Home | History | Annotate | Download | only in dsp
      1 // Copyright 2015 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // SSE4 version of some encoding functions.
     11 //
     12 // Author: Skal (pascal.massimino (at) gmail.com)
     13 
     14 #include "./dsp.h"
     15 
     16 #if defined(WEBP_USE_SSE41)
     17 #include <smmintrin.h>
     18 #include <stdlib.h>  // for abs()
     19 
     20 #include "../enc/vp8enci.h"
     21 
     22 //------------------------------------------------------------------------------
     23 // Compute susceptibility based on DCT-coeff histograms.
     24 
     25 static void CollectHistogram(const uint8_t* ref, const uint8_t* pred,
     26                              int start_block, int end_block,
     27                              VP8Histogram* const histo) {
     28   const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
     29   int j;
     30   int distribution[MAX_COEFF_THRESH + 1] = { 0 };
     31   for (j = start_block; j < end_block; ++j) {
     32     int16_t out[16];
     33     int k;
     34 
     35     VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
     36 
     37     // Convert coefficients to bin (within out[]).
     38     {
     39       // Load.
     40       const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
     41       const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
     42       // v = abs(out) >> 3
     43       const __m128i abs0 = _mm_abs_epi16(out0);
     44       const __m128i abs1 = _mm_abs_epi16(out1);
     45       const __m128i v0 = _mm_srai_epi16(abs0, 3);
     46       const __m128i v1 = _mm_srai_epi16(abs1, 3);
     47       // bin = min(v, MAX_COEFF_THRESH)
     48       const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
     49       const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
     50       // Store.
     51       _mm_storeu_si128((__m128i*)&out[0], bin0);
     52       _mm_storeu_si128((__m128i*)&out[8], bin1);
     53     }
     54 
     55     // Convert coefficients to bin.
     56     for (k = 0; k < 16; ++k) {
     57       ++distribution[out[k]];
     58     }
     59   }
     60   VP8SetHistogramData(distribution, histo);
     61 }
     62 
     63 //------------------------------------------------------------------------------
     64 // Texture distortion
     65 //
     66 // We try to match the spectral content (weighted) between source and
     67 // reconstructed samples.
     68 
     69 // Hadamard transform
     70 // Returns the difference between the weighted sum of the absolute value of
     71 // transformed coefficients.
     72 static int TTransform(const uint8_t* inA, const uint8_t* inB,
     73                       const uint16_t* const w) {
     74   __m128i tmp_0, tmp_1, tmp_2, tmp_3;
     75 
     76   // Load, combine and transpose inputs.
     77   {
     78     const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]);
     79     const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]);
     80     const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]);
     81     const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
     82     const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]);
     83     const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]);
     84     const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]);
     85     const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
     86 
     87     // Combine inA and inB (we'll do two transforms in parallel).
     88     const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
     89     const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
     90     const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
     91     const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
     92     // a00 b00 a01 b01 a02 b03 a03 b03   0 0 0 0 0 0 0 0
     93     // a10 b10 a11 b11 a12 b12 a13 b13   0 0 0 0 0 0 0 0
     94     // a20 b20 a21 b21 a22 b22 a23 b23   0 0 0 0 0 0 0 0
     95     // a30 b30 a31 b31 a32 b32 a33 b33   0 0 0 0 0 0 0 0
     96 
     97     // Transpose the two 4x4, discarding the filling zeroes.
     98     const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
     99     const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
    100     // a00 a20  b00 b20  a01 a21  b01 b21  a02 a22  b02 b22  a03 a23  b03 b23
    101     // a10 a30  b10 b30  a11 a31  b11 b31  a12 a32  b12 b32  a13 a33  b13 b33
    102     const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
    103     const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
    104     // a00 a10 a20 a30  b00 b10 b20 b30  a01 a11 a21 a31  b01 b11 b21 b31
    105     // a02 a12 a22 a32  b02 b12 b22 b32  a03 a13 a23 a33  b03 b13 b23 b33
    106 
    107     // Convert to 16b.
