1 from test.test_support import run_unittest 2 from test.test_math import parse_testfile, test_file 3 import unittest 4 import cmath, math 5 from cmath import phase, polar, rect, pi 6 7 INF = float('inf') 8 NAN = float('nan') 9 10 complex_zeros = [complex(x, y) for x in [0.0, -0.0] for y in [0.0, -0.0]] 11 complex_infinities = [complex(x, y) for x, y in [ 12 (INF, 0.0), # 1st quadrant 13 (INF, 2.3), 14 (INF, INF), 15 (2.3, INF), 16 (0.0, INF), 17 (-0.0, INF), # 2nd quadrant 18 (-2.3, INF), 19 (-INF, INF), 20 (-INF, 2.3), 21 (-INF, 0.0), 22 (-INF, -0.0), # 3rd quadrant 23 (-INF, -2.3), 24 (-INF, -INF), 25 (-2.3, -INF), 26 (-0.0, -INF), 27 (0.0, -INF), # 4th quadrant 28 (2.3, -INF), 29 (INF, -INF), 30 (INF, -2.3), 31 (INF, -0.0) 32 ]] 33 complex_nans = [complex(x, y) for x, y in [ 34 (NAN, -INF), 35 (NAN, -2.3), 36 (NAN, -0.0), 37 (NAN, 0.0), 38 (NAN, 2.3), 39 (NAN, INF), 40 (-INF, NAN), 41 (-2.3, NAN), 42 (-0.0, NAN), 43 (0.0, NAN), 44 (2.3, NAN), 45 (INF, NAN) 46 ]] 47 48 class CMathTests(unittest.TestCase): 49 # list of all functions in cmath 50 test_functions = [getattr(cmath, fname) for fname in [ 51 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh', 52 'cos', 'cosh', 'exp', 'log', 'log10', 'sin', 'sinh', 53 'sqrt', 'tan', 'tanh']] 54 # test first and second arguments independently for 2-argument log 55 test_functions.append(lambda x : cmath.log(x, 1729. + 0j)) 56 test_functions.append(lambda x : cmath.log(14.-27j, x)) 57 58 def setUp(self): 59 self.test_values = open(test_file) 60 61 def tearDown(self): 62 self.test_values.close() 63 64 def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323, 65 msg=None): 66 """Fail if the two floating-point numbers are not almost equal. 67 68 Determine whether floating-point values a and b are equal to within 69 a (small) rounding error. The default values for rel_err and 70 abs_err are chosen to be suitable for platforms where a float is 71 represented by an IEEE 754 double. They allow an error of between 72 9 and 19 ulps. 73 """ 74 75 # special values testing 76 if math.isnan(a): 77 if math.isnan(b): 78 return 79 self.fail(msg or '{!r} should be nan'.format(b)) 80 81 if math.isinf(a): 82 if a == b: 83 return 84 self.fail(msg or 'finite result where infinity expected: ' 85 'expected {!r}, got {!r}'.format(a, b)) 86 87 # if both a and b are zero, check whether they have the same sign 88 # (in theory there are examples where it would be legitimate for a 89 # and b to have opposite signs; in practice these hardly ever 90 # occur). 91 if not a and not b: 92 if math.copysign(1., a) != math.copysign(1., b): 93 self.fail(msg or 'zero has wrong sign: expected {!r}, ' 94 'got {!r}'.format(a, b)) 95 96 # if a-b overflows, or b is infinite, return False. Again, in 97 # theory there are examples where a is within a few ulps of the 98 # max representable float, and then b could legitimately be 99 # infinite. In practice these examples are rare. 100 try: 101 absolute_error = abs(b-a) 102 except OverflowError: 103 pass 104 else: 105 # test passes if either the absolute error or the relative 106 # error is sufficiently small. The defaults amount to an 107 # error of between 9 ulps and 19 ulps on an IEEE-754 compliant 108 # machine. 