Home | History | Annotate | Download | only in jpeg
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package jpeg
      6 
      7 // This is a Go translation of idct.c from
      8 //
      9 // http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_IEC_13818-4_2004_Conformance_Testing/Video/verifier/mpeg2decode_960109.tar.gz
     10 //
     11 // which carries the following notice:
     12 
     13 /* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */
     14 
     15 /*
     16  * Disclaimer of Warranty
     17  *
     18  * These software programs are available to the user without any license fee or
     19  * royalty on an "as is" basis.  The MPEG Software Simulation Group disclaims
     20  * any and all warranties, whether express, implied, or statuary, including any
     21  * implied warranties or merchantability or of fitness for a particular
     22  * purpose.  In no event shall the copyright-holder be liable for any
     23  * incidental, punitive, or consequential damages of any kind whatsoever
     24  * arising from the use of these programs.
     25  *
     26  * This disclaimer of warranty extends to the user of these programs and user's
     27  * customers, employees, agents, transferees, successors, and assigns.
     28  *
     29  * The MPEG Software Simulation Group does not represent or warrant that the
     30  * programs furnished hereunder are free of infringement of any third-party
     31  * patents.
     32  *
     33  * Commercial implementations of MPEG-1 and MPEG-2 video, including shareware,
     34  * are subject to royalty fees to patent holders.  Many of these patents are
     35  * general enough such that they are unavoidable regardless of implementation
     36  * design.
     37  *
     38  */
     39 
     40 const blockSize = 64 // A DCT block is 8x8.
     41 
     42 type block [blockSize]int32
     43 
     44 const (
     45 	w1 = 2841 // 2048*sqrt(2)*cos(1*pi/16)
     46 	w2 = 2676 // 2048*sqrt(2)*cos(2*pi/16)
     47 	w3 = 2408 // 2048*sqrt(2)*cos(3*pi/16)
     48 	w5 = 1609 // 2048*sqrt(2)*cos(5*pi/16)
     49 	w6 = 1108 // 2048*sqrt(2)*cos(6*pi/16)
     50 	w7 = 565  // 2048*sqrt(2)*cos(7*pi/16)
     51 
     52 	w1pw7 = w1 + w7
     53 	w1mw7 = w1 - w7
     54 	w2pw6 = w2 + w6
     55 	w2mw6 = w2 - w6
     56 	w3pw5 = w3 + w5
     57 	w3mw5 = w3 - w5
     58 
     59 	r2 = 181 // 256/sqrt(2)
     60 )
     61 
     62 // idct performs a 2-D Inverse Discrete Cosine Transformation.
     63 //
     64 // The input coefficients should already have been multiplied by the
     65 // appropriate quantization table. We use fixed-point computation, with the
     66 // number of bits for the fractional component varying over the intermediate
     67 // stages.
     68 //
     69 // For more on the actual algorithm, see Z. Wang, "Fast algorithms for the
     70 // discrete W transform and for the discrete Fourier transform", IEEE Trans. on
     71 // ASSP, Vol. ASSP- 32, pp. 803-816, Aug. 1984.
     72 func idct(src *block) {
     73 	// Horizontal 1-D IDCT.
     74 	for y := 0; y < 8; y++ {
     75 		y8 := y * 8
     76 		// If all the AC components are zero, then the IDCT is trivial.
     77 		if src[y8+1] == 0 && src[y8+2] == 0 && src[y8+3] == 0 &&
     78 			src[y8+4] == 0 && src[y8+5] == 0 && src[y8+6] == 0 && src[y8+7] == 0 {
     79 			dc := src[y8+0] << 3
     80 			src[y8+0] = dc
     81 			src[y8+1] = dc
     82 			src[y8+2] = dc
     83 			src[y8+3] = dc
     84 			src[y8+4] = dc
     85 			src[y8+5] = dc
     86 			src[y8+6] = dc
     87 			src[y8+7] = dc
     88 			continue
     89 		}
     90 
     91 		// Prescale.
     92 		x0 := (src[y8+0] << 11) + 128
     93 		x1 := src[y8+4] << 11
     94 		x2 := src[y8+6]
     95 		x3 := src[y8+2]
     96 		x4 := src[y8+1]
     97 		x5 := src[y8+7]
     98 		x6 := src[y8+5]
     99 		x7 := src[y8+3]
    100 
    101 		// Stage 1.
