Home | History | Annotate | Download | only in sensorservice
      1 /*
      2  * Copyright (C) 2010 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <cutils/properties.h>
     18 
     19 #include <binder/AppOpsManager.h>
     20 #include <binder/BinderService.h>
     21 #include <binder/IServiceManager.h>
     22 #include <binder/PermissionCache.h>
     23 
     24 #include <gui/SensorEventQueue.h>
     25 
     26 #include <hardware/sensors.h>
     27 #include <hardware_legacy/power.h>
     28 
     29 #include <openssl/digest.h>
     30 #include <openssl/hmac.h>
     31 #include <openssl/rand.h>
     32 
     33 #include "BatteryService.h"
     34 #include "CorrectedGyroSensor.h"
     35 #include "GravitySensor.h"
     36 #include "LinearAccelerationSensor.h"
     37 #include "OrientationSensor.h"
     38 #include "RotationVectorSensor.h"
     39 #include "SensorFusion.h"
     40 #include "SensorInterface.h"
     41 
     42 #include "SensorService.h"
     43 #include "SensorEventAckReceiver.h"
     44 #include "SensorEventConnection.h"
     45 #include "SensorRecord.h"
     46 #include "SensorRegistrationInfo.h"
     47 
     48 #include <inttypes.h>
     49 #include <math.h>
     50 #include <stdint.h>
     51 #include <sys/socket.h>
     52 #include <sys/stat.h>
     53 #include <sys/types.h>
     54 #include <unistd.h>
     55 
     56 namespace android {
     57 // ---------------------------------------------------------------------------
     58 
     59 /*
     60  * Notes:
     61  *
     62  * - what about a gyro-corrected magnetic-field sensor?
     63  * - run mag sensor from time to time to force calibration
     64  * - gravity sensor length is wrong (=> drift in linear-acc sensor)
     65  *
     66  */
     67 
     68 const char* SensorService::WAKE_LOCK_NAME = "SensorService_wakelock";
     69 uint8_t SensorService::sHmacGlobalKey[128] = {};
     70 bool SensorService::sHmacGlobalKeyIsValid = false;
     71 
     72 #define SENSOR_SERVICE_DIR "/data/system/sensor_service"
     73 #define SENSOR_SERVICE_HMAC_KEY_FILE  SENSOR_SERVICE_DIR "/hmac_key"
     74 
     75 // Permissions.
     76 static const String16 sDump("android.permission.DUMP");
     77 
     78 SensorService::SensorService()
     79     : mInitCheck(NO_INIT), mSocketBufferSize(SOCKET_BUFFER_SIZE_NON_BATCHED),
     80       mWakeLockAcquired(false) {
     81 }
     82 
     83 bool SensorService::initializeHmacKey() {
     84     int fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_RDONLY|O_CLOEXEC);
     85     if (fd != -1) {
     86         int result = read(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey));
     87         close(fd);
     88         if (result == sizeof(sHmacGlobalKey)) {
     89             return true;
     90         }
     91         ALOGW("Unable to read HMAC key; generating new one.");
     92     }
     93 
     94     if (RAND_bytes(sHmacGlobalKey, sizeof(sHmacGlobalKey)) == -1) {
     95         ALOGW("Can't generate HMAC key; dynamic sensor getId() will be wrong.");
     96         return false;
     97     }
     98 
     99     // We need to make sure this is only readable to us.
    100     bool wroteKey = false;
    101     mkdir(SENSOR_SERVICE_DIR, S_IRWXU);
    102     fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_WRONLY|O_CREAT|O_EXCL|O_CLOEXEC,
    103               S_IRUSR|S_IWUSR);
    104     if (fd != -1) {
    105         int result = write(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey));
    106         close(fd);
    107         wroteKey = (result == sizeof(sHmacGlobalKey));
    108     }
    109     if (wroteKey) {
    110         ALOGI("Generated new HMAC key.");
    111     } else {
    112         ALOGW("Unable to write HMAC key; dynamic sensor getId() will change "
    113               "after reboot.");
    114     }
    115     // Even if we failed to write the key we return true, because we did
    116     // initialize the HMAC key.
    117     return true;
    118 }
    119 
    120 void SensorService::onFirstRef() {
    121     ALOGD("nuSensorService starting...");
    122     SensorDevice& dev(SensorDevice::getInstance());
    123 
    124     sHmacGlobalKeyIsValid = initializeHmacKey();
    125 
    126     if (dev.initCheck() == NO_ERROR) {
    127         sensor_t const* list;
    128         ssize_t count = dev.getSensorList(&list);
    129         if (count > 0) {
    130             ssize_t orientationIndex = -1;
    131             bool hasGyro = false, hasAccel = false, hasMag = false;
    132             uint32_t virtualSensorsNeeds =
    133                     (1<<SENSOR_TYPE_GRAVITY) |
    134                     (1<<SENSOR_TYPE_LINEAR_ACCELERATION) |
    135                     (1<<SENSOR_TYPE_ROTATION_VECTOR) |
    136                     (1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR) |
    137                     (1<<SENSOR_TYPE_GAME_ROTATION_VECTOR);
    138 
    139             for (ssize_t i=0 ; i<count ; i++) {
    140                 bool useThisSensor=true;
    141 
    142                 switch (list[i].type) {
    143                     case SENSOR_TYPE_ACCELEROMETER:
    144                         hasAccel = true;
    145                         break;
    146                     case SENSOR_TYPE_MAGNETIC_FIELD:
    147                         hasMag = true;
    148                         break;
    149                     case SENSOR_TYPE_ORIENTATION:
    150                         orientationIndex = i;
    151                         break;
    152                     case SENSOR_TYPE_GYROSCOPE:
    153                     case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
    154                         hasGyro = true;
    155                         break;
    156                     case SENSOR_TYPE_GRAVITY:
    157                     case SENSOR_TYPE_LINEAR_ACCELERATION:
    158                     case SENSOR_TYPE_ROTATION_VECTOR:
    159                     case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR:
    160                     case SENSOR_TYPE_GAME_ROTATION_VECTOR:
    161                         if (IGNORE_HARDWARE_FUSION) {
    162                             useThisSensor = false;
    163                         } else {
    164                             virtualSensorsNeeds &= ~(1<<list[i].type);
    165                         }
    166                         break;
    167                 }
    168                 if (useThisSensor) {
    169                     registerSensor( new HardwareSensor(list[i]) );
    170                 }
    171             }
    172 
    173             // it's safe to instantiate the SensorFusion object here
    174             // (it wants to be instantiated after h/w sensors have been
    175             // registered)
    176             SensorFusion::getInstance();
    177 
    178             if (hasGyro && hasAccel && hasMag) {
    179                 // Add Android virtual sensors if they're not already
    180                 // available in the HAL
    181                 bool needRotationVector =
    182                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) != 0;
    183 
    184                 registerSensor(new RotationVectorSensor(), !needRotationVector, true);
    185                 registerSensor(new OrientationSensor(), !needRotationVector, true);
    186 
    187                 bool needLinearAcceleration =
    188                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_LINEAR_ACCELERATION)) != 0;
    189 
    190                 registerSensor(new LinearAccelerationSensor(list, count),
    191                                !needLinearAcceleration, true);
    192 
    193                 // virtual debugging sensors are not for user
    194                 registerSensor( new CorrectedGyroSensor(list, count), true, true);
    195                 registerSensor( new GyroDriftSensor(), true, true);
    196             }
    197 
    198             if (hasAccel && hasGyro) {
    199                 bool needGravitySensor = (virtualSensorsNeeds & (1<<SENSOR_TYPE_GRAVITY)) != 0;
    200                 registerSensor(new GravitySensor(list, count), !needGravitySensor, true);
    201 
    202                 bool needGameRotationVector =
    203                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_GAME_ROTATION_VECTOR)) != 0;
    204                 registerSensor(new GameRotationVectorSensor(), !needGameRotationVector, true);
    205             }
    206 
    207             if (hasAccel && hasMag) {
    208                 bool needGeoMagRotationVector =
    209                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR)) != 0;
    210                 registerSensor(new GeoMagRotationVectorSensor(), !needGeoMagRotationVector, true);
    211             }
    212 
    213             // Check if the device really supports batching by looking at the FIFO event
    214             // counts for each sensor.
