Home | History | Annotate | Download | only in audioflinger
      1 /*
      2  * Copyright (C) 2013 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define LOG_TAG "AudioResamplerDyn"
     18 //#define LOG_NDEBUG 0
     19 
     20 #include <malloc.h>
     21 #include <string.h>
     22 #include <stdlib.h>
     23 #include <dlfcn.h>
     24 #include <math.h>
     25 
     26 #include <cutils/compiler.h>
     27 #include <cutils/properties.h>
     28 #include <utils/Debug.h>
     29 #include <utils/Log.h>
     30 #include <audio_utils/primitives.h>
     31 
     32 #include "AudioResamplerFirOps.h" // USE_NEON and USE_INLINE_ASSEMBLY defined here
     33 #include "AudioResamplerFirProcess.h"
     34 #include "AudioResamplerFirProcessNeon.h"
     35 #include "AudioResamplerFirGen.h" // requires math.h
     36 #include "AudioResamplerDyn.h"
     37 
     38 //#define DEBUG_RESAMPLER
     39 
     40 namespace android {
     41 
     42 /*
     43  * InBuffer is a type agnostic input buffer.
     44  *
     45  * Layout of the state buffer for halfNumCoefs=8.
     46  *
     47  * [rrrrrrppppppppnnnnnnnnrrrrrrrrrrrrrrrrrrr.... rrrrrrr]
     48  *  S            I                                R
     49  *
     50  * S = mState
     51  * I = mImpulse
     52  * R = mRingFull
     53  * p = past samples, convoluted with the (p)ositive side of sinc()
     54  * n = future samples, convoluted with the (n)egative side of sinc()
     55  * r = extra space for implementing the ring buffer
     56  */
     57 
     58 template<typename TC, typename TI, typename TO>
     59 AudioResamplerDyn<TC, TI, TO>::InBuffer::InBuffer()
     60     : mState(NULL), mImpulse(NULL), mRingFull(NULL), mStateCount(0)
     61 {
     62 }
     63 
     64 template<typename TC, typename TI, typename TO>
     65 AudioResamplerDyn<TC, TI, TO>::InBuffer::~InBuffer()
     66 {
     67     init();
     68 }
     69 
     70 template<typename TC, typename TI, typename TO>
     71 void AudioResamplerDyn<TC, TI, TO>::InBuffer::init()
     72 {
     73     free(mState);
     74     mState = NULL;
     75     mImpulse = NULL;
     76     mRingFull = NULL;
     77     mStateCount = 0;
     78 }
     79 
     80 // resizes the state buffer to accommodate the appropriate filter length
     81 template<typename TC, typename TI, typename TO>
     82 void AudioResamplerDyn<TC, TI, TO>::InBuffer::resize(int CHANNELS, int halfNumCoefs)
     83 {
     84     // calculate desired state size
     85     size_t stateCount = halfNumCoefs * CHANNELS * 2 * kStateSizeMultipleOfFilterLength;
     86 
     87     // check if buffer needs resizing
     88     if (mState
     89             && stateCount == mStateCount
     90             && mRingFull-mState == (ssize_t) (mStateCount-halfNumCoefs*CHANNELS)) {
     91         return;
     92     }
     93 
     94     // create new buffer
     95     TI* state = NULL;
     96     (void)posix_memalign(reinterpret_cast<void**>(&state), 32, stateCount*sizeof(*state));
     97     memset(state, 0, stateCount*sizeof(*state));
     98 
     99     // attempt to preserve state
    100     if (mState) {
    101         TI* srcLo = mImpulse - halfNumCoefs*CHANNELS;
    102         TI* srcHi = mImpulse + halfNumCoefs*CHANNELS;
    103         TI* dst = state;
    104 
    105         if (srcLo < mState) {
    106             dst += mState-srcLo;
    107             srcLo = mState;
    108         }
    109         if (srcHi > mState + mStateCount) {
    110             srcHi = mState + mStateCount;
    111         }
    112         memcpy(dst, srcLo, (srcHi - srcLo) * sizeof(*srcLo));
    113         free(mState);
    114     }
    115 
    116     // set class member vars
    117     mState = state;
    118     mStateCount = stateCount;
    119     mImpulse = state + halfNumCoefs*CHANNELS; // actually one sample greater than needed
    120     mRingFull = state + mStateCount - halfNumCoefs*CHANNELS;
    121 }
    122 
    123 // copy in the input data into the head (impulse+halfNumCoefs) of the buffer.
