Home | History | Annotate | Download | only in tls
      1 // Copyright 2010 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // TLS low level connection and record layer
      6 
      7 package tls
      8 
      9 import (
     10 	"bytes"
     11 	"crypto/cipher"
     12 	"crypto/subtle"
     13 	"crypto/x509"
     14 	"errors"
     15 	"fmt"
     16 	"io"
     17 	"net"
     18 	"sync"
     19 	"time"
     20 )
     21 
     22 // A Conn represents a secured connection.
     23 // It implements the net.Conn interface.
     24 type Conn struct {
     25 	// constant
     26 	conn     net.Conn
     27 	isClient bool
     28 
     29 	// constant after handshake; protected by handshakeMutex
     30 	handshakeMutex    sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
     31 	handshakeErr      error      // error resulting from handshake
     32 	vers              uint16     // TLS version
     33 	haveVers          bool       // version has been negotiated
     34 	config            *Config    // configuration passed to constructor
     35 	handshakeComplete bool
     36 	didResume         bool // whether this connection was a session resumption
     37 	cipherSuite       uint16
     38 	ocspResponse      []byte   // stapled OCSP response
     39 	scts              [][]byte // signed certificate timestamps from server
     40 	peerCertificates  []*x509.Certificate
     41 	// verifiedChains contains the certificate chains that we built, as
     42 	// opposed to the ones presented by the server.
     43 	verifiedChains [][]*x509.Certificate
     44 	// serverName contains the server name indicated by the client, if any.
     45 	serverName string
     46 	// firstFinished contains the first Finished hash sent during the
     47 	// handshake. This is the "tls-unique" channel binding value.
     48 	firstFinished [12]byte
     49 
     50 	clientProtocol         string
     51 	clientProtocolFallback bool
     52 
     53 	// input/output
     54 	in, out  halfConn     // in.Mutex < out.Mutex
     55 	rawInput *block       // raw input, right off the wire
     56 	input    *block       // application data waiting to be read
     57 	hand     bytes.Buffer // handshake data waiting to be read
     58 
     59 	tmp [16]byte
     60 }
     61 
     62 // Access to net.Conn methods.
     63 // Cannot just embed net.Conn because that would
     64 // export the struct field too.
     65 
     66 // LocalAddr returns the local network address.
     67 func (c *Conn) LocalAddr() net.Addr {
     68 	return c.conn.LocalAddr()
     69 }
     70 
     71 // RemoteAddr returns the remote network address.
     72 func (c *Conn) RemoteAddr() net.Addr {
     73 	return c.conn.RemoteAddr()
     74 }
     75 
     76 // SetDeadline sets the read and write deadlines associated with the connection.
     77 // A zero value for t means Read and Write will not time out.
     78 // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
     79 func (c *Conn) SetDeadline(t time.Time) error {
     80 	return c.conn.SetDeadline(t)
     81 }
     82 
     83 // SetReadDeadline sets the read deadline on the underlying connection.
     84 // A zero value for t means Read will not time out.
     85 func (c *Conn) SetReadDeadline(t time.Time) error {
     86 	return c.conn.SetReadDeadline(t)
     87 }
     88 
     89 // SetWriteDeadline sets the write deadline on the underlying connection.
     90 // A zero value for t means Write will not time out.
     91 // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
     92 func (c *Conn) SetWriteDeadline(t time.Time) error {
     93 	return c.conn.SetWriteDeadline(t)
     94 }
     95 
     96 // A halfConn represents one direction of the record layer
     97 // connection, either sending or receiving.
     98 type halfConn struct {
     99 	sync.Mutex
    100 
    101 	err     error       // first permanent error
    102 	version uint16      // protocol version
    103 	cipher  interface{} // cipher algorithm
    104 	mac     macFunction
    105 	seq     [8]byte // 64-bit sequence number
    106 	bfree   *block  // list of free blocks
    107 
    108 	nextCipher interface{} // next encryption state
    109 	nextMac    macFunction // next MAC algorithm
    110 
    111 	// used to save allocating a new buffer for each MAC.
    112 	inDigestBuf, outDigestBuf []byte
    113 }
    114 
    115 func (hc *halfConn) setErrorLocked(err error) error {
    116 	hc.err = err
    117 	return err
    118 }
    119 
    120 func (hc *halfConn) error() error {
    121 	hc.Lock()
    122 	err := hc.err
    123 	hc.Unlock()
    124 	return err
    125 }
    126 
    127 // prepareCipherSpec sets the encryption and MAC states
    128 // that a subsequent changeCipherSpec will use.
    129 func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
    130 	hc.version = version
    131 	hc.nextCipher = cipher
    132 	hc.nextMac = mac
    133 }
    134 
    135 // changeCipherSpec changes the encryption and MAC states
    136 // to the ones previously passed to prepareCipherSpec.
