Home | History | Annotate | Download | only in elliptic
      1 // Copyright 2012 The Go Authors.  All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package elliptic
      6 
      7 // This is a constant-time, 32-bit implementation of P224. See FIPS 186-3,
      8 // section D.2.2.
      9 //
     10 // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.
     11 
     12 import (
     13 	"math/big"
     14 )
     15 
     16 var p224 p224Curve
     17 
     18 type p224Curve struct {
     19 	*CurveParams
     20 	gx, gy, b p224FieldElement
     21 }
     22 
     23 func initP224() {
     24 	// See FIPS 186-3, section D.2.2
     25 	p224.CurveParams = &CurveParams{Name: "P-224"}
     26 	p224.P, _ = new(big.Int).SetString("26959946667150639794667015087019630673557916260026308143510066298881", 10)
     27 	p224.N, _ = new(big.Int).SetString("26959946667150639794667015087019625940457807714424391721682722368061", 10)
     28 	p224.B, _ = new(big.Int).SetString("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", 16)
     29 	p224.Gx, _ = new(big.Int).SetString("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", 16)
     30 	p224.Gy, _ = new(big.Int).SetString("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34", 16)
     31 	p224.BitSize = 224
     32 
     33 	p224FromBig(&p224.gx, p224.Gx)
     34 	p224FromBig(&p224.gy, p224.Gy)
     35 	p224FromBig(&p224.b, p224.B)
     36 }
     37 
     38 // P224 returns a Curve which implements P-224 (see FIPS 186-3, section D.2.2)
     39 func P224() Curve {
     40 	initonce.Do(initAll)
     41 	return p224
     42 }
     43 
     44 func (curve p224Curve) Params() *CurveParams {
     45 	return curve.CurveParams
     46 }
     47 
     48 func (curve p224Curve) IsOnCurve(bigX, bigY *big.Int) bool {
     49 	var x, y p224FieldElement
     50 	p224FromBig(&x, bigX)
     51 	p224FromBig(&y, bigY)
     52 
     53 	// y = x - 3x + b
     54 	var tmp p224LargeFieldElement
     55 	var x3 p224FieldElement
     56 	p224Square(&x3, &x, &tmp)
     57 	p224Mul(&x3, &x3, &x, &tmp)
     58 
     59 	for i := 0; i < 8; i++ {
     60 		x[i] *= 3
     61 	}
     62 	p224Sub(&x3, &x3, &x)
     63 	p224Reduce(&x3)
     64 	p224Add(&x3, &x3, &curve.b)
     65 	p224Contract(&x3, &x3)
     66 
     67 	p224Square(&y, &y, &tmp)
     68 	p224Contract(&y, &y)
     69 
     70 	for i := 0; i < 8; i++ {
     71 		if y[i] != x3[i] {
     72 			return false
     73 		}
     74 	}
     75 	return true
     76 }
     77 
     78 func (p224Curve) Add(bigX1, bigY1, bigX2, bigY2 *big.Int) (x, y *big.Int) {
     79 	var x1, y1, z1, x2, y2, z2, x3, y3, z3 p224FieldElement
     80 
     81 	p224FromBig(&x1, bigX1)
     82 	p224FromBig(&y1, bigY1)
     83 	if bigX1.Sign() != 0 || bigY1.Sign() != 0 {
     84 		z1[0] = 1
     85 	}
     86 	p224FromBig(&x2, bigX2)
     87 	p224FromBig(&y2, bigY2)
     88 	if bigX2.Sign() != 0 || bigY2.Sign() != 0 {
     89 		z2[0] = 1
     90 	}
     91 
     92 	p224AddJacobian(&x3, &y3, &z3, &x1, &y1, &z1, &x2, &y2, &z2)
     93 	return p224ToAffine(&x3, &y3, &z3)
     94 }
     95 
     96 func (p224Curve) Double(bigX1, bigY1 *big.Int) (x, y *big.Int) {
     97 	var x1, y1, z1, x2, y2, z2 p224FieldElement
     98 
     99 	p224FromBig(&x1, bigX1)
    100 	p224FromBig(&y1, bigY1)
    101 	z1[0] = 1
    102 
    103 	p224DoubleJacobian(&x2, &y2, &z2, &x1, &y1, &z1)
    104 	return p224ToAffine(&x2, &y2, &z2)
    105 }
    106 
    107 func (p224Curve) ScalarMult(bigX1, bigY1 *big.Int, scalar []byte) (x, y *big.Int) {
    108 	var x1, y1, z1, x2, y2, z2 p224FieldElement
    109 
    110 	p224FromBig(&x1, bigX1)
    111 	p224FromBig(&y1, bigY1)
    112 	z1[0] = 1
    113 
    114 	p224ScalarMult(&x2, &y2, &z2, &x1, &y1, &z1, scalar)
    115 	return p224ToAffine(&x2, &y2, &z2)
    116 }
    117 
    118 func (curve p224Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
    119 	var z1, x2, y2, z2 p224FieldElement
    120 
    121 	z1[0] = 1
    122 	p224ScalarMult(&x2, &y2, &z2, &curve.gx, &curve.gy, &z1, scalar)
    123 	return p224ToAffine(&x2, &y2, &z2)
    124 }
    125 
    126 // Field element functions.
