1 // Copyright 2014 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Memory allocator, based on tcmalloc. 6 // http://goog-perftools.sourceforge.net/doc/tcmalloc.html 7 8 // The main allocator works in runs of pages. 9 // Small allocation sizes (up to and including 32 kB) are 10 // rounded to one of about 100 size classes, each of which 11 // has its own free list of objects of exactly that size. 12 // Any free page of memory can be split into a set of objects 13 // of one size class, which are then managed using free list 14 // allocators. 15 // 16 // The allocator's data structures are: 17 // 18 // FixAlloc: a free-list allocator for fixed-size objects, 19 // used to manage storage used by the allocator. 20 // MHeap: the malloc heap, managed at page (4096-byte) granularity. 21 // MSpan: a run of pages managed by the MHeap. 22 // MCentral: a shared free list for a given size class. 23 // MCache: a per-thread (in Go, per-P) cache for small objects. 24 // MStats: allocation statistics. 25 // 26 // Allocating a small object proceeds up a hierarchy of caches: 27 // 28 // 1. Round the size up to one of the small size classes 29 // and look in the corresponding MCache free list. 30 // If the list is not empty, allocate an object from it. 31 // This can all be done without acquiring a lock. 32 // 33 // 2. If the MCache free list is empty, replenish it by 34 // taking a bunch of objects from the MCentral free list. 35 // Moving a bunch amortizes the cost of acquiring the MCentral lock. 36 // 37 // 3. If the MCentral free list is empty, replenish it by 38 // allocating a run of pages from the MHeap and then 39 // chopping that memory into objects of the given size. 40 // Allocating many objects amortizes the cost of locking 41 // the heap. 42 // 43 // 4. If the MHeap is empty or has no page runs large enough, 44 // allocate a new group of pages (at least 1MB) from the 45 // operating system. Allocating a large run of pages 46 // amortizes the cost of talking to the operating system. 47 // 48 // Freeing a small object proceeds up the same hierarchy: 49 // 50 // 1. Look up the size class for the object and add it to 51 // the MCache free list. 52 // 53 // 2. If the MCache free list is too long or the MCache has 54 // too much memory, return some to the MCentral free lists. 55 // 56 // 3. If all the objects in a given span have returned to 57 // the MCentral list, return that span to the page heap. 58 // 59 // 4. If the heap has too much memory, return some to the 60 // operating system. 61 // 62 // TODO(rsc): Step 4 is not implemented. 63 // 64 // Allocating and freeing a large object uses the page heap 65 // directly, bypassing the MCache and MCentral free lists. 66 // 67 // The small objects on the MCache and MCentral free lists 68 // may or may not be zeroed. They are zeroed if and only if 69 // the second word of the object is zero. A span in the 70 // page heap is zeroed unless s->needzero is set. When a span 71 // is allocated to break into small objects, it is zeroed if needed 72 // and s->needzero is set. There are two main benefits to delaying the 73 // zeroing this way: 74 // 75 // 1. stack frames allocated from the small object lists 76 // or the page heap can avoid zeroing altogether. 77 // 2. the cost of zeroing when reusing a small object is 78 // charged to the mutator, not the garbage collector. 79 // 80 // This code was written with an eye toward translating to Go 81 // in the future. Methods have the form Type_Method(Type *t, ...). 