    137 func (hc *halfConn) changeCipherSpec() error {
    138 	if hc.nextCipher == nil {
    139 		return alertInternalError
    140 	}
    141 	hc.cipher = hc.nextCipher
    142 	hc.mac = hc.nextMac
    143 	hc.nextCipher = nil
    144 	hc.nextMac = nil
    145 	for i := range hc.seq {
    146 		hc.seq[i] = 0
    147 	}
    148 	return nil
    149 }
    150 
    151 // incSeq increments the sequence number.
    152 func (hc *halfConn) incSeq() {
    153 	for i := 7; i >= 0; i-- {
    154 		hc.seq[i]++
    155 		if hc.seq[i] != 0 {
    156 			return
    157 		}
    158 	}
    159 
    160 	// Not allowed to let sequence number wrap.
    161 	// Instead, must renegotiate before it does.
    162 	// Not likely enough to bother.
    163 	panic("TLS: sequence number wraparound")
    164 }
    165 
    166 // resetSeq resets the sequence number to zero.
    167 func (hc *halfConn) resetSeq() {
    168 	for i := range hc.seq {
    169 		hc.seq[i] = 0
    170 	}
    171 }
    172 
    173 // removePadding returns an unpadded slice, in constant time, which is a prefix
    174 // of the input. It also returns a byte which is equal to 255 if the padding
    175 // was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
    176 func removePadding(payload []byte) ([]byte, byte) {
    177 	if len(payload) < 1 {
    178 		return payload, 0
    179 	}
    180 
    181 	paddingLen := payload[len(payload)-1]
    182 	t := uint(len(payload)-1) - uint(paddingLen)
    183 	// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
    184 	good := byte(int32(^t) >> 31)
    185 
    186 	toCheck := 255 // the maximum possible padding length
    187 	// The length of the padded data is public, so we can use an if here
    188 	if toCheck+1 > len(payload) {
    189 		toCheck = len(payload) - 1
    190 	}
    191 
    192 	for i := 0; i < toCheck; i++ {
    193 		t := uint(paddingLen) - uint(i)
    194 		// if i <= paddingLen then the MSB of t is zero
    195 		mask := byte(int32(^t) >> 31)
    196 		b := payload[len(payload)-1-i]
    197 		good &^= mask&paddingLen ^ mask&b
    198 	}
    199 
    200 	// We AND together the bits of good and replicate the result across
    201 	// all the bits.
    202 	good &= good << 4
    203 	good &= good << 2
    204 	good &= good << 1
    205 	good = uint8(int8(good) >> 7)
    206 
    207 	toRemove := good&paddingLen + 1
    208 	return payload[:len(payload)-int(toRemove)], good
    209 }
    210 
    211 // removePaddingSSL30 is a replacement for removePadding in the case that the
    212 // protocol version is SSLv3. In this version, the contents of the padding
    213 // are random and cannot be checked.
    214 func removePaddingSSL30(payload []byte) ([]byte, byte) {
    215 	if len(payload) < 1 {
    216 		return payload, 0
    217 	}
    218 
    219 	paddingLen := int(payload[len(payload)-1]) + 1
    220 	if paddingLen > len(payload) {
    221 		return payload, 0
    222 	}
    223 
    224 	return payload[:len(payload)-paddingLen], 255
    225 }
    226 
    227 func roundUp(a, b int) int {
    228 	return a + (b-a%b)%b
    229 }
    230 
    231 // cbcMode is an interface for block ciphers using cipher block chaining.
    232 type cbcMode interface {
    233 	cipher.BlockMode
    234 	SetIV([]byte)
    235 }
    236 
    237 // decrypt checks and strips the mac and decrypts the data in b. Returns a
    238 // success boolean, the number of bytes to skip from the start of the record in
    239 // order to get the application payload, and an optional alert value.