    215             bool batchingSupported = false;
    216             mSensors.forEachSensor(
    217                     [&batchingSupported] (const Sensor& s) -> bool {
    218                         if (s.getFifoMaxEventCount() > 0) {
    219                             batchingSupported = true;
    220                         }
    221                         return !batchingSupported;
    222                     });
    223 
    224             if (batchingSupported) {
    225                 // Increase socket buffer size to a max of 100 KB for batching capabilities.
    226                 mSocketBufferSize = MAX_SOCKET_BUFFER_SIZE_BATCHED;
    227             } else {
    228                 mSocketBufferSize = SOCKET_BUFFER_SIZE_NON_BATCHED;
    229             }
    230 
    231             // Compare the socketBufferSize value against the system limits and limit
    232             // it to maxSystemSocketBufferSize if necessary.
    233             FILE *fp = fopen("/proc/sys/net/core/wmem_max", "r");
    234             char line[128];
    235             if (fp != NULL && fgets(line, sizeof(line), fp) != NULL) {
    236                 line[sizeof(line) - 1] = '\0';
    237                 size_t maxSystemSocketBufferSize;
    238                 sscanf(line, "%zu", &maxSystemSocketBufferSize);
    239                 if (mSocketBufferSize > maxSystemSocketBufferSize) {
    240                     mSocketBufferSize = maxSystemSocketBufferSize;
    241                 }
    242             }
    243             if (fp) {
    244                 fclose(fp);
    245             }
    246 
    247             mWakeLockAcquired = false;
    248             mLooper = new Looper(false);
    249             const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
    250             mSensorEventBuffer = new sensors_event_t[minBufferSize];
    251             mSensorEventScratch = new sensors_event_t[minBufferSize];
    252             mMapFlushEventsToConnections = new SensorEventConnection const * [minBufferSize];
    253             mCurrentOperatingMode = NORMAL;
    254 
    255             mNextSensorRegIndex = 0;
    256             for (int i = 0; i < SENSOR_REGISTRATIONS_BUF_SIZE; ++i) {
    257                 mLastNSensorRegistrations.push();
    258             }
    259 
    260             mInitCheck = NO_ERROR;
    261             mAckReceiver = new SensorEventAckReceiver(this);
    262             mAckReceiver->run("SensorEventAckReceiver", PRIORITY_URGENT_DISPLAY);
    263             run("SensorService", PRIORITY_URGENT_DISPLAY);
    264         }
    265     }
    266 }
    267 
    268 const Sensor& SensorService::registerSensor(SensorInterface* s, bool isDebug, bool isVirtual) {
    269     int handle = s->getSensor().getHandle();
    270     int type = s->getSensor().getType();
    271     if (mSensors.add(handle, s, isDebug, isVirtual)){
    272         mRecentEvent.emplace(handle, new RecentEventLogger(type));
    273         return s->getSensor();
    274     } else {
    275         return mSensors.getNonSensor();
    276     }
    277 }
    278 
    279 const Sensor& SensorService::registerDynamicSensorLocked(SensorInterface* s, bool isDebug) {
    280     return registerSensor(s, isDebug);
    281 }
    282 
    283 bool SensorService::unregisterDynamicSensorLocked(int handle) {
    284     bool ret = mSensors.remove(handle);
    285 
    286     const auto i = mRecentEvent.find(handle);
    287     if (i != mRecentEvent.end()) {
    288         delete i->second;
    289         mRecentEvent.erase(i);
    290     }
    291     return ret;
    292 }
    293 
    294 const Sensor& SensorService::registerVirtualSensor(SensorInterface* s, bool isDebug) {
    295     return registerSensor(s, isDebug, true);
    296 }
    297 
    298 SensorService::~SensorService() {
    299     for (auto && entry : mRecentEvent) {
    300         delete entry.second;
    301     }
    302 }
    303 
    304 status_t SensorService::dump(int fd, const Vector<String16>& args) {
    305     String8 result;
    306     if (!PermissionCache::checkCallingPermission(sDump)) {
    307         result.appendFormat("Permission Denial: can't dump SensorService from pid=%d, uid=%d\n",
    308                 IPCThreadState::self()->getCallingPid(),
    309                 IPCThreadState::self()->getCallingUid());
    310     } else {
    311         if (args.size() > 2) {
    312            return INVALID_OPERATION;
    313         }
    314         Mutex::Autolock _l(mLock);
    315         SensorDevice& dev(SensorDevice::getInstance());
    316         if (args.size() == 2 && args[0] == String16("restrict")) {
    317             // If already in restricted mode. Ignore.
    318             if (mCurrentOperatingMode == RESTRICTED) {
    319                 return status_t(NO_ERROR);
    320             }
    321             // If in any mode other than normal, ignore.
    322             if (mCurrentOperatingMode != NORMAL) {
    323                 return INVALID_OPERATION;
    324             }
    325             mCurrentOperatingMode = RESTRICTED;
    326             dev.disableAllSensors();
    327             // Clear all pending flush connections for all active sensors. If one of the active
    328             // connections has called flush() and the underlying sensor has been disabled before a
    329             // flush complete event is returned, we need to remove the connection from this queue.
    330             for (size_t i=0 ; i< mActiveSensors.size(); ++i) {
    331                 mActiveSensors.valueAt(i)->clearAllPendingFlushConnections();
    332             }
    333             mWhiteListedPackage.setTo(String8(args[1]));
    334             return status_t(NO_ERROR);
    335         } else if (args.size() == 1 && args[0] == String16("enable")) {
    336             // If currently in restricted mode, reset back to NORMAL mode else ignore.
    337             if (mCurrentOperatingMode == RESTRICTED) {
    338                 mCurrentOperatingMode = NORMAL;
    339                 dev.enableAllSensors();
    340             }
    341             if (mCurrentOperatingMode == DATA_INJECTION) {
    342                resetToNormalModeLocked();
    343             }
    344             mWhiteListedPackage.clear();
    345             return status_t(NO_ERROR);
    346         } else if (args.size() == 2 && args[0] == String16("data_injection")) {
    347             if (mCurrentOperatingMode == NORMAL) {
    348                 dev.disableAllSensors();
    349                 status_t err = dev.setMode(DATA_INJECTION);
    350                 if (err == NO_ERROR) {
    351                     mCurrentOperatingMode = DATA_INJECTION;
    352                 } else {
    353                     // Re-enable sensors.