82 83 package runtime 84 85 import "unsafe" 86 87 const ( 88 debugMalloc = false 89 90 flagNoScan = _FlagNoScan 91 flagNoZero = _FlagNoZero 92 93 maxTinySize = _TinySize 94 tinySizeClass = _TinySizeClass 95 maxSmallSize = _MaxSmallSize 96 97 pageShift = _PageShift 98 pageSize = _PageSize 99 pageMask = _PageMask 100 101 mSpanInUse = _MSpanInUse 102 103 concurrentSweep = _ConcurrentSweep 104 ) 105 106 const ( 107 _PageShift = 13 108 _PageSize = 1 << _PageShift 109 _PageMask = _PageSize - 1 110 ) 111 112 const ( 113 // _64bit = 1 on 64-bit systems, 0 on 32-bit systems 114 _64bit = 1 << (^uintptr(0) >> 63) / 2 115 116 // Computed constant. The definition of MaxSmallSize and the 117 // algorithm in msize.go produces some number of different allocation 118 // size classes. NumSizeClasses is that number. It's needed here 119 // because there are static arrays of this length; when msize runs its 120 // size choosing algorithm it double-checks that NumSizeClasses agrees. 121 _NumSizeClasses = 67 122 123 // Tunable constants. 124 _MaxSmallSize = 32 << 10 125 126 // Tiny allocator parameters, see "Tiny allocator" comment in malloc.go. 127 _TinySize = 16 128 _TinySizeClass = 2 129 130 _FixAllocChunk = 16 << 10 // Chunk size for FixAlloc 131 _MaxMHeapList = 1 << (20 - _PageShift) // Maximum page length for fixed-size list in MHeap. 132 _HeapAllocChunk = 1 << 20 // Chunk size for heap growth 133 134 // Per-P, per order stack segment cache size. 135 _StackCacheSize = 32 * 1024 136 137 // Number of orders that get caching. Order 0 is FixedStack 138 // and each successive order is twice as large. 139 // We want to cache 2KB, 4KB, 8KB, and 16KB stacks. Larger stacks 140 // will be allocated directly. 141 // Since FixedStack is different on different systems, we 142 // must vary NumStackOrders to keep the same maximum cached size. 143 // OS | FixedStack | NumStackOrders 144 // -----------------+------------+--------------- 145 // linux/darwin/bsd | 2KB | 4 146 // windows/32 | 4KB | 3 147 // windows/64 | 8KB | 2 148 // plan9 | 4KB | 3 149 _NumStackOrders = 4 - ptrSize/4*goos_windows - 1*goos_plan9 150 151 // Number of bits in page to span calculations (4k pages). 152 // On Windows 64-bit we limit the arena to 32GB or 35 bits. 153 // Windows counts memory used by page table into committed memory 154 // of the process, so we can't reserve too much memory. 155 // See https://golang.org/issue/5402 and https://golang.org/issue/5236. 156 // On other 64-bit platforms, we limit the arena to 512GB, or 39 bits. 157 // On 32-bit, we don't bother limiting anything, so we use the full 32-bit address. 158 // On Darwin/arm64, we cannot reserve more than ~5GB of virtual memory, 159 // but as most devices have less than 4GB of physical memory anyway, we 160 // try to be conservative here, and only ask for a 2GB heap. 161 _MHeapMap_TotalBits = (_64bit*goos_windows)*35 + (_64bit*(1-goos_windows)*(1-goos_darwin*goarch_arm64))*39 + goos_darwin*goarch_arm64*31 + (1-_64bit)*32 162 _MHeapMap_Bits = _MHeapMap_TotalBits - _PageShift 163 164 _MaxMem = uintptr(1<<_MHeapMap_TotalBits - 1) 165 166 // Max number of threads to run garbage collection. 167 // 2, 3, and 4 are all plausible maximums depending 168 // on the hardware details of the machine. The garbage 169 // collector scales well to 32 cpus. 170 _MaxGcproc = 32 171 ) 172 173 // Page number (address>>pageShift) 174 type pageID uintptr 175 176 const _MaxArena32 = 2 << 30 177 178 // OS-defined helpers: 179 // 180 // sysAlloc obtains a large chunk of zeroed memory from the 181 // operating system, typically on the order of a hundred kilobytes 182 // or a megabyte. 183 // NOTE: sysAlloc returns OS-aligned memory, but the heap allocator 184 // may use larger alignment, so the caller must be careful to realign the 185 // memory obtained by sysAlloc. 186 // 187 // SysUnused notifies the operating system that the contents 188 // of the memory region are no longer needed and can be reused 189 // for other purposes. 190 // SysUsed notifies the operating system that the contents 191 // of the memory region are needed again. 192 // 193 // SysFree returns it unconditionally; this is only used if 194 // an out-of-memory error has been detected midway through 195 // an allocation. It is okay if SysFree is a no-op. 196 // 197 // SysReserve reserves address space without allocating memory. 