    240 func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) {
    241 	// pull out payload
    242 	payload := b.data[recordHeaderLen:]
    243 
    244 	macSize := 0
    245 	if hc.mac != nil {
    246 		macSize = hc.mac.Size()
    247 	}
    248 
    249 	paddingGood := byte(255)
    250 	explicitIVLen := 0
    251 
    252 	// decrypt
    253 	if hc.cipher != nil {
    254 		switch c := hc.cipher.(type) {
    255 		case cipher.Stream:
    256 			c.XORKeyStream(payload, payload)
    257 		case cipher.AEAD:
    258 			explicitIVLen = 8
    259 			if len(payload) < explicitIVLen {
    260 				return false, 0, alertBadRecordMAC
    261 			}
    262 			nonce := payload[:8]
    263 			payload = payload[8:]
    264 
    265 			var additionalData [13]byte
    266 			copy(additionalData[:], hc.seq[:])
    267 			copy(additionalData[8:], b.data[:3])
    268 			n := len(payload) - c.Overhead()
    269 			additionalData[11] = byte(n >> 8)
    270 			additionalData[12] = byte(n)
    271 			var err error
    272 			payload, err = c.Open(payload[:0], nonce, payload, additionalData[:])
    273 			if err != nil {
    274 				return false, 0, alertBadRecordMAC
    275 			}
    276 			b.resize(recordHeaderLen + explicitIVLen + len(payload))
    277 		case cbcMode:
    278 			blockSize := c.BlockSize()
    279 			if hc.version >= VersionTLS11 {
    280 				explicitIVLen = blockSize
    281 			}
    282 
    283 			if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
    284 				return false, 0, alertBadRecordMAC
    285 			}
    286 
    287 			if explicitIVLen > 0 {
    288 				c.SetIV(payload[:explicitIVLen])
    289 				payload = payload[explicitIVLen:]
    290 			}
    291 			c.CryptBlocks(payload, payload)
    292 			if hc.version == VersionSSL30 {
    293 				payload, paddingGood = removePaddingSSL30(payload)
    294 			} else {
    295 				payload, paddingGood = removePadding(payload)
    296 			}
    297 			b.resize(recordHeaderLen + explicitIVLen + len(payload))
    298 
    299 			// note that we still have a timing side-channel in the
    300 			// MAC check, below. An attacker can align the record
    301 			// so that a correct padding will cause one less hash
    302 			// block to be calculated. Then they can iteratively
    303 			// decrypt a record by breaking each byte. See
    304 			// "Password Interception in a SSL/TLS Channel", Brice
    305 			// Canvel et al.
    306 			//
    307 			// However, our behavior matches OpenSSL, so we leak
    308 			// only as much as they do.
    309 		default:
    310 			panic("unknown cipher type")
    311 		}
    312 	}
    313 
    314 	// check, strip mac
    315 	if hc.mac != nil {
    316 		if len(payload) < macSize {
    317 			return false, 0, alertBadRecordMAC
    318 		}
    319 
    320 		// strip mac off payload, b.data
    321 		n := len(payload) - macSize
    322 		b.data[3] = byte(n >> 8)
    323 		b.data[4] = byte(n)
    324 		b.resize(recordHeaderLen + explicitIVLen + n)
    325 		remoteMAC := payload[n:]
    326 		localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n])
    327 
    328 		if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
    329 			return false, 0, alertBadRecordMAC
    330 		}
    331 		hc.inDigestBuf = localMAC
    332 	}
    333 	hc.incSeq()
    334 
    335 	return true, recordHeaderLen + explicitIVLen, 0
    336 }
    337 
    338 // padToBlockSize calculates the needed padding block, if any, for a payload.
    339 // On exit, prefix aliases payload and extends to the end of the last full
    340 // block of payload. finalBlock is a fresh slice which contains the contents of
    341 // any suffix of payload as well as the needed padding to make finalBlock a
    342 // full block.
    343 func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) {
    344 	overrun := len(payload) % blockSize
    345 	paddingLen := blockSize - overrun
    346 	prefix = payload[:len(payload)-overrun]
    347 	finalBlock = make([]byte, blockSize)
    348 	copy(finalBlock, payload[len(payload)-overrun:])
    349 	for i := overrun; i < blockSize; i++ {
    350 		finalBlock[i] = byte(paddingLen - 1)
    351 	}
    352 	return
    353 }
    354 
    355 // encrypt encrypts and macs the data in b.
    356 func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) {
    357 	// mac
    358 	if hc.mac != nil {
    359 		mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:])
    360 
    361 		n := len(b.data)
    362 		b.resize(n + len(mac))
    363 		copy(b.data[n:], mac)
    364 		hc.outDigestBuf = mac
    365 	}
    366 
    367 	payload := b.data[recordHeaderLen:]
    368 
    369 	// encrypt
    370 	if hc.cipher != nil {
    371 		switch c := hc.cipher.(type) {
    372 		case cipher.Stream:
    373 			c.XORKeyStream(payload, payload)
    374 		case cipher.AEAD:
    375 			payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
    376 			b.resize(len(b.data) + c.Overhead())
    377 			nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
    378 			payload := b.data[recordHeaderLen+explicitIVLen:]
    379 			payload = payload[:payloadLen]
    380 
    381 			var additionalData [13]byte
    382 			copy(additionalData[:], hc.seq[:])
    383 			copy(additionalData[8:], b.data[:3])
    384 			additionalData[11] = byte(payloadLen >> 8)
    385 			additionalData[12] = byte(payloadLen)
    386 
    387 			c.Seal(payload[:0], nonce, payload, additionalData[:])
    388 		case cbcMode:
    389 			blockSize := c.BlockSize()
    390 			if explicitIVLen > 0 {
    391 				c.SetIV(payload[:explicitIVLen])
    392 				payload = payload[explicitIVLen:]
    393 			}
    394 			prefix, finalBlock := padToBlockSize(payload, blockSize)
    395 			b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
    396 			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
    397 			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
    398 		default:
    399 			panic("unknown cipher type")
    400 		}
    401 	}
    402 
    403 	// update length to include MAC and any block padding needed.