    127 //
    128 // The field that we're dealing with is /p where p = 2**224 - 2**96 + 1.
    129 //
    130 // Field elements are represented by a FieldElement, which is a typedef to an
    131 // array of 8 uint32's. The value of a FieldElement, a, is:
    132 //   a[0] + 2**28a[1] + 2**56a[1] + ... + 2**196a[7]
    133 //
    134 // Using 28-bit limbs means that there's only 4 bits of headroom, which is less
    135 // than we would really like. But it has the useful feature that we hit 2**224
    136 // exactly, making the reflections during a reduce much nicer.
    137 type p224FieldElement [8]uint32
    138 
    139 // p224P is the order of the field, represented as a p224FieldElement.
    140 var p224P = [8]uint32{1, 0, 0, 0xffff000, 0xfffffff, 0xfffffff, 0xfffffff, 0xfffffff}
    141 
    142 // p224IsZero returns 1 if a == 0 mod p and 0 otherwise.
    143 //
    144 // a[i] < 2**29
    145 func p224IsZero(a *p224FieldElement) uint32 {
    146 	// Since a p224FieldElement contains 224 bits there are two possible
    147 	// representations of 0: 0 and p.
    148 	var minimal p224FieldElement
    149 	p224Contract(&minimal, a)
    150 
    151 	var isZero, isP uint32
    152 	for i, v := range minimal {
    153 		isZero |= v
    154 		isP |= v - p224P[i]
    155 	}
    156 
    157 	// If either isZero or isP is 0, then we should return 1.
    158 	isZero |= isZero >> 16
    159 	isZero |= isZero >> 8
    160 	isZero |= isZero >> 4
    161 	isZero |= isZero >> 2
    162 	isZero |= isZero >> 1
    163 
    164 	isP |= isP >> 16
    165 	isP |= isP >> 8
    166 	isP |= isP >> 4
    167 	isP |= isP >> 2
    168 	isP |= isP >> 1
    169 
    170 	// For isZero and isP, the LSB is 0 iff all the bits are zero.
    171 	result := isZero & isP
    172 	result = (^result) & 1
    173 
    174 	return result
    175 }
    176 
    177 // p224Add computes *out = a+b
    178 //
    179 // a[i] + b[i] < 2**32
    180 func p224Add(out, a, b *p224FieldElement) {
    181 	for i := 0; i < 8; i++ {
    182 		out[i] = a[i] + b[i]
    183 	}
    184 }
    185 
    186 const two31p3 = 1<<31 + 1<<3
    187 const two31m3 = 1<<31 - 1<<3
    188 const two31m15m3 = 1<<31 - 1<<15 - 1<<3
    189 
    190 // p224ZeroModP31 is 0 mod p where bit 31 is set in all limbs so that we can
    191 // subtract smaller amounts without underflow. See the section "Subtraction" in
    192 // [1] for reasoning.
    193 var p224ZeroModP31 = []uint32{two31p3, two31m3, two31m3, two31m15m3, two31m3, two31m3, two31m3, two31m3}
    194 
    195 // p224Sub computes *out = a-b
    196 //
    197 // a[i], b[i] < 2**30
    198 // out[i] < 2**32
    199 func p224Sub(out, a, b *p224FieldElement) {
    200 	for i := 0; i < 8; i++ {
    201 		out[i] = a[i] + p224ZeroModP31[i] - b[i]
    202 	}
    203 }
    204 
    205 // LargeFieldElement also represents an element of the field. The limbs are
    206 // still spaced 28-bits apart and in little-endian order. So the limbs are at
    207 // 0, 28, 56, ..., 392 bits, each 64-bits wide.