    354                     dev.enableAllSensors();
    355                 }
    356                 mWhiteListedPackage.setTo(String8(args[1]));
    357                 return NO_ERROR;
    358             } else if (mCurrentOperatingMode == DATA_INJECTION) {
    359                 // Already in DATA_INJECTION mode. Treat this as a no_op.
    360                 return NO_ERROR;
    361             } else {
    362                 // Transition to data injection mode supported only from NORMAL mode.
    363                 return INVALID_OPERATION;
    364             }
    365         } else if (!mSensors.hasAnySensor()) {
    366             result.append("No Sensors on the device\n");
    367         } else {
    368             // Default dump the sensor list and debugging information.
    369             //
    370             result.append("Sensor Device:\n");
    371             result.append(SensorDevice::getInstance().dump().c_str());
    372 
    373             result.append("Sensor List:\n");
    374             result.append(mSensors.dump().c_str());
    375 
    376             result.append("Fusion States:\n");
    377             SensorFusion::getInstance().dump(result);
    378 
    379             result.append("Recent Sensor events:\n");
    380             for (auto&& i : mRecentEvent) {
    381                 sp<SensorInterface> s = mSensors.getInterface(i.first);
    382                 if (!i.second->isEmpty() &&
    383                     s->getSensor().getRequiredPermission().isEmpty()) {
    384                     // if there is events and sensor does not need special permission.
    385                     result.appendFormat("%s: ", s->getSensor().getName().string());
    386                     result.append(i.second->dump().c_str());
    387                 }
    388             }
    389 
    390             result.append("Active sensors:\n");
    391             for (size_t i=0 ; i<mActiveSensors.size() ; i++) {
    392                 int handle = mActiveSensors.keyAt(i);
    393                 result.appendFormat("%s (handle=0x%08x, connections=%zu)\n",
    394                         getSensorName(handle).string(),
    395                         handle,
    396                         mActiveSensors.valueAt(i)->getNumConnections());
    397             }
    398 
    399             result.appendFormat("Socket Buffer size = %zd events\n",
    400                                 mSocketBufferSize/sizeof(sensors_event_t));
    401             result.appendFormat("WakeLock Status: %s \n", mWakeLockAcquired ? "acquired" :
    402                     "not held");
    403             result.appendFormat("Mode :");
    404             switch(mCurrentOperatingMode) {
    405                case NORMAL:
    406                    result.appendFormat(" NORMAL\n");
    407                    break;
    408                case RESTRICTED:
    409                    result.appendFormat(" RESTRICTED : %s\n", mWhiteListedPackage.string());
    410                    break;
    411                case DATA_INJECTION:
    412                    result.appendFormat(" DATA_INJECTION : %s\n", mWhiteListedPackage.string());
    413             }
    414             result.appendFormat("%zd active connections\n", mActiveConnections.size());
    415 
    416             for (size_t i=0 ; i < mActiveConnections.size() ; i++) {
    417                 sp<SensorEventConnection> connection(mActiveConnections[i].promote());
    418                 if (connection != 0) {
    419                     result.appendFormat("Connection Number: %zu \n", i);
    420                     connection->dump(result);
    421                 }
    422             }
    423 
    424             result.appendFormat("Previous Registrations:\n");
    425             // Log in the reverse chronological order.
    426             int currentIndex = (mNextSensorRegIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
    427                 SENSOR_REGISTRATIONS_BUF_SIZE;
    428             const int startIndex = currentIndex;
    429             do {
    430                 const SensorRegistrationInfo& reg_info = mLastNSensorRegistrations[currentIndex];
    431                 if (SensorRegistrationInfo::isSentinel(reg_info)) {
    432                     // Ignore sentinel, proceed to next item.
    433                     currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
    434                         SENSOR_REGISTRATIONS_BUF_SIZE;
    435                     continue;
    436                 }
    437                 if (reg_info.mActivated) {
    438                    result.appendFormat("%02d:%02d:%02d activated package=%s handle=0x%08x "
    439                            "samplingRate=%dus maxReportLatency=%dus\n",
    440                            reg_info.mHour, reg_info.mMin, reg_info.mSec,
    441                            reg_info.mPackageName.string(), reg_info.mSensorHandle,
    442                            reg_info.mSamplingRateUs, reg_info.mMaxReportLatencyUs);
    443                 } else {
    444                    result.appendFormat("%02d:%02d:%02d de-activated package=%s handle=0x%08x\n",
    445                            reg_info.mHour, reg_info.mMin, reg_info.mSec,
    446                            reg_info.mPackageName.string(), reg_info.mSensorHandle);
    447                 }
    448                 currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
    449                         SENSOR_REGISTRATIONS_BUF_SIZE;
    450             } while(startIndex != currentIndex);
    451         }
    452     }
    453     write(fd, result.string(), result.size());
    454     return NO_ERROR;
    455 }
    456 
    457 //TODO: move to SensorEventConnection later
    458 void SensorService::cleanupAutoDisabledSensorLocked(const sp<SensorEventConnection>& connection,
    459         sensors_event_t const* buffer, const int count) {
    460     for (int i=0 ; i<count ; i++) {
    461         int handle = buffer[i].sensor;
    462         if (buffer[i].type == SENSOR_TYPE_META_DATA) {
    463             handle = buffer[i].meta_data.sensor;
    464         }
    465         if (connection->hasSensor(handle)) {
    466             sp<SensorInterface> si = getSensorInterfaceFromHandle(handle);
    467             // If this buffer has an event from a one_shot sensor and this connection is registered
    468             // for this particular one_shot sensor, try cleaning up the connection.
    469             if (si != nullptr &&
    470                 si->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
    471                 si->autoDisable(connection.get(), handle);
    472                 cleanupWithoutDisableLocked(connection, handle);
    473             }
    474 
    475         }
    476    }
    477 }
    478 
    479 bool SensorService::threadLoop() {
    480     ALOGD("nuSensorService thread starting...");
    481 
    482     // each virtual sensor could generate an event per "real" event, that's why we need to size
    483     // numEventMax much smaller than MAX_RECEIVE_BUFFER_EVENT_COUNT.  in practice, this is too
    484     // aggressive, but guaranteed to be enough.
    485     const size_t vcount = mSensors.getVirtualSensors().size();
    486     const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
    487     const size_t numEventMax = minBufferSize / (1 + vcount);
    488 
    489     SensorDevice& device(SensorDevice::getInstance());
    490 
    491     const int halVersion = device.getHalDeviceVersion();
    492     do {
    493         ssize_t count = device.poll(mSensorEventBuffer, numEventMax);
    494         if (count < 0) {
    495             ALOGE("sensor poll failed (%s)", strerror(-count));
    496             break;
    497         }
    498 
    499         // Reset sensors_event_t.flags to zero for all events in the buffer.