    404 	n := len(b.data) - recordHeaderLen
    405 	b.data[3] = byte(n >> 8)
    406 	b.data[4] = byte(n)
    407 	hc.incSeq()
    408 
    409 	return true, 0
    410 }
    411 
    412 // A block is a simple data buffer.
    413 type block struct {
    414 	data []byte
    415 	off  int // index for Read
    416 	link *block
    417 }
    418 
    419 // resize resizes block to be n bytes, growing if necessary.
    420 func (b *block) resize(n int) {
    421 	if n > cap(b.data) {
    422 		b.reserve(n)
    423 	}
    424 	b.data = b.data[0:n]
    425 }
    426 
    427 // reserve makes sure that block contains a capacity of at least n bytes.
    428 func (b *block) reserve(n int) {
    429 	if cap(b.data) >= n {
    430 		return
    431 	}
    432 	m := cap(b.data)
    433 	if m == 0 {
    434 		m = 1024
    435 	}
    436 	for m < n {
    437 		m *= 2
    438 	}
    439 	data := make([]byte, len(b.data), m)
    440 	copy(data, b.data)
    441 	b.data = data
    442 }
    443 
    444 // readFromUntil reads from r into b until b contains at least n bytes
    445 // or else returns an error.
    446 func (b *block) readFromUntil(r io.Reader, n int) error {
    447 	// quick case
    448 	if len(b.data) >= n {
    449 		return nil
    450 	}
    451 
    452 	// read until have enough.
    453 	b.reserve(n)
    454 	for {
    455 		m, err := r.Read(b.data[len(b.data):cap(b.data)])
    456 		b.data = b.data[0 : len(b.data)+m]
    457 		if len(b.data) >= n {
    458 			// TODO(bradfitz,agl): slightly suspicious
    459 			// that we're throwing away r.Read's err here.
    460 			break
    461 		}
    462 		if err != nil {
    463 			return err
    464 		}
    465 	}
    466 	return nil
    467 }
    468 
    469 func (b *block) Read(p []byte) (n int, err error) {
    470 	n = copy(p, b.data[b.off:])
    471 	b.off += n
    472 	return
    473 }
    474 
    475 // newBlock allocates a new block, from hc's free list if possible.
    476 func (hc *halfConn) newBlock() *block {
    477 	b := hc.bfree
    478 	if b == nil {
    479 		return new(block)
    480 	}
    481 	hc.bfree = b.link
    482 	b.link = nil
    483 	b.resize(0)
    484 	return b
    485 }
    486 
    487 // freeBlock returns a block to hc's free list.
    488 // The protocol is such that each side only has a block or two on
    489 // its free list at a time, so there's no need to worry about
    490 // trimming the list, etc.
    491 func (hc *halfConn) freeBlock(b *block) {
    492 	b.link = hc.bfree
    493 	hc.bfree = b
    494 }
    495 
    496 // splitBlock splits a block after the first n bytes,
    497 // returning a block with those n bytes and a
    498 // block with the remainder.  the latter may be nil.
    499 func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
    500 	if len(b.data) <= n {
    501 		return b, nil
    502 	}
    503 	bb := hc.newBlock()
    504 	bb.resize(len(b.data) - n)
    505 	copy(bb.data, b.data[n:])
    506 	b.data = b.data[0:n]
    507 	return b, bb
    508 }
    509 
    510 // readRecord reads the next TLS record from the connection
    511 // and updates the record layer state.
    512 // c.in.Mutex <= L; c.input == nil.
    513 func (c *Conn) readRecord(want recordType) error {
    514 	// Caller must be in sync with connection:
    515 	// handshake data if handshake not yet completed,
    516 	// else application data.  (We don't support renegotiation.)
    517 	switch want {
    518 	default:
    519 		c.sendAlert(alertInternalError)
    520 		return c.in.setErrorLocked(errors.New("tls: unknown record type requested"))
    521 	case recordTypeHandshake, recordTypeChangeCipherSpec:
    522 		if c.handshakeComplete {
    523 			c.sendAlert(alertInternalError)
    524 			return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested after handshake complete"))
    525 		}
    526 	case recordTypeApplicationData:
    527 		if !c.handshakeComplete {
    528 			c.sendAlert(alertInternalError)
    529 			return c.in.setErrorLocked(errors.New("tls: application data record requested before handshake complete"))
    530 		}
    531 	}
    532 
    533 Again:
    534 	if c.rawInput == nil {
    535 		c.rawInput = c.in.newBlock()
    536 	}
    537 	b := c.rawInput
    538 
    539 	// Read header, payload.