    124 template<typename TC, typename TI, typename TO>
    125 template<int CHANNELS>
    126 void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAgain(TI*& impulse, const int halfNumCoefs,
    127         const TI* const in, const size_t inputIndex)
    128 {
    129     TI* head = impulse + halfNumCoefs*CHANNELS;
    130     for (size_t i=0 ; i<CHANNELS ; i++) {
    131         head[i] = in[inputIndex*CHANNELS + i];
    132     }
    133 }
    134 
    135 // advance the impulse pointer, and load in data into the head (impulse+halfNumCoefs)
    136 template<typename TC, typename TI, typename TO>
    137 template<int CHANNELS>
    138 void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAdvance(TI*& impulse, const int halfNumCoefs,
    139         const TI* const in, const size_t inputIndex)
    140 {
    141     impulse += CHANNELS;
    142 
    143     if (CC_UNLIKELY(impulse >= mRingFull)) {
    144         const size_t shiftDown = mRingFull - mState - halfNumCoefs*CHANNELS;
    145         memcpy(mState, mState+shiftDown, halfNumCoefs*CHANNELS*2*sizeof(TI));
    146         impulse -= shiftDown;
    147     }
    148     readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
    149 }
    150 
    151 template<typename TC, typename TI, typename TO>
    152 void AudioResamplerDyn<TC, TI, TO>::Constants::set(
    153         int L, int halfNumCoefs, int inSampleRate, int outSampleRate)
    154 {
    155     int bits = 0;
    156     int lscale = inSampleRate/outSampleRate < 2 ? L - 1 :
    157             static_cast<int>(static_cast<uint64_t>(L)*inSampleRate/outSampleRate);
    158     for (int i=lscale; i; ++bits, i>>=1)
    159         ;
    160     mL = L;
    161     mShift = kNumPhaseBits - bits;
    162     mHalfNumCoefs = halfNumCoefs;
    163 }
    164 
    165 template<typename TC, typename TI, typename TO>
    166 AudioResamplerDyn<TC, TI, TO>::AudioResamplerDyn(
    167         int inChannelCount, int32_t sampleRate, src_quality quality)
    168     : AudioResampler(inChannelCount, sampleRate, quality),
    169       mResampleFunc(0), mFilterSampleRate(0), mFilterQuality(DEFAULT_QUALITY),
    170     mCoefBuffer(NULL)
    171 {
    172     mVolumeSimd[0] = mVolumeSimd[1] = 0;
    173     // The AudioResampler base class assumes we are always ready for 1:1 resampling.
    174     // We reset mInSampleRate to 0, so setSampleRate() will calculate filters for
    175     // setSampleRate() for 1:1. (May be removed if precalculated filters are used.)
    176     mInSampleRate = 0;
    177     mConstants.set(128, 8, mSampleRate, mSampleRate); // TODO: set better
    178 }
    179 
    180 template<typename TC, typename TI, typename TO>
    181 AudioResamplerDyn<TC, TI, TO>::~AudioResamplerDyn()
    182 {
    183     free(mCoefBuffer);
    184 }
    185 
    186 template<typename TC, typename TI, typename TO>
    187 void AudioResamplerDyn<TC, TI, TO>::init()
    188 {
    189     mFilterSampleRate = 0; // always trigger new filter generation
    190     mInBuffer.init();
    191 }
    192 
    193 template<typename TC, typename TI, typename TO>
    194 void AudioResamplerDyn<TC, TI, TO>::setVolume(float left, float right)
    195 {
    196     AudioResampler::setVolume(left, right);
    197     if (is_same<TO, float>::value || is_same<TO, double>::value) {
    198         mVolumeSimd[0] = static_cast<TO>(left);
    199         mVolumeSimd[1] = static_cast<TO>(right);
    200     } else {  // integer requires scaling to U4_28 (rounding down)
    201         // integer volumes are clamped to 0 to UNITY_GAIN so there
    202         // are no issues with signed overflow.