    500         for (int i = 0; i < count; i++) {
    501              mSensorEventBuffer[i].flags = 0;
    502         }
    503 
    504         // Make a copy of the connection vector as some connections may be removed during the course
    505         // of this loop (especially when one-shot sensor events are present in the sensor_event
    506         // buffer). Promote all connections to StrongPointers before the lock is acquired. If the
    507         // destructor of the sp gets called when the lock is acquired, it may result in a deadlock
    508         // as ~SensorEventConnection() needs to acquire mLock again for cleanup. So copy all the
    509         // strongPointers to a vector before the lock is acquired.
    510         SortedVector< sp<SensorEventConnection> > activeConnections;
    511         populateActiveConnections(&activeConnections);
    512 
    513         Mutex::Autolock _l(mLock);
    514         // Poll has returned. Hold a wakelock if one of the events is from a wake up sensor. The
    515         // rest of this loop is under a critical section protected by mLock. Acquiring a wakeLock,
    516         // sending events to clients (incrementing SensorEventConnection::mWakeLockRefCount) should
    517         // not be interleaved with decrementing SensorEventConnection::mWakeLockRefCount and
    518         // releasing the wakelock.
    519         bool bufferHasWakeUpEvent = false;
    520         for (int i = 0; i < count; i++) {
    521             if (isWakeUpSensorEvent(mSensorEventBuffer[i])) {
    522                 bufferHasWakeUpEvent = true;
    523                 break;
    524             }
    525         }
    526 
    527         if (bufferHasWakeUpEvent && !mWakeLockAcquired) {
    528             setWakeLockAcquiredLocked(true);
    529         }
    530         recordLastValueLocked(mSensorEventBuffer, count);
    531 
    532         // handle virtual sensors
    533         if (count && vcount) {
    534             sensors_event_t const * const event = mSensorEventBuffer;
    535             if (!mActiveVirtualSensors.empty()) {
    536                 size_t k = 0;
    537                 SensorFusion& fusion(SensorFusion::getInstance());
    538                 if (fusion.isEnabled()) {
    539                     for (size_t i=0 ; i<size_t(count) ; i++) {
    540                         fusion.process(event[i]);
    541                     }
    542                 }
    543                 for (size_t i=0 ; i<size_t(count) && k<minBufferSize ; i++) {
    544                     for (int handle : mActiveVirtualSensors) {
    545                         if (count + k >= minBufferSize) {
    546                             ALOGE("buffer too small to hold all events: "
    547                                     "count=%zd, k=%zu, size=%zu",
    548                                     count, k, minBufferSize);
    549                             break;
    550                         }
    551                         sensors_event_t out;
    552                         sp<SensorInterface> si = mSensors.getInterface(handle);
    553                         if (si == nullptr) {
    554                             ALOGE("handle %d is not an valid virtual sensor", handle);
    555                             continue;
    556                         }
    557 
    558                         if (si->process(&out, event[i])) {
    559                             mSensorEventBuffer[count + k] = out;
    560                             k++;
    561                         }
    562                     }
    563                 }
    564                 if (k) {
    565                     // record the last synthesized values
    566                     recordLastValueLocked(&mSensorEventBuffer[count], k);
    567                     count += k;
    568                     // sort the buffer by time-stamps
    569                     sortEventBuffer(mSensorEventBuffer, count);
    570                 }
    571             }
    572         }
    573 
    574         // handle backward compatibility for RotationVector sensor
    575         if (halVersion < SENSORS_DEVICE_API_VERSION_1_0) {
    576             for (int i = 0; i < count; i++) {
    577                 if (mSensorEventBuffer[i].type == SENSOR_TYPE_ROTATION_VECTOR) {
    578                     // All the 4 components of the quaternion should be available
    579                     // No heading accuracy. Set it to -1
    580                     mSensorEventBuffer[i].data[4] = -1;
    581                 }
    582             }
    583         }
    584 
    585         for (int i = 0; i < count; ++i) {
    586             // Map flush_complete_events in the buffer to SensorEventConnections which called flush
    587             // on the hardware sensor. mapFlushEventsToConnections[i] will be the
    588             // SensorEventConnection mapped to the corresponding flush_complete_event in
    589             // mSensorEventBuffer[i] if such a mapping exists (NULL otherwise).
    590             mMapFlushEventsToConnections[i] = NULL;
    591             if (mSensorEventBuffer[i].type == SENSOR_TYPE_META_DATA) {
    592                 const int sensor_handle = mSensorEventBuffer[i].meta_data.sensor;
    593                 SensorRecord* rec = mActiveSensors.valueFor(sensor_handle);
    594                 if (rec != NULL) {
    595                     mMapFlushEventsToConnections[i] = rec->getFirstPendingFlushConnection();
    596                     rec->removeFirstPendingFlushConnection();
    597                 }
    598             }
    599 
    600             // handle dynamic sensor meta events, process registration and unregistration of dynamic
    601             // sensor based on content of event.
    602             if (mSensorEventBuffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META) {
    603                 if (mSensorEventBuffer[i].dynamic_sensor_meta.connected) {
    604                     int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle;
    605                     const sensor_t& dynamicSensor =
    606                             *(mSensorEventBuffer[i].dynamic_sensor_meta.sensor);
    607                     ALOGI("Dynamic sensor handle 0x%x connected, type %d, name %s",
    608                           handle, dynamicSensor.type, dynamicSensor.name);
    609 
    610                     if (mSensors.isNewHandle(handle)) {
    611                         const auto& uuid = mSensorEventBuffer[i].dynamic_sensor_meta.uuid;
    612                         sensor_t s = dynamicSensor;
    613                         // make sure the dynamic sensor flag is set
    614                         s.flags |= DYNAMIC_SENSOR_MASK;
    615                         // force the handle to be consistent
    616                         s.handle = handle;
    617 
    618                         SensorInterface *si = new HardwareSensor(s, uuid);
    619 
    620                         // This will release hold on dynamic sensor meta, so it should be called
    621                         // after Sensor object is created.
    622                         device.handleDynamicSensorConnection(handle, true /*connected*/);
    623                         registerDynamicSensorLocked(si);
    624                     } else {
    625                         ALOGE("Handle %d has been used, cannot use again before reboot.", handle);
    626                     }
    627                 } else {
    628                     int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle;
    629                     ALOGI("Dynamic sensor handle 0x%x disconnected", handle);
    630 
    631                     device.handleDynamicSensorConnection(handle, false /*connected*/);
    632                     if (!unregisterDynamicSensorLocked(handle)) {
    633                         ALOGE("Dynamic sensor release error.");
    634                     }
    635 
    636                     size_t numConnections = activeConnections.size();
    637                     for (size_t i=0 ; i < numConnections; ++i) {
    638                         if (activeConnections[i] != NULL) {
    639                             activeConnections[i]->removeSensor(handle);
    640                         }
    641                     }
    642                 }
    643             }
    644         }
    645 
    646 
    647         // Send our events to clients. Check the state of wake lock for each client and release the
    648         // lock if none of the clients need it.
    649         bool needsWakeLock = false;
    650         size_t numConnections = activeConnections.size();
    651         for (size_t i=0 ; i < numConnections; ++i) {
    652             if (activeConnections[i] != 0) {
    653                 activeConnections[i]->sendEvents(mSensorEventBuffer, count, mSensorEventScratch,
    654                         mMapFlushEventsToConnections);
    655                 needsWakeLock |= activeConnections[i]->needsWakeLock();
    656                 // If the connection has one-shot sensors, it may be cleaned up after first trigger.
