Home | History | Annotate | Download | only in gtx
      1 ///////////////////////////////////////////////////////////////////////////////////
      2 /// OpenGL Mathematics (glm.g-truc.net)
      3 ///
      4 /// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
      5 /// Permission is hereby granted, free of charge, to any person obtaining a copy
      6 /// of this software and associated documentation files (the "Software"), to deal
      7 /// in the Software without restriction, including without limitation the rights
      8 /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
      9 /// copies of the Software, and to permit persons to whom the Software is
     10 /// furnished to do so, subject to the following conditions:
     11 ///
     12 /// The above copyright notice and this permission notice shall be included in
     13 /// all copies or substantial portions of the Software.
     14 ///
     15 /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16 /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17 /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     18 /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19 /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     20 /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     21 /// THE SOFTWARE.
     22 ///
     23 /// @ref gtx_simd_vec4
     24 /// @file glm/gtx/simd_vec4.hpp
     25 /// @date 2009-05-07 / 2011-06-07
     26 /// @author Christophe Riccio
     27 ///
     28 /// @see core (dependence)
     29 ///
     30 /// @defgroup gtx_simd_vec4 GLM_GTX_simd_vec4
     31 /// @ingroup gtx
     32 ///
     33 /// @brief SIMD implementation of vec4 type.
     34 ///
     35 /// <glm/gtx/simd_vec4.hpp> need to be included to use these functionalities.
     36 ///////////////////////////////////////////////////////////////////////////////////
     37 
     38 #ifndef GLM_GTX_simd_vec4
     39 #define GLM_GTX_simd_vec4
     40 
     41 // Dependency:
     42 #include "../glm.hpp"
     43 
     44 #if(GLM_ARCH != GLM_ARCH_PURE)
     45 
     46 #if(GLM_ARCH & GLM_ARCH_SSE2)
     47 #	include "../detail/intrinsic_common.hpp"
     48 #	include "../detail/intrinsic_geometric.hpp"
     49 #	include "../detail/intrinsic_integer.hpp"
     50 #else
     51 #	error "GLM: GLM_GTX_simd_vec4 requires compiler support of SSE2 through intrinsics"
     52 #endif
     53 
     54 #if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
     55 #	pragma message("GLM: GLM_GTX_simd_vec4 extension included")
     56 #endif
     57 
     58 
     59 // Warning silencer for nameless struct/union.
     60 #if (GLM_COMPILER & GLM_COMPILER_VC)
     61 #	pragma warning(push)
     62 #	pragma warning(disable:4201)   // warning C4201: nonstandard extension used : nameless struct/union
     63 #endif
     64 
     65 namespace glm
     66 {
     67 	enum comp
     68 	{
     69 		X = 0,
     70 		R = 0,
     71 		S = 0,
     72 		Y = 1,
     73 		G = 1,
     74 		T = 1,
     75 		Z = 2,
     76 		B = 2,
     77 		P = 2,
     78 		W = 3,
     79 		A = 3,
     80 		Q = 3
     81 	};
     82 
     83 }//namespace glm
     84 
     85 namespace glm{
     86 namespace detail
     87 {
     88 	/// 4-dimensional vector implemented using SIMD SEE intrinsics.