109 if absolute_error <= max(abs_err, rel_err * abs(a)): 110 return 111 self.fail(msg or 112 '{!r} and {!r} are not sufficiently close'.format(a, b)) 113 114 def test_constants(self): 115 e_expected = 2.71828182845904523536 116 pi_expected = 3.14159265358979323846 117 self.assertAlmostEqual(cmath.pi, pi_expected, places=9, 118 msg="cmath.pi is {}; should be {}".format(cmath.pi, pi_expected)) 119 self.assertAlmostEqual(cmath.e, e_expected, places=9, 120 msg="cmath.e is {}; should be {}".format(cmath.e, e_expected)) 121 122 def test_user_object(self): 123 # Test automatic calling of __complex__ and __float__ by cmath 124 # functions 125 126 # some random values to use as test values; we avoid values 127 # for which any of the functions in cmath is undefined 128 # (i.e. 0., 1., -1., 1j, -1j) or would cause overflow 129 cx_arg = 4.419414439 + 1.497100113j 130 flt_arg = -6.131677725 131 132 # a variety of non-complex numbers, used to check that 133 # non-complex return values from __complex__ give an error 134 non_complexes = ["not complex", 1, 5L, 2., None, 135 object(), NotImplemented] 136 137 # Now we introduce a variety of classes whose instances might 138 # end up being passed to the cmath functions 139 140 # usual case: new-style class implementing __complex__ 141 class MyComplex(object): 142 def __init__(self, value): 143 self.value = value 144 def __complex__(self): 145 return self.value 146 147 # old-style class implementing __complex__ 148 class MyComplexOS: 149 def __init__(self, value): 150 self.value = value 151 def __complex__(self): 152 return self.value 153 154 # classes for which __complex__ raises an exception 155 class SomeException(Exception): 156 pass 157 class MyComplexException(object): 158 def __complex__(self): 159 raise SomeException 160 class MyComplexExceptionOS: 161 def __complex__(self): 162 raise SomeException 163 164 # some classes not providing __float__ or __complex__ 165 class NeitherComplexNorFloat(object): 166 pass 167 class NeitherComplexNorFloatOS: 168 pass 169 class MyInt(object): 170 def __int__(self): return 2 171 def __long__(self): return 2L 172 def __index__(self): return 2 173 class MyIntOS: 174 def __int__(self): return 2 175 def __long__(self): return 2L 176 def __index__(self): return 2 177 178 # other possible combinations of __float__ and __complex__ 179 # that should work 180 class FloatAndComplex(object): 181 def __float__(self): 182 return flt_arg 183 def __complex__(self): 184 return cx_arg 185 class FloatAndComplexOS: 186 def __float__(self): 187 return flt_arg 188 def __complex__(self): 189 return cx_arg 190 class JustFloat(object): 191 def __float__(self): 192 return flt_arg 193 class JustFloatOS: 194 def __float__(self): 195 return flt_arg 196 197 for f in self.test_functions: 198 # usual usage 199 self.assertEqual(f(MyComplex(cx_arg)), f(cx_arg)) 200 self.assertEqual(f(MyComplexOS(cx_arg)), f(cx_arg)) 201 # other combinations of __float__ and __complex__ 202 self.assertEqual(f(FloatAndComplex()), f(cx_arg)) 203 self.assertEqual(f(FloatAndComplexOS()), f(cx_arg)) 204 self.assertEqual(f(JustFloat()), f(flt_arg)) 205 self.assertEqual(f(JustFloatOS()), f(flt_arg)) 206 # TypeError should be raised for classes not