    657                 // Early check for one-shot sensors.
    658                 if (activeConnections[i]->hasOneShotSensors()) {
    659                     cleanupAutoDisabledSensorLocked(activeConnections[i], mSensorEventBuffer,
    660                             count);
    661                 }
    662             }
    663         }
    664 
    665         if (mWakeLockAcquired && !needsWakeLock) {
    666             setWakeLockAcquiredLocked(false);
    667         }
    668     } while (!Thread::exitPending());
    669 
    670     ALOGW("Exiting SensorService::threadLoop => aborting...");
    671     abort();
    672     return false;
    673 }
    674 
    675 sp<Looper> SensorService::getLooper() const {
    676     return mLooper;
    677 }
    678 
    679 void SensorService::resetAllWakeLockRefCounts() {
    680     SortedVector< sp<SensorEventConnection> > activeConnections;
    681     populateActiveConnections(&activeConnections);
    682     {
    683         Mutex::Autolock _l(mLock);
    684         for (size_t i=0 ; i < activeConnections.size(); ++i) {
    685             if (activeConnections[i] != 0) {
    686                 activeConnections[i]->resetWakeLockRefCount();
    687             }
    688         }
    689         setWakeLockAcquiredLocked(false);
    690     }
    691 }
    692 
    693 void SensorService::setWakeLockAcquiredLocked(bool acquire) {
    694     if (acquire) {
    695         if (!mWakeLockAcquired) {
    696             acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_NAME);
    697             mWakeLockAcquired = true;
    698         }
    699         mLooper->wake();
    700     } else {
    701         if (mWakeLockAcquired) {
    702             release_wake_lock(WAKE_LOCK_NAME);
    703             mWakeLockAcquired = false;
    704         }
    705     }
    706 }
    707 
    708 bool SensorService::isWakeLockAcquired() {
    709     Mutex::Autolock _l(mLock);
    710     return mWakeLockAcquired;
    711 }
    712 
    713 bool SensorService::SensorEventAckReceiver::threadLoop() {
    714     ALOGD("new thread SensorEventAckReceiver");
    715     sp<Looper> looper = mService->getLooper();
    716     do {
    717         bool wakeLockAcquired = mService->isWakeLockAcquired();
    718         int timeout = -1;
    719         if (wakeLockAcquired) timeout = 5000;
    720         int ret = looper->pollOnce(timeout);
    721         if (ret == ALOOPER_POLL_TIMEOUT) {
    722            mService->resetAllWakeLockRefCounts();
    723         }
    724     } while(!Thread::exitPending());
    725     return false;
    726 }
    727 
    728 void SensorService::recordLastValueLocked(
    729         const sensors_event_t* buffer, size_t count) {
    730     for (size_t i = 0; i < count; i++) {
    731         if (buffer[i].type == SENSOR_TYPE_META_DATA ||
    732             buffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META ||
    733             buffer[i].type == SENSOR_TYPE_ADDITIONAL_INFO) {
    734             continue;
    735         }
    736 
    737         auto logger = mRecentEvent.find(buffer[i].sensor);
    738         if (logger != mRecentEvent.end()) {
    739             logger->second->addEvent(buffer[i]);
    740         }
    741     }
    742 }
    743 
    744 void SensorService::sortEventBuffer(sensors_event_t* buffer, size_t count) {
    745     struct compar {
    746         static int cmp(void const* lhs, void const* rhs) {
    747             sensors_event_t const* l = static_cast<sensors_event_t const*>(lhs);
    748             sensors_event_t const* r = static_cast<sensors_event_t const*>(rhs);
    749             return l->timestamp - r->timestamp;
    750         }
    751     };
    752     qsort(buffer, count, sizeof(sensors_event_t), compar::cmp);
    753 }
    754 
    755 String8 SensorService::getSensorName(int handle) const {
    756     return mSensors.getName(handle);
    757 }
    758 
    759 bool SensorService::isVirtualSensor(int handle) const {
    760     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
    761     return sensor != nullptr && sensor->isVirtual();
    762 }
    763 
    764 bool SensorService::isWakeUpSensorEvent(const sensors_event_t& event) const {
    765     int handle = event.sensor;
    766     if (event.type == SENSOR_TYPE_META_DATA) {
    767         handle = event.meta_data.sensor;
    768     }
    769     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
    770     return sensor != nullptr && sensor->getSensor().isWakeUpSensor();
    771 }
    772 
    773 int32_t SensorService::getIdFromUuid(const Sensor::uuid_t &uuid) const {
    774     if ((uuid.i64[0] == 0) && (uuid.i64[1] == 0)) {
    775         // UUID is not supported for this device.
    776         return 0;
    777     }
    778     if ((uuid.i64[0] == INT64_C(~0)) && (uuid.i64[1] == INT64_C(~0))) {
    779         // This sensor can be uniquely identified in the system by
    780         // the combination of its type and name.
    781         return -1;
    782     }
    783 
    784     // We have a dynamic sensor.
    785 
    786     if (!sHmacGlobalKeyIsValid) {
    787         // Rather than risk exposing UUIDs, we cripple dynamic sensors.
    788         ALOGW("HMAC key failure; dynamic sensor getId() will be wrong.");
    789         return 0;
    790     }
    791 
    792     // We want each app author/publisher to get a different ID, so that the
    793     // same dynamic sensor cannot be tracked across apps by multiple
    794     // authors/publishers.  So we use both our UUID and our User ID.
    795     // Note potential confusion:
    796     //     UUID => Universally Unique Identifier.
    797     //     UID  => User Identifier.
    798     // We refrain from using "uid" except as needed by API to try to
    799     // keep this distinction clear.
    800 
    801     auto appUserId = IPCThreadState::self()->getCallingUid();
    802     uint8_t uuidAndApp[sizeof(uuid) + sizeof(appUserId)];
    803     memcpy(uuidAndApp, &uuid, sizeof(uuid));
    804     memcpy(uuidAndApp + sizeof(uuid), &appUserId, sizeof(appUserId));
    805 
    806     // Now we use our key on our UUID/app combo to get the hash.
    807     uint8_t hash[EVP_MAX_MD_SIZE];
    808     unsigned int hashLen;
    809     if (HMAC(EVP_sha256(),
    810              sHmacGlobalKey, sizeof(sHmacGlobalKey),
    811              uuidAndApp, sizeof(uuidAndApp),
    812              hash, &hashLen) == nullptr) {
    813         // Rather than risk exposing UUIDs, we cripple dynamic sensors.
    814         ALOGW("HMAC failure; dynamic sensor getId() will be wrong.");
    815         return 0;
    816     }
    817 
    818     int32_t id = 0;
    819     if (hashLen < sizeof(id)) {
    820         // We never expect this case, but out of paranoia, we handle it.
    821         // Our 'id' length is already quite small, we don't want the
    822         // effective length of it to be even smaller.
    823         // Rather than risk exposing UUIDs, we cripple dynamic sensors.
    824         ALOGW("HMAC insufficient; dynamic sensor getId() will be wrong.");
    825         return 0;
    826     }
    827 
    828     // This is almost certainly less than all of 'hash', but it's as secure
    829     // as we can be with our current 'id' length.
