1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package json implements encoding and decoding of JSON objects as defined in 6 // RFC 4627. The mapping between JSON objects and Go values is described 7 // in the documentation for the Marshal and Unmarshal functions. 8 // 9 // See "JSON and Go" for an introduction to this package: 10 // https://golang.org/doc/articles/json_and_go.html 11 package json 12 13 import ( 14 "bytes" 15 "encoding" 16 "encoding/base64" 17 "math" 18 "reflect" 19 "runtime" 20 "sort" 21 "strconv" 22 "strings" 23 "sync" 24 "unicode" 25 "unicode/utf8" 26 ) 27 28 // Marshal returns the JSON encoding of v. 29 // 30 // Marshal traverses the value v recursively. 31 // If an encountered value implements the Marshaler interface 32 // and is not a nil pointer, Marshal calls its MarshalJSON method 33 // to produce JSON. The nil pointer exception is not strictly necessary 34 // but mimics a similar, necessary exception in the behavior of 35 // UnmarshalJSON. 36 // 37 // Otherwise, Marshal uses the following type-dependent default encodings: 38 // 39 // Boolean values encode as JSON booleans. 40 // 41 // Floating point, integer, and Number values encode as JSON numbers. 42 // 43 // String values encode as JSON strings coerced to valid UTF-8, 44 // replacing invalid bytes with the Unicode replacement rune. 45 // The angle brackets "<" and ">" are escaped to "\u003c" and "\u003e" 46 // to keep some browsers from misinterpreting JSON output as HTML. 47 // Ampersand "&" is also escaped to "\u0026" for the same reason. 48 // 49 // Array and slice values encode as JSON arrays, except that 50 // []byte encodes as a base64-encoded string, and a nil slice 51 // encodes as the null JSON object. 52 // 53 // Struct values encode as JSON objects. Each exported struct field 54 // becomes a member of the object unless 55 // - the field's tag is "-", or 56 // - the field is empty and its tag specifies the "omitempty" option. 57 // The empty values are false, 0, any 58 // nil pointer or interface value, and any array, slice, map, or string of 59 // length zero. The object's default key string is the struct field name 60 // but can be specified in the struct field's tag value. The "json" key in 61 // the struct field's tag value is the key name, followed by an optional comma 62 // and options. Examples: 63 // 64 // // Field is ignored by this package. 65 // Field int `json:"-"` 66 // 67 // // Field appears in JSON as key "myName". 68 // Field int `json:"myName"` 69 // 70 // // Field appears in JSON as key "myName" and 71 // // the field is omitted from the object if its value is empty, 72 // // as defined above. 73 // Field int `json:"myName,omitempty"` 74 // 75 // // Field appears in JSON as key "Field" (the default), but 76 // // the field is skipped if empty. 77 // // Note the leading comma. 78 // Field int `json:",omitempty"` 79 // 80 // The "string" option signals that a field is stored as JSON inside a 81 // JSON-encoded string. It applies only to fields of string, floating point, 82 // integer, or boolean types. This extra level of encoding is sometimes used 83 // when communicating with JavaScript programs: 84 // 85 // Int64String int64 `json:",string"` 86 // 87 // The key name will be used if it's a non-empty string consisting of 88 // only Unicode letters, digits, dollar signs, percent signs, hyphens, 89 // underscores and slashes. 90 // 91 // Anonymous struct fields are usually marshaled as if their inner exported fields 92 // were fields in the outer struct, subject to the usual Go visibility rules amended 93 // as described in the next paragraph. 94 // An anonymous struct field with a name given in its JSON tag is treated as 95 // having that name, rather than being anonymous. 96 // An anonymous struct field of interface type is treated the same as having 97 // that type as its name, rather than being anonymous. 98 // 99 // The Go visibility rules for struct fields are amended for JSON when 100 // deciding which field to marshal or unmarshal. If there are 101 // multiple fields at the same level, and that level is the least 102 // nested (and would therefore be the nesting level selected by the 103 // usual Go rules), the following extra rules apply: 104 // 105 // 1) Of those fields, if any are JSON-tagged, only tagged fields are considered, 106 // even if there are multiple untagged fields that would otherwise conflict. 