    203         mVolumeSimd[0] = u4_28_from_float(clampFloatVol(left));
    204         mVolumeSimd[1] = u4_28_from_float(clampFloatVol(right));
    205     }
    206 }
    207 
    208 template<typename T> T max(T a, T b) {return a > b ? a : b;}
    209 
    210 template<typename T> T absdiff(T a, T b) {return a > b ? a - b : b - a;}
    211 
    212 template<typename TC, typename TI, typename TO>
    213 void AudioResamplerDyn<TC, TI, TO>::createKaiserFir(Constants &c,
    214         double stopBandAtten, int inSampleRate, int outSampleRate, double tbwCheat)
    215 {
    216     TC* buf = NULL;
    217     static const double atten = 0.9998;   // to avoid ripple overflow
    218     double fcr;
    219     double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten);
    220 
    221     (void)posix_memalign(reinterpret_cast<void**>(&buf), 32, (c.mL+1)*c.mHalfNumCoefs*sizeof(TC));
    222     if (inSampleRate < outSampleRate) { // upsample
    223         fcr = max(0.5*tbwCheat - tbw/2, tbw/2);
    224     } else { // downsample
    225         fcr = max(0.5*tbwCheat*outSampleRate/inSampleRate - tbw/2, tbw/2);
    226     }
    227     // create and set filter
    228     firKaiserGen(buf, c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten);
    229     c.mFirCoefs = buf;
    230     if (mCoefBuffer) {
    231         free(mCoefBuffer);
    232     }
    233     mCoefBuffer = buf;
    234 #ifdef DEBUG_RESAMPLER
    235     // print basic filter stats
    236     printf("L:%d  hnc:%d  stopBandAtten:%lf  fcr:%lf  atten:%lf  tbw:%lf\n",
    237             c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten, tbw);
    238     // test the filter and report results
    239     double fp = (fcr - tbw/2)/c.mL;
    240     double fs = (fcr + tbw/2)/c.mL;
    241     double passMin, passMax, passRipple;
    242     double stopMax, stopRipple;
    243     testFir(buf, c.mL, c.mHalfNumCoefs, fp, fs, /*passSteps*/ 1000, /*stopSteps*/ 100000,
    244             passMin, passMax, passRipple, stopMax, stopRipple);
    245     printf("passband(%lf, %lf): %.8lf %.8lf %.8lf\n", 0., fp, passMin, passMax, passRipple);
    246     printf("stopband(%lf, %lf): %.8lf %.3lf\n", fs, 0.5, stopMax, stopRipple);
    247 #endif
    248 }
    249 
    250 // recursive gcd. Using objdump, it appears the tail recursion is converted to a while loop.
    251 static int gcd(int n, int m)
    252 {
    253     if (m == 0) {
    254         return n;
    255     }
    256     return gcd(m, n % m);
    257 }
    258 
    259 static bool isClose(int32_t newSampleRate, int32_t prevSampleRate,
    260         int32_t filterSampleRate, int32_t outSampleRate)
    261 {
    262 
    263     // different upsampling ratios do not need a filter change.
    264     if (filterSampleRate != 0
    265             && filterSampleRate < outSampleRate
    266             && newSampleRate < outSampleRate)
    267         return true;
    268 
    269     // check design criteria again if downsampling is detected.
    270     int pdiff = absdiff(newSampleRate, prevSampleRate);
    271     int adiff = absdiff(newSampleRate, filterSampleRate);
    272 
    273     // allow up to 6% relative change increments.
