Home | History | Annotate | Download | only in flate
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package flate
      6 
      7 import (
      8 	"math"
      9 	"sort"
     10 )
     11 
     12 type huffmanEncoder struct {
     13 	codeBits []uint8
     14 	code     []uint16
     15 }
     16 
     17 type literalNode struct {
     18 	literal uint16
     19 	freq    int32
     20 }
     21 
     22 // A levelInfo describes the state of the constructed tree for a given depth.
     23 type levelInfo struct {
     24 	// Our level.  for better printing
     25 	level int32
     26 
     27 	// The frequency of the last node at this level
     28 	lastFreq int32
     29 
     30 	// The frequency of the next character to add to this level
     31 	nextCharFreq int32
     32 
     33 	// The frequency of the next pair (from level below) to add to this level.
     34 	// Only valid if the "needed" value of the next lower level is 0.
     35 	nextPairFreq int32
     36 
     37 	// The number of chains remaining to generate for this level before moving
     38 	// up to the next level
     39 	needed int32
     40 }
     41 
     42 func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} }
     43 
     44 func newHuffmanEncoder(size int) *huffmanEncoder {
     45 	return &huffmanEncoder{make([]uint8, size), make([]uint16, size)}
     46 }
     47 
     48 // Generates a HuffmanCode corresponding to the fixed literal table
     49 func generateFixedLiteralEncoding() *huffmanEncoder {
     50 	h := newHuffmanEncoder(maxNumLit)
     51 	codeBits := h.codeBits
     52 	code := h.code
     53 	var ch uint16
     54 	for ch = 0; ch < maxNumLit; ch++ {
     55 		var bits uint16
     56 		var size uint8
     57 		switch {
     58 		case ch < 144:
     59 			// size 8, 000110000  .. 10111111
     60 			bits = ch + 48
     61 			size = 8
     62 			break
     63 		case ch < 256:
     64 			// size 9, 110010000 .. 111111111
     65 			bits = ch + 400 - 144
     66 			size = 9
     67 			break
     68 		case ch < 280:
     69 			// size 7, 0000000 .. 0010111
     70 			bits = ch - 256
     71 			size = 7
     72 			break
     73 		default:
     74 			// size 8, 11000000 .. 11000111
     75 			bits = ch + 192 - 280
     76 			size = 8
     77 		}
     78 		codeBits[ch] = size
     79 		code[ch] = reverseBits(bits, size)
     80 	}
     81 	return h
     82 }
     83 
     84 func generateFixedOffsetEncoding() *huffmanEncoder {
     85 	h := newHuffmanEncoder(30)
     86 	codeBits := h.codeBits
     87 	code := h.code
     88 	for ch := uint16(0); ch < 30; ch++ {
     89 		codeBits[ch] = 5
     90 		code[ch] = reverseBits(ch, 5)
     91 	}
     92 	return h
     93 }
     94 
     95 var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()
     96 var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()
     97 
     98 func (h *huffmanEncoder) bitLength(freq []int32) int64 {
     99 	var total int64
    100 	for i, f := range freq {
    101 		if f != 0 {
    102 			total += int64(f) * int64(h.codeBits[i])
    103 		}
    104 	}
    105 	return total
    106 }
    107 
    108 const maxBitsLimit = 16
    109 
    110 // Return the number of literals assigned to each bit size in the Huffman encoding
    111 //
    112 // This method is only called when list.length >= 3
    113 // The cases of 0, 1, and 2 literals are handled by special case code.
    114 //
    115 // list  An array of the literals with non-zero frequencies
    116 //             and their associated frequencies.  The array is in order of increasing
    117 //             frequency, and has as its last element a special element with frequency
    118 //             MaxInt32
    119 // maxBits     The maximum number of bits that should be used to encode any literal.
    120 //             Must be less than 16.
    121 // return      An integer array in which array[i] indicates the number of literals
    122 //             that should be encoded in i bits.