    208 type p224LargeFieldElement [15]uint64
    209 
    210 const two63p35 = 1<<63 + 1<<35
    211 const two63m35 = 1<<63 - 1<<35
    212 const two63m35m19 = 1<<63 - 1<<35 - 1<<19
    213 
    214 // p224ZeroModP63 is 0 mod p where bit 63 is set in all limbs. See the section
    215 // "Subtraction" in [1] for why.
    216 var p224ZeroModP63 = [8]uint64{two63p35, two63m35, two63m35, two63m35, two63m35m19, two63m35, two63m35, two63m35}
    217 
    218 const bottom12Bits = 0xfff
    219 const bottom28Bits = 0xfffffff
    220 
    221 // p224Mul computes *out = a*b
    222 //
    223 // a[i] < 2**29, b[i] < 2**30 (or vice versa)
    224 // out[i] < 2**29
    225 func p224Mul(out, a, b *p224FieldElement, tmp *p224LargeFieldElement) {
    226 	for i := 0; i < 15; i++ {
    227 		tmp[i] = 0
    228 	}
    229 
    230 	for i := 0; i < 8; i++ {
    231 		for j := 0; j < 8; j++ {
    232 			tmp[i+j] += uint64(a[i]) * uint64(b[j])
    233 		}
    234 	}
    235 
    236 	p224ReduceLarge(out, tmp)
    237 }
    238 
    239 // Square computes *out = a*a
    240 //
    241 // a[i] < 2**29
    242 // out[i] < 2**29
    243 func p224Square(out, a *p224FieldElement, tmp *p224LargeFieldElement) {
    244 	for i := 0; i < 15; i++ {
    245 		tmp[i] = 0
    246 	}
    247 
    248 	for i := 0; i < 8; i++ {
    249 		for j := 0; j <= i; j++ {
    250 			r := uint64(a[i]) * uint64(a[j])
    251 			if i == j {
    252 				tmp[i+j] += r
    253 			} else {
    254 				tmp[i+j] += r << 1
    255 			}
    256 		}
    257 	}
    258 
    259 	p224ReduceLarge(out, tmp)
    260 }
    261 
    262 // ReduceLarge converts a p224LargeFieldElement to a p224FieldElement.
    263 //
    264 // in[i] < 2**62
    265 func p224ReduceLarge(out *p224FieldElement, in *p224LargeFieldElement) {
    266 	for i := 0; i < 8; i++ {
    267 		in[i] += p224ZeroModP63[i]
    268 	}
    269 
    270 	// Eliminate the coefficients at 2**224 and greater.
    271 	for i := 14; i >= 8; i-- {
    272 		in[i-8] -= in[i]
    273 		in[i-5] += (in[i] & 0xffff) << 12
    274 		in[i-4] += in[i] >> 16
    275 	}
    276 	in[8] = 0
    277 	// in[0..8] < 2**64
    278 
    279 	// As the values become small enough, we start to store them in |out|
    280 	// and use 32-bit operations.
    281 	for i := 1; i < 8; i++ {
    282 		in[i+1] += in[i] >> 28
    283 		out[i] = uint32(in[i] & bottom28Bits)
    284 	}
    285 	in[0] -= in[8]
    286 	out[3] += uint32(in[8]&0xffff) << 12
    287 	out[4] += uint32(in[8] >> 16)
    288 	// in[0] < 2**64
    289 	// out[3] < 2**29
    290 	// out[4] < 2**29
    291 	// out[1,2,5..7] < 2**28
    292 
    293 	out[0] = uint32(in[0] & bottom28Bits)
    294 	out[1] += uint32((in[0] >> 28) & bottom28Bits)
    295 	out[2] += uint32(in[0] >> 56)
    296 	// out[0] < 2**28
    297 	// out[1..4] < 2**29
    298 	// out[5..7] < 2**28
    299 }
    300 
    301 // Reduce reduces the coefficients of a to smaller bounds.
    302 //
    303 // On entry: a[i] < 2**31 + 2**30
    304 // On exit: a[i] < 2**29
    305 func p224Reduce(a *p224FieldElement) {
    306 	for i := 0; i < 7; i++ {
    307 		a[i+1] += a[i] >> 28
    308 		a[i] &= bottom28Bits
    309 	}
    310 	top := a[7] >> 28
    311 	a[7] &= bottom28Bits
    312 
    313 	// top < 2**4
    314 	mask := top
    315 	mask |= mask >> 2
    316 	mask |= mask >> 1
    317 	mask <<= 31
    318 	mask = uint32(int32(mask) >> 31)
    319 	// Mask is all ones if top != 0, all zero otherwise
    320 
    321 	a[0] -= top
    322 	a[3] += top << 12
    323 
    324 	// We may have just made a[0] negative but, if we did, then we must
    325 	// have added something to a[3], this it's > 2**12. Therefore we can
    326 	// carry down to a[0].