    274     // allow up to 12% absolute change increments (from filter design)
    275     return pdiff < prevSampleRate>>4 && adiff < filterSampleRate>>3;
    276 }
    277 
    278 template<typename TC, typename TI, typename TO>
    279 void AudioResamplerDyn<TC, TI, TO>::setSampleRate(int32_t inSampleRate)
    280 {
    281     if (mInSampleRate == inSampleRate) {
    282         return;
    283     }
    284     int32_t oldSampleRate = mInSampleRate;
    285     uint32_t oldPhaseWrapLimit = mConstants.mL << mConstants.mShift;
    286     bool useS32 = false;
    287 
    288     mInSampleRate = inSampleRate;
    289 
    290     // TODO: Add precalculated Equiripple filters
    291 
    292     if (mFilterQuality != getQuality() ||
    293             !isClose(inSampleRate, oldSampleRate, mFilterSampleRate, mSampleRate)) {
    294         mFilterSampleRate = inSampleRate;
    295         mFilterQuality = getQuality();
    296 
    297         // Begin Kaiser Filter computation
    298         //
    299         // The quantization floor for S16 is about 96db - 10*log_10(#length) + 3dB.
    300         // Keep the stop band attenuation no greater than 84-85dB for 32 length S16 filters
    301         //
    302         // For s32 we keep the stop band attenuation at the same as 16b resolution, about
    303         // 96-98dB
    304         //
    305 
    306         double stopBandAtten;
    307         double tbwCheat = 1.; // how much we "cheat" into aliasing
    308         int halfLength;
    309         if (mFilterQuality == DYN_HIGH_QUALITY) {
    310             // 32b coefficients, 64 length
    311             useS32 = true;
    312             stopBandAtten = 98.;
    313             if (inSampleRate >= mSampleRate * 4) {
    314                 halfLength = 48;
    315             } else if (inSampleRate >= mSampleRate * 2) {
    316                 halfLength = 40;
    317             } else {
    318                 halfLength = 32;
    319             }
    320         } else if (mFilterQuality == DYN_LOW_QUALITY) {
    321             // 16b coefficients, 16-32 length
    322             useS32 = false;
    323             stopBandAtten = 80.;
    324             if (inSampleRate >= mSampleRate * 4) {
    325                 halfLength = 24;
    326             } else if (inSampleRate >= mSampleRate * 2) {
    327                 halfLength = 16;
    328             } else {
    329                 halfLength = 8;
    330             }
    331             if (inSampleRate <= mSampleRate) {
    332                 tbwCheat = 1.05;
    333             } else {
    334                 tbwCheat = 1.03;
    335             }
    336         } else { // DYN_MED_QUALITY
    337             // 16b coefficients, 32-64 length
    338             // note: > 64 length filters with 16b coefs can have quantization noise problems
    339             useS32 = false;
    340             stopBandAtten = 84.;
    341             if (inSampleRate >= mSampleRate * 4) {
    342                 halfLength = 32;
    343             } else if (inSampleRate >= mSampleRate * 2) {
    344                 halfLength = 24;
    345             } else {
    346                 halfLength = 16;
    347             }
    348             if (inSampleRate <= mSampleRate) {
    349                 tbwCheat = 1.03;
    350             } else {
    351                 tbwCheat = 1.01;
    352             }
    353         }
    354 
    355         // determine the number of polyphases in the filterbank.
    356         // for 16b, it is desirable to have 2^(16/2) = 256 phases.
    357         // https://ccrma.stanford.edu/~jos/resample/Relation_Interpolation_Error_Quantization.html
    358         //
    359         // We are a bit more lax on this.
    360 
    361         int phases = mSampleRate / gcd(mSampleRate, inSampleRate);
    362 
    363         // TODO: Once dynamic sample rate change is an option, the code below
    364         // should be modified to execute only when dynamic sample rate change is enabled.
    365         //
    366         // as above, #phases less than 63 is too few phases for accurate linear interpolation.
    367         // we increase the phases to compensate, but more phases means more memory per
    368         // filter and more time to compute the filter.
