1 // Copyright 2012 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package elliptic 6 7 // This is a constant-time, 32-bit implementation of P224. See FIPS 186-3, 8 // section D.2.2. 9 // 10 // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. 11 12 import ( 13 "math/big" 14 ) 15 16 var p224 p224Curve 17 18 type p224Curve struct { 19 *CurveParams 20 gx, gy, b p224FieldElement 21 } 22 23 func initP224() { 24 // See FIPS 186-3, section D.2.2 25 p224.CurveParams = &CurveParams{Name: "P-224"} 26 p224.P, _ = new(big.Int).SetString("26959946667150639794667015087019630673557916260026308143510066298881", 10) 27 p224.N, _ = new(big.Int).SetString("26959946667150639794667015087019625940457807714424391721682722368061", 10) 28 p224.B, _ = new(big.Int).SetString("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", 16) 29 p224.Gx, _ = new(big.Int).SetString("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", 16) 30 p224.Gy, _ = new(big.Int).SetString("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34", 16) 31 p224.BitSize = 224 32 33 p224FromBig(&p224.gx, p224.Gx) 34 p224FromBig(&p224.gy, p224.Gy) 35 p224FromBig(&p224.b, p224.B) 36 } 37 38 // P224 returns a Curve which implements P-224 (see FIPS 186-3, section D.2.2) 39 func P224() Curve { 40 initonce.Do(initAll) 41 return p224 42 } 43 44 func (curve p224Curve) Params() *CurveParams { 45 return curve.CurveParams 46 } 47 48 func (curve p224Curve) IsOnCurve(bigX, bigY *big.Int) bool { 49 var x, y p224FieldElement 50 p224FromBig(&x, bigX) 51 p224FromBig(&y, bigY) 52 53 // y = x - 3x + b 54 var tmp p224LargeFieldElement 55 var x3 p224FieldElement 56 p224Square(&x3, &x, &tmp) 57 p224Mul(&x3, &x3, &x, &tmp) 58 59 for i := 0; i < 8; i++ { 60 x[i] *= 3 61 } 62 p224Sub(&x3, &x3, &x) 63 p224Reduce(&x3) 64 p224Add(&x3, &x3, &curve.b) 65 p224Contract(&x3, &x3) 66 67 p224Square(&y, &y, &tmp) 68 p224Contract(&y, &y) 69 70 for i := 0; i < 8; i++ { 71 if y[i] != x3[i] { 72 return false 73 } 74 } 75 return true 76 } 77 78 func (p224Curve) Add(bigX1, bigY1, bigX2, bigY2 *big.Int) (x, y *big.Int) { 79 var x1, y1, z1, x2, y2, z2, x3, y3, z3 p224FieldElement 80 81 p224FromBig(&x1, bigX1) 82 p224FromBig(&y1, bigY1) 83 if bigX1.Sign() != 0 || bigY1.Sign() != 0 { 84 z1[0] = 1 85 } 86 p224FromBig(&x2, bigX2) 87 p224FromBig(&y2, bigY2) 88 if bigX2.Sign() != 0 || bigY2.Sign() != 0 { 89 z2[0] = 1 90 } 91 92 p224AddJacobian(&x3, &y3, &z3, &x1, &y1, &z1, &x2, &y2, &z2) 93 return p224ToAffine(&x3, &y3, &z3) 94 } 95 96 func (p224Curve) Double(bigX1, bigY1 *big.Int) (x, y *big.Int) { 97 var x1, y1, z1, x2, y2, z2 p224FieldElement 98 99 p224FromBig(&x1, bigX1) 100 p224FromBig(&y1, bigY1) 101 z1[0] = 1 102 103 p224DoubleJacobian(&x2, &y2, &z2, &x1, &y1, &z1) 104 return p224ToAffine(&x2, &y2, &z2) 105 } 106 107 func (p224Curve) ScalarMult(bigX1, bigY1 *big.Int, scalar []byte) (x, y *big.Int) { 108 var x1, y1, z1, x2, y2, z2 p224FieldElement 109 110 p224FromBig(&x1, bigX1) 111 p224FromBig(&y1, bigY1) 112 z1[0] = 1 113 114 p224ScalarMult(&x2, &y2, &z2, &x1, &y1, &z1, scalar) 115 return p224ToAffine(&x2, &y2, &z2) 116 } 117 118 func (curve p224Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) { 119 var z1, x2, y2, z2 p224FieldElement 120 121 z1[0] = 1 122 p224ScalarMult(&x2, &y2, &z2, &curve.gx, &curve.gy, &z1, scalar) 123 return p224ToAffine(&x2, &y2, &z2) 124 } 125 126 // Field element functions. 127 // 128 // The field that we're dealing with is /p where p = 2**224 - 2**96 + 1. 129 // 130 // Field elements are represented by a FieldElement, which is a typedef to an 131 // array of 8 uint32's. The value of a FieldElement, a, is: 132 // a[0] + 2**28a[1] + 2**56a[1] + ... + 2**196a[7] 133 // 134 // Using 28-bit limbs means that there's only 4 bits of headroom, which is less 135 // than we would really like. But it has the useful feature that we hit 2**224 136 // exactly, making the reflections during a reduce much nicer. 137 type p224FieldElement [8]uint32 138 139 // p224P is the order of the field, represented as a p224FieldElement. 140 var p224P = [8]uint32{1, 0, 0, 0xffff000, 0xfffffff, 0xfffffff, 0xfffffff, 0xfffffff} 141 142 // p224IsZero returns 1 if a == 0 mod p and 0 otherwise. 143 // 144 // a[i] < 2**29 145 func p224IsZero(a *p224FieldElement) uint32 { 146 // Since a p224FieldElement contains 224 bits there are two possible 147 // representations of 0: 0 and p. 148 var minimal p224FieldElement 149 p224Contract(&minimal, a) 150 151 var isZero, isP uint32 152 for i, v := range minimal { 153 isZero |= v 154 isP |= v - p224P[i] 155 } 156 157 // If either isZero or isP is 0, then we should return 1. 158 isZero |= isZero >> 16 159 isZero |= isZero >> 8 160 isZero |= isZero >> 4 161 isZero |= isZero >> 2 162 isZero |= isZero >> 1 163 164 isP |= isP >> 16 165 isP |= isP >> 8 166 isP |= isP >> 4 167 isP |= isP >> 2 168 isP |= isP >> 1 169 170 // For isZero and isP, the LSB is 0 iff all the bits are zero. 171 result := isZero & isP 172 result = (^result) & 1 173 174 return result 175 } 176 177 // p224Add computes *out = a+b 178 // 179 // a[i] + b[i] < 2**32 180 func p224Add(out, a, b *p224FieldElement) { 181 for i := 0; i < 8; i++ { 182 out[i] = a[i] + b[i] 183 } 184 } 185 186 const two31p3 = 1<<31 + 1<<3 187 const two31m3 = 1<<31 - 1<<3 188 const two31m15m3 = 1<<31 - 1<<15 - 1<<3 189 190 // p224ZeroModP31 is 0 mod p where bit 31 is set in all limbs so that we can 191 // subtract smaller amounts without underflow. See the section "Subtraction" in 192 // [1] for reasoning. 