providing 207 # either __complex__ or __float__, even if they provide 208 # __int__, __long__ or __index__. An old-style class 209 # currently raises AttributeError instead of a TypeError; 210 # this could be considered a bug. 211 self.assertRaises(TypeError, f, NeitherComplexNorFloat()) 212 self.assertRaises(TypeError, f, MyInt()) 213 self.assertRaises(Exception, f, NeitherComplexNorFloatOS()) 214 self.assertRaises(Exception, f, MyIntOS()) 215 # non-complex return value from __complex__ -> TypeError 216 for bad_complex in non_complexes: 217 self.assertRaises(TypeError, f, MyComplex(bad_complex)) 218 self.assertRaises(TypeError, f, MyComplexOS(bad_complex)) 219 # exceptions in __complex__ should be propagated correctly 220 self.assertRaises(SomeException, f, MyComplexException()) 221 self.assertRaises(SomeException, f, MyComplexExceptionOS()) 222 223 def test_input_type(self): 224 # ints and longs should be acceptable inputs to all cmath 225 # functions, by virtue of providing a __float__ method 226 for f in self.test_functions: 227 for arg in [2, 2L, 2.]: 228 self.assertEqual(f(arg), f(arg.__float__())) 229 230 # but strings should give a TypeError 231 for f in self.test_functions: 232 for arg in ["a", "long_string", "0", "1j", ""]: 233 self.assertRaises(TypeError, f, arg) 234 235 def test_cmath_matches_math(self): 236 # check that corresponding cmath and math functions are equal 237 # for floats in the appropriate range 238 239 # test_values in (0, 1) 240 test_values = [0.01, 0.1, 0.2, 0.5, 0.9, 0.99] 241 242 # test_values for functions defined on [-1., 1.] 243 unit_interval = test_values + [-x for x in test_values] + \ 244 [0., 1., -1.] 245 246 # test_values for log, log10, sqrt 247 positive = test_values + [1.] + [1./x for x in test_values] 248 nonnegative = [0.] + positive 249 250 # test_values for functions defined on the whole real line 251 real_line = [0.] + positive + [-x for x in positive] 252 253 test_functions = { 254 'acos' : unit_interval, 255 'asin' : unit_interval, 256 'atan' : real_line, 257 'cos' : real_line, 258 'cosh' : real_line, 259 'exp' : real_line, 260 'log' : positive, 261 'log10' : positive, 262 'sin' : real_line, 263 'sinh' : real_line, 264 'sqrt' : nonnegative, 265 'tan' : real_line, 266 'tanh' : real_line} 267 268 for fn, values in test_functions.items(): 269 float_fn = getattr(math, fn) 270 complex_fn = getattr(cmath, fn) 271 for v in values: 272 z = complex_fn(v) 273 self.rAssertAlmostEqual(float_fn(v), z.real) 274 self.assertEqual(0., z.imag) 275 276 # test two-argument version of log with various bases 277 for base in [0.5, 2., 10.]: 278 for v in positive: 279 z = cmath.log(v, base) 280 self.rAssertAlmostEqual(math.log(v, base), z.real) 281 self.assertEqual(0., z.imag) 282 283 def test_specific_values(self): 284 if not float.__getformat__("double").startswith("IEEE"): 285 return 286 287 def rect_complex(z): 288 """Wrapped version of rect that accepts a complex number instead of 289 two float arguments.""" 290 return cmath.rect(z.real, z.imag) 291 292 def polar_complex(z): 293 """Wrapped version of polar that returns a complex number instead of 294 two floats.""" 