    540 	if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
    541 		// RFC suggests that EOF without an alertCloseNotify is
    542 		// an error, but popular web sites seem to do this,
    543 		// so we can't make it an error.
    544 		// if err == io.EOF {
    545 		// 	err = io.ErrUnexpectedEOF
    546 		// }
    547 		if e, ok := err.(net.Error); !ok || !e.Temporary() {
    548 			c.in.setErrorLocked(err)
    549 		}
    550 		return err
    551 	}
    552 	typ := recordType(b.data[0])
    553 
    554 	// No valid TLS record has a type of 0x80, however SSLv2 handshakes
    555 	// start with a uint16 length where the MSB is set and the first record
    556 	// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
    557 	// an SSLv2 client.
    558 	if want == recordTypeHandshake && typ == 0x80 {
    559 		c.sendAlert(alertProtocolVersion)
    560 		return c.in.setErrorLocked(errors.New("tls: unsupported SSLv2 handshake received"))
    561 	}
    562 
    563 	vers := uint16(b.data[1])<<8 | uint16(b.data[2])
    564 	n := int(b.data[3])<<8 | int(b.data[4])
    565 	if c.haveVers && vers != c.vers {
    566 		c.sendAlert(alertProtocolVersion)
    567 		return c.in.setErrorLocked(fmt.Errorf("tls: received record with version %x when expecting version %x", vers, c.vers))
    568 	}
    569 	if n > maxCiphertext {
    570 		c.sendAlert(alertRecordOverflow)
    571 		return c.in.setErrorLocked(fmt.Errorf("tls: oversized record received with length %d", n))
    572 	}
    573 	if !c.haveVers {
    574 		// First message, be extra suspicious: this might not be a TLS
    575 		// client. Bail out before reading a full 'body', if possible.
    576 		// The current max version is 3.3 so if the version is >= 16.0,
    577 		// it's probably not real.
    578 		if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 {
    579 			c.sendAlert(alertUnexpectedMessage)
    580 			return c.in.setErrorLocked(fmt.Errorf("tls: first record does not look like a TLS handshake"))
    581 		}
    582 	}
    583 	if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
    584 		if err == io.EOF {
    585 			err = io.ErrUnexpectedEOF
    586 		}
    587 		if e, ok := err.(net.Error); !ok || !e.Temporary() {
    588 			c.in.setErrorLocked(err)
    589 		}
    590 		return err
    591 	}
    592 
    593 	// Process message.
    594 	b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
    595 	ok, off, err := c.in.decrypt(b)
    596 	if !ok {
    597 		c.in.setErrorLocked(c.sendAlert(err))
    598 	}
    599 	b.off = off
    600 	data := b.data[b.off:]
    601 	if len(data) > maxPlaintext {
    602 		err := c.sendAlert(alertRecordOverflow)
    603 		c.in.freeBlock(b)
    604 		return c.in.setErrorLocked(err)
    605 	}
    606 
    607 	switch typ {
    608 	default:
    609 		c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
    610 
    611 	case recordTypeAlert:
    612 		if len(data) != 2 {
    613 			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
    614 			break
    615 		}
    616 		if alert(data[1]) == alertCloseNotify {
    617 			c.in.setErrorLocked(io.EOF)
    618 			break
    619 		}
    620 		switch data[0] {
    621 		case alertLevelWarning:
    622 			// drop on the floor
    623 			c.in.freeBlock(b)
    624 			goto Again
    625 		case alertLevelError:
    626 			c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
    627 		default:
    628 			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
    629 		}
    630 
    631 	case recordTypeChangeCipherSpec:
    632 		if typ != want || len(data) != 1 || data[0] != 1 {
    633 			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
    634 			break
    635 		}
    636 		err := c.in.changeCipherSpec()
    637 		if err != nil {
    638 			c.in.setErrorLocked(c.sendAlert(err.(alert)))
    639 		}
    640 
    641 	case recordTypeApplicationData:
    642 		if typ != want {
    643 			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
    644 			break
    645 		}
    646 		c.input = b
    647 		b = nil
    648 
    649 	case recordTypeHandshake:
    650 		// TODO(rsc): Should at least pick off connection close.
    651 		if typ != want {
    652 			return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation))
    653 		}
    654 		c.hand.Write(data)
    655 	}
    656 
    657 	if b != nil {
    658 		c.in.freeBlock(b)
    659 	}
    660 	return c.in.err
    661 }
    662 
    663 // sendAlert sends a TLS alert message.