193 var p224ZeroModP31 = []uint32{two31p3, two31m3, two31m3, two31m15m3, two31m3, two31m3, two31m3, two31m3} 194 195 // p224Sub computes *out = a-b 196 // 197 // a[i], b[i] < 2**30 198 // out[i] < 2**32 199 func p224Sub(out, a, b *p224FieldElement) { 200 for i := 0; i < 8; i++ { 201 out[i] = a[i] + p224ZeroModP31[i] - b[i] 202 } 203 } 204 205 // LargeFieldElement also represents an element of the field. The limbs are 206 // still spaced 28-bits apart and in little-endian order. So the limbs are at 207 // 0, 28, 56, ..., 392 bits, each 64-bits wide. 208 type p224LargeFieldElement [15]uint64 209 210 const two63p35 = 1<<63 + 1<<35 211 const two63m35 = 1<<63 - 1<<35 212 const two63m35m19 = 1<<63 - 1<<35 - 1<<19 213 214 // p224ZeroModP63 is 0 mod p where bit 63 is set in all limbs. See the section 215 // "Subtraction" in [1] for why. 216 var p224ZeroModP63 = [8]uint64{two63p35, two63m35, two63m35, two63m35, two63m35m19, two63m35, two63m35, two63m35} 217 218 const bottom12Bits = 0xfff 219 const bottom28Bits = 0xfffffff 220 221 // p224Mul computes *out = a*b 222 // 223 // a[i] < 2**29, b[i] < 2**30 (or vice versa) 224 // out[i] < 2**29 225 func p224Mul(out, a, b *p224FieldElement, tmp *p224LargeFieldElement) { 226 for i := 0; i < 15; i++ { 227 tmp[i] = 0 228 } 229 230 for i := 0; i < 8; i++ { 231 for j := 0; j < 8; j++ { 232 tmp[i+j] += uint64(a[i]) * uint64(b[j]) 233 } 234 } 235 236 p224ReduceLarge(out, tmp) 237 } 238 239 // Square computes *out = a*a 240 // 241 // a[i] < 2**29 242 // out[i] < 2**29 243 func p224Square(out, a *p224FieldElement, tmp *p224LargeFieldElement) { 244 for i := 0; i < 15; i++ { 245 tmp[i] = 0 246 } 247 248 for i := 0; i < 8; i++ { 249 for j := 0; j <= i; j++ { 250 r := uint64(a[i]) * uint64(a[j]) 251 if i == j { 252 tmp[i+j] += r 253 } else { 254 tmp[i+j] += r << 1 255 } 256 } 257 } 258 259 p224ReduceLarge(out, tmp) 260 } 261 262 // ReduceLarge converts a p224LargeFieldElement to a p224FieldElement. 263 // 264 // in[i] < 2**62 265 func p224ReduceLarge(out *p224FieldElement, in *p224LargeFieldElement) { 266 for i := 0; i < 8; i++ { 267 in[i] += p224ZeroModP63[i] 268 } 269 270 // Eliminate the coefficients at 2**224 and greater. 271 for i := 14; i >= 8; i-- { 272 in[i-8] -= in[i] 273 in[i-5] += (in[i] & 0xffff) << 12 274 in[i-4] += in[i] >> 16 275 } 276 in[8] = 0 277 // in[0..8] < 2**64 278 279 // As the values become small enough, we start to store them in |out| 280 // and use 32-bit operations. 281 for i := 1; i < 8; i++ { 282 in[i+1] += in[i] >> 28 283 out[i] = uint32(in[i] & bottom28Bits) 284 } 285 in[0] -= in[8] 286 out[3] += uint32(in[8]&0xffff) << 12 287 out[4] += uint32(in[8] >> 16) 288 // in[0] < 2**64 289 // out[3] < 2**29 290 // out[4] < 2**29 291 // out[1,2,5..7] < 2**28 292 293 out[0] = uint32(in[0] & bottom28Bits) 294 out[1] += uint32((in[0] >> 28) & bottom28Bits) 295 out[2] += uint32(in[0] >> 56) 296 // out[0] < 2**28 297 // out[1..4] < 2**29 298 // out[5..7] < 2**28 299 } 300 301 // Reduce reduces the coefficients of a to smaller bounds. 