295 return complex(*polar(z)) 296 297 for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file): 298 arg = complex(ar, ai) 299 expected = complex(er, ei) 300 if fn == 'rect': 301 function = rect_complex 302 elif fn == 'polar': 303 function = polar_complex 304 else: 305 function = getattr(cmath, fn) 306 if 'divide-by-zero' in flags or 'invalid' in flags: 307 try: 308 actual = function(arg) 309 except ValueError: 310 continue 311 else: 312 self.fail('ValueError not raised in test ' 313 '{}: {}(complex({!r}, {!r}))'.format(id, fn, ar, ai)) 314 315 if 'overflow' in flags: 316 try: 317 actual = function(arg) 318 except OverflowError: 319 continue 320 else: 321 self.fail('OverflowError not raised in test ' 322 '{}: {}(complex({!r}, {!r}))'.format(id, fn, ar, ai)) 323 324 actual = function(arg) 325 326 if 'ignore-real-sign' in flags: 327 actual = complex(abs(actual.real), actual.imag) 328 expected = complex(abs(expected.real), expected.imag) 329 if 'ignore-imag-sign' in flags: 330 actual = complex(actual.real, abs(actual.imag)) 331 expected = complex(expected.real, abs(expected.imag)) 332 333 # for the real part of the log function, we allow an 334 # absolute error of up to 2e-15. 335 if fn in ('log', 'log10'): 336 real_abs_err = 2e-15 337 else: 338 real_abs_err = 5e-323 339 340 error_message = ( 341 '{}: {}(complex({!r}, {!r}))\n' 342 'Expected: complex({!r}, {!r})\n' 343 'Received: complex({!r}, {!r})\n' 344 'Received value insufficiently close to expected value.' 345 ).format(id, fn, ar, ai, 346 expected.real, expected.imag, 347 actual.real, actual.imag) 348 self.rAssertAlmostEqual(expected.real, actual.real, 349 abs_err=real_abs_err, 350 msg=error_message) 351 self.rAssertAlmostEqual(expected.imag, actual.imag, 352 msg=error_message) 353 354 def assertCISEqual(self, a, b): 355 eps = 1E-7 356 if abs(a[0] - b[0]) > eps or abs(a[1] - b[1]) > eps: 357 self.fail((a ,b)) 358 359 def test_polar(self): 360 self.assertCISEqual(polar(0), (0., 0.)) 361 self.assertCISEqual(polar(1.), (1., 0.)) 362 self.assertCISEqual(polar(-1.), (1., pi)) 363 self.assertCISEqual(polar(1j), (1., pi/2)) 364 self.assertCISEqual(polar(-1j), (1., -pi/2)) 365 366 def test_phase(self): 367 self.assertAlmostEqual(phase(0), 0.) 368 self.assertAlmostEqual(phase(1.), 0.) 369 self.assertAlmostEqual(phase(-1.), pi) 370 self.assertAlmostEqual(phase(-1.+1E-300j), pi) 371 self.assertAlmostEqual(phase(-1.-1E-300j), -pi) 372 self.assertAlmostEqual(phase(1j), pi/2) 373 self.assertAlmostEqual(phase(-1j), -pi/2) 374 375 # zeros 376 self.assertEqual(phase(complex(0.0, 0.0)), 0.0) 377 self.assertEqual(phase(complex(0.0, -0.0)), -0.0) 378 self.assertEqual(phase(complex(-0.0, 0.0)), pi) 379 self.assertEqual(phase(complex(-0.0, -0.0)), -pi) 380 381 # infinities 382 self.assertAlmostEqual(phase(complex(-INF, -0.0)), -pi) 383 self.assertAlmostEqual(phase(complex(-INF, -2.3)), -pi) 384 self.assertAlmostEqual(phase(complex(-INF, -INF)), -0.75*pi) 385 self.assertAlmostEqual(phase(complex(-2.3, -INF)), -pi/2) 386 self.assertAlmostEqual(phase(complex(-0.0, -INF)), -pi/2) 387 self.assertAlmostEqual(phase(complex(0.0, -INF)), -pi/2) 388 self.assertAlmostEqual(phase(complex(2.3, -INF)), -pi/2) 389 self.assertAlmostEqual(phase(complex(INF, -INF)), -pi/4) 390 self.assertEqual(phase(complex(INF, -2.3)), -0.0) 