    664 // c.out.Mutex <= L.
    665 func (c *Conn) sendAlertLocked(err alert) error {
    666 	switch err {
    667 	case alertNoRenegotiation, alertCloseNotify:
    668 		c.tmp[0] = alertLevelWarning
    669 	default:
    670 		c.tmp[0] = alertLevelError
    671 	}
    672 	c.tmp[1] = byte(err)
    673 	c.writeRecord(recordTypeAlert, c.tmp[0:2])
    674 	// closeNotify is a special case in that it isn't an error:
    675 	if err != alertCloseNotify {
    676 		return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
    677 	}
    678 	return nil
    679 }
    680 
    681 // sendAlert sends a TLS alert message.
    682 // L < c.out.Mutex.
    683 func (c *Conn) sendAlert(err alert) error {
    684 	c.out.Lock()
    685 	defer c.out.Unlock()
    686 	return c.sendAlertLocked(err)
    687 }
    688 
    689 // writeRecord writes a TLS record with the given type and payload
    690 // to the connection and updates the record layer state.
    691 // c.out.Mutex <= L.
    692 func (c *Conn) writeRecord(typ recordType, data []byte) (n int, err error) {
    693 	b := c.out.newBlock()
    694 	for len(data) > 0 {
    695 		m := len(data)
    696 		if m > maxPlaintext {
    697 			m = maxPlaintext
    698 		}
    699 		explicitIVLen := 0
    700 		explicitIVIsSeq := false
    701 
    702 		var cbc cbcMode
    703 		if c.out.version >= VersionTLS11 {
    704 			var ok bool
    705 			if cbc, ok = c.out.cipher.(cbcMode); ok {
    706 				explicitIVLen = cbc.BlockSize()
    707 			}
    708 		}
    709 		if explicitIVLen == 0 {
    710 			if _, ok := c.out.cipher.(cipher.AEAD); ok {
    711 				explicitIVLen = 8
    712 				// The AES-GCM construction in TLS has an
    713 				// explicit nonce so that the nonce can be
    714 				// random. However, the nonce is only 8 bytes
    715 				// which is too small for a secure, random
    716 				// nonce. Therefore we use the sequence number
    717 				// as the nonce.
    718 				explicitIVIsSeq = true
    719 			}
    720 		}
    721 		b.resize(recordHeaderLen + explicitIVLen + m)
    722 		b.data[0] = byte(typ)
    723 		vers := c.vers
    724 		if vers == 0 {
    725 			// Some TLS servers fail if the record version is
    726 			// greater than TLS 1.0 for the initial ClientHello.
    727 			vers = VersionTLS10
    728 		}
    729 		b.data[1] = byte(vers >> 8)
    730 		b.data[2] = byte(vers)
    731 		b.data[3] = byte(m >> 8)
    732 		b.data[4] = byte(m)
    733 		if explicitIVLen > 0 {
    734 			explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
    735 			if explicitIVIsSeq {
    736 				copy(explicitIV, c.out.seq[:])
    737 			} else {
    738 				if _, err = io.ReadFull(c.config.rand(), explicitIV); err != nil {
    739 					break
    740 				}
    741 			}
    742 		}
    743 		copy(b.data[recordHeaderLen+explicitIVLen:], data)
    744 		c.out.encrypt(b, explicitIVLen)
    745 		_, err = c.conn.Write(b.data)
    746 		if err != nil {
    747 			break
    748 		}
    749 		n += m
    750 		data = data[m:]
    751 	}
    752 	c.out.freeBlock(b)
    753 
    754 	if typ == recordTypeChangeCipherSpec {
    755 		err = c.out.changeCipherSpec()
    756 		if err != nil {
    757 			// Cannot call sendAlert directly,
    758 			// because we already hold c.out.Mutex.
    759 			c.tmp[0] = alertLevelError
    760 			c.tmp[1] = byte(err.(alert))
    761 			c.writeRecord(recordTypeAlert, c.tmp[0:2])
    762 			return n, c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
    763 		}
    764 	}
    765 	return
    766 }
    767 
    768 // readHandshake reads the next handshake message from
    769 // the record layer.
    770 // c.in.Mutex < L; c.out.Mutex < L.
