1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package fmt 6 7 import ( 8 "errors" 9 "io" 10 "os" 11 "reflect" 12 "sync" 13 "unicode/utf8" 14 ) 15 16 // Some constants in the form of bytes, to avoid string overhead. 17 // Needlessly fastidious, I suppose. 18 var ( 19 commaSpaceBytes = []byte(", ") 20 nilAngleBytes = []byte("<nil>") 21 nilParenBytes = []byte("(nil)") 22 nilBytes = []byte("nil") 23 mapBytes = []byte("map[") 24 percentBangBytes = []byte("%!") 25 missingBytes = []byte("(MISSING)") 26 badIndexBytes = []byte("(BADINDEX)") 27 panicBytes = []byte("(PANIC=") 28 extraBytes = []byte("%!(EXTRA ") 29 irparenBytes = []byte("i)") 30 bytesBytes = []byte("[]byte{") 31 badWidthBytes = []byte("%!(BADWIDTH)") 32 badPrecBytes = []byte("%!(BADPREC)") 33 noVerbBytes = []byte("%!(NOVERB)") 34 ) 35 36 // State represents the printer state passed to custom formatters. 37 // It provides access to the io.Writer interface plus information about 38 // the flags and options for the operand's format specifier. 39 type State interface { 40 // Write is the function to call to emit formatted output to be printed. 41 Write(b []byte) (ret int, err error) 42 // Width returns the value of the width option and whether it has been set. 43 Width() (wid int, ok bool) 44 // Precision returns the value of the precision option and whether it has been set. 45 Precision() (prec int, ok bool) 46 47 // Flag reports whether the flag c, a character, has been set. 48 Flag(c int) bool 49 } 50 51 // Formatter is the interface implemented by values with a custom formatter. 52 // The implementation of Format may call Sprint(f) or Fprint(f) etc. 53 // to generate its output. 54 type Formatter interface { 55 Format(f State, c rune) 56 } 57 58 // Stringer is implemented by any value that has a String method, 59 // which defines the ``native'' format for that value. 60 // The String method is used to print values passed as an operand 61 // to any format that accepts a string or to an unformatted printer 62 // such as Print. 63 type Stringer interface { 64 String() string 65 } 66 67 // GoStringer is implemented by any value that has a GoString method, 68 // which defines the Go syntax for that value. 69 // The GoString method is used to print values passed as an operand 70 // to a %#v format. 71 type GoStringer interface { 72 GoString() string 73 } 74 75 // Use simple []byte instead of bytes.Buffer to avoid large dependency. 76 type buffer []byte 77 78 func (b *buffer) Write(p []byte) (n int, err error) { 79 *b = append(*b, p...) 80 return len(p), nil 81 } 82 83 func (b *buffer) WriteString(s string) (n int, err error) { 84 *b = append(*b, s...) 85 return len(s), nil 86 } 87 88 func (b *buffer) WriteByte(c byte) error { 89 *b = append(*b, c) 90 return nil 91 } 92 93 func (bp *buffer) WriteRune(r rune) error { 94 if r < utf8.RuneSelf { 95 *bp = append(*bp, byte(r)) 96 return nil 97 } 98 99 b := *bp 100 n := len(b) 101 for n+utf8.UTFMax > cap(b) { 102 b = append(b, 0) 103 } 104 w := utf8.EncodeRune(b[n:n+utf8.UTFMax], r) 105 *bp = b[:n+w] 106 return nil 107 } 108 109 type pp struct { 110 n int 111 panicking bool 112 erroring bool // printing an error condition 113 buf buffer 114 // arg holds the current item, as an interface{}. 115 arg interface{} 116 // value holds the current item, as a reflect.Value, and will be 117 // the zero Value if the item has not been reflected. 118 value reflect.Value 119 // reordered records whether the format string used argument reordering. 120 reordered bool 121 // goodArgNum records whether the most recent reordering directive was valid. 122 goodArgNum bool 123 runeBuf [utf8.UTFMax]byte 124 fmt fmt 125 } 126 127 var ppFree = sync.Pool{ 128 New: func() interface{} { return new(pp) }, 129 } 130 131 // newPrinter allocates a new pp struct or grabs a cached one. 132 func newPrinter() *pp { 133 p := ppFree.Get().(*pp) 134 p.panicking = false 135 p.erroring = false 136 p.fmt.init(&p.buf) 137 return p 138 } 139 140 // free saves used pp structs in ppFree; avoids an allocation per invocation. 