Home | History | Annotate | Download | only in rsa
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // Package rsa implements RSA encryption as specified in PKCS#1.
      6 package rsa
      7 
      8 import (
      9 	"crypto"
     10 	"crypto/rand"
     11 	"crypto/subtle"
     12 	"errors"
     13 	"hash"
     14 	"io"
     15 	"math/big"
     16 )
     17 
     18 var bigZero = big.NewInt(0)
     19 var bigOne = big.NewInt(1)
     20 
     21 // A PublicKey represents the public part of an RSA key.
     22 type PublicKey struct {
     23 	N *big.Int // modulus
     24 	E int      // public exponent
     25 }
     26 
     27 // OAEPOptions is an interface for passing options to OAEP decryption using the
     28 // crypto.Decrypter interface.
     29 type OAEPOptions struct {
     30 	// Hash is the hash function that will be used when generating the mask.
     31 	Hash crypto.Hash
     32 	// Label is an arbitrary byte string that must be equal to the value
     33 	// used when encrypting.
     34 	Label []byte
     35 }
     36 
     37 var (
     38 	errPublicModulus       = errors.New("crypto/rsa: missing public modulus")
     39 	errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small")
     40 	errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large")
     41 )
     42 
     43 // checkPub sanity checks the public key before we use it.
     44 // We require pub.E to fit into a 32-bit integer so that we
     45 // do not have different behavior depending on whether
     46 // int is 32 or 64 bits. See also
     47 // http://www.imperialviolet.org/2012/03/16/rsae.html.
     48 func checkPub(pub *PublicKey) error {
     49 	if pub.N == nil {
     50 		return errPublicModulus
     51 	}
     52 	if pub.E < 2 {
     53 		return errPublicExponentSmall
     54 	}
     55 	if pub.E > 1<<31-1 {
     56 		return errPublicExponentLarge
     57 	}
     58 	return nil
     59 }
     60 
     61 // A PrivateKey represents an RSA key
     62 type PrivateKey struct {
     63 	PublicKey            // public part.
     64 	D         *big.Int   // private exponent
     65 	Primes    []*big.Int // prime factors of N, has >= 2 elements.
     66 
     67 	// Precomputed contains precomputed values that speed up private
     68 	// operations, if available.
     69 	Precomputed PrecomputedValues
     70 }
     71 
     72 // Public returns the public key corresponding to priv.
     73 func (priv *PrivateKey) Public() crypto.PublicKey {
     74 	return &priv.PublicKey
     75 }
     76 
     77 // Sign signs msg with priv, reading randomness from rand. If opts is a
     78 // *PSSOptions then the PSS algorithm will be used, otherwise PKCS#1 v1.5 will
     79 // be used. This method is intended to support keys where the private part is
     80 // kept in, for example, a hardware module. Common uses should use the Sign*
     81 // functions in this package.
     82 func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) {
     83 	if pssOpts, ok := opts.(*PSSOptions); ok {
     84 		return SignPSS(rand, priv, pssOpts.Hash, msg, pssOpts)
     85 	}
     86 
     87 	return SignPKCS1v15(rand, priv, opts.HashFunc(), msg)
     88 }
     89 
     90 // Decrypt decrypts ciphertext with priv. If opts is nil or of type
     91 // *PKCS1v15DecryptOptions then PKCS#1 v1.5 decryption is performed. Otherwise
     92 // opts must have type *OAEPOptions and OAEP decryption is done.
     93 func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) {
     94 	if opts == nil {
     95 		return DecryptPKCS1v15(rand, priv, ciphertext)
     96 	}
     97 
     98 	switch opts := opts.(type) {
     99 	case *OAEPOptions:
    100 		return DecryptOAEP(opts.Hash.New(), rand, priv, ciphertext, opts.Label)
    101 
    102 	case *PKCS1v15DecryptOptions:
    103 		if l := opts.SessionKeyLen; l > 0 {
    104 			plaintext = make([]byte, l)
    105 			if _, err := io.ReadFull(rand, plaintext); err != nil {
    106 				return nil, err
    107 			}
    108 			if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil {
    109 				return nil, err
    110 			}
    111 			return plaintext, nil
    112 		} else {
    113 			return DecryptPKCS1v15(rand, priv, ciphertext)
    114 		}
    115 
    116 	default:
    117 		return nil, errors.New("crypto/rsa: invalid options for Decrypt")
    118 	}
    119 }
    120 
    121 type PrecomputedValues struct {
    122 	Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
    123 	Qinv   *big.Int // Q^-1 mod P
    124 
    125 	// CRTValues is used for the 3rd and subsequent primes. Due to a
    126 	// historical accident, the CRT for the first two primes is handled
    127 	// differently in PKCS#1 and interoperability is sufficiently
    128 	// important that we mirror this.