     89 	/// \ingroup gtx_simd_vec4
     90 	GLM_ALIGNED_STRUCT(16) fvec4SIMD
     91 	{
     92 		enum ctor{null};
     93 		typedef __m128 value_type;
     94 		typedef std::size_t size_type;
     95 		static size_type value_size();
     96 
     97 		typedef fvec4SIMD type;
     98 		typedef tvec4<bool, highp> bool_type;
     99 
    100 #ifdef GLM_SIMD_ENABLE_XYZW_UNION
    101 		union
    102 		{
    103 			__m128 Data;
    104 			struct {float x, y, z, w;};
    105 		};
    106 #else
    107 		__m128 Data;
    108 #endif
    109 
    110 		//////////////////////////////////////
    111 		// Implicit basic constructors
    112 
    113 		fvec4SIMD();
    114 		fvec4SIMD(__m128 const & Data);
    115 		fvec4SIMD(fvec4SIMD const & v);
    116 
    117 		//////////////////////////////////////
    118 		// Explicit basic constructors
    119 
    120 		explicit fvec4SIMD(
    121 			ctor);
    122 		explicit fvec4SIMD(
    123 			float const & s);
    124 		explicit fvec4SIMD(
    125 			float const & x,
    126 			float const & y,
    127 			float const & z,
    128 			float const & w);
    129 		explicit fvec4SIMD(
    130 			vec4 const & v);
    131 
    132 		////////////////////////////////////////
    133 		//// Conversion vector constructors
    134 
    135 		fvec4SIMD(vec2 const & v, float const & s1, float const & s2);
    136 		fvec4SIMD(float const & s1, vec2 const & v, float const & s2);
    137 		fvec4SIMD(float const & s1, float const & s2, vec2 const & v);
    138 		fvec4SIMD(vec3 const & v, float const & s);
    139 		fvec4SIMD(float const & s, vec3 const & v);
    140 		fvec4SIMD(vec2 const & v1, vec2 const & v2);
    141 		//fvec4SIMD(ivec4SIMD const & v);
    142 
    143 		//////////////////////////////////////
    144 		// Unary arithmetic operators
    145 
    146 		fvec4SIMD& operator= (fvec4SIMD const & v);
    147 		fvec4SIMD& operator+=(fvec4SIMD const & v);
    148 		fvec4SIMD& operator-=(fvec4SIMD const & v);
    149 		fvec4SIMD& operator*=(fvec4SIMD const & v);
    150 		fvec4SIMD& operator/=(fvec4SIMD const & v);
    151 
    152 		fvec4SIMD& operator+=(float const & s);
    153 		fvec4SIMD& operator-=(float const & s);
    154 		fvec4SIMD& operator*=(float const & s);
    155 		fvec4SIMD& operator/=(float const & s);
    156 
    157 		fvec4SIMD& operator++();
    158 		fvec4SIMD& operator--();
    159 
    160 		//////////////////////////////////////
    161 		// Swizzle operators
    162 
    163 		template <comp X, comp Y, comp Z, comp W>
    164 		fvec4SIMD& swizzle();
    165 		template <comp X, comp Y, comp Z, comp W>
    166 		fvec4SIMD swizzle() const;
    167 		template <comp X, comp Y, comp Z>
    168 		fvec4SIMD swizzle() const;
    169 		template <comp X, comp Y>
    170 		fvec4SIMD swizzle() const;
    171 		template <comp X>
    172 		fvec4SIMD swizzle() const;
    173 	};
    174 }//namespace detail
    175 
    176 	typedef glm::detail::fvec4SIMD simdVec4;
    177 
    178 	/// @addtogroup gtx_simd_vec4
    179 	/// @{
    180 
    181 	//! Convert a simdVec4 to a vec4.
    182 	/// @see gtx_simd_vec4
    183 	vec4 vec4_cast(
    184 		detail::fvec4SIMD const & x);
    185 
    186 	//! Returns x if x >= 0; otherwise, it returns -x.
    187 	/// @see gtx_simd_vec4
    188 	detail::fvec4SIMD abs(detail::fvec4SIMD const & x);
    189 
    190 	//! Returns 1.0 if x > 0, 0.0 if x = 0, or -1.0 if x < 0.
    191 	/// @see gtx_simd_vec4
    192 	detail::fvec4SIMD sign(detail::fvec4SIMD const & x);
    193 
    194 	//! Returns a value equal to the nearest integer that is less then or equal to x.
    195 	/// @see gtx_simd_vec4
    196 	detail::fvec4SIMD floor(detail::fvec4SIMD const & x);
    197 
    198 	//! Returns a value equal to the nearest integer to x
    199 	//! whose absolute value is not larger than the absolute value of x.
    200 	/// @see gtx_simd_vec4
    201 	detail::fvec4SIMD trunc(detail::fvec4SIMD const & x);
    202 
    203 	//! Returns a value equal to the nearest integer to x.