    369         //
    370         // if we know that the filter will be used for dynamic sample rate changes,
    371         // that would allow us skip this part for fixed sample rate resamplers.
    372         //
    373         while (phases<63) {
    374             phases *= 2; // this code only needed to support dynamic rate changes
    375         }
    376 
    377         if (phases>=256) {  // too many phases, always interpolate
    378             phases = 127;
    379         }
    380 
    381         // create the filter
    382         mConstants.set(phases, halfLength, inSampleRate, mSampleRate);
    383         createKaiserFir(mConstants, stopBandAtten,
    384                 inSampleRate, mSampleRate, tbwCheat);
    385     } // End Kaiser filter
    386 
    387     // update phase and state based on the new filter.
    388     const Constants& c(mConstants);
    389     mInBuffer.resize(mChannelCount, c.mHalfNumCoefs);
    390     const uint32_t phaseWrapLimit = c.mL << c.mShift;
    391     // try to preserve as much of the phase fraction as possible for on-the-fly changes
    392     mPhaseFraction = static_cast<unsigned long long>(mPhaseFraction)
    393             * phaseWrapLimit / oldPhaseWrapLimit;
    394     mPhaseFraction %= phaseWrapLimit; // should not do anything, but just in case.
    395     mPhaseIncrement = static_cast<uint32_t>(static_cast<uint64_t>(phaseWrapLimit)
    396             * inSampleRate / mSampleRate);
    397 
    398     // determine which resampler to use
    399     // check if locked phase (works only if mPhaseIncrement has no "fractional phase bits")
    400     int locked = (mPhaseIncrement << (sizeof(mPhaseIncrement)*8 - c.mShift)) == 0;
    401     if (locked) {
    402         mPhaseFraction = mPhaseFraction >> c.mShift << c.mShift; // remove fractional phase
    403     }
    404 
    405     // stride is the minimum number of filter coefficients processed per loop iteration.
    406     // We currently only allow a stride of 16 to match with SIMD processing.
    407     // This means that the filter length must be a multiple of 16,
    408     // or half the filter length (mHalfNumCoefs) must be a multiple of 8.
    409     //
    410     // Note: A stride of 2 is achieved with non-SIMD processing.
    411     int stride = ((c.mHalfNumCoefs & 7) == 0) ? 16 : 2;
    412     LOG_ALWAYS_FATAL_IF(stride < 16, "Resampler stride must be 16 or more");
    413     LOG_ALWAYS_FATAL_IF(mChannelCount < 1 || mChannelCount > 8,
    414             "Resampler channels(%d) must be between 1 to 8", mChannelCount);
    415     // stride 16 (falls back to stride 2 for machines that do not support NEON)
    416     if (locked) {
    417         switch (mChannelCount) {
    418         case 1:
    419             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, true, 16>;
    420             break;
    421         case 2:
    422             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, true, 16>;
    423             break;
    424         case 3:
    425             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, true, 16>;
    426             break;
    427         case 4:
    428             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, true, 16>;
    429             break;
    430         case 5:
    431             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, true, 16>;
    432             break;
    433         case 6:
    434             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, true, 16>;
    435             break;
    436         case 7:
    437             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, true, 16>;
    438             break;
    439         case 8:
    440             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, true, 16>;
    441             break;
    442         }
    443     } else {
    444         switch (mChannelCount) {
    445         case 1:
    446             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, false, 16>;
    447             break;
    448         case 2:
    449             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, false, 16>;
    450             break;
    451         case 3:
    452             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, false, 16>;
    453             break;
    454         case 4:
    455             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, false, 16>;
    456             break;
    457         case 5:
    458             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, false, 16>;
    459             break;
    460         case 6:
    461             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, false, 16>;
    462             break;
    463         case 7:
    464             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, false, 16>;
    465             break;
    466         case 8:
    467             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, false, 16>;
    468             break;
    469         }
    470     }
    471 #ifdef DEBUG_RESAMPLER
    472     printf("channels:%d  %s  stride:%d  %s  coef:%d  shift:%d\n",
    473             mChannelCount, locked ? "locked" : "interpolated",
    474             stride, useS32 ? "S32" : "S16", 2*c.mHalfNumCoefs, c.mShift);
    475 #endif
    476 }
    477 
    478 template<typename TC, typename TI, typename TO>
    479 size_t AudioResamplerDyn<TC, TI, TO>::resample(int32_t* out, size_t outFrameCount,
    480             AudioBufferProvider* provider)
    481 {
    482     return (this->*mResampleFunc)(reinterpret_cast<TO*>(out), outFrameCount, provider);
    483 }
    484 
    485 template<typename TC, typename TI, typename TO>
    486 template<int CHANNELS, bool LOCKED, int STRIDE>
    487 size_t AudioResamplerDyn<TC, TI, TO>::resample(TO* out, size_t outFrameCount,
    488         AudioBufferProvider* provider)
    489 {
    490     // TODO Mono -> Mono is not supported. OUTPUT_CHANNELS reflects minimum of stereo out.