    327 	a[3] -= 1 & mask
    328 	a[2] += mask & (1<<28 - 1)
    329 	a[1] += mask & (1<<28 - 1)
    330 	a[0] += mask & (1 << 28)
    331 }
    332 
    333 // p224Invert calculates *out = in**-1 by computing in**(2**224 - 2**96 - 1),
    334 // i.e. Fermat's little theorem.
    335 func p224Invert(out, in *p224FieldElement) {
    336 	var f1, f2, f3, f4 p224FieldElement
    337 	var c p224LargeFieldElement
    338 
    339 	p224Square(&f1, in, &c)    // 2
    340 	p224Mul(&f1, &f1, in, &c)  // 2**2 - 1
    341 	p224Square(&f1, &f1, &c)   // 2**3 - 2
    342 	p224Mul(&f1, &f1, in, &c)  // 2**3 - 1
    343 	p224Square(&f2, &f1, &c)   // 2**4 - 2
    344 	p224Square(&f2, &f2, &c)   // 2**5 - 4
    345 	p224Square(&f2, &f2, &c)   // 2**6 - 8
    346 	p224Mul(&f1, &f1, &f2, &c) // 2**6 - 1
    347 	p224Square(&f2, &f1, &c)   // 2**7 - 2
    348 	for i := 0; i < 5; i++ {   // 2**12 - 2**6
    349 		p224Square(&f2, &f2, &c)
    350 	}
    351 	p224Mul(&f2, &f2, &f1, &c) // 2**12 - 1
    352 	p224Square(&f3, &f2, &c)   // 2**13 - 2
    353 	for i := 0; i < 11; i++ {  // 2**24 - 2**12
    354 		p224Square(&f3, &f3, &c)
    355 	}
    356 	p224Mul(&f2, &f3, &f2, &c) // 2**24 - 1
    357 	p224Square(&f3, &f2, &c)   // 2**25 - 2
    358 	for i := 0; i < 23; i++ {  // 2**48 - 2**24
    359 		p224Square(&f3, &f3, &c)
    360 	}
    361 	p224Mul(&f3, &f3, &f2, &c) // 2**48 - 1
    362 	p224Square(&f4, &f3, &c)   // 2**49 - 2
    363 	for i := 0; i < 47; i++ {  // 2**96 - 2**48
    364 		p224Square(&f4, &f4, &c)
    365 	}
    366 	p224Mul(&f3, &f3, &f4, &c) // 2**96 - 1
    367 	p224Square(&f4, &f3, &c)   // 2**97 - 2
    368 	for i := 0; i < 23; i++ {  // 2**120 - 2**24
    369 		p224Square(&f4, &f4, &c)
    370 	}
    371 	p224Mul(&f2, &f4, &f2, &c) // 2**120 - 1
    372 	for i := 0; i < 6; i++ {   // 2**126 - 2**6
    373 		p224Square(&f2, &f2, &c)
    374 	}
    375 	p224Mul(&f1, &f1, &f2, &c) // 2**126 - 1
    376 	p224Square(&f1, &f1, &c)   // 2**127 - 2
    377 	p224Mul(&f1, &f1, in, &c)  // 2**127 - 1
    378 	for i := 0; i < 97; i++ {  // 2**224 - 2**97
    379 		p224Square(&f1, &f1, &c)
    380 	}
    381 	p224Mul(out, &f1, &f3, &c) // 2**224 - 2**96 - 1
    382 }
    383 
    384 // p224Contract converts a FieldElement to its unique, minimal form.
    385 //
    386 // On entry, in[i] < 2**29
    387 // On exit, in[i] < 2**28
    388 func p224Contract(out, in *p224FieldElement) {
    389 	copy(out[:], in[:])
    390 
    391 	for i := 0; i < 7; i++ {
    392 		out[i+1] += out[i] >> 28
    393 		out[i] &= bottom28Bits
    394 	}
    395 	top := out[7] >> 28
    396 	out[7] &= bottom28Bits
    397 
    398 	out[0] -= top
    399 	out[3] += top << 12
    400 
    401 	// We may just have made out[i] negative. So we carry down. If we made
    402 	// out[0] negative then we know that out[3] is sufficiently positive
    403 	// because we just added to it.