198 // If the pointer passed to it is non-nil, the caller wants the 199 // reservation there, but SysReserve can still choose another 200 // location if that one is unavailable. On some systems and in some 201 // cases SysReserve will simply check that the address space is 202 // available and not actually reserve it. If SysReserve returns 203 // non-nil, it sets *reserved to true if the address space is 204 // reserved, false if it has merely been checked. 205 // NOTE: SysReserve returns OS-aligned memory, but the heap allocator 206 // may use larger alignment, so the caller must be careful to realign the 207 // memory obtained by sysAlloc. 208 // 209 // SysMap maps previously reserved address space for use. 210 // The reserved argument is true if the address space was really 211 // reserved, not merely checked. 212 // 213 // SysFault marks a (already sysAlloc'd) region to fault 214 // if accessed. Used only for debugging the runtime. 215 216 func mallocinit() { 217 initSizes() 218 219 if class_to_size[_TinySizeClass] != _TinySize { 220 throw("bad TinySizeClass") 221 } 222 223 var p, bitmapSize, spansSize, pSize, limit uintptr 224 var reserved bool 225 226 // limit = runtime.memlimit(); 227 // See https://golang.org/issue/5049 228 // TODO(rsc): Fix after 1.1. 229 limit = 0 230 231 // Set up the allocation arena, a contiguous area of memory where 232 // allocated data will be found. The arena begins with a bitmap large 233 // enough to hold 4 bits per allocated word. 234 if ptrSize == 8 && (limit == 0 || limit > 1<<30) { 235 // On a 64-bit machine, allocate from a single contiguous reservation. 236 // 512 GB (MaxMem) should be big enough for now. 237 // 238 // The code will work with the reservation at any address, but ask 239 // SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f). 240 // Allocating a 512 GB region takes away 39 bits, and the amd64 241 // doesn't let us choose the top 17 bits, so that leaves the 9 bits 242 // in the middle of 0x00c0 for us to choose. Choosing 0x00c0 means 243 // that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df. 244 // In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid 245 // UTF-8 sequences, and they are otherwise as far away from 246 // ff (likely a common byte) as possible. If that fails, we try other 0xXXc0 247 // addresses. An earlier attempt to use 0x11f8 caused out of memory errors 248 // on OS X during thread allocations. 0x00c0 causes conflicts with 249 // AddressSanitizer which reserves all memory up to 0x0100. 250 // These choices are both for debuggability and to reduce the 251 // odds of a conservative garbage collector (as is still used in gccgo) 252 // not collecting memory because some non-pointer block of memory 253 // had a bit pattern that matched a memory address. 254 // 255 // Actually we reserve 544 GB (because the bitmap ends up being 32 GB) 256 // but it hardly matters: e0 00 is not valid UTF-8 either. 257 // 258 // If this fails we fall back to the 32 bit memory mechanism 259 // 260 // However, on arm64, we ignore all this advice above and slam the 261 // allocation at 0x40 << 32 because when using 4k pages with 3-level 262 // translation buffers, the user address space is limited to 39 bits 263 // On darwin/arm64, the address space is even smaller. 264 arenaSize := round(_MaxMem, _PageSize) 265 bitmapSize = arenaSize / (ptrSize * 8 / 4) 266 spansSize = arenaSize / _PageSize * ptrSize 267 spansSize = round(spansSize, _PageSize) 268 for i := 0; i <= 0x7f; i++ { 269 switch { 270 case GOARCH == "arm64" && GOOS == "darwin": 271 p = uintptr(i)<<40 | uintptrMask&(0x0013<<28) 272 case GOARCH == "arm64": 273 p = uintptr(i)<<40 | uintptrMask&(0x0040<<32) 274 default: 275 p = uintptr(i)<<40 | uintptrMask&(0x00c0<<32) 276 } 277 pSize = bitmapSize + spansSize + arenaSize + _PageSize 278 p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved)) 279 if p != 0 { 280 break 281 } 282 } 283 } 284 285 if p == 0 { 286 // On a 32-bit machine, we can't typically get away 287 // with a giant virtual address space reservation. 