302 // 303 // On entry: a[i] < 2**31 + 2**30 304 // On exit: a[i] < 2**29 305 func p224Reduce(a *p224FieldElement) { 306 for i := 0; i < 7; i++ { 307 a[i+1] += a[i] >> 28 308 a[i] &= bottom28Bits 309 } 310 top := a[7] >> 28 311 a[7] &= bottom28Bits 312 313 // top < 2**4 314 mask := top 315 mask |= mask >> 2 316 mask |= mask >> 1 317 mask <<= 31 318 mask = uint32(int32(mask) >> 31) 319 // Mask is all ones if top != 0, all zero otherwise 320 321 a[0] -= top 322 a[3] += top << 12 323 324 // We may have just made a[0] negative but, if we did, then we must 325 // have added something to a[3], this it's > 2**12. Therefore we can 326 // carry down to a[0]. 327 a[3] -= 1 & mask 328 a[2] += mask & (1<<28 - 1) 329 a[1] += mask & (1<<28 - 1) 330 a[0] += mask & (1 << 28) 331 } 332 333 // p224Invert calculates *out = in**-1 by computing in**(2**224 - 2**96 - 1), 334 // i.e. Fermat's little theorem. 335 func p224Invert(out, in *p224FieldElement) { 336 var f1, f2, f3, f4 p224FieldElement 337 var c p224LargeFieldElement 338 339 p224Square(&f1, in, &c) // 2 340 p224Mul(&f1, &f1, in, &c) // 2**2 - 1 341 p224Square(&f1, &f1, &c) // 2**3 - 2 342 p224Mul(&f1, &f1, in, &c) // 2**3 - 1 343 p224Square(&f2, &f1, &c) // 2**4 - 2 344 p224Square(&f2, &f2, &c) // 2**5 - 4 345 p224Square(&f2, &f2, &c) // 2**6 - 8 346 p224Mul(&f1, &f1, &f2, &c) // 2**6 - 1 347 p224Square(&f2, &f1, &c) // 2**7 - 2 348 for i := 0; i < 5; i++ { // 2**12 - 2**6 349 p224Square(&f2, &f2, &c) 350 } 351 p224Mul(&f2, &f2, &f1, &c) // 2**12 - 1 352 p224Square(&f3, &f2, &c) // 2**13 - 2 353 for i := 0; i < 11; i++ { // 2**24 - 2**12 354 p224Square(&f3, &f3, &c) 355 } 356 p224Mul(&f2, &f3, &f2, &c) // 2**24 - 1 357 p224Square(&f3, &f2, &c) // 2**25 - 2 358 for i := 0; i < 23; i++ { // 2**48 - 2**24 359 p224Square(&f3, &f3, &c) 360 } 361 p224Mul(&f3, &f3, &f2, &c) // 2**48 - 1 362 p224Square(&f4, &f3, &c) // 2**49 - 2 363 for i := 0; i < 47; i++ { // 2**96 - 2**48 364 p224Square(&f4, &f4, &c) 365 } 366 p224Mul(&f3, &f3, &f4, &c) // 2**96 - 1 367 p224Square(&f4, &f3, &c) // 2**97 - 2 368 for i := 0; i < 23; i++ { // 2**120 - 2**24 369 p224Square(&f4, &f4, &c) 370 } 371 p224Mul(&f2, &f4, &f2, &c) // 2**120 - 1 372 for i := 0; i < 6; i++ { // 2**126 - 2**6 373 p224Square(&f2, &f2, &c) 374 } 375 p224Mul(&f1, &f1, &f2, &c) // 2**126 - 1 376 p224Square(&f1, &f1, &c) // 2**127 - 2 377 p224Mul(&f1, &f1, in, &c) // 2**127 - 1 378 for i := 0; i < 97; i++ { // 2**224 - 2**97 379 p224Square(&f1, &f1, &c) 380 } 381 p224Mul(out, &f1, &f3, &c) // 2**224 - 2**96 - 1 382 } 383 384 // p224Contract converts a FieldElement to its unique, minimal form. 385 // 386 // On entry, in[i] < 2**29 387 // On exit, in[i] < 2**28 388 func p224Contract(out, in *p224FieldElement) { 389 copy(out[:], in[:]) 390 391 for i := 0; i < 7; i++ { 392 out[i+1] += out[i] >> 28 393 out[i] &= bottom28Bits 