    129 	CRTValues []CRTValue
    130 }
    131 
    132 // CRTValue contains the precomputed Chinese remainder theorem values.
    133 type CRTValue struct {
    134 	Exp   *big.Int // D mod (prime-1).
    135 	Coeff *big.Int // RCoeff  1 mod Prime.
    136 	R     *big.Int // product of primes prior to this (inc p and q).
    137 }
    138 
    139 // Validate performs basic sanity checks on the key.
    140 // It returns nil if the key is valid, or else an error describing a problem.
    141 func (priv *PrivateKey) Validate() error {
    142 	if err := checkPub(&priv.PublicKey); err != nil {
    143 		return err
    144 	}
    145 
    146 	// Check that primes == n.
    147 	modulus := new(big.Int).Set(bigOne)
    148 	for _, prime := range priv.Primes {
    149 		// Any primes  1 will cause divide-by-zero panics later.
    150 		if prime.Cmp(bigOne) <= 0 {
    151 			return errors.New("crypto/rsa: invalid prime value")
    152 		}
    153 		modulus.Mul(modulus, prime)
    154 	}
    155 	if modulus.Cmp(priv.N) != 0 {
    156 		return errors.New("crypto/rsa: invalid modulus")
    157 	}
    158 
    159 	// Check that de  1 mod p-1, for each prime.
    160 	// This implies that e is coprime to each p-1 as e has a multiplicative
    161 	// inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
    162 	// exponent(/n). It also implies that a^de  a mod p as a^(p-1)  1
    163 	// mod p. Thus a^de  a mod n for all a coprime to n, as required.
    164 	congruence := new(big.Int)
    165 	de := new(big.Int).SetInt64(int64(priv.E))
    166 	de.Mul(de, priv.D)
    167 	for _, prime := range priv.Primes {
    168 		pminus1 := new(big.Int).Sub(prime, bigOne)
    169 		congruence.Mod(de, pminus1)
    170 		if congruence.Cmp(bigOne) != 0 {
    171 			return errors.New("crypto/rsa: invalid exponents")
    172 		}
    173 	}
    174 	return nil
    175 }
    176 
    177 // GenerateKey generates an RSA keypair of the given bit size using the
    178 // random source random (for example, crypto/rand.Reader).
    179 func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err error) {
    180 	return GenerateMultiPrimeKey(random, 2, bits)
    181 }
    182 
    183 // GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
    184 // size and the given random source, as suggested in [1]. Although the public
    185 // keys are compatible (actually, indistinguishable) from the 2-prime case,
    186 // the private keys are not. Thus it may not be possible to export multi-prime
    187 // private keys in certain formats or to subsequently import them into other
    188 // code.
    189 //
    190 // Table 1 in [2] suggests maximum numbers of primes for a given size.
    191 //
    192 // [1] US patent 4405829 (1972, expired)
    193 // [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
    194 func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (priv *PrivateKey, err error) {
    195 	priv = new(PrivateKey)
    196 	priv.E = 65537
    197 
    198 	if nprimes < 2 {
    199 		return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2")
    200 	}
    201 
    202 	primes := make([]*big.Int, nprimes)
    203 
    204 NextSetOfPrimes:
    205 	for {
    206 		todo := bits
    207 		// crypto/rand should set the top two bits in each prime.
    208 		// Thus each prime has the form
    209 		//   p_i = 2^bitlen(p_i)  0.11... (in base 2).
    210 		// And the product is:
    211 		//   P = 2^todo  
    212 		// where  is the product of nprimes numbers of the form 0.11...
    213 		//
    214 		// If  < 1/2 (which can happen for nprimes > 2), we need to
    215 		// shift todo to compensate for lost bits: the mean value of 0.11...
    216 		// is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2
    217 		// will give good results.
