Home | History | Annotate | Download | only in tests
      1 #include <binder/Binder.h>
      2 #include <binder/IBinder.h>
      3 #include <binder/IPCThreadState.h>
      4 #include <binder/IServiceManager.h>
      5 #include <string>
      6 #include <cstring>
      7 #include <cstdlib>
      8 #include <cstdio>
      9 
     10 #include <iostream>
     11 #include <vector>
     12 #include <tuple>
     13 
     14 #include <unistd.h>
     15 #include <sys/wait.h>
     16 
     17 using namespace std;
     18 using namespace android;
     19 
     20 enum BinderWorkerServiceCode {
     21     BINDER_NOP = IBinder::FIRST_CALL_TRANSACTION,
     22 };
     23 
     24 #define ASSERT_TRUE(cond) \
     25 do { \
     26     if (!(cond)) {\
     27        cerr << __func__ << ":" << __LINE__ << " condition:" << #cond << " failed\n" << endl; \
     28        exit(EXIT_FAILURE); \
     29     } \
     30 } while (0)
     31 
     32 class BinderWorkerService : public BBinder
     33 {
     34 public:
     35     BinderWorkerService() {}
     36     ~BinderWorkerService() {}
     37     virtual status_t onTransact(uint32_t code,
     38                                 const Parcel& data, Parcel* reply,
     39                                 uint32_t flags = 0) {
     40         (void)flags;
     41         (void)data;
     42         (void)reply;
     43         switch (code) {
     44         case BINDER_NOP:
     45             return NO_ERROR;
     46         default:
     47             return UNKNOWN_TRANSACTION;
     48         };
     49     }
     50 };
     51 
     52 class Pipe {
     53     int m_readFd;
     54     int m_writeFd;
     55     Pipe(int readFd, int writeFd) : m_readFd{readFd}, m_writeFd{writeFd} {}
     56     Pipe(const Pipe &) = delete;
     57     Pipe& operator=(const Pipe &) = delete;
     58     Pipe& operator=(const Pipe &&) = delete;
     59 public:
     60     Pipe(Pipe&& rval) noexcept {
     61         m_readFd = rval.m_readFd;
     62         m_writeFd = rval.m_writeFd;
     63         rval.m_readFd = 0;
     64         rval.m_writeFd = 0;
     65     }
     66     ~Pipe() {
     67         if (m_readFd)
     68             close(m_readFd);
     69         if (m_writeFd)
     70             close(m_writeFd);
     71     }
     72     void signal() {
     73         bool val = true;
     74         int error = write(m_writeFd, &val, sizeof(val));
     75         ASSERT_TRUE(error >= 0);
     76     };
     77     void wait() {
     78         bool val = false;
     79         int error = read(m_readFd, &val, sizeof(val));
     80         ASSERT_TRUE(error >= 0);
     81     }
     82     template <typename T> void send(const T& v) {
     83         int error = write(m_writeFd, &v, sizeof(T));
     84         ASSERT_TRUE(error >= 0);
     85     }
     86     template <typename T> void recv(T& v) {
     87         int error = read(m_readFd, &v, sizeof(T));
     88         ASSERT_TRUE(error >= 0);
     89     }
     90     static tuple<Pipe, Pipe> createPipePair() {
     91         int a[2];
     92         int b[2];
     93 
     94         int error1 = pipe(a);
     95         int error2 = pipe(b);
     96         ASSERT_TRUE(error1 >= 0);
     97         ASSERT_TRUE(error2 >= 0);
     98 
     99         return make_tuple(Pipe(a[0], b[1]), Pipe(b[0], a[1]));
    100     }
    101 };
    102 
    103 static const uint32_t num_buckets = 128;
    104 static const uint64_t max_time_bucket = 50ull * 1000000;
    105 static const uint64_t time_per_bucket = max_time_bucket / num_buckets;
    106 static constexpr float time_per_bucket_ms = time_per_bucket / 1.0E6;
    107 
    108 struct ProcResults {
    109     uint64_t m_best = max_time_bucket;