    404 	for i := 0; i < 3; i++ {
    405 		mask := uint32(int32(out[i]) >> 31)
    406 		out[i] += (1 << 28) & mask
    407 		out[i+1] -= 1 & mask
    408 	}
    409 
    410 	// We might have pushed out[3] over 2**28 so we perform another, partial,
    411 	// carry chain.
    412 	for i := 3; i < 7; i++ {
    413 		out[i+1] += out[i] >> 28
    414 		out[i] &= bottom28Bits
    415 	}
    416 	top = out[7] >> 28
    417 	out[7] &= bottom28Bits
    418 
    419 	// Eliminate top while maintaining the same value mod p.
    420 	out[0] -= top
    421 	out[3] += top << 12
    422 
    423 	// There are two cases to consider for out[3]:
    424 	//   1) The first time that we eliminated top, we didn't push out[3] over
    425 	//      2**28. In this case, the partial carry chain didn't change any values
    426 	//      and top is zero.
    427 	//   2) We did push out[3] over 2**28 the first time that we eliminated top.
    428 	//      The first value of top was in [0..16), therefore, prior to eliminating
    429 	//      the first top, 0xfff1000 <= out[3] <= 0xfffffff. Therefore, after
    430 	//      overflowing and being reduced by the second carry chain, out[3] <=
    431 	//      0xf000. Thus it cannot have overflowed when we eliminated top for the
    432 	//      second time.
    433 
    434 	// Again, we may just have made out[0] negative, so do the same carry down.
    435 	// As before, if we made out[0] negative then we know that out[3] is
    436 	// sufficiently positive.
    437 	for i := 0; i < 3; i++ {
    438 		mask := uint32(int32(out[i]) >> 31)
    439 		out[i] += (1 << 28) & mask
    440 		out[i+1] -= 1 & mask
    441 	}
    442 
    443 	// Now we see if the value is >= p and, if so, subtract p.
    444 
    445 	// First we build a mask from the top four limbs, which must all be
    446 	// equal to bottom28Bits if the whole value is >= p. If top4AllOnes
    447 	// ends up with any zero bits in the bottom 28 bits, then this wasn't
    448 	// true.
    449 	top4AllOnes := uint32(0xffffffff)
    450 	for i := 4; i < 8; i++ {
    451 		top4AllOnes &= out[i]
    452 	}
    453 	top4AllOnes |= 0xf0000000
    454 	// Now we replicate any zero bits to all the bits in top4AllOnes.
    455 	top4AllOnes &= top4AllOnes >> 16
    456 	top4AllOnes &= top4AllOnes >> 8
    457 	top4AllOnes &= top4AllOnes >> 4
    458 	top4AllOnes &= top4AllOnes >> 2
    459 	top4AllOnes &= top4AllOnes >> 1
    460 	top4AllOnes = uint32(int32(top4AllOnes<<31) >> 31)
    461 
    462 	// Now we test whether the bottom three limbs are non-zero.
    463 	bottom3NonZero := out[0] | out[1] | out[2]
    464 	bottom3NonZero |= bottom3NonZero >> 16
    465 	bottom3NonZero |= bottom3NonZero >> 8
    466 	bottom3NonZero |= bottom3NonZero >> 4
    467 	bottom3NonZero |= bottom3NonZero >> 2
    468 	bottom3NonZero |= bottom3NonZero >> 1
    469 	bottom3NonZero = uint32(int32(bottom3NonZero<<31) >> 31)
    470 
    471 	// Everything depends on the value of out[3].
    472 	//    If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p
    473 	//    If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0,
    474 	//      then the whole value is >= p
    475 	//    If it's < 0xffff000, then the whole value is < p
    476 	n := out[3] - 0xffff000
    477 	out3Equal := n
    478 	out3Equal |= out3Equal >> 16
    479 	out3Equal |= out3Equal >> 8
    480 	out3Equal |= out3Equal >> 4
    481 	out3Equal |= out3Equal >> 2
    482 	out3Equal |= out3Equal >> 1
    483 	out3Equal = ^uint32(int32(out3Equal<<31) >> 31)
    484 
    485 	// If out[3] > 0xffff000 then n's MSB will be zero.