    204 	//! The fraction 0.5 will round in a direction chosen by the
    205 	//! implementation, presumably the direction that is fastest.
    206 	//! This includes the possibility that round(x) returns the
    207 	//! same value as roundEven(x) for all values of x.
    208 	///
    209 	/// @see gtx_simd_vec4
    210 	detail::fvec4SIMD round(detail::fvec4SIMD const & x);
    211 
    212 	//! Returns a value equal to the nearest integer to x.
    213 	//! A fractional part of 0.5 will round toward the nearest even
    214 	//! integer. (Both 3.5 and 4.5 for x will return 4.0.)
    215 	///
    216 	/// @see gtx_simd_vec4
    217 	//detail::fvec4SIMD roundEven(detail::fvec4SIMD const & x);
    218 
    219 	//! Returns a value equal to the nearest integer
    220 	//! that is greater than or equal to x.
    221 	/// @see gtx_simd_vec4
    222 	detail::fvec4SIMD ceil(detail::fvec4SIMD const & x);
    223 
    224 	//! Return x - floor(x).
    225 	///
    226 	/// @see gtx_simd_vec4
    227 	detail::fvec4SIMD fract(detail::fvec4SIMD const & x);
    228 
    229 	//! Modulus. Returns x - y * floor(x / y)
    230 	//! for each component in x using the floating point value y.
    231 	///
    232 	/// @see gtx_simd_vec4
    233 	detail::fvec4SIMD mod(
    234 		detail::fvec4SIMD const & x,
    235 		detail::fvec4SIMD const & y);
    236 
    237 	//! Modulus. Returns x - y * floor(x / y)
    238 	//! for each component in x using the floating point value y.
    239 	///
    240 	/// @see gtx_simd_vec4
    241 	detail::fvec4SIMD mod(
    242 		detail::fvec4SIMD const & x,
    243 		float const & y);
    244 
    245 	//! Returns the fractional part of x and sets i to the integer
    246 	//! part (as a whole number floating point value). Both the
    247 	//! return value and the output parameter will have the same
    248 	//! sign as x.
    249 	//! (From GLM_GTX_simd_vec4 extension, common function)
    250 	//detail::fvec4SIMD modf(
    251 	//	detail::fvec4SIMD const & x,
    252 	//	detail::fvec4SIMD & i);
    253 
    254 	//! Returns y if y < x; otherwise, it returns x.
    255 	///
    256 	/// @see gtx_simd_vec4
    257 	detail::fvec4SIMD min(
    258 		detail::fvec4SIMD const & x,
    259 		detail::fvec4SIMD const & y);
    260 
    261 	detail::fvec4SIMD min(
    262 		detail::fvec4SIMD const & x,
    263 		float const & y);
    264 
    265 	//! Returns y if x < y; otherwise, it returns x.
    266 	///
    267 	/// @see gtx_simd_vec4
    268 	detail::fvec4SIMD max(
    269 		detail::fvec4SIMD const & x,
    270 		detail::fvec4SIMD const & y);
    271 
    272 	detail::fvec4SIMD max(
    273 		detail::fvec4SIMD const & x,
    274 		float const & y);
    275 
    276 	//! Returns min(max(x, minVal), maxVal) for each component in x
    277 	//! using the floating-point values minVal and maxVal.
    278 	///
    279 	/// @see gtx_simd_vec4
    280 	detail::fvec4SIMD clamp(
    281 		detail::fvec4SIMD const & x,
    282 		detail::fvec4SIMD const & minVal,
    283 		detail::fvec4SIMD const & maxVal);
    284 
    285 	detail::fvec4SIMD clamp(
    286 		detail::fvec4SIMD const & x,
    287 		float const & minVal,
    288 		float const & maxVal);
    289 
    290 	//! \return If genTypeU is a floating scalar or vector:
    291 	//! Returns x * (1.0 - a) + y * a, i.e., the linear blend of
    292 	//! x and y using the floating-point value a.
    293 	//! The value for a is not restricted to the range [0, 1].
    294 	//!