107 // 2) If there is exactly one field (tagged or not according to the first rule), that is selected. 108 // 3) Otherwise there are multiple fields, and all are ignored; no error occurs. 109 // 110 // Handling of anonymous struct fields is new in Go 1.1. 111 // Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of 112 // an anonymous struct field in both current and earlier versions, give the field 113 // a JSON tag of "-". 114 // 115 // Map values encode as JSON objects. 116 // The map's key type must be string; the map keys are used as JSON object 117 // keys, subject to the UTF-8 coercion described for string values above. 118 // 119 // Pointer values encode as the value pointed to. 120 // A nil pointer encodes as the null JSON object. 121 // 122 // Interface values encode as the value contained in the interface. 123 // A nil interface value encodes as the null JSON object. 124 // 125 // Channel, complex, and function values cannot be encoded in JSON. 126 // Attempting to encode such a value causes Marshal to return 127 // an UnsupportedTypeError. 128 // 129 // JSON cannot represent cyclic data structures and Marshal does not 130 // handle them. Passing cyclic structures to Marshal will result in 131 // an infinite recursion. 132 // 133 func Marshal(v interface{}) ([]byte, error) { 134 e := &encodeState{} 135 err := e.marshal(v) 136 if err != nil { 137 return nil, err 138 } 139 return e.Bytes(), nil 140 } 141 142 // MarshalIndent is like Marshal but applies Indent to format the output. 143 func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) { 144 b, err := Marshal(v) 145 if err != nil { 146 return nil, err 147 } 148 var buf bytes.Buffer 149 err = Indent(&buf, b, prefix, indent) 150 if err != nil { 151 return nil, err 152 } 153 return buf.Bytes(), nil 154 } 155 156 // HTMLEscape appends to dst the JSON-encoded src with <, >, &, U+2028 and U+2029 157 // characters inside string literals changed to \u003c, \u003e, \u0026, \u2028, \u2029 158 // so that the JSON will be safe to embed inside HTML <script> tags. 159 // For historical reasons, web browsers don't honor standard HTML 160 // escaping within <script> tags, so an alternative JSON encoding must 161 // be used. 162 func HTMLEscape(dst *bytes.Buffer, src []byte) { 163 // The characters can only appear in string literals, 164 // so just scan the string one byte at a time. 165 start := 0 166 for i, c := range src { 167 if c == '<' || c == '>' || c == '&' { 168 if start < i { 169 dst.Write(src[start:i]) 170 } 171 dst.WriteString(`\u00`) 172 dst.WriteByte(hex[c>>4]) 173 dst.WriteByte(hex[c&0xF]) 174 start = i + 1 175 } 176 // Convert U+2028 and U+2029 (E2 80 A8 and E2 80 A9). 177 if c == 0xE2 && i+2 < len(src) && src[i+1] == 0x80 && src[i+2]&^1 == 0xA8 { 178 if start < i { 179 dst.Write(src[start:i]) 180 } 181 dst.WriteString(`\u202`) 182 dst.WriteByte(hex[src[i+2]&0xF]) 183 start = i + 3 184 } 185 } 186 if start < len(src) { 187 dst.Write(src[start:]) 188 } 189 } 190 191 // Marshaler is the interface implemented by objects that 192 // can marshal themselves into valid JSON. 193 type Marshaler interface { 194 MarshalJSON() ([]byte, error) 195 } 196 197 // An UnsupportedTypeError is returned by Marshal when attempting 198 // to encode an unsupported value type. 199 type UnsupportedTypeError struct { 200 Type reflect.Type 201 } 202 203 func (e *UnsupportedTypeError) Error() string { 204 return "json: unsupported type: " + e.Type.String() 205 } 206 207 type UnsupportedValueError struct { 208 Value reflect.Value 209 Str string 210 } 211 212 func (e *UnsupportedValueError) Error() string { 213 return "json: unsupported value: " + e.Str 214 } 215 216 // Before Go 1.2, an InvalidUTF8Error was returned by Marshal when 217 // attempting to encode a string value with invalid UTF-8 sequences. 