288 // Instead we map the memory information bitmap 289 // immediately after the data segment, large enough 290 // to handle another 2GB of mappings (256 MB), 291 // along with a reservation for an initial arena. 292 // When that gets used up, we'll start asking the kernel 293 // for any memory anywhere and hope it's in the 2GB 294 // following the bitmap (presumably the executable begins 295 // near the bottom of memory, so we'll have to use up 296 // most of memory before the kernel resorts to giving out 297 // memory before the beginning of the text segment). 298 // 299 // Alternatively we could reserve 512 MB bitmap, enough 300 // for 4GB of mappings, and then accept any memory the 301 // kernel threw at us, but normally that's a waste of 512 MB 302 // of address space, which is probably too much in a 32-bit world. 303 304 // If we fail to allocate, try again with a smaller arena. 305 // This is necessary on Android L where we share a process 306 // with ART, which reserves virtual memory aggressively. 307 arenaSizes := []uintptr{ 308 512 << 20, 309 256 << 20, 310 128 << 20, 311 } 312 313 for _, arenaSize := range arenaSizes { 314 bitmapSize = _MaxArena32 / (ptrSize * 8 / 4) 315 spansSize = _MaxArena32 / _PageSize * ptrSize 316 if limit > 0 && arenaSize+bitmapSize+spansSize > limit { 317 bitmapSize = (limit / 9) &^ ((1 << _PageShift) - 1) 318 arenaSize = bitmapSize * 8 319 spansSize = arenaSize / _PageSize * ptrSize 320 } 321 spansSize = round(spansSize, _PageSize) 322 323 // SysReserve treats the address we ask for, end, as a hint, 324 // not as an absolute requirement. If we ask for the end 325 // of the data segment but the operating system requires 326 // a little more space before we can start allocating, it will 327 // give out a slightly higher pointer. Except QEMU, which 328 // is buggy, as usual: it won't adjust the pointer upward. 329 // So adjust it upward a little bit ourselves: 1/4 MB to get 330 // away from the running binary image and then round up 331 // to a MB boundary. 332 p = round(firstmoduledata.end+(1<<18), 1<<20) 333 pSize = bitmapSize + spansSize + arenaSize + _PageSize 334 p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved)) 335 if p != 0 { 336 break 337 } 338 } 339 if p == 0 { 340 throw("runtime: cannot reserve arena virtual address space") 341 } 342 } 343 344 // PageSize can be larger than OS definition of page size, 345 // so SysReserve can give us a PageSize-unaligned pointer. 346 // To overcome this we ask for PageSize more and round up the pointer. 347 p1 := round(p, _PageSize) 348 349 mheap_.spans = (**mspan)(unsafe.Pointer(p1)) 350 mheap_.bitmap = p1 + spansSize 351 mheap_.arena_start = p1 + (spansSize + bitmapSize) 352 mheap_.arena_used = mheap_.arena_start 353 mheap_.arena_end = p + pSize 354 mheap_.arena_reserved = reserved 355 356 if mheap_.arena_start&(_PageSize-1) != 0 { 357 println("bad pagesize", hex(p), hex(p1), hex(spansSize), hex(bitmapSize), hex(_PageSize), "start", hex(mheap_.arena_start)) 358 throw("misrounded allocation in mallocinit") 359 } 360 361 // Initialize the rest of the allocator. 362 mHeap_Init(&mheap_, spansSize) 363 _g_ := getg() 364 _g_.m.mcache = allocmcache() 365 } 366 367 // sysReserveHigh reserves space somewhere high in the address space. 368 // sysReserve doesn't actually reserve the full amount requested on 369 // 64-bit systems, because of problems with ulimit. Instead it checks 370 // that it can get the first 64 kB and assumes it can grab the rest as 371 // needed. This doesn't work well with the "let the kernel pick an address" 372 // mode, so don't do that. Pick a high address instead. 