394 } 395 top := out[7] >> 28 396 out[7] &= bottom28Bits 397 398 out[0] -= top 399 out[3] += top << 12 400 401 // We may just have made out[i] negative. So we carry down. If we made 402 // out[0] negative then we know that out[3] is sufficiently positive 403 // because we just added to it. 404 for i := 0; i < 3; i++ { 405 mask := uint32(int32(out[i]) >> 31) 406 out[i] += (1 << 28) & mask 407 out[i+1] -= 1 & mask 408 } 409 410 // We might have pushed out[3] over 2**28 so we perform another, partial, 411 // carry chain. 412 for i := 3; i < 7; i++ { 413 out[i+1] += out[i] >> 28 414 out[i] &= bottom28Bits 415 } 416 top = out[7] >> 28 417 out[7] &= bottom28Bits 418 419 // Eliminate top while maintaining the same value mod p. 420 out[0] -= top 421 out[3] += top << 12 422 423 // There are two cases to consider for out[3]: 424 // 1) The first time that we eliminated top, we didn't push out[3] over 425 // 2**28. In this case, the partial carry chain didn't change any values 426 // and top is zero. 427 // 2) We did push out[3] over 2**28 the first time that we eliminated top. 428 // The first value of top was in [0..16), therefore, prior to eliminating 429 // the first top, 0xfff1000 <= out[3] <= 0xfffffff. Therefore, after 430 // overflowing and being reduced by the second carry chain, out[3] <= 431 // 0xf000. Thus it cannot have overflowed when we eliminated top for the 432 // second time. 433 434 // Again, we may just have made out[0] negative, so do the same carry down. 435 // As before, if we made out[0] negative then we know that out[3] is 436 // sufficiently positive. 437 for i := 0; i < 3; i++ { 438 mask := uint32(int32(out[i]) >> 31) 439 out[i] += (1 << 28) & mask 440 out[i+1] -= 1 & mask 441 } 442 443 // Now we see if the value is >= p and, if so, subtract p. 444 445 // First we build a mask from the top four limbs, which must all be 446 // equal to bottom28Bits if the whole value is >= p. If top4AllOnes 447 // ends up with any zero bits in the bottom 28 bits, then this wasn't 448 // true. 449 top4AllOnes := uint32(0xffffffff) 450 for i := 4; i < 8; i++ { 451 top4AllOnes &= out[i] 452 } 453 top4AllOnes |= 0xf0000000 454 // Now we replicate any zero bits to all the bits in top4AllOnes. 455 top4AllOnes &= top4AllOnes >> 16 456 top4AllOnes &= top4AllOnes >> 8 457 top4AllOnes &= top4AllOnes >> 4 458 top4AllOnes &= top4AllOnes >> 2 459 top4AllOnes &= top4AllOnes >> 1 460 top4AllOnes = uint32(int32(top4AllOnes<<31) >> 31) 461 462 // Now we test whether the bottom three limbs are non-zero. 463 bottom3NonZero := out[0] | out[1] | out[2] 464 bottom3NonZero |= bottom3NonZero >> 16 465 bottom3NonZero |= bottom3NonZero >> 8 466 bottom3NonZero |= bottom3NonZero >> 4 467 bottom3NonZero |= bottom3NonZero >> 2 468 bottom3NonZero |= bottom3NonZero >> 1 469 bottom3NonZero = uint32(int32(bottom3NonZero<<31) >> 31) 470 471 // Everything depends on the value of out[3]. 