218 // As of Go 1.2, Marshal instead coerces the string to valid UTF-8 by 219 // replacing invalid bytes with the Unicode replacement rune U+FFFD. 220 // This error is no longer generated but is kept for backwards compatibility 221 // with programs that might mention it. 222 type InvalidUTF8Error struct { 223 S string // the whole string value that caused the error 224 } 225 226 func (e *InvalidUTF8Error) Error() string { 227 return "json: invalid UTF-8 in string: " + strconv.Quote(e.S) 228 } 229 230 type MarshalerError struct { 231 Type reflect.Type 232 Err error 233 } 234 235 func (e *MarshalerError) Error() string { 236 return "json: error calling MarshalJSON for type " + e.Type.String() + ": " + e.Err.Error() 237 } 238 239 var hex = "0123456789abcdef" 240 241 // An encodeState encodes JSON into a bytes.Buffer. 242 type encodeState struct { 243 bytes.Buffer // accumulated output 244 scratch [64]byte 245 } 246 247 var encodeStatePool sync.Pool 248 249 func newEncodeState() *encodeState { 250 if v := encodeStatePool.Get(); v != nil { 251 e := v.(*encodeState) 252 e.Reset() 253 return e 254 } 255 return new(encodeState) 256 } 257 258 func (e *encodeState) marshal(v interface{}) (err error) { 259 defer func() { 260 if r := recover(); r != nil { 261 if _, ok := r.(runtime.Error); ok { 262 panic(r) 263 } 264 if s, ok := r.(string); ok { 265 panic(s) 266 } 267 err = r.(error) 268 } 269 }() 270 e.reflectValue(reflect.ValueOf(v)) 271 return nil 272 } 273 274 func (e *encodeState) error(err error) { 275 panic(err) 276 } 277 278 func isEmptyValue(v reflect.Value) bool { 279 switch v.Kind() { 280 case reflect.Array, reflect.Map, reflect.Slice, reflect.String: 281 return v.Len() == 0 282 case reflect.Bool: 283 return !v.Bool() 284 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 285 return v.Int() == 0 286 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 287 return v.Uint() == 0 288 case reflect.Float32, reflect.Float64: 289 return v.Float() == 0 290 case reflect.Interface, reflect.Ptr: 291 return v.IsNil() 292 } 293 return false 294 } 295 296 func (e *encodeState) reflectValue(v reflect.Value) { 297 valueEncoder(v)(e, v, false) 298 } 299 300 type encoderFunc func(e *encodeState, v reflect.Value, quoted bool) 301 302 var encoderCache struct { 303 sync.RWMutex 304 m map[reflect.Type]encoderFunc 305 } 306 307 func valueEncoder(v reflect.Value) encoderFunc { 308 if !v.IsValid() { 309 return invalidValueEncoder 310 } 311 return typeEncoder(v.Type()) 312 } 313 314 func typeEncoder(t reflect.Type) encoderFunc { 315 encoderCache.RLock() 316 f := encoderCache.m[t] 317 encoderCache.RUnlock() 318 if f != nil { 319 return f 320 } 321 322 // To deal with recursive types, populate the map with an 323 // indirect func before we build it. This type waits on the 324 // real func (f) to be ready and then calls it. This indirect 325 // func is only used for recursive types. 326 encoderCache.Lock() 327 if encoderCache.m == nil { 328 encoderCache.m = make(map[reflect.Type]encoderFunc) 329 } 330 var wg sync.WaitGroup 331 wg.Add(1) 332 encoderCache.m[t] = func(e *encodeState, v reflect.Value, quoted bool) { 333 wg.Wait() 334 f(e, v, quoted) 335 } 336 encoderCache.Unlock() 337 338 // Compute fields without lock. 339 // Might duplicate effort but won't hold other computations back. 340 f = newTypeEncoder(t, true) 341 wg.Done() 342 encoderCache.Lock() 343 encoderCache.m[t] = f 344 encoderCache.Unlock() 345 return f 346 } 347 348 var ( 349 marshalerType = reflect.TypeOf(new(Marshaler)).Elem() 350 textMarshalerType = reflect.TypeOf(new(encoding.TextMarshaler)).Elem() 351 ) 352 353 // newTypeEncoder constructs an encoderFunc for a type. 354 // The returned encoder only checks CanAddr when allowAddr is true. 355 func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc { 356 if t.Implements(marshalerType) { 357 return marshalerEncoder 358 } 359 if t.Kind() != reflect.Ptr && allowAddr { 360 if reflect.PtrTo(t).Implements(marshalerType) { 361 return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false)) 362 } 363 } 364 365 if t.Implements(textMarshalerType) { 366 return textMarshalerEncoder 367 } 368 if t.Kind() != reflect.Ptr && allowAddr { 369 if reflect.PtrTo(t).Implements(textMarshalerType) { 370 return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false)) 371 } 372 } 373 374 switch t.Kind() { 375 case reflect.Bool: 376 return boolEncoder 377 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 378 return intEncoder 