373 func sysReserveHigh(n uintptr, reserved *bool) unsafe.Pointer { 374 if ptrSize == 4 { 375 return sysReserve(nil, n, reserved) 376 } 377 378 for i := 0; i <= 0x7f; i++ { 379 p := uintptr(i)<<40 | uintptrMask&(0x00c0<<32) 380 *reserved = false 381 p = uintptr(sysReserve(unsafe.Pointer(p), n, reserved)) 382 if p != 0 { 383 return unsafe.Pointer(p) 384 } 385 } 386 387 return sysReserve(nil, n, reserved) 388 } 389 390 func mHeap_SysAlloc(h *mheap, n uintptr) unsafe.Pointer { 391 if n > uintptr(h.arena_end)-uintptr(h.arena_used) { 392 // We are in 32-bit mode, maybe we didn't use all possible address space yet. 393 // Reserve some more space. 394 p_size := round(n+_PageSize, 256<<20) 395 new_end := h.arena_end + p_size 396 if new_end <= h.arena_start+_MaxArena32 { 397 // TODO: It would be bad if part of the arena 398 // is reserved and part is not. 399 var reserved bool 400 p := uintptr(sysReserve((unsafe.Pointer)(h.arena_end), p_size, &reserved)) 401 if p == h.arena_end { 402 h.arena_end = new_end 403 h.arena_reserved = reserved 404 } else if p+p_size <= h.arena_start+_MaxArena32 { 405 // Keep everything page-aligned. 406 // Our pages are bigger than hardware pages. 407 h.arena_end = p + p_size 408 used := p + (-uintptr(p) & (_PageSize - 1)) 409 mHeap_MapBits(h, used) 410 mHeap_MapSpans(h, used) 411 h.arena_used = used 412 h.arena_reserved = reserved 413 } else { 414 var stat uint64 415 sysFree((unsafe.Pointer)(p), p_size, &stat) 416 } 417 } 418 } 419 420 if n <= uintptr(h.arena_end)-uintptr(h.arena_used) { 421 // Keep taking from our reservation. 422 p := h.arena_used 423 sysMap((unsafe.Pointer)(p), n, h.arena_reserved, &memstats.heap_sys) 424 mHeap_MapBits(h, p+n) 425 mHeap_MapSpans(h, p+n) 426 h.arena_used = p + n 427 if raceenabled { 428 racemapshadow((unsafe.Pointer)(p), n) 429 } 430 431 if uintptr(p)&(_PageSize-1) != 0 { 432 throw("misrounded allocation in MHeap_SysAlloc") 433 } 434 return (unsafe.Pointer)(p) 435 } 436 437 // If using 64-bit, our reservation is all we have. 438 if uintptr(h.arena_end)-uintptr(h.arena_start) >= _MaxArena32 { 439 return nil 440 } 441 442 // On 32-bit, once the reservation is gone we can 443 // try to get memory at a location chosen by the OS 444 // and hope that it is in the range we allocated bitmap for. 445 p_size := round(n, _PageSize) + _PageSize 446 p := uintptr(sysAlloc(p_size, &memstats.heap_sys)) 447 if p == 0 { 448 return nil 449 } 450 451 if p < h.arena_start || uintptr(p)+p_size-uintptr(h.arena_start) >= _MaxArena32 { 452 print("runtime: memory allocated by OS (", p, ") not in usable range [", hex(h.arena_start), ",", hex(h.arena_start+_MaxArena32), ")\n") 453 sysFree((unsafe.Pointer)(p), p_size, &memstats.heap_sys) 454 return nil 455 } 456 457 p_end := p + p_size 458 p += -p & (_PageSize - 1) 459 if uintptr(p)+n > uintptr(h.arena_used) { 460 mHeap_MapBits(h, p+n) 461 mHeap_MapSpans(h, p+n) 462 h.arena_used = p + n 463 if p_end > h.arena_end { 464 h.arena_end = p_end 465 } 466 if raceenabled { 467 racemapshadow((unsafe.Pointer)(p), n) 468 } 469 } 470 471 if uintptr(p)&(_PageSize-1) != 0 { 472 throw("misrounded allocation in MHeap_SysAlloc") 473 } 474 return (unsafe.Pointer)(p) 475 } 476 477 // base address for all 0-byte allocations 478 var zerobase uintptr 479 480 const ( 481 // flags to malloc 482 _FlagNoScan = 1 << 0 // GC doesn't have to scan object 483 _FlagNoZero = 1 << 1 // don't zero memory 484 ) 485 486 // Allocate an object of size bytes. 487 // Small objects are allocated from the per-P cache's free lists. 488 // Large objects (> 32 kB) are allocated straight from the heap. 489 func mallocgc(size uintptr, typ *_type, flags uint32) unsafe.Pointer { 490 if gcphase == _GCmarktermination { 491 throw("mallocgc called with gcphase == _GCmarktermination") 492 } 493 494 if size == 0 { 495 return unsafe.Pointer(&zerobase) 496 } 497 498 if flags&flagNoScan == 0 && typ == nil { 499 throw("malloc missing type") 500 } 501 502 if debug.sbrk != 0 { 503 align := uintptr(16) 504 if typ != nil { 505 align = uintptr(typ.align) 506 } 507 return persistentalloc(size, align, &memstats.other_sys) 508 } 509 510 // Set mp.mallocing to keep from being preempted by GC. 511 mp := acquirem() 512 if mp.mallocing != 0 { 513 throw("malloc deadlock") 514 } 515 if mp.gsignal == getg() { 516 throw("malloc during signal") 517 } 518 mp.mallocing = 1 519 520 shouldhelpgc := false 521 dataSize := size 522 c := gomcache() 523 var s *mspan 524 var x unsafe.Pointer 525 if size <= maxSmallSize { 526 if flags&flagNoScan != 0 && size < maxTinySize { 527 // Tiny allocator. 