    218 		if nprimes >= 7 {
    219 			todo += (nprimes - 2) / 5
    220 		}
    221 		for i := 0; i < nprimes; i++ {
    222 			primes[i], err = rand.Prime(random, todo/(nprimes-i))
    223 			if err != nil {
    224 				return nil, err
    225 			}
    226 			todo -= primes[i].BitLen()
    227 		}
    228 
    229 		// Make sure that primes is pairwise unequal.
    230 		for i, prime := range primes {
    231 			for j := 0; j < i; j++ {
    232 				if prime.Cmp(primes[j]) == 0 {
    233 					continue NextSetOfPrimes
    234 				}
    235 			}
    236 		}
    237 
    238 		n := new(big.Int).Set(bigOne)
    239 		totient := new(big.Int).Set(bigOne)
    240 		pminus1 := new(big.Int)
    241 		for _, prime := range primes {
    242 			n.Mul(n, prime)
    243 			pminus1.Sub(prime, bigOne)
    244 			totient.Mul(totient, pminus1)
    245 		}
    246 		if n.BitLen() != bits {
    247 			// This should never happen for nprimes == 2 because
    248 			// crypto/rand should set the top two bits in each prime.
    249 			// For nprimes > 2 we hope it does not happen often.
    250 			continue NextSetOfPrimes
    251 		}
    252 
    253 		g := new(big.Int)
    254 		priv.D = new(big.Int)
    255 		y := new(big.Int)
    256 		e := big.NewInt(int64(priv.E))
    257 		g.GCD(priv.D, y, e, totient)
    258 
    259 		if g.Cmp(bigOne) == 0 {
    260 			if priv.D.Sign() < 0 {
    261 				priv.D.Add(priv.D, totient)
    262 			}
    263 			priv.Primes = primes
    264 			priv.N = n
    265 
    266 			break
    267 		}
    268 	}
    269 
    270 	priv.Precompute()
    271 	return
    272 }
    273 
    274 // incCounter increments a four byte, big-endian counter.
    275 func incCounter(c *[4]byte) {
    276 	if c[3]++; c[3] != 0 {
    277 		return
    278 	}
    279 	if c[2]++; c[2] != 0 {
    280 		return
    281 	}
    282 	if c[1]++; c[1] != 0 {
    283 		return
    284 	}
    285 	c[0]++
    286 }
    287 
    288 // mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
    289 // specified in PKCS#1 v2.1.
    290 func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
    291 	var counter [4]byte
    292 	var digest []byte
    293 
    294 	done := 0
    295 	for done < len(out) {
    296 		hash.Write(seed)
    297 		hash.Write(counter[0:4])
    298 		digest = hash.Sum(digest[:0])
    299 		hash.Reset()
    300 
    301 		for i := 0; i < len(digest) && done < len(out); i++ {
    302 			out[done] ^= digest[i]
    303 			done++
    304 		}
    305 		incCounter(&counter)
    306 	}
    307 }
    308 
    309 // ErrMessageTooLong is returned when attempting to encrypt a message which is
    310 // too large for the size of the public key.
    311 var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")
    312 
    313 func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
    314 	e := big.NewInt(int64(pub.E))
    315 	c.Exp(m, e, pub.N)
    316 	return c
    317 }
    318 
    319 // EncryptOAEP encrypts the given message with RSA-OAEP.
    320 // The message must be no longer than the length of the public modulus less
    321 // twice the hash length plus 2.
    322 func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err error) {
    323 	if err := checkPub(pub); err != nil {
    324 		return nil, err
    325 	}
    326 	hash.Reset()
    327 	k := (pub.N.BitLen() + 7) / 8
    328 	if len(msg) > k-2*hash.Size()-2 {
    329 		err = ErrMessageTooLong
    330 		return
    331 	}
    332 
    333 	hash.Write(label)
    334 	lHash := hash.Sum(nil)
    335 	hash.Reset()
    336 
    337 	em := make([]byte, k)
    338 	seed := em[1 : 1+hash.Size()]
    339 	db := em[1+hash.Size():]
    340 
    341 	copy(db[0:hash.Size()], lHash)
    342 	db[len(db)-len(msg)-1] = 1
    343 	copy(db[len(db)-len(msg):], msg)
    344 
    345 	_, err = io.ReadFull(random, seed)
    346 	if err != nil {
    347 		return
    348 	}
    349 
    350 	mgf1XOR(db, hash, seed)
    351 	mgf1XOR(seed, hash, db)
    352 
    353 	m := new(big.Int)
    354 	m.SetBytes(em)
    355 	c := encrypt(new(big.Int), pub, m)
    356 	out = c.Bytes()
    357 
    358 	if len(out) < k {
    359 		// If the output is too small, we need to left-pad with zeros.