379 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 380 return uintEncoder 381 case reflect.Float32: 382 return float32Encoder 383 case reflect.Float64: 384 return float64Encoder 385 case reflect.String: 386 return stringEncoder 387 case reflect.Interface: 388 return interfaceEncoder 389 case reflect.Struct: 390 return newStructEncoder(t) 391 case reflect.Map: 392 return newMapEncoder(t) 393 case reflect.Slice: 394 return newSliceEncoder(t) 395 case reflect.Array: 396 return newArrayEncoder(t) 397 case reflect.Ptr: 398 return newPtrEncoder(t) 399 default: 400 return unsupportedTypeEncoder 401 } 402 } 403 404 func invalidValueEncoder(e *encodeState, v reflect.Value, quoted bool) { 405 e.WriteString("null") 406 } 407 408 func marshalerEncoder(e *encodeState, v reflect.Value, quoted bool) { 409 if v.Kind() == reflect.Ptr && v.IsNil() { 410 e.WriteString("null") 411 return 412 } 413 m := v.Interface().(Marshaler) 414 b, err := m.MarshalJSON() 415 if err == nil { 416 // copy JSON into buffer, checking validity. 417 err = compact(&e.Buffer, b, true) 418 } 419 if err != nil { 420 e.error(&MarshalerError{v.Type(), err}) 421 } 422 } 423 424 func addrMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) { 425 va := v.Addr() 426 if va.IsNil() { 427 e.WriteString("null") 428 return 429 } 430 m := va.Interface().(Marshaler) 431 b, err := m.MarshalJSON() 432 if err == nil { 433 // copy JSON into buffer, checking validity. 434 err = compact(&e.Buffer, b, true) 435 } 436 if err != nil { 437 e.error(&MarshalerError{v.Type(), err}) 438 } 439 } 440 441 func textMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) { 442 if v.Kind() == reflect.Ptr && v.IsNil() { 443 e.WriteString("null") 444 return 445 } 446 m := v.Interface().(encoding.TextMarshaler) 447 b, err := m.MarshalText() 448 if err == nil { 449 _, err = e.stringBytes(b) 450 } 451 if err != nil { 452 e.error(&MarshalerError{v.Type(), err}) 453 } 454 } 455 456 func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) { 457 va := v.Addr() 458 if va.IsNil() { 459 e.WriteString("null") 460 return 461 } 462 m := va.Interface().(encoding.TextMarshaler) 463 b, err := m.MarshalText() 464 if err == nil { 465 _, err = e.stringBytes(b) 466 } 467 if err != nil { 468 e.error(&MarshalerError{v.Type(), err}) 469 } 470 } 471 472 func boolEncoder(e *encodeState, v reflect.Value, quoted bool) { 473 if quoted { 474 e.WriteByte('"') 475 } 476 if v.Bool() { 477 e.WriteString("true") 478 } else { 479 e.WriteString("false") 480 } 481 if quoted { 482 e.WriteByte('"') 483 } 484 } 485 486 func intEncoder(e *encodeState, v reflect.Value, quoted bool) { 487 b := strconv.AppendInt(e.scratch[:0], v.Int(), 10) 488 if quoted { 489 e.WriteByte('"') 490 } 491 e.Write(b) 492 if quoted { 493 e.WriteByte('"') 494 } 495 } 496 497 func uintEncoder(e *encodeState, v reflect.Value, quoted bool) { 498 b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10) 499 if quoted { 500 e.WriteByte('"') 501 } 502 e.Write(b) 503 if quoted { 504 e.WriteByte('"') 505 } 506 } 507 508 type floatEncoder int // number of bits 509 510 func (bits floatEncoder) encode(e *encodeState, v reflect.Value, quoted bool) { 511 f := v.Float() 512 if math.IsInf(f, 0) || math.IsNaN(f) { 513 e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))}) 514 } 515 b := strconv.AppendFloat(e.scratch[:0], f, 'g', -1, int(bits)) 516 if quoted { 517 e.WriteByte('"') 518 } 519 e.Write(b) 520 if quoted { 521 e.WriteByte('"') 522 } 523 } 524 525 var ( 526 float32Encoder = (floatEncoder(32)).encode 527 float64Encoder = (floatEncoder(64)).encode 528 ) 529 530 func stringEncoder(e *encodeState, v reflect.Value, quoted bool) { 531 if v.Type() == numberType { 532 numStr := v.String() 533 if numStr == "" { 534 numStr = "0" // Number's zero-val 535 } 536 e.WriteString(numStr) 537 return 538 } 539 if quoted { 540 sb, err := Marshal(v.String()) 541 if err != nil { 542 e.error(err) 543 } 544 e.string(string(sb)) 545 } else { 546 e.string(v.String()) 547 } 548 } 549 550 func interfaceEncoder(e *encodeState, v reflect.Value, quoted bool) { 551 if v.IsNil() { 552 e.WriteString("null") 553 return 554 } 555 e.reflectValue(v.Elem()) 556 } 557 558 func unsupportedTypeEncoder(e *encodeState, v reflect.Value, quoted