    830     memcpy(&id, hash, sizeof(id));
    831 
    832     // Note at the beginning of the function that we return the values of
    833     // 0 and -1 to represent special cases.  As a result, we can't return
    834     // those as dynamic sensor IDs.  If we happened to hash to one of those
    835     // values, we change 'id' so we report as a dynamic sensor, and not as
    836     // one of those special cases.
    837     if (id == -1) {
    838         id = -2;
    839     } else if (id == 0) {
    840         id = 1;
    841     }
    842     return id;
    843 }
    844 
    845 void SensorService::makeUuidsIntoIdsForSensorList(Vector<Sensor> &sensorList) const {
    846     for (auto &sensor : sensorList) {
    847         int32_t id = getIdFromUuid(sensor.getUuid());
    848         sensor.setId(id);
    849     }
    850 }
    851 
    852 Vector<Sensor> SensorService::getSensorList(const String16& opPackageName) {
    853     char value[PROPERTY_VALUE_MAX];
    854     property_get("debug.sensors", value, "0");
    855     const Vector<Sensor>& initialSensorList = (atoi(value)) ?
    856             mSensors.getUserDebugSensors() : mSensors.getUserSensors();
    857     Vector<Sensor> accessibleSensorList;
    858     for (size_t i = 0; i < initialSensorList.size(); i++) {
    859         Sensor sensor = initialSensorList[i];
    860         if (canAccessSensor(sensor, "getSensorList", opPackageName)) {
    861             accessibleSensorList.add(sensor);
    862         } else {
    863             ALOGI("Skipped sensor %s because it requires permission %s and app op %d",
    864                   sensor.getName().string(),
    865                   sensor.getRequiredPermission().string(),
    866                   sensor.getRequiredAppOp());
    867         }
    868     }
    869     makeUuidsIntoIdsForSensorList(accessibleSensorList);
    870     return accessibleSensorList;
    871 }
    872 
    873 Vector<Sensor> SensorService::getDynamicSensorList(const String16& opPackageName) {
    874     Vector<Sensor> accessibleSensorList;
    875     mSensors.forEachSensor(
    876             [&opPackageName, &accessibleSensorList] (const Sensor& sensor) -> bool {
    877                 if (sensor.isDynamicSensor()) {
    878                     if (canAccessSensor(sensor, "getDynamicSensorList", opPackageName)) {
    879                         accessibleSensorList.add(sensor);
    880                     } else {
    881                         ALOGI("Skipped sensor %s because it requires permission %s and app op %" PRId32,
    882                               sensor.getName().string(),
    883                               sensor.getRequiredPermission().string(),
    884                               sensor.getRequiredAppOp());
    885                     }
    886                 }
    887                 return true;
    888             });
    889     makeUuidsIntoIdsForSensorList(accessibleSensorList);
    890     return accessibleSensorList;
    891 }
    892 
    893 sp<ISensorEventConnection> SensorService::createSensorEventConnection(const String8& packageName,
    894         int requestedMode, const String16& opPackageName) {
    895     // Only 2 modes supported for a SensorEventConnection ... NORMAL and DATA_INJECTION.
    896     if (requestedMode != NORMAL && requestedMode != DATA_INJECTION) {
    897         return NULL;
    898     }
    899 
    900     Mutex::Autolock _l(mLock);
    901     // To create a client in DATA_INJECTION mode to inject data, SensorService should already be
    902     // operating in DI mode.
    903     if (requestedMode == DATA_INJECTION) {
    904         if (mCurrentOperatingMode != DATA_INJECTION) return NULL;
    905         if (!isWhiteListedPackage(packageName)) return NULL;
    906     }
    907 
    908     uid_t uid = IPCThreadState::self()->getCallingUid();
    909     sp<SensorEventConnection> result(new SensorEventConnection(this, uid, packageName,
    910             requestedMode == DATA_INJECTION, opPackageName));
    911     if (requestedMode == DATA_INJECTION) {
    912         if (mActiveConnections.indexOf(result) < 0) {
    913             mActiveConnections.add(result);
    914         }
    915         // Add the associated file descriptor to the Looper for polling whenever there is data to
    916         // be injected.
    917         result->updateLooperRegistration(mLooper);
    918     }
    919     return result;
    920 }
    921 
    922 int SensorService::isDataInjectionEnabled() {
    923     Mutex::Autolock _l(mLock);
    924     return (mCurrentOperatingMode == DATA_INJECTION);
    925 }
    926 
    927 status_t SensorService::resetToNormalMode() {
    928     Mutex::Autolock _l(mLock);
    929     return resetToNormalModeLocked();
    930 }
    931 
    932 status_t SensorService::resetToNormalModeLocked() {
    933     SensorDevice& dev(SensorDevice::getInstance());
    934     dev.enableAllSensors();
    935     status_t err = dev.setMode(NORMAL);
    936     mCurrentOperatingMode = NORMAL;
    937     return err;
    938 }
    939 
    940 void SensorService::cleanupConnection(SensorEventConnection* c) {
    941     Mutex::Autolock _l(mLock);
    942     const wp<SensorEventConnection> connection(c);
    943     size_t size = mActiveSensors.size();
    944     ALOGD_IF(DEBUG_CONNECTIONS, "%zu active sensors", size);
    945     for (size_t i=0 ; i<size ; ) {
    946         int handle = mActiveSensors.keyAt(i);
    947         if (c->hasSensor(handle)) {
    948             ALOGD_IF(DEBUG_CONNECTIONS, "%zu: disabling handle=0x%08x", i, handle);
    949             sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
    950             if (sensor != nullptr) {
    951                 sensor->activate(c, false);
    952             } else {
    953                 ALOGE("sensor interface of handle=0x%08x is null!", handle);
    954             }
    955             c->removeSensor(handle);
    956         }
    957         SensorRecord* rec = mActiveSensors.valueAt(i);
    958         ALOGE_IF(!rec, "mActiveSensors[%zu] is null (handle=0x%08x)!", i, handle);
    959         ALOGD_IF(DEBUG_CONNECTIONS,
    960                 "removing connection %p for sensor[%zu].handle=0x%08x",
    961                 c, i, handle);
    962 
    963         if (rec && rec->removeConnection(connection)) {
    964             ALOGD_IF(DEBUG_CONNECTIONS, "... and it was the last connection");
    965             mActiveSensors.removeItemsAt(i, 1);
    966             mActiveVirtualSensors.erase(handle);
    967             delete rec;
    968             size--;
    969         } else {
    970             i++;
    971         }
    972     }
    973     c->updateLooperRegistration(mLooper);
    974     mActiveConnections.remove(connection);
    975     BatteryService::cleanup(c->getUid());
    976     if (c->needsWakeLock()) {
    977         checkWakeLockStateLocked();
    978     }
    979 }
    980 
    981 sp<SensorInterface> SensorService::getSensorInterfaceFromHandle(int handle) const {
    982     return mSensors.getInterface(handle);
    983 }
    984 
    985 
    986 status_t SensorService::enable(const sp<SensorEventConnection>& connection,
    987         int handle, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags,
    988         const String16& opPackageName) {
    989     if (mInitCheck != NO_ERROR)
    990         return mInitCheck;
    991 
    992     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
    993     if (sensor == nullptr ||
    994         !canAccessSensor(sensor->getSensor(), "Tried enabling", opPackageName)) {
    995         return BAD_VALUE;
    996     }
    997 
    998     Mutex::Autolock _l(mLock);
    999     if ((mCurrentOperatingMode == RESTRICTED || mCurrentOperatingMode == DATA_INJECTION)
   1000            && !isWhiteListedPackage(connection->getPackageName())) {
   1001         return INVALID_OPERATION;
   1002     }
   1003 
   1004     SensorRecord* rec = mActiveSensors.valueFor(handle);
   1005     if (rec == 0) {
   1006         rec = new SensorRecord(connection);
   1007         mActiveSensors.add(handle, rec);
   1008         if (sensor->isVirtual()) {
   1009             mActiveVirtualSensors.emplace(handle);
   1010         }
   1011     } else {
   1012         if (rec->addConnection(connection)) {
   1013             // this sensor is already activated, but we are adding a connection that uses it.