528 // 529 // Tiny allocator combines several tiny allocation requests 530 // into a single memory block. The resulting memory block 531 // is freed when all subobjects are unreachable. The subobjects 532 // must be FlagNoScan (don't have pointers), this ensures that 533 // the amount of potentially wasted memory is bounded. 534 // 535 // Size of the memory block used for combining (maxTinySize) is tunable. 536 // Current setting is 16 bytes, which relates to 2x worst case memory 537 // wastage (when all but one subobjects are unreachable). 538 // 8 bytes would result in no wastage at all, but provides less 539 // opportunities for combining. 540 // 32 bytes provides more opportunities for combining, 541 // but can lead to 4x worst case wastage. 542 // The best case winning is 8x regardless of block size. 543 // 544 // Objects obtained from tiny allocator must not be freed explicitly. 545 // So when an object will be freed explicitly, we ensure that 546 // its size >= maxTinySize. 547 // 548 // SetFinalizer has a special case for objects potentially coming 549 // from tiny allocator, it such case it allows to set finalizers 550 // for an inner byte of a memory block. 551 // 552 // The main targets of tiny allocator are small strings and 553 // standalone escaping variables. On a json benchmark 554 // the allocator reduces number of allocations by ~12% and 555 // reduces heap size by ~20%. 556 off := c.tinyoffset 557 // Align tiny pointer for required (conservative) alignment. 558 if size&7 == 0 { 559 off = round(off, 8) 560 } else if size&3 == 0 { 561 off = round(off, 4) 562 } else if size&1 == 0 { 563 off = round(off, 2) 564 } 565 if off+size <= maxTinySize && c.tiny != nil { 566 // The object fits into existing tiny block. 567 x = add(c.tiny, off) 568 c.tinyoffset = off + size 569 c.local_tinyallocs++ 570 mp.mallocing = 0 571 releasem(mp) 572 return x 573 } 574 // Allocate a new maxTinySize block. 575 s = c.alloc[tinySizeClass] 576 v := s.freelist 577 if v.ptr() == nil { 578 systemstack(func() { 579 mCache_Refill(c, tinySizeClass) 580 }) 581 shouldhelpgc = true 582 s = c.alloc[tinySizeClass] 583 v = s.freelist 584 } 585 s.freelist = v.ptr().next 586 s.ref++ 587 // prefetchnta offers best performance, see change list message. 588 prefetchnta(uintptr(v.ptr().next)) 589 x = unsafe.Pointer(v) 590 (*[2]uint64)(x)[0] = 0 591 (*[2]uint64)(x)[1] = 0 592 // See if we need to replace the existing tiny block with the new one 593 // based on amount of remaining free space. 594 if size < c.tinyoffset { 595 c.tiny = x 596 c.tinyoffset = size 597 } 598 size = maxTinySize 599 } else { 600 var sizeclass int8 601 if size <= 1024-8 { 602 sizeclass = size_to_class8[(size+7)>>3] 603 } else { 604 sizeclass = size_to_class128[(size-1024+127)>>7] 605 } 606 size = uintptr(class_to_size[sizeclass]) 607 s = c.alloc[sizeclass] 608 v := s.freelist 609 if v.ptr() == nil { 610 systemstack(func() { 611 mCache_Refill(c, int32(sizeclass)) 612 }) 613 shouldhelpgc = true 614 s = c.alloc[sizeclass] 615 v = s.freelist 616 } 617 s.freelist = v.ptr().next 618 s.ref++ 619 // prefetchnta offers best performance, see change list message. 