    108     tmp_0 = _mm_cvtepu8_epi16(transpose1_0);
    109     tmp_1 = _mm_cvtepu8_epi16(_mm_srli_si128(transpose1_0, 8));
    110     tmp_2 = _mm_cvtepu8_epi16(transpose1_1);
    111     tmp_3 = _mm_cvtepu8_epi16(_mm_srli_si128(transpose1_1, 8));
    112     // a00 a10 a20 a30   b00 b10 b20 b30
    113     // a01 a11 a21 a31   b01 b11 b21 b31
    114     // a02 a12 a22 a32   b02 b12 b22 b32
    115     // a03 a13 a23 a33   b03 b13 b23 b33
    116   }
    117 
    118   // Horizontal pass and subsequent transpose.
    119   {
    120     // Calculate a and b (two 4x4 at once).
    121     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
    122     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
    123     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
    124     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
    125     const __m128i b0 = _mm_add_epi16(a0, a1);
    126     const __m128i b1 = _mm_add_epi16(a3, a2);
    127     const __m128i b2 = _mm_sub_epi16(a3, a2);
    128     const __m128i b3 = _mm_sub_epi16(a0, a1);
    129     // a00 a01 a02 a03   b00 b01 b02 b03
    130     // a10 a11 a12 a13   b10 b11 b12 b13
    131     // a20 a21 a22 a23   b20 b21 b22 b23
    132     // a30 a31 a32 a33   b30 b31 b32 b33
    133 
    134     // Transpose the two 4x4.
    135     const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
    136     const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
    137     const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
    138     const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
    139     // a00 a10 a01 a11   a02 a12 a03 a13
    140     // a20 a30 a21 a31   a22 a32 a23 a33
    141     // b00 b10 b01 b11   b02 b12 b03 b13
    142     // b20 b30 b21 b31   b22 b32 b23 b33
    143     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    144     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
    145     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    146     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
    147     // a00 a10 a20 a30 a01 a11 a21 a31
    148     // b00 b10 b20 b30 b01 b11 b21 b31
    149     // a02 a12 a22 a32 a03 a13 a23 a33
    150     // b02 b12 a22 b32 b03 b13 b23 b33
    151     tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
    152     tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
    153     tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
    154     tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
    155     // a00 a10 a20 a30   b00 b10 b20 b30
    156     // a01 a11 a21 a31   b01 b11 b21 b31
    157     // a02 a12 a22 a32   b02 b12 b22 b32
    158     // a03 a13 a23 a33   b03 b13 b23 b33
    159   }
    160 
    161   // Vertical pass and difference of weighted sums.
    162   {
    163     // Load all inputs.
    164     const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
    165     const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
    166 
    167     // Calculate a and b (two 4x4 at once).
    168     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
    169     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
    170     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
    171     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
    172     const __m128i b0 = _mm_add_epi16(a0, a1);
    173     const __m128i b1 = _mm_add_epi16(a3, a2);
    174     const __m128i b2 = _mm_sub_epi16(a3, a2);
    175     const __m128i b3 = _mm_sub_epi16(a0, a1);
    176 
    177     // Separate the transforms of inA and inB.