472 // If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p 473 // If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0, 474 // then the whole value is >= p 475 // If it's < 0xffff000, then the whole value is < p 476 n := out[3] - 0xffff000 477 out3Equal := n 478 out3Equal |= out3Equal >> 16 479 out3Equal |= out3Equal >> 8 480 out3Equal |= out3Equal >> 4 481 out3Equal |= out3Equal >> 2 482 out3Equal |= out3Equal >> 1 483 out3Equal = ^uint32(int32(out3Equal<<31) >> 31) 484 485 // If out[3] > 0xffff000 then n's MSB will be zero. 486 out3GT := ^uint32(int32(n) >> 31) 487 488 mask := top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT) 489 out[0] -= 1 & mask 490 out[3] -= 0xffff000 & mask 491 out[4] -= 0xfffffff & mask 492 out[5] -= 0xfffffff & mask 493 out[6] -= 0xfffffff & mask 494 out[7] -= 0xfffffff & mask 495 } 496 497 // Group element functions. 498 // 499 // These functions deal with group elements. The group is an elliptic curve 500 // group with a = -3 defined in FIPS 186-3, section D.2.2. 501 502 // p224AddJacobian computes *out = a+b where a != b. 503 func p224AddJacobian(x3, y3, z3, x1, y1, z1, x2, y2, z2 *p224FieldElement) { 504 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-p224Add-2007-bl 505 var z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v p224FieldElement 506 var c p224LargeFieldElement 507 508 z1IsZero := p224IsZero(z1) 509 z2IsZero := p224IsZero(z2) 510 511 // Z1Z1 = Z1 512 p224Square(&z1z1, z1, &c) 513 // Z2Z2 = Z2 514 p224Square(&z2z2, z2, &c) 515 // U1 = X1*Z2Z2 516 p224Mul(&u1, x1, &z2z2, &c) 517 // U2 = X2*Z1Z1 518 p224Mul(&u2, x2, &z1z1, &c) 519 // S1 = Y1*Z2*Z2Z2 520 p224Mul(&s1, z2, &z2z2, &c) 521 p224Mul(&s1, y1, &s1, &c) 522 // S2 = Y2*Z1*Z1Z1 523 p224Mul(&s2, z1, &z1z1, &c) 524 p224Mul(&s2, y2, &s2, &c) 525 // H = U2-U1 526 p224Sub(&h, &u2, &u1) 527 p224Reduce(&h) 528 xEqual := p224IsZero(&h) 529 // I = (2*H) 530 for j := 0; j < 8; j++ { 531 i[j] = h[j] << 1 532 } 533 p224Reduce(&i) 534 p224Square(&i, &i, &c) 535 // J = H*I 536 p224Mul(&j, &h, &i, &c) 537 // r = 2*(S2-S1) 538 p224Sub(&r, &s2, &s1) 539 p224Reduce(&r) 540 yEqual := p224IsZero(&r) 541 if xEqual == 1 && yEqual == 1 && z1IsZero == 0 && z2IsZero == 0 { 542 p224DoubleJacobian(x3, y3, z3, x1, y1, z1) 543 return 544 } 545 for i := 0; i < 8; i++ { 546 r[i] <<= 1 547 } 548 p224Reduce(&r) 549 // V = U1*I 550 p224Mul(&v, &u1, &i, &c) 551 // Z3 = ((Z1+Z2)-Z1Z1-Z2Z2)*H 552 p224Add(&z1z1, &z1z1, &z2z2) 553 p224Add(&z2z2, z1, z2) 554 p224Reduce(&z2z2) 555 p224Square(&z2z2, &z2z2, &c) 556 p224Sub(z3, &z2z2, &z1z1) 557 p224Reduce(z3) 558 p224Mul(z3, z3, &h, &c) 559 // X3 = r-J-2*V 560 for i := 0; i < 8; i++ { 561 z1z1[i] = v[i] << 1 562 } 563 p224Add(&z1z1, &j, &z1z1) 564 p224Reduce(&z1z1) 565 p224Square(x3, &r, &c) 