    110     uint64_t m_worst = 0;
    111     uint32_t m_buckets[num_buckets] = {0};
    112     uint64_t m_transactions = 0;
    113     uint64_t m_total_time = 0;
    114 
    115     void add_time(uint64_t time) {
    116         m_buckets[min(time, max_time_bucket-1) / time_per_bucket] += 1;
    117         m_best = min(time, m_best);
    118         m_worst = max(time, m_worst);
    119         m_transactions += 1;
    120         m_total_time += time;
    121     }
    122     static ProcResults combine(const ProcResults& a, const ProcResults& b) {
    123         ProcResults ret;
    124         for (int i = 0; i < num_buckets; i++) {
    125             ret.m_buckets[i] = a.m_buckets[i] + b.m_buckets[i];
    126         }
    127         ret.m_worst = max(a.m_worst, b.m_worst);
    128         ret.m_best = min(a.m_best, b.m_best);
    129         ret.m_transactions = a.m_transactions + b.m_transactions;
    130         ret.m_total_time = a.m_total_time + b.m_total_time;
    131         return ret;
    132     }
    133     void dump() {
    134         double best = (double)m_best / 1.0E6;
    135         double worst = (double)m_worst / 1.0E6;
    136         double average = (double)m_total_time / m_transactions / 1.0E6;
    137         cout << "average:" << average << "ms worst:" << worst << "ms best:" << best << "ms" << endl;
    138 
    139         uint64_t cur_total = 0;
    140         for (int i = 0; i < num_buckets; i++) {
    141             float cur_time = time_per_bucket_ms * i + 0.5f * time_per_bucket_ms;
    142             if ((cur_total < 0.5f * m_transactions) && (cur_total + m_buckets[i] >= 0.5f * m_transactions)) {
    143                 cout << "50%: " << cur_time << " ";
    144             }
    145             if ((cur_total < 0.9f * m_transactions) && (cur_total + m_buckets[i] >= 0.9f * m_transactions)) {
    146                 cout << "90%: " << cur_time << " ";
    147             }
    148             if ((cur_total < 0.95f * m_transactions) && (cur_total + m_buckets[i] >= 0.95f * m_transactions)) {
    149                 cout << "95%: " << cur_time << " ";
    150             }
    151             if ((cur_total < 0.99f * m_transactions) && (cur_total + m_buckets[i] >= 0.99f * m_transactions)) {
    152                 cout << "99%: " << cur_time << " ";
    153             }
    154             cur_total += m_buckets[i];
    155         }
    156         cout << endl;
    157 
    158     }
    159 };
    160 
    161 String16 generateServiceName(int num)
    162 {
    163     char num_str[32];
    164     snprintf(num_str, sizeof(num_str), "%d", num);
    165     String16 serviceName = String16("binderWorker") + String16(num_str);
    166     return serviceName;
    167 }
    168 
    169 void worker_fx(
    170     int num,
    171     int worker_count,
    172     int iterations,
    173     Pipe p)
    174 {
    175     // Create BinderWorkerService and for go.
    176     ProcessState::self()->startThreadPool();
    177     sp<IServiceManager> serviceMgr = defaultServiceManager();
    178     sp<BinderWorkerService> service = new BinderWorkerService;
    179     serviceMgr->addService(generateServiceName(num), service);
    180 
    181     srand(num);
    182     p.signal();
    183     p.wait();
    184 
    185     // Get references to other binder services.
    186     cout << "Created BinderWorker" << num << endl;
    187     (void)worker_count;
    188     vector<sp<IBinder> > workers;
    189     for (int i = 0; i < worker_count; i++) {
    190         if (num == i)
    191             continue;
    192         workers.push_back(serviceMgr->getService(generateServiceName(i)));
    193     }
    194 
    195     // Run the benchmark.