    360 		t := make([]byte, k)
    361 		copy(t[k-len(out):], out)
    362 		out = t
    363 	}
    364 
    365 	return
    366 }
    367 
    368 // ErrDecryption represents a failure to decrypt a message.
    369 // It is deliberately vague to avoid adaptive attacks.
    370 var ErrDecryption = errors.New("crypto/rsa: decryption error")
    371 
    372 // ErrVerification represents a failure to verify a signature.
    373 // It is deliberately vague to avoid adaptive attacks.
    374 var ErrVerification = errors.New("crypto/rsa: verification error")
    375 
    376 // modInverse returns ia, the inverse of a in the multiplicative group of prime
    377 // order n. It requires that a be a member of the group (i.e. less than n).
    378 func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
    379 	g := new(big.Int)
    380 	x := new(big.Int)
    381 	y := new(big.Int)
    382 	g.GCD(x, y, a, n)
    383 	if g.Cmp(bigOne) != 0 {
    384 		// In this case, a and n aren't coprime and we cannot calculate
    385 		// the inverse. This happens because the values of n are nearly
    386 		// prime (being the product of two primes) rather than truly
    387 		// prime.
    388 		return
    389 	}
    390 
    391 	if x.Cmp(bigOne) < 0 {
    392 		// 0 is not the multiplicative inverse of any element so, if x
    393 		// < 1, then x is negative.
    394 		x.Add(x, n)
    395 	}
    396 
    397 	return x, true
    398 }
    399 
    400 // Precompute performs some calculations that speed up private key operations
    401 // in the future.
    402 func (priv *PrivateKey) Precompute() {
    403 	if priv.Precomputed.Dp != nil {
    404 		return
    405 	}
    406 
    407 	priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
    408 	priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
    409 
    410 	priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
    411 	priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
    412 
    413 	priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
    414 
    415 	r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
    416 	priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
    417 	for i := 2; i < len(priv.Primes); i++ {
    418 		prime := priv.Primes[i]
    419 		values := &priv.Precomputed.CRTValues[i-2]
    420 
    421 		values.Exp = new(big.Int).Sub(prime, bigOne)
    422 		values.Exp.Mod(priv.D, values.Exp)
    423 
    424 		values.R = new(big.Int).Set(r)
    425 		values.Coeff = new(big.Int).ModInverse(r, prime)
    426 
    427 		r.Mul(r, prime)
    428 	}
    429 }
    430 
    431 // decrypt performs an RSA decryption, resulting in a plaintext integer. If a
    432 // random source is given, RSA blinding is used.
    433 func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
    434 	// TODO(agl): can we get away with reusing blinds?
    435 	if c.Cmp(priv.N) > 0 {
    436 		err = ErrDecryption
    437 		return
    438 	}
    439 
    440 	var ir *big.Int
    441 	if random != nil {
    442 		// Blinding enabled. Blinding involves multiplying c by r^e.
    443 		// Then the decryption operation performs (m^e * r^e)^d mod n
    444 		// which equals mr mod n. The factor of r can then be removed
    445 		// by multiplying by the multiplicative inverse of r.
    446 
    447 		var r *big.Int
    448 
    449 		for {
    450 			r, err = rand.Int(random, priv.N)
    451 			if err != nil {
    452 				return
    453 			}
    454 			if r.Cmp(bigZero) == 0 {
    455 				r = bigOne
    456 			}
    457 			var ok bool
    458 			ir, ok = modInverse(r, priv.N)
    459 			if ok {
    460 				break
    461 			}
    462 		}
    463 		bigE := big.NewInt(int64(priv.E))
    464 		rpowe := new(big.Int).Exp(r, bigE, priv.N)
    465 		cCopy := new(big.Int).Set(c)
    466 		cCopy.Mul(cCopy, rpowe)
    467 		cCopy.Mod(cCopy, priv.N)
    468 		c = cCopy
    469 	}
    470 
    471 	if priv.Precomputed.Dp == nil {
    472 		m = new(big.Int).Exp(c, priv.D, priv.N)
    473 	} else {
    474 		// We have the precalculated values needed for the CRT.