    491     const int OUTPUT_CHANNELS = (CHANNELS < 2) ? 2 : CHANNELS;
    492     const Constants& c(mConstants);
    493     const TC* const coefs = mConstants.mFirCoefs;
    494     TI* impulse = mInBuffer.getImpulse();
    495     size_t inputIndex = 0;
    496     uint32_t phaseFraction = mPhaseFraction;
    497     const uint32_t phaseIncrement = mPhaseIncrement;
    498     size_t outputIndex = 0;
    499     size_t outputSampleCount = outFrameCount * OUTPUT_CHANNELS;
    500     const uint32_t phaseWrapLimit = c.mL << c.mShift;
    501     size_t inFrameCount = (phaseIncrement * (uint64_t)outFrameCount + phaseFraction)
    502             / phaseWrapLimit;
    503     // sanity check that inFrameCount is in signed 32 bit integer range.
    504     ALOG_ASSERT(0 <= inFrameCount && inFrameCount < (1U << 31));
    505 
    506     //ALOGV("inFrameCount:%d  outFrameCount:%d"
    507     //        "  phaseIncrement:%u  phaseFraction:%u  phaseWrapLimit:%u",
    508     //        inFrameCount, outFrameCount, phaseIncrement, phaseFraction, phaseWrapLimit);
    509 
    510     // NOTE: be very careful when modifying the code here. register
    511     // pressure is very high and a small change might cause the compiler
    512     // to generate far less efficient code.
    513     // Always sanity check the result with objdump or test-resample.
    514 
    515     // the following logic is a bit convoluted to keep the main processing loop
    516     // as tight as possible with register allocation.
    517     while (outputIndex < outputSampleCount) {
    518         //ALOGV("LOOP: inFrameCount:%d  outputIndex:%d  outFrameCount:%d"
    519         //        "  phaseFraction:%u  phaseWrapLimit:%u",
    520         //        inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
    521 
    522         // check inputIndex overflow
    523         ALOG_ASSERT(inputIndex <= mBuffer.frameCount, "inputIndex%d > frameCount%d",
    524                 inputIndex, mBuffer.frameCount);
    525         // Buffer is empty, fetch a new one if necessary (inFrameCount > 0).
    526         // We may not fetch a new buffer if the existing data is sufficient.