    123 func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
    124 	if maxBits >= maxBitsLimit {
    125 		panic("flate: maxBits too large")
    126 	}
    127 	n := int32(len(list))
    128 	list = list[0 : n+1]
    129 	list[n] = maxNode()
    130 
    131 	// The tree can't have greater depth than n - 1, no matter what.  This
    132 	// saves a little bit of work in some small cases
    133 	if maxBits > n-1 {
    134 		maxBits = n - 1
    135 	}
    136 
    137 	// Create information about each of the levels.
    138 	// A bogus "Level 0" whose sole purpose is so that
    139 	// level1.prev.needed==0.  This makes level1.nextPairFreq
    140 	// be a legitimate value that never gets chosen.
    141 	var levels [maxBitsLimit]levelInfo
    142 	// leafCounts[i] counts the number of literals at the left
    143 	// of ancestors of the rightmost node at level i.
    144 	// leafCounts[i][j] is the number of literals at the left
    145 	// of the level j ancestor.
    146 	var leafCounts [maxBitsLimit][maxBitsLimit]int32
    147 
    148 	for level := int32(1); level <= maxBits; level++ {
    149 		// For every level, the first two items are the first two characters.
    150 		// We initialize the levels as if we had already figured this out.
    151 		levels[level] = levelInfo{
    152 			level:        level,
    153 			lastFreq:     list[1].freq,
    154 			nextCharFreq: list[2].freq,
    155 			nextPairFreq: list[0].freq + list[1].freq,
    156 		}
    157 		leafCounts[level][level] = 2
    158 		if level == 1 {
    159 			levels[level].nextPairFreq = math.MaxInt32
    160 		}
    161 	}
    162 
    163 	// We need a total of 2*n - 2 items at top level and have already generated 2.
    164 	levels[maxBits].needed = 2*n - 4
    165 
    166 	level := maxBits
    167 	for {
    168 		l := &levels[level]
    169 		if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
    170 			// We've run out of both leafs and pairs.
    171 			// End all calculations for this level.
    172 			// To make sure we never come back to this level or any lower level,
    173 			// set nextPairFreq impossibly large.
    174 			l.needed = 0
    175 			levels[level+1].nextPairFreq = math.MaxInt32
    176 			level++
    177 			continue
    178 		}
    179 
    180 		prevFreq := l.lastFreq
    181 		if l.nextCharFreq < l.nextPairFreq {
    182 			// The next item on this row is a leaf node.
    183 			n := leafCounts[level][level] + 1
    184 			l.lastFreq = l.nextCharFreq
    185 			// Lower leafCounts are the same of the previous node.
    186 			leafCounts[level][level] = n
    187 			l.nextCharFreq = list[n].freq
    188 		} else {
    189 			// The next item on this row is a pair from the previous row.
    190 			// nextPairFreq isn't valid until we generate two
    191 			// more values in the level below
    192 			l.lastFreq = l.nextPairFreq
    193 			// Take leaf counts from the lower level, except counts[level] remains the same.
    194 			copy(leafCounts[level][:level], leafCounts[level-1][:level])
    195 			levels[l.level-1].needed = 2
    196 		}
    197 
    198 		if l.needed--; l.needed == 0 {
    199 			// We've done everything we need to do for this level.
    200 			// Continue calculating one level up.  Fill in nextPairFreq
    201 			// of that level with the sum of the two nodes we've just calculated on
    202 			// this level.
    203 			if l.level == maxBits {
    204 				// All done!
    205 				break
    206 			}
    207 			levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq
    208 			level++
    209 		} else {
    210 			// If we stole from below, move down temporarily to replenish it.
    211 			for levels[level-1].needed > 0 {
    212 				level--
    213 			}
    214 		}
    215 	}
    216 
    217 	// Somethings is wrong if at the end, the top level is null or hasn't used
    218 	// all of the leaves.
    219 	if leafCounts[maxBits][maxBits] != n {
    220 		panic("leafCounts[maxBits][maxBits] != n")
    221 	}
    222 
    223 	bitCount := make([]int32, maxBits+1)
    224 	bits := 1
    225 	counts := &leafCounts[maxBits]
    226 	for level := maxBits; level > 0; level-- {
    227 		// chain.leafCount gives the number of literals requiring at least "bits"
    228 		// bits to encode.