    178     __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
    179     __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
    180     __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
    181     __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
    182 
    183     A_b0 = _mm_abs_epi16(A_b0);
    184     A_b2 = _mm_abs_epi16(A_b2);
    185     B_b0 = _mm_abs_epi16(B_b0);
    186     B_b2 = _mm_abs_epi16(B_b2);
    187 
    188     // weighted sums
    189     A_b0 = _mm_madd_epi16(A_b0, w_0);
    190     A_b2 = _mm_madd_epi16(A_b2, w_8);
    191     B_b0 = _mm_madd_epi16(B_b0, w_0);
    192     B_b2 = _mm_madd_epi16(B_b2, w_8);
    193     A_b0 = _mm_add_epi32(A_b0, A_b2);
    194     B_b0 = _mm_add_epi32(B_b0, B_b2);
    195 
    196     // difference of weighted sums
    197     A_b2 = _mm_sub_epi32(A_b0, B_b0);
    198     // cascading summation of the differences
    199     B_b0 = _mm_hadd_epi32(A_b2, A_b2);
    200     B_b2 = _mm_hadd_epi32(B_b0, B_b0);
    201     return _mm_cvtsi128_si32(B_b2);
    202   }
    203 }
    204 
    205 static int Disto4x4(const uint8_t* const a, const uint8_t* const b,
    206                     const uint16_t* const w) {
    207   const int diff_sum = TTransform(a, b, w);
    208   return abs(diff_sum) >> 5;
    209 }
    210 
    211 static int Disto16x16(const uint8_t* const a, const uint8_t* const b,
    212                       const uint16_t* const w) {
    213   int D = 0;
    214   int x, y;
    215   for (y = 0; y < 16 * BPS; y += 4 * BPS) {
    216     for (x = 0; x < 16; x += 4) {
    217       D += Disto4x4(a + x + y, b + x + y, w);
    218     }
    219   }
    220   return D;
    221 }
    222 
    223 //------------------------------------------------------------------------------
    224 // Quantization
    225 //
    226 
    227 // Generates a pshufb constant for shuffling 16b words.
    228 #define PSHUFB_CST(A,B,C,D,E,F,G,H) \
    229   _mm_set_epi8(2 * (H) + 1, 2 * (H) + 0, 2 * (G) + 1, 2 * (G) + 0, \
    230                2 * (F) + 1, 2 * (F) + 0, 2 * (E) + 1, 2 * (E) + 0, \
    231                2 * (D) + 1, 2 * (D) + 0, 2 * (C) + 1, 2 * (C) + 0, \
    232                2 * (B) + 1, 2 * (B) + 0, 2 * (A) + 1, 2 * (A) + 0)
    233 
    234 static WEBP_INLINE int DoQuantizeBlock(int16_t in[16], int16_t out[16],
    235                                        const uint16_t* const sharpen,
    236                                        const VP8Matrix* const mtx) {
    237   const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
    238   const __m128i zero = _mm_setzero_si128();
    239   __m128i out0, out8;
    240   __m128i packed_out;
    241 
    242   // Load all inputs.
    243   __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
    244   __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
    245   const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
    246   const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
    247   const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
    248   const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);
    249 
    250   // coeff = abs(in)
    251   __m128i coeff0 = _mm_abs_epi16(in0);
    252   __m128i coeff8 = _mm_abs_epi16(in8);
    253 
    254   // coeff = abs(in) + sharpen
    255   if (sharpen != NULL) {
    256     const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
    257     const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
    258     coeff0 = _mm_add_epi16(coeff0, sharpen0);
    259     coeff8 = _mm_add_epi16(coeff8, sharpen8);
    260   }
    261 
    262   // out = (coeff * iQ + B) >> QFIX
    263   {
    264     // doing calculations with 32b precision (QFIX=17)
    265     // out = (coeff * iQ)
    266     const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
    267     const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
    268     const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
    269     const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
    270     __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
    271     __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
    272     __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
    273     __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
    274     // out = (coeff * iQ + B)
    275     const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
    276     const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
    277     const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
    278     const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
    279     out_00 = _mm_add_epi32(out_00, bias_00);
    280     out_04 = _mm_add_epi32(out_04, bias_04);
    281     out_08 = _mm_add_epi32(out_08, bias_08);
    282     out_12 = _mm_add_epi32(out_12, bias_12);
    283     // out = QUANTDIV(coeff, iQ, B, QFIX)
    284     out_00 = _mm_srai_epi32(out_00, QFIX);
    285     out_04 = _mm_srai_epi32(out_04, QFIX);
    286     out_08 = _mm_srai_epi32(out_08, QFIX);
    287     out_12 = _mm_srai_epi32(out_12, QFIX);
    288 
    289     // pack result as 16b
    290     out0 = _mm_packs_epi32(out_00, out_04);
    291     out8 = _mm_packs_epi32(out_08, out_12);
    292 
    293     // if (coeff > 2047) coeff = 2047
    294     out0 = _mm_min_epi16(out0, max_coeff_2047);
    295     out8 = _mm_min_epi16(out8, max_coeff_2047);
    296   }
    297 
    298   // put sign back
    299   out0 = _mm_sign_epi16(out0, in0);
    300   out8 = _mm_sign_epi16(out8, in8);
    301 
    302   // in = out * Q
    303   in0 = _mm_mullo_epi16(out0, q0);
    304   in8 = _mm_mullo_epi16(out8, q8);
    305 
    306   _mm_storeu_si128((__m128i*)&in[0], in0);
    307   _mm_storeu_si128((__m128i*)&in[8], in8);
    308 
    309   // zigzag the output before storing it. The re-ordering is:
    310   //    0 1 2 3 4 5 6 7 | 8  9 10 11 12 13 14 15
    311   // -> 0 1 4[8]5 2 3 6 | 9 12 13 10 [7]11 14 15
    312   // There's only two misplaced entries ([8] and [7]) that are crossing the
    313   // reg's boundaries.