566 p224Sub(x3, x3, &z1z1) 567 p224Reduce(x3) 568 // Y3 = r*(V-X3)-2*S1*J 569 for i := 0; i < 8; i++ { 570 s1[i] <<= 1 571 } 572 p224Mul(&s1, &s1, &j, &c) 573 p224Sub(&z1z1, &v, x3) 574 p224Reduce(&z1z1) 575 p224Mul(&z1z1, &z1z1, &r, &c) 576 p224Sub(y3, &z1z1, &s1) 577 p224Reduce(y3) 578 579 p224CopyConditional(x3, x2, z1IsZero) 580 p224CopyConditional(x3, x1, z2IsZero) 581 p224CopyConditional(y3, y2, z1IsZero) 582 p224CopyConditional(y3, y1, z2IsZero) 583 p224CopyConditional(z3, z2, z1IsZero) 584 p224CopyConditional(z3, z1, z2IsZero) 585 } 586 587 // p224DoubleJacobian computes *out = a+a. 588 func p224DoubleJacobian(x3, y3, z3, x1, y1, z1 *p224FieldElement) { 589 var delta, gamma, beta, alpha, t p224FieldElement 590 var c p224LargeFieldElement 591 592 p224Square(&delta, z1, &c) 593 p224Square(&gamma, y1, &c) 594 p224Mul(&beta, x1, &gamma, &c) 595 596 // alpha = 3*(X1-delta)*(X1+delta) 597 p224Add(&t, x1, &delta) 598 for i := 0; i < 8; i++ { 599 t[i] += t[i] << 1 600 } 601 p224Reduce(&t) 602 p224Sub(&alpha, x1, &delta) 603 p224Reduce(&alpha) 604 p224Mul(&alpha, &alpha, &t, &c) 605 606 // Z3 = (Y1+Z1)-gamma-delta 607 p224Add(z3, y1, z1) 608 p224Reduce(z3) 609 p224Square(z3, z3, &c) 610 p224Sub(z3, z3, &gamma) 611 p224Reduce(z3) 612 p224Sub(z3, z3, &delta) 613 p224Reduce(z3) 614 615 // X3 = alpha-8*beta 616 for i := 0; i < 8; i++ { 617 delta[i] = beta[i] << 3 618 } 619 p224Reduce(&delta) 620 p224Square(x3, &alpha, &c) 621 p224Sub(x3, x3, &delta) 622 p224Reduce(x3) 623 624 // Y3 = alpha*(4*beta-X3)-8*gamma 625 for i := 0; i < 8; i++ { 626 beta[i] <<= 2 627 } 628 p224Sub(&beta, &beta, x3) 629 p224Reduce(&beta) 630 p224Square(&gamma, &gamma, &c) 631 for i := 0; i < 8; i++ { 632 gamma[i] <<= 3 633 } 634 p224Reduce(&gamma) 635 p224Mul(y3, &alpha, &beta, &c) 636 p224Sub(y3, y3, &gamma) 637 p224Reduce(y3) 638 } 639 640 // p224CopyConditional sets *out = *in iff the least-significant-bit of control 641 // is true, and it runs in constant time. 642 func p224CopyConditional(out, in *p224FieldElement, control uint32) { 643 control <<= 31 644 control = uint32(int32(control) >> 31) 645 646 for i := 0; i < 8; i++ { 647 out[i] ^= (out[i] ^ in[i]) & control 648 } 649 } 650 651 func p224ScalarMult(outX, outY, outZ, inX, inY, inZ *p224FieldElement, scalar []byte) { 652 var xx, yy, zz p224FieldElement 653 for i := 0; i < 8; i++ { 654 outX[i] = 0 655 outY[i] = 0 656 outZ[i] = 0 657 } 658 659 for _, byte := range scalar { 660 for bitNum := uint(0); bitNum < 8; bitNum++ { 661 p224DoubleJacobian(outX, outY, outZ, outX, outY, outZ) 662 bit := uint32((byte >> (7 - bitNum)) & 1) 663 p224AddJacobian(&xx, &yy, &zz, inX, inY, inZ, outX, outY, outZ) 664 p224CopyConditional(outX, &xx, bit) 665 p224CopyConditional(outY, &yy, bit) 666 p224CopyConditional(outZ, &zz, bit) 667 } 668 } 669 } 670 671 // p224ToAffine converts from