    486 	out3GT := ^uint32(int32(n) >> 31)
    487 
    488 	mask := top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT)
    489 	out[0] -= 1 & mask
    490 	out[3] -= 0xffff000 & mask
    491 	out[4] -= 0xfffffff & mask
    492 	out[5] -= 0xfffffff & mask
    493 	out[6] -= 0xfffffff & mask
    494 	out[7] -= 0xfffffff & mask
    495 }
    496 
    497 // Group element functions.
    498 //
    499 // These functions deal with group elements. The group is an elliptic curve
    500 // group with a = -3 defined in FIPS 186-3, section D.2.2.
    501 
    502 // p224AddJacobian computes *out = a+b where a != b.
    503 func p224AddJacobian(x3, y3, z3, x1, y1, z1, x2, y2, z2 *p224FieldElement) {
    504 	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-p224Add-2007-bl
    505 	var z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v p224FieldElement
    506 	var c p224LargeFieldElement
    507 
    508 	z1IsZero := p224IsZero(z1)
    509 	z2IsZero := p224IsZero(z2)
    510 
    511 	// Z1Z1 = Z1
    512 	p224Square(&z1z1, z1, &c)
    513 	// Z2Z2 = Z2
    514 	p224Square(&z2z2, z2, &c)
    515 	// U1 = X1*Z2Z2
    516 	p224Mul(&u1, x1, &z2z2, &c)
    517 	// U2 = X2*Z1Z1
    518 	p224Mul(&u2, x2, &z1z1, &c)
    519 	// S1 = Y1*Z2*Z2Z2
    520 	p224Mul(&s1, z2, &z2z2, &c)
    521 	p224Mul(&s1, y1, &s1, &c)
    522 	// S2 = Y2*Z1*Z1Z1
    523 	p224Mul(&s2, z1, &z1z1, &c)
    524 	p224Mul(&s2, y2, &s2, &c)
    525 	// H = U2-U1
    526 	p224Sub(&h, &u2, &u1)
    527 	p224Reduce(&h)
    528 	xEqual := p224IsZero(&h)
    529 	// I = (2*H)
    530 	for j := 0; j < 8; j++ {
    531 		i[j] = h[j] << 1
    532 	}
    533 	p224Reduce(&i)
    534 	p224Square(&i, &i, &c)
    535 	// J = H*I
    536 	p224Mul(&j, &h, &i, &c)
    537 	// r = 2*(S2-S1)
    538 	p224Sub(&r, &s2, &s1)
    539 	p224Reduce(&r)
    540 	yEqual := p224IsZero(&r)
    541 	if xEqual == 1 && yEqual == 1 && z1IsZero == 0 && z2IsZero == 0 {
    542 		p224DoubleJacobian(x3, y3, z3, x1, y1, z1)
    543 		return
    544 	}
    545 	for i := 0; i < 8; i++ {
    546 		r[i] <<= 1
    547 	}
    548 	p224Reduce(&r)
    549 	// V = U1*I
    550 	p224Mul(&v, &u1, &i, &c)
    551 	// Z3 = ((Z1+Z2)-Z1Z1-Z2Z2)*H
    552 	p224Add(&z1z1, &z1z1, &z2z2)
    553 	p224Add(&z2z2, z1, z2)
    554 	p224Reduce(&z2z2)
    555 	p224Square(&z2z2, &z2z2, &c)
    556 	p224Sub(z3, &z2z2, &z1z1)
    557 	p224Reduce(z3)
    558 	p224Mul(z3, z3, &h, &c)
    559 	// X3 = r-J-2*V
    560 	for i := 0; i < 8; i++ {
    561 		z1z1[i] = v[i] << 1
    562 	}
    563 	p224Add(&z1z1, &j, &z1z1)
    564 	p224Reduce(&z1z1)
    565 	p224Square(x3, &r, &c)
    566 	p224Sub(x3, x3, &z1z1)
    567 	p224Reduce(x3)
    568 	// Y3 = r*(V-X3)-2*S1*J
    569 	for i := 0; i < 8; i++ {
    570 		s1[i] <<= 1
    571 	}
    572 	p224Mul(&s1, &s1, &j, &c)
    573 	p224Sub(&z1z1, &v, x3)
    574 	p224Reduce(&z1z1)
    575 	p224Mul(&z1z1, &z1z1, &r, &c)
    576 	p224Sub(y3, &z1z1, &s1)
    577 	p224Reduce(y3)
    578 
    579 	p224CopyConditional(x3, x2, z1IsZero)
    580 	p224CopyConditional(x3, x1, z2IsZero)
    581 	p224CopyConditional(y3, y2, z1IsZero)
    582 	p224CopyConditional(y3, y1, z2IsZero)
    583 	p224CopyConditional(z3, z2, z1IsZero)
    584 	p224CopyConditional(z3, z1, z2IsZero)
    585 }
    586 
    587 // p224DoubleJacobian computes *out = a+a.