    295 	//! \return If genTypeU is a boolean scalar or vector:
    296 	//! Selects which vector each returned component comes
    297 	//! from. For a component of a that is false, the
    298 	//! corresponding component of x is returned. For a
    299 	//! component of a that is true, the corresponding
    300 	//! component of y is returned. Components of x and y that
    301 	//! are not selected are allowed to be invalid floating point
    302 	//! values and will have no effect on the results. Thus, this
    303 	//! provides different functionality than
    304 	//! genType mix(genType x, genType y, genType(a))
    305 	//! where a is a Boolean vector.
    306 	//!
    307 	//! From GLSL 1.30.08 specification, section 8.3
    308 	//!
    309 	//! \param[in]  x Floating point scalar or vector.
    310 	//! \param[in]  y Floating point scalar or vector.
    311 	//! \param[in]  a Floating point or boolean scalar or vector.
    312 	//!
    313 	/// \todo Test when 'a' is a boolean.
    314 	///
    315 	/// @see gtx_simd_vec4
    316 	detail::fvec4SIMD mix(
    317 		detail::fvec4SIMD const & x,
    318 		detail::fvec4SIMD const & y,
    319 		detail::fvec4SIMD const & a);
    320 
    321 	//! Returns 0.0 if x < edge, otherwise it returns 1.0.
    322 	///
    323 	/// @see gtx_simd_vec4
    324 	detail::fvec4SIMD step(
    325 		detail::fvec4SIMD const & edge,
    326 		detail::fvec4SIMD const & x);
    327 
    328 	detail::fvec4SIMD step(
    329 		float const & edge,
    330 		detail::fvec4SIMD const & x);
    331 
    332 	//! Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and
    333 	//! performs smooth Hermite interpolation between 0 and 1
    334 	//! when edge0 < x < edge1. This is useful in cases where
    335 	//! you would want a threshold function with a smooth
    336 	//! transition. This is equivalent to:
    337 	//! genType t;
    338 	//! t = clamp ((x - edge0) / (edge1 - edge0), 0, 1);
    339 	//! return t * t * (3 - 2 * t);
    340 	//! Results are undefined if edge0 >= edge1.
    341 	///
    342 	/// @see gtx_simd_vec4
    343 	detail::fvec4SIMD smoothstep(
    344 		detail::fvec4SIMD const & edge0,
    345 		detail::fvec4SIMD const & edge1,
    346 		detail::fvec4SIMD const & x);
    347 
    348 	detail::fvec4SIMD smoothstep(
    349 		float const & edge0,
    350 		float const & edge1,
    351 		detail::fvec4SIMD const & x);
    352 
    353 	//! Returns true if x holds a NaN (not a number)
    354 	//! representation in the underlying implementation's set of
    355 	//! floating point representations. Returns false otherwise,
    356 	//! including for implementations with no NaN
    357 	//! representations.
    358 	///
    359 	/// @see gtx_simd_vec4
    360 	//bvec4 isnan(detail::fvec4SIMD const & x);
    361 
    362 	//! Returns true if x holds a positive infinity or negative
    363 	//! infinity representation in the underlying implementation's
    364 	//! set of floating point representations. Returns false
    365 	//! otherwise, including for implementations with no infinity
    366 	//! representations.
    367 	///
    368 	/// @see gtx_simd_vec4
    369 	//bvec4 isinf(detail::fvec4SIMD const & x);
    370 
    371 	//! Returns a signed or unsigned integer value representing
    372 	//! the encoding of a floating-point value. The floatingpoint
    373 	//! value's bit-level representation is preserved.
    374 	///
    375 	/// @see gtx_simd_vec4
    376 	//detail::ivec4SIMD floatBitsToInt(detail::fvec4SIMD const & value);
    377 
    378 	//! Returns a floating-point value corresponding to a signed
    379 	//! or unsigned integer encoding of a floating-point value.
    380 	//! If an inf or NaN is passed in, it will not signal, and the
    381 	//! resulting floating point value is unspecified. Otherwise,
    382 	//! the bit-level representation is preserved.