    527         while (mBuffer.frameCount == 0 && inFrameCount > 0) {
    528             mBuffer.frameCount = inFrameCount;
    529             provider->getNextBuffer(&mBuffer);
    530             if (mBuffer.raw == NULL) {
    531                 goto resample_exit;
    532             }
    533             inFrameCount -= mBuffer.frameCount;
    534             if (phaseFraction >= phaseWrapLimit) { // read in data
    535                 mInBuffer.template readAdvance<CHANNELS>(
    536                         impulse, c.mHalfNumCoefs,
    537                         reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
    538                 inputIndex++;
    539                 phaseFraction -= phaseWrapLimit;
    540                 while (phaseFraction >= phaseWrapLimit) {
    541                     if (inputIndex >= mBuffer.frameCount) {
    542                         inputIndex = 0;
    543                         provider->releaseBuffer(&mBuffer);
    544                         break;
    545                     }
    546                     mInBuffer.template readAdvance<CHANNELS>(
    547                             impulse, c.mHalfNumCoefs,
    548                             reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
    549                     inputIndex++;
    550                     phaseFraction -= phaseWrapLimit;
    551                 }
    552             }
    553         }
    554         const TI* const in = reinterpret_cast<const TI*>(mBuffer.raw);
    555         const size_t frameCount = mBuffer.frameCount;
    556         const int coefShift = c.mShift;
    557         const int halfNumCoefs = c.mHalfNumCoefs;
    558         const TO* const volumeSimd = mVolumeSimd;
    559 
    560         // main processing loop
    561         while (CC_LIKELY(outputIndex < outputSampleCount)) {
    562             // caution: fir() is inlined and may be large.
    563             // output will be loaded with the appropriate values
    564             //
    565             // from the input samples in impulse[-halfNumCoefs+1]... impulse[halfNumCoefs]
    566             // from the polyphase filter of (phaseFraction / phaseWrapLimit) in coefs.
    567             //
    568             //ALOGV("LOOP2: inFrameCount:%d  outputIndex:%d  outFrameCount:%d"
    569             //        "  phaseFraction:%u  phaseWrapLimit:%u",
    570             //        inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
    571             ALOG_ASSERT(phaseFraction < phaseWrapLimit);
    572             fir<CHANNELS, LOCKED, STRIDE>(
    573                     &out[outputIndex],
    574                     phaseFraction, phaseWrapLimit,
    575                     coefShift, halfNumCoefs, coefs,
    576                     impulse, volumeSimd);
    577 
    578             outputIndex += OUTPUT_CHANNELS;
    579 
    580             phaseFraction += phaseIncrement;
    581             while (phaseFraction >= phaseWrapLimit) {
    582                 if (inputIndex >= frameCount) {
    583                     goto done;  // need a new buffer
    584                 }
    585                 mInBuffer.template readAdvance<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
    586                 inputIndex++;
    587                 phaseFraction -= phaseWrapLimit;
    588             }
    589         }
    590 done:
    591         // We arrive here when we're finished or when the input buffer runs out.
    592         // Regardless we need to release the input buffer if we've acquired it.
    593         if (inputIndex > 0) {  // we've acquired a buffer (alternatively could check frameCount)
    594             ALOG_ASSERT(inputIndex == frameCount, "inputIndex(%d) != frameCount(%d)",
    595                     inputIndex, frameCount);  // must have been fully read.
    596             inputIndex = 0;
    597             provider->releaseBuffer(&mBuffer);
    598             ALOG_ASSERT(mBuffer.frameCount == 0);
    599         }
    600     }
    601 
    602 resample_exit:
    603     // inputIndex must be zero in all three cases:
    604     // (1) the buffer never was been acquired; (2) the buffer was
    605     // released at "done:"; or (3) getNextBuffer() failed.
    606     ALOG_ASSERT(inputIndex == 0, "Releasing: inputindex:%d frameCount:%d  phaseFraction:%u",
    607             inputIndex, mBuffer.frameCount, phaseFraction);
    608     ALOG_ASSERT(mBuffer.frameCount == 0); // there must be no frames in the buffer
    609     mInBuffer.setImpulse(impulse);
    610     mPhaseFraction = phaseFraction;
    611     return outputIndex / OUTPUT_CHANNELS;
    612 }
    613 
    614 /* instantiate templates used by AudioResampler::create */
    615 template class AudioResamplerDyn<float, float, float>;
    616 template class AudioResamplerDyn<int16_t, int16_t, int32_t>;
    617 template class AudioResamplerDyn<int32_t, int16_t, int32_t>;
    618 
    619 // ----------------------------------------------------------------------------
    620 } // namespace android
    621