    475 		m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
    476 		m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
    477 		m.Sub(m, m2)
    478 		if m.Sign() < 0 {
    479 			m.Add(m, priv.Primes[0])
    480 		}
    481 		m.Mul(m, priv.Precomputed.Qinv)
    482 		m.Mod(m, priv.Primes[0])
    483 		m.Mul(m, priv.Primes[1])
    484 		m.Add(m, m2)
    485 
    486 		for i, values := range priv.Precomputed.CRTValues {
    487 			prime := priv.Primes[2+i]
    488 			m2.Exp(c, values.Exp, prime)
    489 			m2.Sub(m2, m)
    490 			m2.Mul(m2, values.Coeff)
    491 			m2.Mod(m2, prime)
    492 			if m2.Sign() < 0 {
    493 				m2.Add(m2, prime)
    494 			}
    495 			m2.Mul(m2, values.R)
    496 			m.Add(m, m2)
    497 		}
    498 	}
    499 
    500 	if ir != nil {
    501 		// Unblind.
    502 		m.Mul(m, ir)
    503 		m.Mod(m, priv.N)
    504 	}
    505 
    506 	return
    507 }
    508 
    509 // DecryptOAEP decrypts ciphertext using RSA-OAEP.
    510 // If random != nil, DecryptOAEP uses RSA blinding to avoid timing side-channel attacks.
    511 func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err error) {
    512 	if err := checkPub(&priv.PublicKey); err != nil {
    513 		return nil, err
    514 	}
    515 	k := (priv.N.BitLen() + 7) / 8
    516 	if len(ciphertext) > k ||
    517 		k < hash.Size()*2+2 {
    518 		err = ErrDecryption
    519 		return
    520 	}
    521 
    522 	c := new(big.Int).SetBytes(ciphertext)
    523 
    524 	m, err := decrypt(random, priv, c)
    525 	if err != nil {
    526 		return
    527 	}
    528 
    529 	hash.Write(label)
    530 	lHash := hash.Sum(nil)
    531 	hash.Reset()
    532 
    533 	// Converting the plaintext number to bytes will strip any
    534 	// leading zeros so we may have to left pad. We do this unconditionally
    535 	// to avoid leaking timing information. (Although we still probably
    536 	// leak the number of leading zeros. It's not clear that we can do
    537 	// anything about this.)
    538 	em := leftPad(m.Bytes(), k)
    539 
    540 	firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
    541 
    542 	seed := em[1 : hash.Size()+1]
    543 	db := em[hash.Size()+1:]
    544 
    545 	mgf1XOR(seed, hash, db)
    546 	mgf1XOR(db, hash, seed)
    547 
    548 	lHash2 := db[0:hash.Size()]
    549 
    550 	// We have to validate the plaintext in constant time in order to avoid
    551 	// attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
    552 	// Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
    553 	// v2.0. In J. Kilian, editor, Advances in Cryptology.
    554 	lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
    555 
    556 	// The remainder of the plaintext must be zero or more 0x00, followed
    557 	// by 0x01, followed by the message.
    558 	//   lookingForIndex: 1 iff we are still looking for the 0x01
    559 	//   index: the offset of the first 0x01 byte
    560 	//   invalid: 1 iff we saw a non-zero byte before the 0x01.
    561 	var lookingForIndex, index, invalid int
    562 	lookingForIndex = 1
    563 	rest := db[hash.Size():]
    564 
    565 	for i := 0; i < len(rest); i++ {
    566 		equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
    567 		equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
    568 		index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
    569 		lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
    570 		invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
    571 	}
    572 
    573 	if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
    574 		err = ErrDecryption
    575 		return
    576 	}
    577 
    578 	msg = rest[index+1:]
    579 	return
    580 }
    581 
    582 // leftPad returns a new slice of length size. The contents of input are right
    583 // aligned in the new slice.
    584 func leftPad(input []byte, size int) (out []byte) {
    585 	n := len(input)
    586 	if n > size {
    587 		n = size
    588 	}
    589 	out = make([]byte, size)
    590 	copy(out[len(out)-n:], input)
    591 	return
    592 }
    593