620 prefetchnta(uintptr(v.ptr().next)) 621 x = unsafe.Pointer(v) 622 if flags&flagNoZero == 0 { 623 v.ptr().next = 0 624 if size > 2*ptrSize && ((*[2]uintptr)(x))[1] != 0 { 625 memclr(unsafe.Pointer(v), size) 626 } 627 } 628 } 629 c.local_cachealloc += size 630 } else { 631 var s *mspan 632 shouldhelpgc = true 633 systemstack(func() { 634 s = largeAlloc(size, uint32(flags)) 635 }) 636 x = unsafe.Pointer(uintptr(s.start << pageShift)) 637 size = uintptr(s.elemsize) 638 } 639 640 if flags&flagNoScan != 0 { 641 // All objects are pre-marked as noscan. Nothing to do. 642 } else { 643 // If allocating a defer+arg block, now that we've picked a malloc size 644 // large enough to hold everything, cut the "asked for" size down to 645 // just the defer header, so that the GC bitmap will record the arg block 646 // as containing nothing at all (as if it were unused space at the end of 647 // a malloc block caused by size rounding). 648 // The defer arg areas are scanned as part of scanstack. 649 if typ == deferType { 650 dataSize = unsafe.Sizeof(_defer{}) 651 } 652 heapBitsSetType(uintptr(x), size, dataSize, typ) 653 if dataSize > typ.size { 654 // Array allocation. If there are any 655 // pointers, GC has to scan to the last 656 // element. 657 if typ.ptrdata != 0 { 658 c.local_scan += dataSize - typ.size + typ.ptrdata 659 } 660 } else { 661 c.local_scan += typ.ptrdata 662 } 663 664 // Ensure that the stores above that initialize x to 665 // type-safe memory and set the heap bits occur before 666 // the caller can make x observable to the garbage 667 // collector. Otherwise, on weakly ordered machines, 668 // the garbage collector could follow a pointer to x, 669 // but see uninitialized memory or stale heap bits. 670 publicationBarrier() 671 } 672 673 // GCmarkterminate allocates black 674 // All slots hold nil so no scanning is needed. 675 // This may be racing with GC so do it atomically if there can be 676 // a race marking the bit. 677 if gcphase == _GCmarktermination || gcBlackenPromptly { 678 systemstack(func() { 679 gcmarknewobject_m(uintptr(x), size) 680 }) 681 } 682 683 if raceenabled { 684 racemalloc(x, size) 685 } 686 687 mp.mallocing = 0 688 releasem(mp) 689 690 if debug.allocfreetrace != 0 { 691 tracealloc(x, size, typ) 692 } 693 694 if rate := MemProfileRate; rate > 0 { 695 if size < uintptr(rate) && int32(size) < c.next_sample { 696 c.next_sample -= int32(size) 697 } else { 698 mp := acquirem() 699 profilealloc(mp, x, size) 700 releasem(mp) 701 } 702 } 703 704 if shouldhelpgc && shouldtriggergc() { 705 startGC(gcBackgroundMode, false) 706 } else if gcBlackenEnabled != 0 { 707 // Assist garbage collector. We delay this until the 708 // epilogue so that it doesn't interfere with the 709 // inner working of malloc such as mcache refills that 710 // might happen while doing the gcAssistAlloc. 711 gcAssistAlloc(size, shouldhelpgc) 712 } else if shouldhelpgc && bggc.working != 0 { 713 // The GC is starting up or shutting down, so we can't 714 // assist, but we also can't allocate unabated. Slow 715 // down this G's allocation and help the GC stay 716 // scheduled by yielding. 717 // 718 // TODO: This is a workaround. Either help the GC make 719 // the transition or block. 720 gp := getg() 721 if gp != gp.m.g0 && gp.m.locks == 0 && gp.m.preemptoff == "" { 722 Gosched() 723 } 724 } 725 726 return x 727 } 728 729 func largeAlloc(size uintptr, flag uint32) *mspan { 730 // print("largeAlloc size=", size, "\n") 731 732 if size+_PageSize < size { 733 throw("out of memory") 734 } 735 npages := size >> _PageShift 736 if size&_PageMask != 0 { 737 npages++ 738 } 739 740 // Deduct credit for this span allocation and sweep if 741 // necessary. mHeap_Alloc will also sweep npages, so this only 742 // pays the debt down to npage pages. 