Jacobian to affine form. 672 func p224ToAffine(x, y, z *p224FieldElement) (*big.Int, *big.Int) { 673 var zinv, zinvsq, outx, outy p224FieldElement 674 var tmp p224LargeFieldElement 675 676 if isPointAtInfinity := p224IsZero(z); isPointAtInfinity == 1 { 677 return new(big.Int), new(big.Int) 678 } 679 680 p224Invert(&zinv, z) 681 p224Square(&zinvsq, &zinv, &tmp) 682 p224Mul(x, x, &zinvsq, &tmp) 683 p224Mul(&zinvsq, &zinvsq, &zinv, &tmp) 684 p224Mul(y, y, &zinvsq, &tmp) 685 686 p224Contract(&outx, x) 687 p224Contract(&outy, y) 688 return p224ToBig(&outx), p224ToBig(&outy) 689 } 690 691 // get28BitsFromEnd returns the least-significant 28 bits from buf>>shift, 692 // where buf is interpreted as a big-endian number. 693 func get28BitsFromEnd(buf []byte, shift uint) (uint32, []byte) { 694 var ret uint32 695 696 for i := uint(0); i < 4; i++ { 697 var b byte 698 if l := len(buf); l > 0 { 699 b = buf[l-1] 700 // We don't remove the byte if we're about to return and we're not 701 // reading all of it. 702 if i != 3 || shift == 4 { 703 buf = buf[:l-1] 704 } 705 } 706 ret |= uint32(b) << (8 * i) >> shift 707 } 708 ret &= bottom28Bits 709 return ret, buf 710 } 711 712 // p224FromBig sets *out = *in. 713 func p224FromBig(out *p224FieldElement, in *big.Int) { 714 bytes := in.Bytes() 715 out[0], bytes = get28BitsFromEnd(bytes, 0) 716 out[1], bytes = get28BitsFromEnd(bytes, 4) 717 out[2], bytes = get28BitsFromEnd(bytes, 0) 718 out[3], bytes = get28BitsFromEnd(bytes, 4) 719 out[4], bytes = get28BitsFromEnd(bytes, 0) 720 out[5], bytes = get28BitsFromEnd(bytes, 4) 721 out[6], bytes = get28BitsFromEnd(bytes, 0) 722 out[7], bytes = get28BitsFromEnd(bytes, 4) 723 } 724 725 // p224ToBig returns in as a big.Int. 726 func p224ToBig(in *p224FieldElement) *big.Int { 727 var buf [28]byte 728 buf[27] = byte(in[0]) 729 buf[26] = byte(in[0] >> 8) 730 buf[25] = byte(in[0] >> 16) 731 buf[24] = byte(((in[0] >> 24) & 0x0f) | (in[1]<<4)&0xf0) 732 733 buf[23] = byte(in[1] >> 4) 734 buf[22] = byte(in[1] >> 12) 735 buf[21] = byte(in[1] >> 20) 736 737 buf[20] = byte(in[2]) 738 buf[19] = byte(in[2] >> 8) 739 buf[18] = byte(in[2] >> 16) 740 buf[17] = byte(((in[2] >> 24) & 0x0f) | (in[3]<<4)&0xf0) 741 742 buf[16] = byte(in[3] >> 4) 743 buf[15] = byte(in[3] >> 12) 744 buf[14] = byte(in[3] >> 20) 745 746 buf[13] = byte(in[4]) 747 buf[12] = byte(in[4] >> 8) 748 buf[11] = byte(in[4] >> 16) 749 buf[10] = byte(((in[4] >> 24) & 0x0f) | (in[5]<<4)&0xf0) 750 751 buf[9] = byte(in[5] >> 4) 752 buf[8] = byte(in[5] >> 12) 753 buf[7] = byte(in[5] >> 20) 754 755 buf[6] = byte(in[6]) 756 buf[5] = byte(in[6] >> 8) 757 buf[4] = byte(in[6] >> 16) 758 buf[3] = byte(((in[6] >> 24) & 0x0f) | (in[7]<<4)&0xf0) 759 760 buf[2] = byte(in[7] >> 4) 761 buf[1] = byte(in[7] >> 12) 762 buf[0] = byte(in[7] >> 20) 763 764 return new(big.Int).SetBytes(buf[:]) 765 } 766