    383 	///
    384 	/// @see gtx_simd_vec4
    385 	//detail::fvec4SIMD intBitsToFloat(detail::ivec4SIMD const & value);
    386 
    387 	//! Computes and returns a * b + c.
    388 	///
    389 	/// @see gtx_simd_vec4
    390 	detail::fvec4SIMD fma(
    391 		detail::fvec4SIMD const & a,
    392 		detail::fvec4SIMD const & b,
    393 		detail::fvec4SIMD const & c);
    394 
    395 	//! Splits x into a floating-point significand in the range
    396 	//! [0.5, 1.0) and an integral exponent of two, such that:
    397 	//! x = significand * exp(2, exponent)
    398 	//! The significand is returned by the function and the
    399 	//! exponent is returned in the parameter exp. For a
    400 	//! floating-point value of zero, the significant and exponent
    401 	//! are both zero. For a floating-point value that is an
    402 	//! infinity or is not a number, the results are undefined.
    403 	///
    404 	/// @see gtx_simd_vec4
    405 	//detail::fvec4SIMD frexp(detail::fvec4SIMD const & x, detail::ivec4SIMD & exp);
    406 
    407 	//! Builds a floating-point number from x and the
    408 	//! corresponding integral exponent of two in exp, returning:
    409 	//! significand * exp(2, exponent)
    410 	//! If this product is too large to be represented in the
    411 	//! floating-point type, the result is undefined.
    412 	///
    413 	/// @see gtx_simd_vec4
    414 	//detail::fvec4SIMD ldexp(detail::fvec4SIMD const & x, detail::ivec4SIMD const & exp);
    415 
    416 	//! Returns the length of x, i.e., sqrt(x * x).
    417 	///
    418 	/// @see gtx_simd_vec4
    419 	float length(
    420 		detail::fvec4SIMD const & x);
    421 
    422 	//! Returns the length of x, i.e., sqrt(x * x).
    423 	//! Less accurate but much faster than simdLength.
    424 	///
    425 	/// @see gtx_simd_vec4
    426 	float fastLength(
    427 		detail::fvec4SIMD const & x);
    428 
    429 	//! Returns the length of x, i.e., sqrt(x * x).
    430 	//! Slightly more accurate but much slower than simdLength.
    431 	///
    432 	/// @see gtx_simd_vec4
    433 	float niceLength(
    434 		detail::fvec4SIMD const & x);
    435 
    436 	//! Returns the length of x, i.e., sqrt(x * x).
    437 	///
    438 	/// @see gtx_simd_vec4
    439 	detail::fvec4SIMD length4(
    440 		detail::fvec4SIMD const & x);
    441 
    442 	//! Returns the length of x, i.e., sqrt(x * x).
    443 	//! Less accurate but much faster than simdLength4.
    444 	///
    445 	/// @see gtx_simd_vec4
    446 	detail::fvec4SIMD fastLength4(
    447 		detail::fvec4SIMD const & x);
    448 
    449 	//! Returns the length of x, i.e., sqrt(x * x).
    450 	//! Slightly more accurate but much slower than simdLength4.
    451 	///
    452 	/// @see gtx_simd_vec4
    453 	detail::fvec4SIMD niceLength4(
    454 		detail::fvec4SIMD const & x);
    455 
    456 	//! Returns the distance betwwen p0 and p1, i.e., length(p0 - p1).
    457 	///
    458 	/// @see gtx_simd_vec4
    459 	float distance(
    460 		detail::fvec4SIMD const & p0,
    461 		detail::fvec4SIMD const & p1);
    462 
    463 	//! Returns the distance betwwen p0 and p1, i.e., length(p0 - p1).
    464 	///
    465 	/// @see gtx_simd_vec4
    466 	detail::fvec4SIMD distance4(
    467 		detail::fvec4SIMD const & p0,
    468 		detail::fvec4SIMD const & p1);
    469 
    470 	//! Returns the dot product of x and y, i.e., result = x * y.
    471 	///
    472 	/// @see gtx_simd_vec4
    473 	float simdDot(
    474 		detail::fvec4SIMD const & x,
    475 		detail::fvec4SIMD const & y);
    476 
    477 	//! Returns the dot product of x and y, i.e., result = x * y.