   1014             // Immediately send down the last known value of the requested sensor if it's not a
   1015             // "continuous" sensor.
   1016             if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE) {
   1017                 // NOTE: The wake_up flag of this event may get set to
   1018                 // WAKE_UP_SENSOR_EVENT_NEEDS_ACK if this is a wake_up event.
   1019 
   1020                 auto logger = mRecentEvent.find(handle);
   1021                 if (logger != mRecentEvent.end()) {
   1022                     sensors_event_t event;
   1023                     // It is unlikely that this buffer is empty as the sensor is already active.
   1024                     // One possible corner case may be two applications activating an on-change
   1025                     // sensor at the same time.
   1026                     if(logger->second->populateLastEvent(&event)) {
   1027                         event.sensor = handle;
   1028                         if (event.version == sizeof(sensors_event_t)) {
   1029                             if (isWakeUpSensorEvent(event) && !mWakeLockAcquired) {
   1030                                 setWakeLockAcquiredLocked(true);
   1031                             }
   1032                             connection->sendEvents(&event, 1, NULL);
   1033                             if (!connection->needsWakeLock() && mWakeLockAcquired) {
   1034                                 checkWakeLockStateLocked();
   1035                             }
   1036                         }
   1037                     }
   1038                 }
   1039             }
   1040         }
   1041     }
   1042 
   1043     if (connection->addSensor(handle)) {
   1044         BatteryService::enableSensor(connection->getUid(), handle);
   1045         // the sensor was added (which means it wasn't already there)
   1046         // so, see if this connection becomes active
   1047         if (mActiveConnections.indexOf(connection) < 0) {
   1048             mActiveConnections.add(connection);
   1049         }
   1050     } else {
   1051         ALOGW("sensor %08x already enabled in connection %p (ignoring)",
   1052             handle, connection.get());
   1053     }
   1054 
   1055     nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
   1056     if (samplingPeriodNs < minDelayNs) {
   1057         samplingPeriodNs = minDelayNs;
   1058     }
   1059 
   1060     ALOGD_IF(DEBUG_CONNECTIONS, "Calling batch handle==%d flags=%d"
   1061                                 "rate=%" PRId64 " timeout== %" PRId64"",
   1062              handle, reservedFlags, samplingPeriodNs, maxBatchReportLatencyNs);
   1063 
   1064     status_t err = sensor->batch(connection.get(), handle, 0, samplingPeriodNs,
   1065                                  maxBatchReportLatencyNs);
   1066 
   1067     // Call flush() before calling activate() on the sensor. Wait for a first
   1068     // flush complete event before sending events on this connection. Ignore
   1069     // one-shot sensors which don't support flush(). Ignore on-change sensors
   1070     // to maintain the on-change logic (any on-change events except the initial
   1071     // one should be trigger by a change in value). Also if this sensor isn't
   1072     // already active, don't call flush().
   1073     if (err == NO_ERROR &&
   1074             sensor->getSensor().getReportingMode() == AREPORTING_MODE_CONTINUOUS &&
   1075             rec->getNumConnections() > 1) {
   1076         connection->setFirstFlushPending(handle, true);
   1077         status_t err_flush = sensor->flush(connection.get(), handle);
   1078         // Flush may return error if the underlying h/w sensor uses an older HAL.
   1079         if (err_flush == NO_ERROR) {
   1080             rec->addPendingFlushConnection(connection.get());
   1081         } else {
   1082             connection->setFirstFlushPending(handle, false);
   1083         }
   1084     }
   1085 
   1086     if (err == NO_ERROR) {
   1087         ALOGD_IF(DEBUG_CONNECTIONS, "Calling activate on %d", handle);
   1088         err = sensor->activate(connection.get(), true);
   1089     }
   1090 
   1091     if (err == NO_ERROR) {
   1092         connection->updateLooperRegistration(mLooper);
   1093         SensorRegistrationInfo &reg_info =
   1094             mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex);
   1095         reg_info.mSensorHandle = handle;
   1096         reg_info.mSamplingRateUs = samplingPeriodNs/1000;
   1097         reg_info.mMaxReportLatencyUs = maxBatchReportLatencyNs/1000;
   1098         reg_info.mActivated = true;
   1099         reg_info.mPackageName = connection->getPackageName();
   1100         time_t rawtime = time(NULL);
   1101         struct tm * timeinfo = localtime(&rawtime);
   1102         reg_info.mHour = timeinfo->tm_hour;
   1103         reg_info.mMin = timeinfo->tm_min;
   1104         reg_info.mSec = timeinfo->tm_sec;
   1105         mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
   1106     }
   1107 
   1108     if (err != NO_ERROR) {
   1109         // batch/activate has failed, reset our state.