bool) { 559 e.error(&UnsupportedTypeError{v.Type()}) 560 } 561 562 type structEncoder struct { 563 fields []field 564 fieldEncs []encoderFunc 565 } 566 567 func (se *structEncoder) encode(e *encodeState, v reflect.Value, quoted bool) { 568 e.WriteByte('{') 569 first := true 570 for i, f := range se.fields { 571 fv := fieldByIndex(v, f.index) 572 if !fv.IsValid() || f.omitEmpty && isEmptyValue(fv) { 573 continue 574 } 575 if first { 576 first = false 577 } else { 578 e.WriteByte(',') 579 } 580 e.string(f.name) 581 e.WriteByte(':') 582 se.fieldEncs[i](e, fv, f.quoted) 583 } 584 e.WriteByte('}') 585 } 586 587 func newStructEncoder(t reflect.Type) encoderFunc { 588 fields := cachedTypeFields(t) 589 se := &structEncoder{ 590 fields: fields, 591 fieldEncs: make([]encoderFunc, len(fields)), 592 } 593 for i, f := range fields { 594 se.fieldEncs[i] = typeEncoder(typeByIndex(t, f.index)) 595 } 596 return se.encode 597 } 598 599 type mapEncoder struct { 600 elemEnc encoderFunc 601 } 602 603 func (me *mapEncoder) encode(e *encodeState, v reflect.Value, _ bool) { 604 if v.IsNil() { 605 e.WriteString("null") 606 return 607 } 608 e.WriteByte('{') 609 var sv stringValues = v.MapKeys() 610 sort.Sort(sv) 611 for i, k := range sv { 612 if i > 0 { 613 e.WriteByte(',') 614 } 615 e.string(k.String()) 616 e.WriteByte(':') 617 me.elemEnc(e, v.MapIndex(k), false) 618 } 619 e.WriteByte('}') 620 } 621 622 func newMapEncoder(t reflect.Type) encoderFunc { 623 if t.Key().Kind() != reflect.String { 624 return unsupportedTypeEncoder 625 } 626 me := &mapEncoder{typeEncoder(t.Elem())} 627 return me.encode 628 } 629 630 func encodeByteSlice(e *encodeState, v reflect.Value, _ bool) { 631 if v.IsNil() { 632 e.WriteString("null") 633 return 634 } 635 s := v.Bytes() 636 e.WriteByte('"') 637 if len(s) < 1024 { 638 // for small buffers, using Encode directly is much faster. 639 dst := make([]byte, base64.StdEncoding.EncodedLen(len(s))) 640 base64.StdEncoding.Encode(dst, s) 641 e.Write(dst) 642 } else { 643 // for large buffers, avoid unnecessary extra temporary 644 // buffer space. 645 enc := base64.NewEncoder(base64.StdEncoding, e) 646 enc.Write(s) 647 enc.Close() 648 } 649 e.WriteByte('"') 650 } 651 652 // sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil. 653 type sliceEncoder struct { 654 arrayEnc encoderFunc 655 } 656 657 func (se *sliceEncoder) encode(e *encodeState, v reflect.Value, _ bool) { 658 if v.IsNil() { 659 e.WriteString("null") 660 return 661 } 662 se.arrayEnc(e, v, false) 663 } 664 665 func newSliceEncoder(t reflect.Type) encoderFunc { 666 // Byte slices get special treatment; arrays don't. 667 if t.Elem().Kind() == reflect.Uint8 { 668 return encodeByteSlice 669 } 670 enc := &sliceEncoder{newArrayEncoder(t)} 671 return enc.encode 672 } 673 674 type arrayEncoder struct { 675 elemEnc encoderFunc 676 } 677 678 func (ae *arrayEncoder) encode(e *encodeState, v reflect.Value, _ bool) { 679 e.WriteByte('[') 680 n := v.Len() 681 for i := 0; i < n; i++ { 682 if i > 0 { 683 e.WriteByte(',') 684 } 685 ae.elemEnc(e, v.Index(i), false) 686 } 687 e.WriteByte(']') 688 } 689 690 func newArrayEncoder(t reflect.Type) encoderFunc { 691 enc := &arrayEncoder{typeEncoder(t.Elem())} 692 return enc.encode 693 } 694 695 type ptrEncoder struct { 696 elemEnc encoderFunc 697 } 698 699 func (pe *ptrEncoder) encode(e *encodeState, v reflect.Value, quoted bool) { 700 if v.IsNil() { 701 e.WriteString("null") 702 return 703 } 704 pe.elemEnc(e, v.Elem(), quoted) 705 } 706 707 func newPtrEncoder(t reflect.Type) encoderFunc { 708 enc := &ptrEncoder{typeEncoder(t.Elem())} 709 return enc.encode 710 } 711 712 type condAddrEncoder struct { 713 canAddrEnc, elseEnc encoderFunc 714 } 715 716 func (ce *condAddrEncoder) encode(e *encodeState, v reflect.Value, quoted bool) { 717 if v.CanAddr() { 718 ce.canAddrEnc(e, v, quoted) 719 } else { 720 ce.elseEnc(e, v, quoted) 721 } 722 } 723 724 // newCondAddrEncoder returns an encoder that checks whether its value 725 // CanAddr and delegates to canAddrEnc if so, else to elseEnc. 