Home | History | Annotate | Download | only in math
      1 // Copyright 2010 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package math
      6 
      7 // The original C code, the long comment, and the constants
      8 // below are from http://netlib.sandia.gov/cephes/cprob/gamma.c.
      9 // The go code is a simplified version of the original C.
     10 //
     11 //      tgamma.c
     12 //
     13 //      Gamma function
     14 //
     15 // SYNOPSIS:
     16 //
     17 // double x, y, tgamma();
     18 // extern int signgam;
     19 //
     20 // y = tgamma( x );
     21 //
     22 // DESCRIPTION:
     23 //
     24 // Returns gamma function of the argument.  The result is
     25 // correctly signed, and the sign (+1 or -1) is also
     26 // returned in a global (extern) variable named signgam.
     27 // This variable is also filled in by the logarithmic gamma
     28 // function lgamma().
     29 //
     30 // Arguments |x| <= 34 are reduced by recurrence and the function
     31 // approximated by a rational function of degree 6/7 in the
     32 // interval (2,3).  Large arguments are handled by Stirling's
     33 // formula. Large negative arguments are made positive using
     34 // a reflection formula.
     35 //
     36 // ACCURACY:
     37 //
     38 //                      Relative error:
     39 // arithmetic   domain     # trials      peak         rms
     40 //    DEC      -34, 34      10000       1.3e-16     2.5e-17
     41 //    IEEE    -170,-33      20000       2.3e-15     3.3e-16
     42 //    IEEE     -33,  33     20000       9.4e-16     2.2e-16
     43 //    IEEE      33, 171.6   20000       2.3e-15     3.2e-16
     44 //
     45 // Error for arguments outside the test range will be larger
     46 // owing to error amplification by the exponential function.
     47 //
     48 // Cephes Math Library Release 2.8:  June, 2000
     49 // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
     50 //
     51 // The readme file at http://netlib.sandia.gov/cephes/ says:
     52 //    Some software in this archive may be from the book _Methods and
     53 // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
     54 // International, 1989) or from the Cephes Mathematical Library, a
     55 // commercial product. In either event, it is copyrighted by the author.
     56 // What you see here may be used freely but it comes with no support or
     57 // guarantee.
     58 //
     59 //   The two known misprints in the book are repaired here in the
     60 // source listings for the gamma function and the incomplete beta
     61 // integral.
     62 //
     63 //   Stephen L. Moshier
     64 //   moshier (a] na-net.ornl.gov
     65 
     66 var _gamP = [...]float64{
     67 	1.60119522476751861407e-04,
     68 	1.19135147006586384913e-03,
     69 	1.04213797561761569935e-02,
     70 	4.76367800457137231464e-02,
     71 	2.07448227648435975150e-01,
     72 	4.94214826801497100753e-01,
     73 	9.99999999999999996796e-01,
     74 }
     75 var _gamQ = [...]float64{
     76 	-2.31581873324120129819e-05,
     77 	5.39605580493303397842e-04,
     78 	-4.45641913851797240494e-03,
     79 	1.18139785222060435552e-02,
     80 	3.58236398605498653373e-02,
     81 	-2.34591795718243348568e-01,
     82 	7.14304917030273074085e-02,
     83 	1.00000000000000000320e+00,
     84 }
     85 var _gamS = [...]float64{
     86 	7.87311395793093628397e-04,
     87 	-2.29549961613378126380e-04,
     88 	-2.68132617805781232825e-03,
     89 	3.47222221605458667310e-03,
     90 	8.33333333333482257126e-02,
     91 }
     92 
     93 // Gamma function computed by Stirling's formula.
     94 // The polynomial is valid for 33 <= x <= 172.
     95 func stirling(x float64) float64 {
     96 	const (
     97 		SqrtTwoPi   = 2.506628274631000502417
     98 		MaxStirling = 143.01608
     99 	)
    100 	w := 1 / x
    101 	w = 1 + w*((((_gamS[0]*w+_gamS[1])*w+_gamS[2])*w+_gamS[3])*w+_gamS[4])
    102 	y := Exp(x)
    103 	if x > MaxStirling { // avoid Pow() overflow
    104 		v := Pow(x, 0.5*x-0.25)
    105 		y = v * (v / y)
    106 	} else {
    107 		y = Pow(x, x-0.5) / y
    108 	}
    109 	y = SqrtTwoPi * y * w
    110 	return y
    111 }
    112 
    113 // Gamma returns the Gamma function of x.
    114 //
    115 // Special cases are:
    116 //	Gamma(+Inf) = +Inf
    117 //	Gamma(+0) = +Inf
    118 //	Gamma(-0) = -Inf
    119 //	Gamma(x) = NaN for integer x < 0
    120 //	Gamma(-Inf) = NaN
    121 //	Gamma(NaN) = NaN
    122 func Gamma(x float64) float64 {
    123 	const Euler = 0.57721566490153286060651209008240243104215933593992 // A001620
    124 	// special cases
    125 	switch {
    126 	case isNegInt(x) || IsInf(x, -1) || IsNaN(x):
    127 		return NaN()
    128 	case x == 0:
    129 		if Signbit(x) {
    130 			return Inf(-1)
    131 		}
    132 		return Inf(1)
    133 	case x < -170.5674972726612 || x > 171.61447887182298:
    134 		return Inf(1)
    135 	}
    136 	q := Abs(x)
    137 	p := Floor(q)
    138 	if q > 33 {
    139 		if x >= 0 {
    140 			return stirling(x)
    141 		}
    142 		signgam := 1
    143 		if ip := int(p); ip&1 == 0 {
    144 			signgam = -1
    145 		}
    146 		z := q - p
    147 		if z > 0.5 {
    148 			p = p + 1
    149 			z = q - p
    150 		}
    151 		z = q * Sin(Pi*z)
    152 		if z == 0 {
    153 			return Inf(signgam)
    154 		}
    155 		z = Pi / (Abs(z) * stirling(q))
    156 		return float64(signgam) * z
    157 	}
    158 
    159 	// Reduce argument
    160 	z := 1.0
    161 	for x >= 3 {
    162 		x = x - 1
    163 		z = z * x
    164 	}
    165 	for x < 0 {
    166 		if x > -1e-09 {
    167 			goto small
    168 		}
    169 		z = z / x
    170 		x = x + 1
    171 	}
    172 	for x < 2 {
    173 		if x < 1e-09 {
    174 			goto small
    175 		}
    176 		z = z / x
    177 		x = x + 1
    178 	}
    179 
    180 	if x == 2 {
    181 		return z
    182 	}
    183 
    184 	x = x - 2
    185 	p = (((((x*_gamP[0]+_gamP[1])*x+_gamP[2])*x+_gamP[3])*x+_gamP[4])*x+_gamP[5])*x + _gamP[6]
    186 	q = ((((((x*_gamQ[0]+_gamQ[1])*x+_gamQ[2])*x+_gamQ[3])*x+_gamQ[4])*x+_gamQ[5])*x+_gamQ[6])*x + _gamQ[7]
    187 	return z * p / q
    188 
    189 small:
    190 	if x == 0 {
    191 		return Inf(1)
    192 	}
    193 	return z / ((1 + Euler*x) * x)
    194 }
    195 
    196 func isNegInt(x float64) bool {
    197 	if x < 0 {
    198 		_, xf := Modf(x)
    199 		return xf == 0
    200 	}
    201 	return false
    202 }
    203