   1110         cleanupWithoutDisableLocked(connection, handle);
   1111     }
   1112     return err;
   1113 }
   1114 
   1115 status_t SensorService::disable(const sp<SensorEventConnection>& connection, int handle) {
   1116     if (mInitCheck != NO_ERROR)
   1117         return mInitCheck;
   1118 
   1119     Mutex::Autolock _l(mLock);
   1120     status_t err = cleanupWithoutDisableLocked(connection, handle);
   1121     if (err == NO_ERROR) {
   1122         sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
   1123         err = sensor != nullptr ? sensor->activate(connection.get(), false) : status_t(BAD_VALUE);
   1124 
   1125     }
   1126     if (err == NO_ERROR) {
   1127         SensorRegistrationInfo &reg_info =
   1128             mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex);
   1129         reg_info.mActivated = false;
   1130         reg_info.mPackageName= connection->getPackageName();
   1131         reg_info.mSensorHandle = handle;
   1132         time_t rawtime = time(NULL);
   1133         struct tm * timeinfo = localtime(&rawtime);
   1134         reg_info.mHour = timeinfo->tm_hour;
   1135         reg_info.mMin = timeinfo->tm_min;
   1136         reg_info.mSec = timeinfo->tm_sec;
   1137         mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
   1138     }
   1139     return err;
   1140 }
   1141 
   1142 status_t SensorService::cleanupWithoutDisable(
   1143         const sp<SensorEventConnection>& connection, int handle) {
   1144     Mutex::Autolock _l(mLock);
   1145     return cleanupWithoutDisableLocked(connection, handle);
   1146 }
   1147 
   1148 status_t SensorService::cleanupWithoutDisableLocked(
   1149         const sp<SensorEventConnection>& connection, int handle) {
   1150     SensorRecord* rec = mActiveSensors.valueFor(handle);
   1151     if (rec) {
   1152         // see if this connection becomes inactive
   1153         if (connection->removeSensor(handle)) {
   1154             BatteryService::disableSensor(connection->getUid(), handle);
   1155         }
   1156         if (connection->hasAnySensor() == false) {
   1157             connection->updateLooperRegistration(mLooper);
   1158             mActiveConnections.remove(connection);
   1159         }
   1160         // see if this sensor becomes inactive
   1161         if (rec->removeConnection(connection)) {
   1162             mActiveSensors.removeItem(handle);
   1163             mActiveVirtualSensors.erase(handle);
   1164             delete rec;
   1165         }
   1166         return NO_ERROR;
   1167     }
   1168     return BAD_VALUE;
   1169 }
   1170 
   1171 status_t SensorService::setEventRate(const sp<SensorEventConnection>& connection,
   1172         int handle, nsecs_t ns, const String16& opPackageName) {
   1173     if (mInitCheck != NO_ERROR)
   1174         return mInitCheck;
   1175 
   1176     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
   1177     if (sensor == nullptr ||
   1178         !canAccessSensor(sensor->getSensor(), "Tried configuring", opPackageName)) {
   1179         return BAD_VALUE;
   1180     }
   1181 
   1182     if (ns < 0)
   1183         return BAD_VALUE;
   1184 
   1185     nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
   1186     if (ns < minDelayNs) {
   1187         ns = minDelayNs;
   1188     }
   1189 
   1190     return sensor->setDelay(connection.get(), handle, ns);
   1191 }
   1192 
   1193 status_t SensorService::flushSensor(const sp<SensorEventConnection>& connection,
   1194         const String16& opPackageName) {
   1195     if (mInitCheck != NO_ERROR) return mInitCheck;
   1196     SensorDevice& dev(SensorDevice::getInstance());
   1197     const int halVersion = dev.getHalDeviceVersion();
   1198     status_t err(NO_ERROR);
   1199     Mutex::Autolock _l(mLock);
   1200     // Loop through all sensors for this connection and call flush on each of them.
   1201     for (size_t i = 0; i < connection->mSensorInfo.size(); ++i) {
   1202         const int handle = connection->mSensorInfo.keyAt(i);
   1203         sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
   1204         if (sensor == nullptr) {
   1205             continue;
   1206         }
   1207         if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
   1208             ALOGE("flush called on a one-shot sensor");
   1209             err = INVALID_OPERATION;
   1210             continue;
   1211         }
   1212         if (halVersion <= SENSORS_DEVICE_API_VERSION_1_0 || isVirtualSensor(handle)) {
   1213             // For older devices just increment pending flush count which will send a trivial
   1214             // flush complete event.
   1215             connection->incrementPendingFlushCount(handle);
   1216         } else {
   1217             if (!canAccessSensor(sensor->getSensor(), "Tried flushing", opPackageName)) {
   1218                 err = INVALID_OPERATION;
   1219                 continue;
   1220             }
   1221             status_t err_flush = sensor->flush(connection.get(), handle);
   1222             if (err_flush == NO_ERROR) {
   1223                 SensorRecord* rec = mActiveSensors.valueFor(handle);
   1224                 if (rec != NULL) rec->addPendingFlushConnection(connection);
   1225             }
   1226             err = (err_flush != NO_ERROR) ? err_flush : err;
   1227         }
   1228     }
   1229     return err;
   1230 }
   1231 
   1232 bool SensorService::canAccessSensor(const Sensor& sensor, const char* operation,
   1233         const String16& opPackageName) {
   1234     const String8& requiredPermission = sensor.getRequiredPermission();
   1235 
   1236     if (requiredPermission.length() <= 0) {
   1237         return true;
   1238     }
   1239 
   1240     bool hasPermission = false;
   1241 
   1242     // Runtime permissions can't use the cache as they may change.
   1243     if (sensor.isRequiredPermissionRuntime()) {
   1244         hasPermission = checkPermission(String16(requiredPermission),
   1245                 IPCThreadState::self()->getCallingPid(), IPCThreadState::self()->getCallingUid());
   1246     } else {
   1247         hasPermission = PermissionCache::checkCallingPermission(String16(requiredPermission));
   1248     }
   1249 
   1250     if (!hasPermission) {
   1251         ALOGE("%s a sensor (%s) without holding its required permission: %s",
   1252                 operation, sensor.getName().string(), sensor.getRequiredPermission().string());
   1253         return false;
   1254     }
   1255 
   1256     const int32_t opCode = sensor.getRequiredAppOp();
   1257     if (opCode >= 0) {
   1258         AppOpsManager appOps;
   1259         if (appOps.noteOp(opCode, IPCThreadState::self()->getCallingUid(), opPackageName)
   1260                         != AppOpsManager::MODE_ALLOWED) {
   1261             ALOGE("%s a sensor (%s) without enabled required app op: %d",
   1262                     operation, sensor.getName().string(), opCode);
   1263             return false;
   1264         }
   1265     }
   1266 
   1267     return true;
   1268 }
   1269 
   1270 void SensorService::checkWakeLockState() {
   1271     Mutex::Autolock _l(mLock);
   1272     checkWakeLockStateLocked();
   1273 }
   1274 
   1275 void SensorService::checkWakeLockStateLocked() {
   1276     if (!mWakeLockAcquired) {
   1277         return;
   1278     }
   1279     bool releaseLock = true;
   1280     for (size_t i=0 ; i<mActiveConnections.size() ; i++) {
   1281         sp<SensorEventConnection> connection(mActiveConnections[i].promote());
   1282         if (connection != 0) {
   1283             if (connection->needsWakeLock()) {
   1284                 releaseLock = false;
   1285                 break;
   1286             }
   1287         }
   1288     }
   1289     if (releaseLock) {
   1290         setWakeLockAcquiredLocked(false);
   1291     }
   1292 }
   1293 
   1294 void SensorService::sendEventsFromCache(const sp<SensorEventConnection>& connection) {
   1295     Mutex::Autolock _l(mLock);
   1296     connection->writeToSocketFromCache();
   1297     if (connection->needsWakeLock()) {
   1298         setWakeLockAcquiredLocked(true);
   1299     }
   1300 }
   1301 
   1302 void SensorService::populateActiveConnections(
   1303         SortedVector< sp<SensorEventConnection> >* activeConnections) {
   1304     Mutex::Autolock _l(mLock);
   1305     for (size_t i=0 ; i < mActiveConnections.size(); ++i) {
   1306         sp<SensorEventConnection> connection(mActiveConnections[i].promote());
   1307         if (connection != 0) {
   1308             activeConnections->add(connection);
   1309         }
   1310     }
   1311 }
   1312 
   1313 bool SensorService::isWhiteListedPackage(const String8& packageName) {
   1314     return (packageName.contains(mWhiteListedPackage.string()));
   1315 }
   1316 
   1317 }; // namespace android
   1318 
   1319