    229 		bitCount[bits] = counts[level] - counts[level-1]
    230 		bits++
    231 	}
    232 	return bitCount
    233 }
    234 
    235 // Look at the leaves and assign them a bit count and an encoding as specified
    236 // in RFC 1951 3.2.2
    237 func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
    238 	code := uint16(0)
    239 	for n, bits := range bitCount {
    240 		code <<= 1
    241 		if n == 0 || bits == 0 {
    242 			continue
    243 		}
    244 		// The literals list[len(list)-bits] .. list[len(list)-bits]
    245 		// are encoded using "bits" bits, and get the values
    246 		// code, code + 1, ....  The code values are
    247 		// assigned in literal order (not frequency order).
    248 		chunk := list[len(list)-int(bits):]
    249 		sortByLiteral(chunk)
    250 		for _, node := range chunk {
    251 			h.codeBits[node.literal] = uint8(n)
    252 			h.code[node.literal] = reverseBits(code, uint8(n))
    253 			code++
    254 		}
    255 		list = list[0 : len(list)-int(bits)]
    256 	}
    257 }
    258 
    259 // Update this Huffman Code object to be the minimum code for the specified frequency count.
    260 //
    261 // freq  An array of frequencies, in which frequency[i] gives the frequency of literal i.
    262 // maxBits  The maximum number of bits to use for any literal.
    263 func (h *huffmanEncoder) generate(freq []int32, maxBits int32) {
    264 	list := make([]literalNode, len(freq)+1)
    265 	// Number of non-zero literals
    266 	count := 0
    267 	// Set list to be the set of all non-zero literals and their frequencies
    268 	for i, f := range freq {
    269 		if f != 0 {
    270 			list[count] = literalNode{uint16(i), f}
    271 			count++
    272 		} else {
    273 			h.codeBits[i] = 0
    274 		}
    275 	}
    276 	// If freq[] is shorter than codeBits[], fill rest of codeBits[] with zeros
    277 	h.codeBits = h.codeBits[0:len(freq)]
    278 	list = list[0:count]
    279 	if count <= 2 {
    280 		// Handle the small cases here, because they are awkward for the general case code.  With
    281 		// two or fewer literals, everything has bit length 1.
    282 		for i, node := range list {
    283 			// "list" is in order of increasing literal value.
    284 			h.codeBits[node.literal] = 1
    285 			h.code[node.literal] = uint16(i)
    286 		}
    287 		return
    288 	}
    289 	sortByFreq(list)
    290 
    291 	// Get the number of literals for each bit count
    292 	bitCount := h.bitCounts(list, maxBits)
    293 	// And do the assignment
    294 	h.assignEncodingAndSize(bitCount, list)
    295 }
    296 
    297 type literalNodeSorter struct {
    298 	a    []literalNode
    299 	less func(i, j int) bool
    300 }
    301 
    302 func (s literalNodeSorter) Len() int { return len(s.a) }
    303 
    304 func (s literalNodeSorter) Less(i, j int) bool {
    305 	return s.less(i, j)
    306 }
    307 
    308 func (s literalNodeSorter) Swap(i, j int) { s.a[i], s.a[j] = s.a[j], s.a[i] }
    309 
    310 func sortByFreq(a []literalNode) {
    311 	s := &literalNodeSorter{a, func(i, j int) bool {
    312 		if a[i].freq == a[j].freq {
    313 			return a[i].literal < a[j].literal
    314 		}
    315 		return a[i].freq < a[j].freq
    316 	}}
    317 	sort.Sort(s)
    318 }
    319 
    320 func sortByLiteral(a []literalNode) {
    321 	s := &literalNodeSorter{a, func(i, j int) bool { return a[i].literal < a[j].literal }}
    322 	sort.Sort(s)
    323 }
    324