726 func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc { 727 enc := &condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc} 728 return enc.encode 729 } 730 731 func isValidTag(s string) bool { 732 if s == "" { 733 return false 734 } 735 for _, c := range s { 736 switch { 737 case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c): 738 // Backslash and quote chars are reserved, but 739 // otherwise any punctuation chars are allowed 740 // in a tag name. 741 default: 742 if !unicode.IsLetter(c) && !unicode.IsDigit(c) { 743 return false 744 } 745 } 746 } 747 return true 748 } 749 750 func fieldByIndex(v reflect.Value, index []int) reflect.Value { 751 for _, i := range index { 752 if v.Kind() == reflect.Ptr { 753 if v.IsNil() { 754 return reflect.Value{} 755 } 756 v = v.Elem() 757 } 758 v = v.Field(i) 759 } 760 return v 761 } 762 763 func typeByIndex(t reflect.Type, index []int) reflect.Type { 764 for _, i := range index { 765 if t.Kind() == reflect.Ptr { 766 t = t.Elem() 767 } 768 t = t.Field(i).Type 769 } 770 return t 771 } 772 773 // stringValues is a slice of reflect.Value holding *reflect.StringValue. 774 // It implements the methods to sort by string. 775 type stringValues []reflect.Value 776 777 func (sv stringValues) Len() int { return len(sv) } 778 func (sv stringValues) Swap(i, j int) { sv[i], sv[j] = sv[j], sv[i] } 779 func (sv stringValues) Less(i, j int) bool { return sv.get(i) < sv.get(j) } 780 func (sv stringValues) get(i int) string { return sv[i].String() } 781 782 // NOTE: keep in sync with stringBytes below. 783 func (e *encodeState) string(s string) (int, error) { 784 len0 := e.Len() 785 e.WriteByte('"') 786 start := 0 787 for i := 0; i < len(s); { 788 if b := s[i]; b < utf8.RuneSelf { 789 if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' { 790 i++ 791 continue 792 } 793 if start < i { 794 e.WriteString(s[start:i]) 795 } 796 switch b { 797 case '\\', '"': 798 e.WriteByte('\\') 799 e.WriteByte(b) 800 case '\n': 801 e.WriteByte('\\') 802 e.WriteByte('n') 803 case '\r': 804 e.WriteByte('\\') 805 e.WriteByte('r') 806 case '\t': 807 e.WriteByte('\\') 808 e.WriteByte('t') 809 default: 810 // This encodes bytes < 0x20 except for \n and \r, 811 // as well as <, > and &. The latter are escaped because they 812 // can lead to security holes when user-controlled strings 813 // are rendered into JSON and served to some browsers. 814 e.WriteString(`\u00`) 815 e.WriteByte(hex[b>>4]) 816 e.WriteByte(hex[b&0xF]) 817 } 818 i++ 819 start = i 820 continue 821 } 822 c, size := utf8.DecodeRuneInString(s[i:]) 823 if c == utf8.RuneError && size == 1 { 824 if start < i { 825 e.WriteString(s[start:i]) 826 } 827 e.WriteString(`\ufffd`) 828 i += size 829 start = i 830 continue 831 } 832 // U+2028 is LINE SEPARATOR. 833 // U+2029 is PARAGRAPH SEPARATOR. 834 // They are both technically valid characters in JSON strings, 835 // but don't work in JSONP, which has to be evaluated as JavaScript, 836 // and can lead to security holes there. It is valid JSON to 837 // escape them, so we do so unconditionally. 838 // See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion. 839 if c == '\u2028' || c == '\u2029' { 840 if start < i { 841 e.WriteString(s[start:i]) 842 } 843 e.WriteString(`\u202`) 844 e.WriteByte(hex[c&0xF]) 845 i += size 846 start = i 847 continue 848 } 849 i += size 850 } 851 if start < len(s) { 852 e.WriteString(s[start:]) 853 } 854 e.WriteByte('"') 855 return e.Len() - len0, nil 856 } 857 858 // NOTE: keep in sync with string above. 859 func (e *encodeState) stringBytes(s []byte) (int, error) { 860 len0 := e.Len() 861 e.WriteByte('"') 862 start := 0 863 for i := 0; i < len(s); { 864 if b := s[i]; b < utf8.RuneSelf { 865 if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' { 866 i++ 867 continue 868 } 869 if start < i { 870 e.Write(s[start:i]) 871 } 872 switch b { 873 case '\\', '"': 874 e.WriteByte('\\') 875 e.WriteByte(b) 876 case '\n': 877 e.WriteByte('\\') 878 e.WriteByte('n') 879 case '\r': 880 e.WriteByte('\\') 881 e.WriteByte('r') 882 case '\t': 883 e.WriteByte('\\') 884 e.WriteByte('t') 885 default: 886 // This encodes bytes < 0x20 except for \n and \r, 887 // as well as <, >, and &. The latter are escaped because they 888 // can lead to security holes when user-controlled strings 889 // are rendered into JSON and served to some browsers. 