    771 func (c *Conn) readHandshake() (interface{}, error) {
    772 	for c.hand.Len() < 4 {
    773 		if err := c.in.err; err != nil {
    774 			return nil, err
    775 		}
    776 		if err := c.readRecord(recordTypeHandshake); err != nil {
    777 			return nil, err
    778 		}
    779 	}
    780 
    781 	data := c.hand.Bytes()
    782 	n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
    783 	if n > maxHandshake {
    784 		return nil, c.in.setErrorLocked(c.sendAlert(alertInternalError))
    785 	}
    786 	for c.hand.Len() < 4+n {
    787 		if err := c.in.err; err != nil {
    788 			return nil, err
    789 		}
    790 		if err := c.readRecord(recordTypeHandshake); err != nil {
    791 			return nil, err
    792 		}
    793 	}
    794 	data = c.hand.Next(4 + n)
    795 	var m handshakeMessage
    796 	switch data[0] {
    797 	case typeClientHello:
    798 		m = new(clientHelloMsg)
    799 	case typeServerHello:
    800 		m = new(serverHelloMsg)
    801 	case typeNewSessionTicket:
    802 		m = new(newSessionTicketMsg)
    803 	case typeCertificate:
    804 		m = new(certificateMsg)
    805 	case typeCertificateRequest:
    806 		m = &certificateRequestMsg{
    807 			hasSignatureAndHash: c.vers >= VersionTLS12,
    808 		}
    809 	case typeCertificateStatus:
    810 		m = new(certificateStatusMsg)
    811 	case typeServerKeyExchange:
    812 		m = new(serverKeyExchangeMsg)
    813 	case typeServerHelloDone:
    814 		m = new(serverHelloDoneMsg)
    815 	case typeClientKeyExchange:
    816 		m = new(clientKeyExchangeMsg)
    817 	case typeCertificateVerify:
    818 		m = &certificateVerifyMsg{
    819 			hasSignatureAndHash: c.vers >= VersionTLS12,
    820 		}
    821 	case typeNextProtocol:
    822 		m = new(nextProtoMsg)
    823 	case typeFinished:
    824 		m = new(finishedMsg)
    825 	default:
    826 		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
    827 	}
    828 
    829 	// The handshake message unmarshallers
    830 	// expect to be able to keep references to data,
    831 	// so pass in a fresh copy that won't be overwritten.
    832 	data = append([]byte(nil), data...)
    833 
    834 	if !m.unmarshal(data) {
    835 		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
    836 	}
    837 	return m, nil
    838 }
    839 
    840 // Write writes data to the connection.
    841 func (c *Conn) Write(b []byte) (int, error) {
    842 	if err := c.Handshake(); err != nil {
    843 		return 0, err
    844 	}
    845 
    846 	c.out.Lock()
    847 	defer c.out.Unlock()
    848 
    849 	if err := c.out.err; err != nil {
    850 		return 0, err
    851 	}
    852 
    853 	if !c.handshakeComplete {
    854 		return 0, alertInternalError
    855 	}
    856 
    857 	// SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
    858 	// attack when using block mode ciphers due to predictable IVs.
    859 	// This can be prevented by splitting each Application Data
    860 	// record into two records, effectively randomizing the IV.
    861 	//
    862 	// http://www.openssl.org/~bodo/tls-cbc.txt
    863 	// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
    864 	// http://www.imperialviolet.org/2012/01/15/beastfollowup.html
    865 
    866 	var m int
    867 	if len(b) > 1 && c.vers <= VersionTLS10 {
    868 		if _, ok := c.out.cipher.(cipher.BlockMode); ok {
    869 			n, err := c.writeRecord(recordTypeApplicationData, b[:1])
    870 			if err != nil {
    871 				return n, c.out.setErrorLocked(err)
    872 			}
    873 			m, b = 1, b[1:]
    874 		}
    875 	}
    876 
    877 	n, err := c.writeRecord(recordTypeApplicationData, b)
    878 	return n + m, c.out.setErrorLocked(err)
    879 }
    880 
    881 // Read can be made to time out and return a net.Error with Timeout() == true
    882 // after a fixed time limit; see SetDeadline and SetReadDeadline.
    883 func (c *Conn) Read(b []byte) (n int, err error) {
    884 	if err = c.Handshake(); err != nil {
    885 		return
    886 	}
    887 	if len(b) == 0 {
    888 		// Put this after Handshake, in case people were calling
    889 		// Read(nil) for the side effect of the Handshake.
    890 		return
    891 	}
    892 
    893 	c.in.Lock()
    894 	defer c.in.Unlock()
    895 
    896 	// Some OpenSSL servers send empty records in order to randomize the
    897 	// CBC IV. So this loop ignores a limited number of empty records.
