Home | History | Annotate | Download | only in rand
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package rand
      6 
      7 import (
      8 	"errors"
      9 	"fmt"
     10 	"math"
     11 	"os"
     12 	"runtime"
     13 	"testing"
     14 )
     15 
     16 const (
     17 	numTestSamples = 10000
     18 )
     19 
     20 type statsResults struct {
     21 	mean        float64
     22 	stddev      float64
     23 	closeEnough float64
     24 	maxError    float64
     25 }
     26 
     27 func max(a, b float64) float64 {
     28 	if a > b {
     29 		return a
     30 	}
     31 	return b
     32 }
     33 
     34 func nearEqual(a, b, closeEnough, maxError float64) bool {
     35 	absDiff := math.Abs(a - b)
     36 	if absDiff < closeEnough { // Necessary when one value is zero and one value is close to zero.
     37 		return true
     38 	}
     39 	return absDiff/max(math.Abs(a), math.Abs(b)) < maxError
     40 }
     41 
     42 var testSeeds = []int64{1, 1754801282, 1698661970, 1550503961}
     43 
     44 // checkSimilarDistribution returns success if the mean and stddev of the
     45 // two statsResults are similar.
     46 func (this *statsResults) checkSimilarDistribution(expected *statsResults) error {
     47 	if !nearEqual(this.mean, expected.mean, expected.closeEnough, expected.maxError) {
     48 		s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", this.mean, expected.mean, expected.closeEnough, expected.maxError)
     49 		fmt.Println(s)
     50 		return errors.New(s)
     51 	}
     52 	if !nearEqual(this.stddev, expected.stddev, 0, expected.maxError) {
     53 		s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", this.stddev, expected.stddev, expected.closeEnough, expected.maxError)
     54 		fmt.Println(s)
     55 		return errors.New(s)
     56 	}
     57 	return nil
     58 }
     59 
     60 func getStatsResults(samples []float64) *statsResults {
     61 	res := new(statsResults)
     62 	var sum, squaresum float64
     63 	for _, s := range samples {
     64 		sum += s
     65 		squaresum += s * s
     66 	}
     67 	res.mean = sum / float64(len(samples))
     68 	res.stddev = math.Sqrt(squaresum/float64(len(samples)) - res.mean*res.mean)
     69 	return res
     70 }
     71 
     72 func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) {
     73 	actual := getStatsResults(samples)
     74 	err := actual.checkSimilarDistribution(expected)
     75 	if err != nil {
     76 		t.Errorf(err.Error())
     77 	}
     78 }
     79 
     80 func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) {
     81 	chunk := len(samples) / nslices
     82 	for i := 0; i < nslices; i++ {
     83 		low := i * chunk
     84 		var high int
     85 		if i == nslices-1 {
     86 			high = len(samples) - 1
     87 		} else {
     88 			high = (i + 1) * chunk
     89 		}
     90 		checkSampleDistribution(t, samples[low:high], expected)
     91 	}
     92 }
     93 
     94 //
     95 // Normal distribution tests
     96 //
     97 
     98 func generateNormalSamples(nsamples int, mean, stddev float64, seed int64) []float64 {
     99 	r := New(NewSource(seed))
    100 	samples := make([]float64, nsamples)
    101 	for i := range samples {
    102 		samples[i] = r.NormFloat64()*stddev + mean
    103 	}
    104 	return samples
    105 }
    106 
    107 func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed int64) {
    108 	//fmt.Printf("testing nsamples=%v mean=%v stddev=%v seed=%v\n", nsamples, mean, stddev, seed);
    109 
    110 	samples := generateNormalSamples(nsamples, mean, stddev, seed)
    111 	errorScale := max(1.0, stddev) // Error scales with stddev
    112 	expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}
    113 
    114 	// Make sure that the entire set matches the expected distribution.
    115 	checkSampleDistribution(t, samples, expected)
    116 
    117 	// Make sure that each half of the set matches the expected distribution.
    118 	checkSampleSliceDistributions(t, samples, 2, expected)
    119 
    120 	// Make sure that each 7th of the set matches the expected distribution.