391 self.assertEqual(phase(complex(INF, -0.0)), -0.0) 392 self.assertEqual(phase(complex(INF, 0.0)), 0.0) 393 self.assertEqual(phase(complex(INF, 2.3)), 0.0) 394 self.assertAlmostEqual(phase(complex(INF, INF)), pi/4) 395 self.assertAlmostEqual(phase(complex(2.3, INF)), pi/2) 396 self.assertAlmostEqual(phase(complex(0.0, INF)), pi/2) 397 self.assertAlmostEqual(phase(complex(-0.0, INF)), pi/2) 398 self.assertAlmostEqual(phase(complex(-2.3, INF)), pi/2) 399 self.assertAlmostEqual(phase(complex(-INF, INF)), 0.75*pi) 400 self.assertAlmostEqual(phase(complex(-INF, 2.3)), pi) 401 self.assertAlmostEqual(phase(complex(-INF, 0.0)), pi) 402 403 # real or imaginary part NaN 404 for z in complex_nans: 405 self.assertTrue(math.isnan(phase(z))) 406 407 def test_abs(self): 408 # zeros 409 for z in complex_zeros: 410 self.assertEqual(abs(z), 0.0) 411 412 # infinities 413 for z in complex_infinities: 414 self.assertEqual(abs(z), INF) 415 416 # real or imaginary part NaN 417 self.assertEqual(abs(complex(NAN, -INF)), INF) 418 self.assertTrue(math.isnan(abs(complex(NAN, -2.3)))) 419 self.assertTrue(math.isnan(abs(complex(NAN, -0.0)))) 420 self.assertTrue(math.isnan(abs(complex(NAN, 0.0)))) 421 self.assertTrue(math.isnan(abs(complex(NAN, 2.3)))) 422 self.assertEqual(abs(complex(NAN, INF)), INF) 423 self.assertEqual(abs(complex(-INF, NAN)), INF) 424 self.assertTrue(math.isnan(abs(complex(-2.3, NAN)))) 425 self.assertTrue(math.isnan(abs(complex(-0.0, NAN)))) 426 self.assertTrue(math.isnan(abs(complex(0.0, NAN)))) 427 self.assertTrue(math.isnan(abs(complex(2.3, NAN)))) 428 self.assertEqual(abs(complex(INF, NAN)), INF) 429 self.assertTrue(math.isnan(abs(complex(NAN, NAN)))) 430 431 # result overflows 432 if float.__getformat__("double").startswith("IEEE"): 433 self.assertRaises(OverflowError, abs, complex(1.4e308, 1.4e308)) 434 435 def assertCEqual(self, a, b): 436 eps = 1E-7 437 if abs(a.real - b[0]) > eps or abs(a.imag - b[1]) > eps: 438 self.fail((a ,b)) 439 440 def test_rect(self): 441 self.assertCEqual(rect(0, 0), (0, 0)) 442 self.assertCEqual(rect(1, 0), (1., 0)) 443 self.assertCEqual(rect(1, -pi), (-1., 0)) 444 self.assertCEqual(rect(1, pi/2), (0, 1.)) 445 self.assertCEqual(rect(1, -pi/2), (0, -1.)) 446 447 def test_isnan(self): 448 self.assertFalse(cmath.isnan(1)) 449 self.assertFalse(cmath.isnan(1j)) 450 self.assertFalse(cmath.isnan(INF)) 451 self.assertTrue(cmath.isnan(NAN)) 452 self.assertTrue(cmath.isnan(complex(NAN, 0))) 453 self.assertTrue(cmath.isnan(complex(0, NAN))) 454 self.assertTrue(cmath.isnan(complex(NAN, NAN))) 455 self.assertTrue(cmath.isnan(complex(NAN, INF))) 456 self.assertTrue(cmath.isnan(complex(INF, NAN))) 457 458 def test_isinf(self): 459 self.assertFalse(cmath.isinf(1)) 460 self.assertFalse(cmath.isinf(1j)) 461 self.assertFalse(cmath.isinf(NAN)) 462 self.assertTrue(cmath.isinf(INF)) 463 self.assertTrue(cmath.isinf(complex(INF, 0))) 464 self.assertTrue(cmath.isinf(complex(0, INF))) 465 self.assertTrue(cmath.isinf(complex(INF, INF))) 466 self.assertTrue(cmath.isinf(complex(NAN, INF))) 467 self.assertTrue(cmath.isinf(complex(INF, NAN))) 468 469 470 def test_main(): 471 run_unittest(CMathTests) 472 473 if __name__ == "__main__": 474 test_main() 475