    898 	const maxConsecutiveEmptyRecords = 100
    899 	for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
    900 		for c.input == nil && c.in.err == nil {
    901 			if err := c.readRecord(recordTypeApplicationData); err != nil {
    902 				// Soft error, like EAGAIN
    903 				return 0, err
    904 			}
    905 		}
    906 		if err := c.in.err; err != nil {
    907 			return 0, err
    908 		}
    909 
    910 		n, err = c.input.Read(b)
    911 		if c.input.off >= len(c.input.data) {
    912 			c.in.freeBlock(c.input)
    913 			c.input = nil
    914 		}
    915 
    916 		// If a close-notify alert is waiting, read it so that
    917 		// we can return (n, EOF) instead of (n, nil), to signal
    918 		// to the HTTP response reading goroutine that the
    919 		// connection is now closed. This eliminates a race
    920 		// where the HTTP response reading goroutine would
    921 		// otherwise not observe the EOF until its next read,
    922 		// by which time a client goroutine might have already
    923 		// tried to reuse the HTTP connection for a new
    924 		// request.
    925 		// See https://codereview.appspot.com/76400046
    926 		// and https://golang.org/issue/3514
    927 		if ri := c.rawInput; ri != nil &&
    928 			n != 0 && err == nil &&
    929 			c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert {
    930 			if recErr := c.readRecord(recordTypeApplicationData); recErr != nil {
    931 				err = recErr // will be io.EOF on closeNotify
    932 			}
    933 		}
    934 
    935 		if n != 0 || err != nil {
    936 			return n, err
    937 		}
    938 	}
    939 
    940 	return 0, io.ErrNoProgress
    941 }
    942 
    943 // Close closes the connection.
    944 func (c *Conn) Close() error {
    945 	var alertErr error
    946 
    947 	c.handshakeMutex.Lock()
    948 	defer c.handshakeMutex.Unlock()
    949 	if c.handshakeComplete {
    950 		alertErr = c.sendAlert(alertCloseNotify)
    951 	}
    952 
    953 	if err := c.conn.Close(); err != nil {
    954 		return err
    955 	}
    956 	return alertErr
    957 }
    958 
    959 // Handshake runs the client or server handshake
    960 // protocol if it has not yet been run.
    961 // Most uses of this package need not call Handshake
    962 // explicitly: the first Read or Write will call it automatically.
    963 func (c *Conn) Handshake() error {
    964 	c.handshakeMutex.Lock()
    965 	defer c.handshakeMutex.Unlock()
    966 	if err := c.handshakeErr; err != nil {
    967 		return err
    968 	}
    969 	if c.handshakeComplete {
    970 		return nil
    971 	}
    972 
    973 	if c.isClient {
    974 		c.handshakeErr = c.clientHandshake()
    975 	} else {
    976 		c.handshakeErr = c.serverHandshake()
    977 	}
    978 	return c.handshakeErr
    979 }
    980 
    981 // ConnectionState returns basic TLS details about the connection.
    982 func (c *Conn) ConnectionState() ConnectionState {
    983 	c.handshakeMutex.Lock()
    984 	defer c.handshakeMutex.Unlock()
    985 
    986 	var state ConnectionState
    987 	state.HandshakeComplete = c.handshakeComplete
    988 	if c.handshakeComplete {
    989 		state.Version = c.vers
    990 		state.NegotiatedProtocol = c.clientProtocol
    991 		state.DidResume = c.didResume
    992 		state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
    993 		state.CipherSuite = c.cipherSuite
    994 		state.PeerCertificates = c.peerCertificates
    995 		state.VerifiedChains = c.verifiedChains
    996 		state.ServerName = c.serverName
    997 		state.SignedCertificateTimestamps = c.scts
    998 		state.OCSPResponse = c.ocspResponse
    999 		if !c.didResume {
   1000 			state.TLSUnique = c.firstFinished[:]
   1001 		}
   1002 	}
   1003 
   1004 	return state
   1005 }
   1006 
   1007 // OCSPResponse returns the stapled OCSP response from the TLS server, if
   1008 // any. (Only valid for client connections.)
   1009 func (c *Conn) OCSPResponse() []byte {
   1010 	c.handshakeMutex.Lock()
   1011 	defer c.handshakeMutex.Unlock()
   1012 
   1013 	return c.ocspResponse
   1014 }
   1015 
   1016 // VerifyHostname checks that the peer certificate chain is valid for
   1017 // connecting to host.  If so, it returns nil; if not, it returns an error
   1018 // describing the problem.
   1019 func (c *Conn) VerifyHostname(host string) error {
   1020 	c.handshakeMutex.Lock()
   1021 	defer c.handshakeMutex.Unlock()
   1022 	if !c.isClient {
   1023 		return errors.New("tls: VerifyHostname called on TLS server connection")
   1024 	}
   1025 	if !c.handshakeComplete {
   1026 		return errors.New("tls: handshake has not yet been performed")
   1027 	}
   1028 	if len(c.verifiedChains) == 0 {
   1029 		return errors.New("tls: handshake did not verify certificate chain")
   1030 	}
   1031 	return c.peerCertificates[0].VerifyHostname(host)
   1032 }
   1033