    121 	checkSampleSliceDistributions(t, samples, 7, expected)
    122 }
    123 
    124 // Actual tests
    125 
    126 func TestStandardNormalValues(t *testing.T) {
    127 	for _, seed := range testSeeds {
    128 		testNormalDistribution(t, numTestSamples, 0, 1, seed)
    129 	}
    130 }
    131 
    132 func TestNonStandardNormalValues(t *testing.T) {
    133 	sdmax := 1000.0
    134 	mmax := 1000.0
    135 	if testing.Short() {
    136 		sdmax = 5
    137 		mmax = 5
    138 	}
    139 	for sd := 0.5; sd < sdmax; sd *= 2 {
    140 		for m := 0.5; m < mmax; m *= 2 {
    141 			for _, seed := range testSeeds {
    142 				testNormalDistribution(t, numTestSamples, m, sd, seed)
    143 				if testing.Short() {
    144 					break
    145 				}
    146 			}
    147 		}
    148 	}
    149 }
    150 
    151 //
    152 // Exponential distribution tests
    153 //
    154 
    155 func generateExponentialSamples(nsamples int, rate float64, seed int64) []float64 {
    156 	r := New(NewSource(seed))
    157 	samples := make([]float64, nsamples)
    158 	for i := range samples {
    159 		samples[i] = r.ExpFloat64() / rate
    160 	}
    161 	return samples
    162 }
    163 
    164 func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed int64) {
    165 	//fmt.Printf("testing nsamples=%v rate=%v seed=%v\n", nsamples, rate, seed);
    166 
    167 	mean := 1 / rate
    168 	stddev := mean
    169 
    170 	samples := generateExponentialSamples(nsamples, rate, seed)
    171 	errorScale := max(1.0, 1/rate) // Error scales with the inverse of the rate
    172 	expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale}
    173 
    174 	// Make sure that the entire set matches the expected distribution.
    175 	checkSampleDistribution(t, samples, expected)
    176 
    177 	// Make sure that each half of the set matches the expected distribution.
    178 	checkSampleSliceDistributions(t, samples, 2, expected)
    179 
    180 	// Make sure that each 7th of the set matches the expected distribution.
    181 	checkSampleSliceDistributions(t, samples, 7, expected)
    182 }
    183 
    184 // Actual tests
    185 
    186 func TestStandardExponentialValues(t *testing.T) {
    187 	for _, seed := range testSeeds {
    188 		testExponentialDistribution(t, numTestSamples, 1, seed)
    189 	}
    190 }
    191 
    192 func TestNonStandardExponentialValues(t *testing.T) {
    193 	for rate := 0.05; rate < 10; rate *= 2 {
    194 		for _, seed := range testSeeds {
    195 			testExponentialDistribution(t, numTestSamples, rate, seed)
    196 			if testing.Short() {
    197 				break
    198 			}
    199 		}
    200 	}
    201 }
    202 
    203 //
    204 // Table generation tests
    205 //
    206 
    207 func initNorm() (testKn []uint32, testWn, testFn []float32) {
    208 	const m1 = 1 << 31
    209 	var (
    210 		dn float64 = rn
    211 		tn         = dn
    212 		vn float64 = 9.91256303526217e-3
    213 	)
    214 
    215 	testKn = make([]uint32, 128)
    216 	testWn = make([]float32, 128)
    217 	testFn = make([]float32, 128)
    218 
    219 	q := vn / math.Exp(-0.5*dn*dn)
    220 	testKn[0] = uint32((dn / q) * m1)
    221 	testKn[1] = 0
    222 	testWn[0] = float32(q / m1)
    223 	testWn[127] = float32(dn / m1)
    224 	testFn[0] = 1.0
    225 	testFn[127] = float32(math.Exp(-0.5 * dn * dn))
    226 	for i := 126; i >= 1; i-- {
    227 		dn = math.Sqrt(-2.0 * math.Log(vn/dn+math.Exp(-0.5*dn*dn)))
    228 		testKn[i+1] = uint32((dn / tn) * m1)
    229 		tn = dn
    230 		testFn[i] = float32(math.Exp(-0.5 * dn * dn))
    231 		testWn[i] = float32(dn / m1)
    232 	}
    233 	return
    234 }
    235 
    236 func initExp() (testKe []uint32, testWe, testFe []float32) {
    237 	const m2 = 1 << 32
    238 	var (
    239 		de float64 = re
    240 		te         = de
    241 		ve float64 = 3.9496598225815571993e-3
    242 	)
    243 
    244 	testKe = make([]uint32, 256)
    245 	testWe = make([]float32, 256)
    246 	testFe = make([]float32, 256)
    247 
    248 	q := ve / math.Exp(-de)
    249 	testKe[0] = uint32((de / q) * m2)
    250 	testKe[1] = 0
    251 	testWe[0] = float32(q / m2)
    252 	testWe[255] = float32(de / m2)
    253 	testFe[0] = 1.0
    254 	testFe[255] = float32(math.Exp(-de))
    255 	for i := 254; i >= 1; i-- {
    256 		de = -math.Log(ve/de + math.Exp(-de))
    257 		testKe[i+1] = uint32((de / te) * m2)
    258 		te = de
    259 		testFe[i] = float32(math.Exp(-de))
    260 		testWe[i] = float32(de / m2)
    261 	}
    262 	return
    263 }
    264 
    265 // compareUint32Slices returns the first index where the two slices
    266 // disagree, or <0 if the lengths are the same and all elements
    267 // are identical.
    268 func compareUint32Slices(s1, s2 []uint32) int {
    269 	if len(s1) != len(s2) {
    270 		if len(s1) > len(s2) {
    271 			return len(s2) + 1
    272 		}
    273 		return len(s1) + 1
    274 	}
    275 	for i := range s1 {
    276 		if s1[i] != s2[i] {
    277 			return i
    278 		}
    279 	}
    280 	return -1
    281 }
    282 
    283 // compareFloat32Slices returns the first index where the two slices
    284 // disagree, or <0 if the lengths are the same and all elements
    285 // are identical.
