     47 		into sum of 2 1-bit values in sneaky way
     48 		*/
     49 		x -= ((x >> 1) & 0x55555555);
     50 		x = (((x >> 2) & 0x33333333) + (x & 0x33333333));
     51 		x = (((x >> 4) + x) & 0x0f0f0f0f);
     52 		x += (x >> 8);
     53 		x += (x >> 16);
     54 		return(x & 0x0000003f);
     55 	}
     56 
     57 	template <>
     58 	struct compute_log2<false>
     59 	{
     60 		template <typename T>
     61 		GLM_FUNC_QUALIFIER T operator() (T const & Value) const
     62 		{
     63 #if(GLM_COMPILER & (GLM_COMPILER_VC | GLM_COMPILER_GCC))
     64 			return Value <= static_cast<T>(1) ? T(0) : T(32) - nlz(Value - T(1));
     65 #else
     66 			return T(32) - nlz(Value - T(1));
     67 #endif
     68 		}
     69 	};
     70 }//namespace _detail
     71 
     72 	// Henry Gordon Dietz: http://aggregate.org/MAGIC/
     73 /*
     74 	GLM_FUNC_QUALIFIER unsigned int floor_log2(unsigned int x)
     75 	{
     76 		x |= (x >> 1);
     77 		x |= (x >> 2);
     78 		x |= (x >> 4);
     79 		x |= (x >> 8);
     80 		x |= (x >> 16);
     81 
     82 		return _detail::ones32(x) >> 1;
     83 	}
     84 */
     85 	// mod
     86 	GLM_FUNC_QUALIFIER int mod(int x, int y)
     87 	{
     88 		return x - y * (x / y);
     89 	}
     90 
     91 	// factorial (!12 max, integer only)
     92 	template <typename genType>
     93 	GLM_FUNC_QUALIFIER genType factorial(genType const & x)
     94 	{
     95 		genType Temp = x;
     96 		genType Result;
     97 		for(Result = 1; Temp > 1; --Temp)
     98 			Result *= Temp;
     99 		return Result;
    100 	}
    101 
    102 	template <typename T, precision P>
    103 	GLM_FUNC_QUALIFIER detail::tvec2<T, P> factorial(
    104 		detail::tvec2<T, P> const & x)
    105 	{
    106 		return detail::tvec2<T, P>(
    107 			factorial(x.x),
    108 			factorial(x.y));
    109 	}
    110 
    111 	template <typename T, precision P>
    112 	GLM_FUNC_QUALIFIER detail::tvec3<T, P> factorial(
    113 		detail::tvec3<T, P> const & x)
    114 	{
    115 		return detail::tvec3<T, P>(
    116 			factorial(x.x),
    117 			factorial(x.y),
    118 			factorial(x.z));
    119 	}
    120 
    121 	template <typename T, precision P>
    122 	GLM_FUNC_QUALIFIER detail::tvec4<T, P> factorial(
    123 		detail::tvec4<T, P> const & x)
    124 	{
    125 		return detail::tvec4<T, P>(
    126 			factorial(x.x),
    127 			factorial(x.y),
    128 			factorial(x.z),
    129 			factorial(x.w));
    130 	}
    131 
    132 	GLM_FUNC_QUALIFIER uint pow(uint x, uint y)
    133 	{
    134 		uint result = x;
    135 		for(uint i = 1; i < y; ++i)
    136 			result *= x;
    137 		return result;
    138 	}
    139 
    140 	GLM_FUNC_QUALIFIER uint sqrt(uint x)
    141 	{
    142 		if(x <= 1) return x;
    143 
    144 		uint NextTrial = x >> 1;
    145 		uint CurrentAnswer;
    146 
    147 		do
    148 		{
    149 			CurrentAnswer = NextTrial;
    150 			NextTrial = (NextTrial + x / NextTrial) >> 1;
    151 		} while(NextTrial < CurrentAnswer);
    152 
    153 		return CurrentAnswer;
    154 	}
    155 
    156 	GLM_FUNC_QUALIFIER uint mod(uint x, uint y)
    157 	{
    158 		return x - y * (x / y);
    159 	}
    160 
    161 #if(GLM_COMPILER & (GLM_COMPILER_VC | GLM_COMPILER_GCC))
    162 
    163 	GLM_FUNC_QUALIFIER unsigned int nlz(unsigned int x) 
    164 	{
    165 		return 31u - findMSB(x);
    166 	}
    167 
    168 #else
    169 
    170 	// Hackers Delight: http://www.hackersdelight.org/HDcode/nlz.c.txt
    171 	GLM_FUNC_QUALIFIER unsigned int nlz(unsigned int x) 
    172 	{
    173 		int y, m, n;
    174 
    175 		y = -int(x >> 16);      // If left half of x is 0,
    176 		m = (y >> 16) & 16;  // set n = 16.  If left half
    177 		n = 16 - m;          // is nonzero, set n = 0 and
    178 		x = x >> m;          // shift x right 16.
    179 							// Now x is of the form 0000xxxx.
    180 		y = x - 0x100;       // If positions 8-15 are 0,
    181 		m = (y >> 16) & 8;   // add 8 to n and shift x left 8.
    182 		n = n + m;
    183 		x = x << m;
    184 
    185 		y = x - 0x1000;      // If positions 12-15 are 0,
    186 		m = (y >> 16) & 4;   // add 4 to n and shift x left 4.
    187 		n = n + m;
    188 		x = x << m;
    189 
    190 		y = x - 0x4000;      // If positions 14-15 are 0,
    191 		m = (y >> 16) & 2;   // add 2 to n and shift x left 2.
    192 		n = n + m;
    193 		x = x << m;
    194 
    195 		y = x >> 14;         // Set y = 0, 1, 2, or 3.
    196 		m = y & ~(y >> 1);   // Set m = 0, 1, 2, or 2 resp.
    197 		return unsigned(n + 2 - m);
    198 	}
    199 
    200 #endif//(GLM_COMPILER)
    201 
    202 }//namespace glm
    203