890 e.WriteString(`\u00`) 891 e.WriteByte(hex[b>>4]) 892 e.WriteByte(hex[b&0xF]) 893 } 894 i++ 895 start = i 896 continue 897 } 898 c, size := utf8.DecodeRune(s[i:]) 899 if c == utf8.RuneError && size == 1 { 900 if start < i { 901 e.Write(s[start:i]) 902 } 903 e.WriteString(`\ufffd`) 904 i += size 905 start = i 906 continue 907 } 908 // U+2028 is LINE SEPARATOR. 909 // U+2029 is PARAGRAPH SEPARATOR. 910 // They are both technically valid characters in JSON strings, 911 // but don't work in JSONP, which has to be evaluated as JavaScript, 912 // and can lead to security holes there. It is valid JSON to 913 // escape them, so we do so unconditionally. 914 // See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion. 915 if c == '\u2028' || c == '\u2029' { 916 if start < i { 917 e.Write(s[start:i]) 918 } 919 e.WriteString(`\u202`) 920 e.WriteByte(hex[c&0xF]) 921 i += size 922 start = i 923 continue 924 } 925 i += size 926 } 927 if start < len(s) { 928 e.Write(s[start:]) 929 } 930 e.WriteByte('"') 931 return e.Len() - len0, nil 932 } 933 934 // A field represents a single field found in a struct. 935 type field struct { 936 name string 937 nameBytes []byte // []byte(name) 938 equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent 939 940 tag bool 941 index []int 942 typ reflect.Type 943 omitEmpty bool 944 quoted bool 945 } 946 947 func fillField(f field) field { 948 f.nameBytes = []byte(f.name) 949 f.equalFold = foldFunc(f.nameBytes) 950 return f 951 } 952 953 // byName sorts field by name, breaking ties with depth, 954 // then breaking ties with "name came from json tag", then 955 // breaking ties with index sequence. 956 type byName []field 957 958 func (x byName) Len() int { return len(x) } 959 960 func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 961 962 func (x byName) Less(i, j int) bool { 963 if x[i].name != x[j].name { 964 return x[i].name < x[j].name 965 } 966 if len(x[i].index) != len(x[j].index) { 967 return len(x[i].index) < len(x[j].index) 968 } 969 if x[i].tag != x[j].tag { 970 return x[i].tag 971 } 972 return byIndex(x).Less(i, j) 973 } 974 975 // byIndex sorts field by index sequence. 976 type byIndex []field 977 978 func (x byIndex) Len() int { return len(x) } 979 980 func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 981 982 func (x byIndex) Less(i, j int) bool { 983 for k, xik := range x[i].index { 984 if k >= len(x[j].index) { 985 return false 986 } 987 if xik != x[j].index[k] { 988 return xik < x[j].index[k] 989 } 990 } 991 return len(x[i].index) < len(x[j].index) 992 } 993 994 // typeFields returns a list of fields that JSON should recognize for the given type. 995 // The algorithm is breadth-first search over the set of structs to include - the top struct 996 // and then any reachable anonymous structs. 997 func typeFields(t reflect.Type) []field { 998 // Anonymous fields to explore at the current level and the next. 999 current := []field{} 1000 next := []field{{typ: t}} 1001 1002 // Count of queued names for current level and the next. 1003 count := map[reflect.Type]int{} 1004 nextCount := map[reflect.Type]int{} 1005 1006 // Types already visited at an earlier level. 1007 visited := map[reflect.Type]bool{} 1008 1009 // Fields found. 1010 var fields []field 1011 1012 for len(next) > 0 { 1013 current, next = next, current[:0] 1014 count, nextCount = nextCount, map[reflect.Type]int{} 1015 1016 for _, f := range current { 1017 if visited[f.typ] { 1018 continue 1019 } 1020 visited[f.typ] = true 1021 1022 // Scan f.typ for fields to include. 1023 for i := 0; i < f.typ.NumField(); i++ { 1024 sf := f.typ.Field(i) 1025 if sf.PkgPath != "" { // unexported 1026 continue 1027 } 1028 tag := sf.Tag.Get("json") 1029 if tag == "-" { 1030 continue 1031 } 1032 name, opts := parseTag(tag) 1033 if !isValidTag(name) { 1034 name = "" 1035 } 1036 index := make([]int, len(f.index)+1) 1037 copy(index, f.index) 1038 index[len(f.index)] = i 1039 1040 ft := sf.Type 1041 if ft.Name() == "" && ft.Kind() == reflect.Ptr { 1042 // Follow pointer. 1043 ft = ft.Elem() 1044 } 1045 1046 // Only strings, floats, integers, and booleans can be quoted. 