    314   // We use pshufb instead of pshuflo/pshufhi.
    315   {
    316     const __m128i kCst_lo = PSHUFB_CST(0, 1, 4, -1, 5, 2, 3, 6);
    317     const __m128i kCst_7 = PSHUFB_CST(-1, -1, -1, -1, 7, -1, -1, -1);
    318     const __m128i tmp_lo = _mm_shuffle_epi8(out0, kCst_lo);
    319     const __m128i tmp_7 = _mm_shuffle_epi8(out0, kCst_7);  // extract #7
    320     const __m128i kCst_hi = PSHUFB_CST(1, 4, 5, 2, -1, 3, 6, 7);
    321     const __m128i kCst_8 = PSHUFB_CST(-1, -1, -1, 0, -1, -1, -1, -1);
    322     const __m128i tmp_hi = _mm_shuffle_epi8(out8, kCst_hi);
    323     const __m128i tmp_8 = _mm_shuffle_epi8(out8, kCst_8);  // extract #8
    324     const __m128i out_z0 = _mm_or_si128(tmp_lo, tmp_8);
    325     const __m128i out_z8 = _mm_or_si128(tmp_hi, tmp_7);
    326     _mm_storeu_si128((__m128i*)&out[0], out_z0);
    327     _mm_storeu_si128((__m128i*)&out[8], out_z8);
    328     packed_out = _mm_packs_epi16(out_z0, out_z8);
    329   }
    330 
    331   // detect if all 'out' values are zeroes or not
    332   return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
    333 }
    334 
    335 #undef PSHUFB_CST
    336 
    337 static int QuantizeBlock(int16_t in[16], int16_t out[16],
    338                          const VP8Matrix* const mtx) {
    339   return DoQuantizeBlock(in, out, &mtx->sharpen_[0], mtx);
    340 }
    341 
    342 static int QuantizeBlockWHT(int16_t in[16], int16_t out[16],
    343                             const VP8Matrix* const mtx) {
    344   return DoQuantizeBlock(in, out, NULL, mtx);
    345 }
    346 
    347 static int Quantize2Blocks(int16_t in[32], int16_t out[32],
    348                            const VP8Matrix* const mtx) {
    349   int nz;
    350   const uint16_t* const sharpen = &mtx->sharpen_[0];
    351   nz  = DoQuantizeBlock(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
    352   nz |= DoQuantizeBlock(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
    353   return nz;
    354 }
    355 
    356 //------------------------------------------------------------------------------
    357 // Entry point
    358 
    359 extern void VP8EncDspInitSSE41(void);
    360 WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE41(void) {
    361   VP8CollectHistogram = CollectHistogram;
    362   VP8EncQuantizeBlock = QuantizeBlock;
    363   VP8EncQuantize2Blocks = Quantize2Blocks;
    364   VP8EncQuantizeBlockWHT = QuantizeBlockWHT;
    365   VP8TDisto4x4 = Disto4x4;
    366   VP8TDisto16x16 = Disto16x16;
    367 }
    368 
    369 #else  // !WEBP_USE_SSE41
    370 
    371 WEBP_DSP_INIT_STUB(VP8EncDspInitSSE41)
    372 
    373 #endif  // WEBP_USE_SSE41
    374