    588 func p224DoubleJacobian(x3, y3, z3, x1, y1, z1 *p224FieldElement) {
    589 	var delta, gamma, beta, alpha, t p224FieldElement
    590 	var c p224LargeFieldElement
    591 
    592 	p224Square(&delta, z1, &c)
    593 	p224Square(&gamma, y1, &c)
    594 	p224Mul(&beta, x1, &gamma, &c)
    595 
    596 	// alpha = 3*(X1-delta)*(X1+delta)
    597 	p224Add(&t, x1, &delta)
    598 	for i := 0; i < 8; i++ {
    599 		t[i] += t[i] << 1
    600 	}
    601 	p224Reduce(&t)
    602 	p224Sub(&alpha, x1, &delta)
    603 	p224Reduce(&alpha)
    604 	p224Mul(&alpha, &alpha, &t, &c)
    605 
    606 	// Z3 = (Y1+Z1)-gamma-delta
    607 	p224Add(z3, y1, z1)
    608 	p224Reduce(z3)
    609 	p224Square(z3, z3, &c)
    610 	p224Sub(z3, z3, &gamma)
    611 	p224Reduce(z3)
    612 	p224Sub(z3, z3, &delta)
    613 	p224Reduce(z3)
    614 
    615 	// X3 = alpha-8*beta
    616 	for i := 0; i < 8; i++ {
    617 		delta[i] = beta[i] << 3
    618 	}
    619 	p224Reduce(&delta)
    620 	p224Square(x3, &alpha, &c)
    621 	p224Sub(x3, x3, &delta)
    622 	p224Reduce(x3)
    623 
    624 	// Y3 = alpha*(4*beta-X3)-8*gamma
    625 	for i := 0; i < 8; i++ {
    626 		beta[i] <<= 2
    627 	}
    628 	p224Sub(&beta, &beta, x3)
    629 	p224Reduce(&beta)
    630 	p224Square(&gamma, &gamma, &c)
    631 	for i := 0; i < 8; i++ {
    632 		gamma[i] <<= 3
    633 	}
    634 	p224Reduce(&gamma)
    635 	p224Mul(y3, &alpha, &beta, &c)
    636 	p224Sub(y3, y3, &gamma)
    637 	p224Reduce(y3)
    638 }
    639 
    640 // p224CopyConditional sets *out = *in iff the least-significant-bit of control
    641 // is true, and it runs in constant time.
    642 func p224CopyConditional(out, in *p224FieldElement, control uint32) {
    643 	control <<= 31
    644 	control = uint32(int32(control) >> 31)
    645 
    646 	for i := 0; i < 8; i++ {
    647 		out[i] ^= (out[i] ^ in[i]) & control
    648 	}
    649 }
    650 
    651 func p224ScalarMult(outX, outY, outZ, inX, inY, inZ *p224FieldElement, scalar []byte) {
    652 	var xx, yy, zz p224FieldElement
    653 	for i := 0; i < 8; i++ {
    654 		outX[i] = 0
    655 		outY[i] = 0
    656 		outZ[i] = 0
    657 	}
    658 
    659 	for _, byte := range scalar {
    660 		for bitNum := uint(0); bitNum < 8; bitNum++ {
    661 			p224DoubleJacobian(outX, outY, outZ, outX, outY, outZ)
    662 			bit := uint32((byte >> (7 - bitNum)) & 1)
    663 			p224AddJacobian(&xx, &yy, &zz, inX, inY, inZ, outX, outY, outZ)
    664 			p224CopyConditional(outX, &xx, bit)
    665 			p224CopyConditional(outY, &yy, bit)
    666 			p224CopyConditional(outZ, &zz, bit)
    667 		}
    668 	}
    669 }
    670 
    671 // p224ToAffine converts from Jacobian to affine form.