    478 	///
    479 	/// @see gtx_simd_vec4
    480 	detail::fvec4SIMD dot4(
    481 		detail::fvec4SIMD const & x,
    482 		detail::fvec4SIMD const & y);
    483 
    484 	//! Returns the cross product of x and y.
    485 	///
    486 	/// @see gtx_simd_vec4
    487 	detail::fvec4SIMD cross(
    488 		detail::fvec4SIMD const & x,
    489 		detail::fvec4SIMD const & y);
    490 
    491 	//! Returns a vector in the same direction as x but with length of 1.
    492 	///
    493 	/// @see gtx_simd_vec4
    494 	detail::fvec4SIMD normalize(
    495 		detail::fvec4SIMD const & x);
    496 
    497 	//! Returns a vector in the same direction as x but with length of 1.
    498 	//! Less accurate but much faster than simdNormalize.
    499 	///
    500 	/// @see gtx_simd_vec4
    501 	detail::fvec4SIMD fastNormalize(
    502 		detail::fvec4SIMD const & x);
    503 
    504 	//! If dot(Nref, I) < 0.0, return N, otherwise, return -N.
    505 	///
    506 	/// @see gtx_simd_vec4
    507 	detail::fvec4SIMD simdFaceforward(
    508 		detail::fvec4SIMD const & N,
    509 		detail::fvec4SIMD const & I,
    510 		detail::fvec4SIMD const & Nref);
    511 
    512 	//! For the incident vector I and surface orientation N,
    513 	//! returns the reflection direction : result = I - 2.0 * dot(N, I) * N.
    514 	///
    515 	/// @see gtx_simd_vec4
    516 	detail::fvec4SIMD reflect(
    517 		detail::fvec4SIMD const & I,
    518 		detail::fvec4SIMD const & N);
    519 
    520 	//! For the incident vector I and surface normal N,
    521 	//! and the ratio of indices of refraction eta,
    522 	//! return the refraction vector.
    523 	///
    524 	/// @see gtx_simd_vec4
    525 	detail::fvec4SIMD refract(
    526 		detail::fvec4SIMD const & I,
    527 		detail::fvec4SIMD const & N,
    528 		float const & eta);
    529 
    530 	//! Returns the positive square root of x.
    531 	///
    532 	/// @see gtx_simd_vec4
    533 	detail::fvec4SIMD sqrt(
    534 		detail::fvec4SIMD const & x);
    535 
    536 	//! Returns the positive square root of x with the nicest quality but very slow.
    537 	//! Slightly more accurate but much slower than simdSqrt.
    538 	///
    539 	/// @see gtx_simd_vec4
    540 	detail::fvec4SIMD niceSqrt(
    541 		detail::fvec4SIMD const & x);
    542 
    543 	//! Returns the positive square root of x
    544 	//! Less accurate but much faster than sqrt.
    545 	///
    546 	/// @see gtx_simd_vec4
    547 	detail::fvec4SIMD fastSqrt(
    548 		detail::fvec4SIMD const & x);
    549 
    550 	//! Returns the reciprocal of the positive square root of x.
    551 	///
    552 	/// @see gtx_simd_vec4
    553 	detail::fvec4SIMD inversesqrt(
    554 		detail::fvec4SIMD const & x);
    555 
    556 	//! Returns the reciprocal of the positive square root of x.
    557 	//! Faster than inversesqrt but less accurate.
    558 	///
    559 	/// @see gtx_simd_vec4
    560 	detail::fvec4SIMD fastInversesqrt(
    561 		detail::fvec4SIMD const & x);
    562 
    563 	/// @}
    564 }//namespace glm
    565 
    566 #include "simd_vec4.inl"
    567 
    568 #if (GLM_COMPILER & GLM_COMPILER_VC)
    569 #	pragma warning(pop)
    570 #endif
    571 
    572 #endif//(GLM_ARCH != GLM_ARCH_PURE)
    573 
    574 #endif//GLM_GTX_simd_vec4
    575