    102 		x8 := w7 * (x4 + x5)
    103 		x4 = x8 + w1mw7*x4
    104 		x5 = x8 - w1pw7*x5
    105 		x8 = w3 * (x6 + x7)
    106 		x6 = x8 - w3mw5*x6
    107 		x7 = x8 - w3pw5*x7
    108 
    109 		// Stage 2.
    110 		x8 = x0 + x1
    111 		x0 -= x1
    112 		x1 = w6 * (x3 + x2)
    113 		x2 = x1 - w2pw6*x2
    114 		x3 = x1 + w2mw6*x3
    115 		x1 = x4 + x6
    116 		x4 -= x6
    117 		x6 = x5 + x7
    118 		x5 -= x7
    119 
    120 		// Stage 3.
    121 		x7 = x8 + x3
    122 		x8 -= x3
    123 		x3 = x0 + x2
    124 		x0 -= x2
    125 		x2 = (r2*(x4+x5) + 128) >> 8
    126 		x4 = (r2*(x4-x5) + 128) >> 8
    127 
    128 		// Stage 4.
    129 		src[y8+0] = (x7 + x1) >> 8
    130 		src[y8+1] = (x3 + x2) >> 8
    131 		src[y8+2] = (x0 + x4) >> 8
    132 		src[y8+3] = (x8 + x6) >> 8
    133 		src[y8+4] = (x8 - x6) >> 8
    134 		src[y8+5] = (x0 - x4) >> 8
    135 		src[y8+6] = (x3 - x2) >> 8
    136 		src[y8+7] = (x7 - x1) >> 8
    137 	}
    138 
    139 	// Vertical 1-D IDCT.
    140 	for x := 0; x < 8; x++ {
    141 		// Similar to the horizontal 1-D IDCT case, if all the AC components are zero, then the IDCT is trivial.
    142 		// However, after performing the horizontal 1-D IDCT, there are typically non-zero AC components, so
    143 		// we do not bother to check for the all-zero case.
    144 
    145 		// Prescale.
    146 		y0 := (src[8*0+x] << 8) + 8192
    147 		y1 := src[8*4+x] << 8
    148 		y2 := src[8*6+x]
    149 		y3 := src[8*2+x]
    150 		y4 := src[8*1+x]
    151 		y5 := src[8*7+x]
    152 		y6 := src[8*5+x]
    153 		y7 := src[8*3+x]
    154 
    155 		// Stage 1.
    156 		y8 := w7*(y4+y5) + 4
    157 		y4 = (y8 + w1mw7*y4) >> 3
    158 		y5 = (y8 - w1pw7*y5) >> 3
    159 		y8 = w3*(y6+y7) + 4
    160 		y6 = (y8 - w3mw5*y6) >> 3
    161 		y7 = (y8 - w3pw5*y7) >> 3
    162 
    163 		// Stage 2.
    164 		y8 = y0 + y1
    165 		y0 -= y1
    166 		y1 = w6*(y3+y2) + 4
    167 		y2 = (y1 - w2pw6*y2) >> 3
    168 		y3 = (y1 + w2mw6*y3) >> 3
    169 		y1 = y4 + y6
    170 		y4 -= y6
    171 		y6 = y5 + y7
    172 		y5 -= y7
    173 
    174 		// Stage 3.
    175 		y7 = y8 + y3
    176 		y8 -= y3
    177 		y3 = y0 + y2
    178 		y0 -= y2
    179 		y2 = (r2*(y4+y5) + 128) >> 8
    180 		y4 = (r2*(y4-y5) + 128) >> 8
    181 
    182 		// Stage 4.
    183 		src[8*0+x] = (y7 + y1) >> 14
    184 		src[8*1+x] = (y3 + y2) >> 14
    185 		src[8*2+x] = (y0 + y4) >> 14
    186 		src[8*3+x] = (y8 + y6) >> 14
    187 		src[8*4+x] = (y8 - y6) >> 14
    188 		src[8*5+x] = (y0 - y4) >> 14
    189 		src[8*6+x] = (y3 - y2) >> 14
    190 		src[8*7+x] = (y7 - y1) >> 14
    191 	}
    192 }
    193