    286 func compareFloat32Slices(s1, s2 []float32) int {
    287 	if len(s1) != len(s2) {
    288 		if len(s1) > len(s2) {
    289 			return len(s2) + 1
    290 		}
    291 		return len(s1) + 1
    292 	}
    293 	for i := range s1 {
    294 		if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) {
    295 			return i
    296 		}
    297 	}
    298 	return -1
    299 }
    300 
    301 func TestNormTables(t *testing.T) {
    302 	testKn, testWn, testFn := initNorm()
    303 	if i := compareUint32Slices(kn[0:], testKn); i >= 0 {
    304 		t.Errorf("kn disagrees at index %v; %v != %v", i, kn[i], testKn[i])
    305 	}
    306 	if i := compareFloat32Slices(wn[0:], testWn); i >= 0 {
    307 		t.Errorf("wn disagrees at index %v; %v != %v", i, wn[i], testWn[i])
    308 	}
    309 	if i := compareFloat32Slices(fn[0:], testFn); i >= 0 {
    310 		t.Errorf("fn disagrees at index %v; %v != %v", i, fn[i], testFn[i])
    311 	}
    312 }
    313 
    314 func TestExpTables(t *testing.T) {
    315 	testKe, testWe, testFe := initExp()
    316 	if i := compareUint32Slices(ke[0:], testKe); i >= 0 {
    317 		t.Errorf("ke disagrees at index %v; %v != %v", i, ke[i], testKe[i])
    318 	}
    319 	if i := compareFloat32Slices(we[0:], testWe); i >= 0 {
    320 		t.Errorf("we disagrees at index %v; %v != %v", i, we[i], testWe[i])
    321 	}
    322 	if i := compareFloat32Slices(fe[0:], testFe); i >= 0 {
    323 		t.Errorf("fe disagrees at index %v; %v != %v", i, fe[i], testFe[i])
    324 	}
    325 }
    326 
    327 func TestFloat32(t *testing.T) {
    328 	// For issue 6721, the problem came after 7533753 calls, so check 10e6.
    329 	num := int(10e6)
    330 	// But ARM5 floating point emulation is slow (Issue 10749), so
    331 	// do less for that builder:
    332 	if testing.Short() && runtime.GOARCH == "arm" && os.Getenv("GOARM") == "5" {
    333 		num /= 100 // 1.72 seconds instead of 172 seconds
    334 	}
    335 
    336 	r := New(NewSource(1))
    337 	for ct := 0; ct < num; ct++ {
    338 		f := r.Float32()
    339 		if f >= 1 {
    340 			t.Fatal("Float32() should be in range [0,1). ct:", ct, "f:", f)
    341 		}
    342 	}
    343 }
    344 
    345 // Benchmarks
    346 
    347 func BenchmarkInt63Threadsafe(b *testing.B) {
    348 	for n := b.N; n > 0; n-- {
    349 		Int63()
    350 	}
    351 }
    352 
    353 func BenchmarkInt63Unthreadsafe(b *testing.B) {
    354 	r := New(NewSource(1))
    355 	for n := b.N; n > 0; n-- {
    356 		r.Int63()
    357 	}
    358 }
    359 
    360 func BenchmarkIntn1000(b *testing.B) {
    361 	r := New(NewSource(1))
    362 	for n := b.N; n > 0; n-- {
    363 		r.Intn(1000)
    364 	}
    365 }
    366 
    367 func BenchmarkInt63n1000(b *testing.B) {
    368 	r := New(NewSource(1))
    369 	for n := b.N; n > 0; n-- {
    370 		r.Int63n(1000)
    371 	}
    372 }
    373 
    374 func BenchmarkInt31n1000(b *testing.B) {
    375 	r := New(NewSource(1))
    376 	for n := b.N; n > 0; n-- {
    377 		r.Int31n(1000)
    378 	}
    379 }
    380 
    381 func BenchmarkFloat32(b *testing.B) {
    382 	r := New(NewSource(1))
    383 	for n := b.N; n > 0; n-- {
    384 		r.Float32()
    385 	}
    386 }
    387 
    388 func BenchmarkFloat64(b *testing.B) {
    389 	r := New(NewSource(1))
    390 	for n := b.N; n > 0; n-- {
    391 		r.Float64()
    392 	}
    393 }
    394 
    395 func BenchmarkPerm3(b *testing.B) {
    396 	r := New(NewSource(1))
    397 	for n := b.N; n > 0; n-- {
    398 		r.Perm(3)
    399 	}
    400 }
    401 
    402 func BenchmarkPerm30(b *testing.B) {
    403 	r := New(NewSource(1))
    404 	for n := b.N; n > 0; n-- {
    405 		r.Perm(30)
    406 	}
    407 }
    408