    672 func p224ToAffine(x, y, z *p224FieldElement) (*big.Int, *big.Int) {
    673 	var zinv, zinvsq, outx, outy p224FieldElement
    674 	var tmp p224LargeFieldElement
    675 
    676 	if isPointAtInfinity := p224IsZero(z); isPointAtInfinity == 1 {
    677 		return new(big.Int), new(big.Int)
    678 	}
    679 
    680 	p224Invert(&zinv, z)
    681 	p224Square(&zinvsq, &zinv, &tmp)
    682 	p224Mul(x, x, &zinvsq, &tmp)
    683 	p224Mul(&zinvsq, &zinvsq, &zinv, &tmp)
    684 	p224Mul(y, y, &zinvsq, &tmp)
    685 
    686 	p224Contract(&outx, x)
    687 	p224Contract(&outy, y)
    688 	return p224ToBig(&outx), p224ToBig(&outy)
    689 }
    690 
    691 // get28BitsFromEnd returns the least-significant 28 bits from buf>>shift,
    692 // where buf is interpreted as a big-endian number.
    693 func get28BitsFromEnd(buf []byte, shift uint) (uint32, []byte) {
    694 	var ret uint32
    695 
    696 	for i := uint(0); i < 4; i++ {
    697 		var b byte
    698 		if l := len(buf); l > 0 {
    699 			b = buf[l-1]
    700 			// We don't remove the byte if we're about to return and we're not
    701 			// reading all of it.
    702 			if i != 3 || shift == 4 {
    703 				buf = buf[:l-1]
    704 			}
    705 		}
    706 		ret |= uint32(b) << (8 * i) >> shift
    707 	}
    708 	ret &= bottom28Bits
    709 	return ret, buf
    710 }
    711 
    712 // p224FromBig sets *out = *in.
    713 func p224FromBig(out *p224FieldElement, in *big.Int) {
    714 	bytes := in.Bytes()
    715 	out[0], bytes = get28BitsFromEnd(bytes, 0)
    716 	out[1], bytes = get28BitsFromEnd(bytes, 4)
    717 	out[2], bytes = get28BitsFromEnd(bytes, 0)
    718 	out[3], bytes = get28BitsFromEnd(bytes, 4)
    719 	out[4], bytes = get28BitsFromEnd(bytes, 0)
    720 	out[5], bytes = get28BitsFromEnd(bytes, 4)
    721 	out[6], bytes = get28BitsFromEnd(bytes, 0)
    722 	out[7], bytes = get28BitsFromEnd(bytes, 4)
    723 }
    724 
    725 // p224ToBig returns in as a big.Int.
    726 func p224ToBig(in *p224FieldElement) *big.Int {
    727 	var buf [28]byte
    728 	buf[27] = byte(in[0])
    729 	buf[26] = byte(in[0] >> 8)
    730 	buf[25] = byte(in[0] >> 16)
    731 	buf[24] = byte(((in[0] >> 24) & 0x0f) | (in[1]<<4)&0xf0)
    732 
    733 	buf[23] = byte(in[1] >> 4)
    734 	buf[22] = byte(in[1] >> 12)
    735 	buf[21] = byte(in[1] >> 20)
    736 
    737 	buf[20] = byte(in[2])
    738 	buf[19] = byte(in[2] >> 8)
    739 	buf[18] = byte(in[2] >> 16)
    740 	buf[17] = byte(((in[2] >> 24) & 0x0f) | (in[3]<<4)&0xf0)
    741 
    742 	buf[16] = byte(in[3] >> 4)
    743 	buf[15] = byte(in[3] >> 12)
    744 	buf[14] = byte(in[3] >> 20)
    745 
    746 	buf[13] = byte(in[4])
    747 	buf[12] = byte(in[4] >> 8)
    748 	buf[11] = byte(in[4] >> 16)
    749 	buf[10] = byte(((in[4] >> 24) & 0x0f) | (in[5]<<4)&0xf0)
    750 
    751 	buf[9] = byte(in[5] >> 4)
    752 	buf[8] = byte(in[5] >> 12)
    753 	buf[7] = byte(in[5] >> 20)
    754 
    755 	buf[6] = byte(in[6])
    756 	buf[5] = byte(in[6] >> 8)
    757 	buf[4] = byte(in[6] >> 16)
    758 	buf[3] = byte(((in[6] >> 24) & 0x0f) | (in[7]<<4)&0xf0)
    759 
    760 	buf[2] = byte(in[7] >> 4)
    761 	buf[1] = byte(in[7] >> 12)
    762 	buf[0] = byte(in[7] >> 20)
    763 
    764 	return new(big.Int).SetBytes(buf[:])
    765 }
    766