743 deductSweepCredit(npages*_PageSize, npages) 744 745 s := mHeap_Alloc(&mheap_, npages, 0, true, flag&_FlagNoZero == 0) 746 if s == nil { 747 throw("out of memory") 748 } 749 s.limit = uintptr(s.start)<<_PageShift + size 750 heapBitsForSpan(s.base()).initSpan(s.layout()) 751 return s 752 } 753 754 // implementation of new builtin 755 func newobject(typ *_type) unsafe.Pointer { 756 flags := uint32(0) 757 if typ.kind&kindNoPointers != 0 { 758 flags |= flagNoScan 759 } 760 return mallocgc(uintptr(typ.size), typ, flags) 761 } 762 763 //go:linkname reflect_unsafe_New reflect.unsafe_New 764 func reflect_unsafe_New(typ *_type) unsafe.Pointer { 765 return newobject(typ) 766 } 767 768 // implementation of make builtin for slices 769 func newarray(typ *_type, n uintptr) unsafe.Pointer { 770 flags := uint32(0) 771 if typ.kind&kindNoPointers != 0 { 772 flags |= flagNoScan 773 } 774 if int(n) < 0 || (typ.size > 0 && n > _MaxMem/uintptr(typ.size)) { 775 panic("runtime: allocation size out of range") 776 } 777 return mallocgc(uintptr(typ.size)*n, typ, flags) 778 } 779 780 //go:linkname reflect_unsafe_NewArray reflect.unsafe_NewArray 781 func reflect_unsafe_NewArray(typ *_type, n uintptr) unsafe.Pointer { 782 return newarray(typ, n) 783 } 784 785 // rawmem returns a chunk of pointerless memory. It is 786 // not zeroed. 787 func rawmem(size uintptr) unsafe.Pointer { 788 return mallocgc(size, nil, flagNoScan|flagNoZero) 789 } 790 791 func profilealloc(mp *m, x unsafe.Pointer, size uintptr) { 792 c := mp.mcache 793 rate := MemProfileRate 794 if size < uintptr(rate) { 795 // pick next profile time 796 // If you change this, also change allocmcache. 797 if rate > 0x3fffffff { // make 2*rate not overflow 798 rate = 0x3fffffff 799 } 800 next := int32(fastrand1()) % (2 * int32(rate)) 801 // Subtract the "remainder" of the current allocation. 802 // Otherwise objects that are close in size to sampling rate 803 // will be under-sampled, because we consistently discard this remainder. 804 next -= (int32(size) - c.next_sample) 805 if next < 0 { 806 next = 0 807 } 808 c.next_sample = next 809 } 810 811 mProf_Malloc(x, size) 812 } 813 814 type persistentAlloc struct { 815 base unsafe.Pointer 816 off uintptr 817 } 818 819 var globalAlloc struct { 820 mutex 821 persistentAlloc 822 } 823 824 // Wrapper around sysAlloc that can allocate small chunks. 825 // There is no associated free operation. 826 // Intended for things like function/type/debug-related persistent data. 827 // If align is 0, uses default align (currently 8). 828 func persistentalloc(size, align uintptr, sysStat *uint64) unsafe.Pointer { 829 var p unsafe.Pointer 830 systemstack(func() { 831 p = persistentalloc1(size, align, sysStat) 832 }) 833 return p 834 } 835 836 // Must run on system stack because stack growth can (re)invoke it. 837 // See issue 9174. 838 //go:systemstack 839 func persistentalloc1(size, align uintptr, sysStat *uint64) unsafe.Pointer { 840 const ( 841 chunk = 256 << 10 842 maxBlock = 64 << 10 // VM reservation granularity is 64K on windows 843 ) 844 845 if size == 0 { 846 throw("persistentalloc: size == 0") 847 } 848 if align != 0 { 849 if align&(align-1) != 0 { 850 throw("persistentalloc: align is not a power of 2") 851 } 852 if align > _PageSize { 853 throw("persistentalloc: align is too large") 854 } 855 } else { 856 align = 8 857 } 858 859 if size >= maxBlock { 860 return sysAlloc(size, sysStat) 861 } 862 863 mp := acquirem() 864 var persistent *persistentAlloc 865 if mp != nil && mp.p != 0 { 866 persistent = &mp.p.ptr().palloc 867 } else { 868 lock(&globalAlloc.mutex) 869 persistent = &globalAlloc.persistentAlloc 870 } 871 persistent.off = round(persistent.off, align) 872 if persistent.off+size > chunk || persistent.base == nil { 873 persistent.base = sysAlloc(chunk, &memstats.other_sys) 874 if persistent.base == nil { 875 if persistent == &globalAlloc.persistentAlloc { 876 unlock(&globalAlloc.mutex) 877 } 878 throw("runtime: cannot allocate memory") 879 } 880 persistent.off = 0 881 } 882 p := add(persistent.base, persistent.off) 883 persistent.off += size 884 releasem(mp) 885 if persistent == &globalAlloc.persistentAlloc { 886 unlock(&globalAlloc.mutex) 887 } 888 889 if sysStat != &memstats.other_sys { 890 mSysStatInc(sysStat, size) 891 mSysStatDec(&memstats.other_sys, size) 892 } 893 return p 894 } 895