    196     ProcResults results;
    197     chrono::time_point<chrono::high_resolution_clock> start, end;
    198     for (int i = 0; i < iterations; i++) {
    199         int target = rand() % workers.size();
    200         Parcel data, reply;
    201         start = chrono::high_resolution_clock::now();
    202         status_t ret = workers[target]->transact(BINDER_NOP, data, &reply);
    203         end = chrono::high_resolution_clock::now();
    204 
    205         uint64_t cur_time = uint64_t(chrono::duration_cast<chrono::nanoseconds>(end - start).count());
    206         results.add_time(cur_time);
    207 
    208         if (ret != NO_ERROR) {
    209            cout << "thread " << num << " failed " << ret << "i : " << i << endl;
    210            exit(EXIT_FAILURE);
    211         }
    212     }
    213     // Signal completion to master and wait.
    214     p.signal();
    215     p.wait();
    216 
    217     // Send results to master and wait for go to exit.
    218     p.send(results);
    219     p.wait();
    220 
    221     exit(EXIT_SUCCESS);
    222 }
    223 
    224 Pipe make_worker(int num, int iterations, int worker_count)
    225 {
    226     auto pipe_pair = Pipe::createPipePair();
    227     pid_t pid = fork();
    228     if (pid) {
    229         /* parent */
    230         return move(get<0>(pipe_pair));
    231     } else {
    232         /* child */
    233         worker_fx(num, worker_count, iterations, move(get<1>(pipe_pair)));
    234         /* never get here */
    235         return move(get<0>(pipe_pair));
    236     }
    237 
    238 }
    239 
    240 void wait_all(vector<Pipe>& v)
    241 {
    242     for (int i = 0; i < v.size(); i++) {
    243         v[i].wait();
    244     }
    245 }
    246 
    247 void signal_all(vector<Pipe>& v)
    248 {
    249     for (int i = 0; i < v.size(); i++) {
    250         v[i].signal();
    251     }
    252 }
    253 
    254 int main(int argc, char *argv[])
    255 {
    256     int workers = 2;
    257     int iterations = 10000;
    258     (void)argc;
    259     (void)argv;
    260     vector<Pipe> pipes;
    261 
    262     // Parse arguments.
    263     for (int i = 1; i < argc; i++) {
    264         if (string(argv[i]) == "-w") {
    265             workers = atoi(argv[i+1]);
    266             i++;
    267             continue;
    268         }
    269         if (string(argv[i]) == "-i") {
    270             iterations = atoi(argv[i+1]);
    271             i++;
    272             continue;
    273         }
    274     }
    275 
    276     // Create all the workers and wait for them to spawn.
    277     for (int i = 0; i < workers; i++) {
    278         pipes.push_back(make_worker(i, iterations, workers));
    279     }
    280     wait_all(pipes);
    281 
    282 
    283     // Run the workers and wait for completion.
    284     chrono::time_point<chrono::high_resolution_clock> start, end;
    285     cout << "waiting for workers to complete" << endl;
    286     start = chrono::high_resolution_clock::now();
    287     signal_all(pipes);
    288     wait_all(pipes);
    289     end = chrono::high_resolution_clock::now();
    290 
    291     // Calculate overall throughput.
    292     double iterations_per_sec = double(iterations * workers) / (chrono::duration_cast<chrono::nanoseconds>(end - start).count() / 1.0E9);
    293     cout << "iterations per sec: " << iterations_per_sec << endl;
    294 
    295     // Collect all results from the workers.
    296     cout << "collecting results" << endl;
    297     signal_all(pipes);
    298     ProcResults tot_results;
    299     for (int i = 0; i < workers; i++) {
    300         ProcResults tmp_results;
    301         pipes[i].recv(tmp_results);
    302         tot_results = ProcResults::combine(tot_results, tmp_results);
    303     }
    304     tot_results.dump();
    305 
    306     // Kill all the workers.
    307     cout << "killing workers" << endl;
    308     signal_all(pipes);
    309     for (int i = 0; i < workers; i++) {
    310         int status;
    311         wait(&status);
    312         if (status != 0) {
    313             cout << "nonzero child status" << status << endl;
    314         }
    315     }
    316     return 0;
    317 }
    318