1047 quoted := false 1048 if opts.Contains("string") { 1049 switch ft.Kind() { 1050 case reflect.Bool, 1051 reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, 1052 reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, 1053 reflect.Float32, reflect.Float64, 1054 reflect.String: 1055 quoted = true 1056 } 1057 } 1058 1059 // Record found field and index sequence. 1060 if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct { 1061 tagged := name != "" 1062 if name == "" { 1063 name = sf.Name 1064 } 1065 fields = append(fields, fillField(field{ 1066 name: name, 1067 tag: tagged, 1068 index: index, 1069 typ: ft, 1070 omitEmpty: opts.Contains("omitempty"), 1071 quoted: quoted, 1072 })) 1073 if count[f.typ] > 1 { 1074 // If there were multiple instances, add a second, 1075 // so that the annihilation code will see a duplicate. 1076 // It only cares about the distinction between 1 or 2, 1077 // so don't bother generating any more copies. 1078 fields = append(fields, fields[len(fields)-1]) 1079 } 1080 continue 1081 } 1082 1083 // Record new anonymous struct to explore in next round. 1084 nextCount[ft]++ 1085 if nextCount[ft] == 1 { 1086 next = append(next, fillField(field{name: ft.Name(), index: index, typ: ft})) 1087 } 1088 } 1089 } 1090 } 1091 1092 sort.Sort(byName(fields)) 1093 1094 // Delete all fields that are hidden by the Go rules for embedded fields, 1095 // except that fields with JSON tags are promoted. 1096 1097 // The fields are sorted in primary order of name, secondary order 1098 // of field index length. Loop over names; for each name, delete 1099 // hidden fields by choosing the one dominant field that survives. 1100 out := fields[:0] 1101 for advance, i := 0, 0; i < len(fields); i += advance { 1102 // One iteration per name. 1103 // Find the sequence of fields with the name of this first field. 1104 fi := fields[i] 1105 name := fi.name 1106 for advance = 1; i+advance < len(fields); advance++ { 1107 fj := fields[i+advance] 1108 if fj.name != name { 1109 break 1110 } 1111 } 1112 if advance == 1 { // Only one field with this name 1113 out = append(out, fi) 1114 continue 1115 } 1116 dominant, ok := dominantField(fields[i : i+advance]) 1117 if ok { 1118 out = append(out, dominant) 1119 } 1120 } 1121 1122 fields = out 1123 sort.Sort(byIndex(fields)) 1124 1125 return fields 1126 } 1127 1128 // dominantField looks through the fields, all of which are known to 1129 // have the same name, to find the single field that dominates the 1130 // others using Go's embedding rules, modified by the presence of 1131 // JSON tags. If there are multiple top-level fields, the boolean 1132 // will be false: This condition is an error in Go and we skip all 1133 // the fields. 1134 func dominantField(fields []field) (field, bool) { 1135 // The fields are sorted in increasing index-length order. The winner 1136 // must therefore be one with the shortest index length. Drop all 1137 // longer entries, which is easy: just truncate the slice. 1138 length := len(fields[0].index) 1139 tagged := -1 // Index of first tagged field. 1140 for i, f := range fields { 1141 if len(f.index) > length { 1142 fields = fields[:i] 1143 break 1144 } 1145 if f.tag { 1146 if tagged >= 0 { 1147 // Multiple tagged fields at the same level: conflict. 1148 // Return no field. 1149 return field{}, false 1150 } 1151 tagged = i 1152 } 1153 } 1154 if tagged >= 0 { 1155 return fields[tagged], true 1156 } 1157 // All remaining fields have the same length. If there's more than one, 1158 // we have a conflict (two fields named "X" at the same level) and we 1159 // return no field. 1160 if len(fields) > 1 { 1161 return field{}, false 1162 } 1163 return fields[0], true 1164 } 1165 1166 var fieldCache struct { 1167 sync.RWMutex 1168 m map[reflect.Type][]field 1169 } 1170 1171 // cachedTypeFields is like typeFields but uses a cache to avoid repeated work. 1172 func cachedTypeFields(t reflect.Type) []field { 1173 fieldCache.RLock() 1174 f := fieldCache.m[t] 1175 fieldCache.RUnlock() 1176 if f != nil { 1177 return f 1178 } 1179 1180 // Compute fields without lock. 1181 // Might duplicate effort but won't hold other computations back. 1182 f = typeFields(t) 1183 if f == nil { 1184 f = []field{} 1185 } 1186 1187 fieldCache.Lock() 1188 if fieldCache.m == nil { 1189 fieldCache.m = map[reflect.Type][]field{} 1190 } 1191 fieldCache.m[t] = f 1192 fieldCache.Unlock() 1193 return f 1194 } 1195