141 func (p *pp) free() { 142 // Don't hold on to pp structs with large buffers. 143 if cap(p.buf) > 1024 { 144 return 145 } 146 p.buf = p.buf[:0] 147 p.arg = nil 148 p.value = reflect.Value{} 149 ppFree.Put(p) 150 } 151 152 func (p *pp) Width() (wid int, ok bool) { return p.fmt.wid, p.fmt.widPresent } 153 154 func (p *pp) Precision() (prec int, ok bool) { return p.fmt.prec, p.fmt.precPresent } 155 156 func (p *pp) Flag(b int) bool { 157 switch b { 158 case '-': 159 return p.fmt.minus 160 case '+': 161 return p.fmt.plus 162 case '#': 163 return p.fmt.sharp 164 case ' ': 165 return p.fmt.space 166 case '0': 167 return p.fmt.zero 168 } 169 return false 170 } 171 172 func (p *pp) add(c rune) { 173 p.buf.WriteRune(c) 174 } 175 176 // Implement Write so we can call Fprintf on a pp (through State), for 177 // recursive use in custom verbs. 178 func (p *pp) Write(b []byte) (ret int, err error) { 179 return p.buf.Write(b) 180 } 181 182 // These routines end in 'f' and take a format string. 183 184 // Fprintf formats according to a format specifier and writes to w. 185 // It returns the number of bytes written and any write error encountered. 186 func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) { 187 p := newPrinter() 188 p.doPrintf(format, a) 189 n, err = w.Write(p.buf) 190 p.free() 191 return 192 } 193 194 // Printf formats according to a format specifier and writes to standard output. 195 // It returns the number of bytes written and any write error encountered. 196 func Printf(format string, a ...interface{}) (n int, err error) { 197 return Fprintf(os.Stdout, format, a...) 198 } 199 200 // Sprintf formats according to a format specifier and returns the resulting string. 201 func Sprintf(format string, a ...interface{}) string { 202 p := newPrinter() 203 p.doPrintf(format, a) 204 s := string(p.buf) 205 p.free() 206 return s 207 } 208 209 // Errorf formats according to a format specifier and returns the string 210 // as a value that satisfies error. 211 func Errorf(format string, a ...interface{}) error { 212 return errors.New(Sprintf(format, a...)) 213 } 214 215 // These routines do not take a format string 216 217 // Fprint formats using the default formats for its operands and writes to w. 218 // Spaces are added between operands when neither is a string. 219 // It returns the number of bytes written and any write error encountered. 220 func Fprint(w io.Writer, a ...interface{}) (n int, err error) { 221 p := newPrinter() 222 p.doPrint(a, false, false) 223 n, err = w.Write(p.buf) 224 p.free() 225 return 226 } 227 228 // Print formats using the default formats for its operands and writes to standard output. 229 // Spaces are added between operands when neither is a string. 230 // It returns the number of bytes written and any write error encountered. 231 func Print(a ...interface{}) (n int, err error) { 232 return Fprint(os.Stdout, a...) 233 } 234 235 // Sprint formats using the default formats for its operands and returns the resulting string. 236 // Spaces are added between operands when neither is a string. 237 func Sprint(a ...interface{}) string { 238 p := newPrinter() 239 p.doPrint(a, false, false) 240 s := string(p.buf) 241 p.free() 242 return s 243 } 244 245 // These routines end in 'ln', do not take a format string, 246 // always add spaces between operands, and add a newline 247 // after the last operand. 248 249 // Fprintln formats using the default formats for its operands and writes to w. 250 // Spaces are always added between operands and a newline is appended. 251 // It returns the number of bytes written and any write error encountered. 252 func Fprintln(w io.Writer, a ...interface{}) (n int, err error) { 253 p := newPrinter() 254 p.doPrint(a, true, true) 255 n, err = w.Write(p.buf) 256 p.free() 257 return 258 } 259 260 // Println formats using the default formats for its operands and writes to standard output. 261 // Spaces are always added between operands and a newline is appended. 262 // It returns the number of bytes written and any write error encountered. 263 func Println(a ...interface{}) (n int, err error) { 264 return Fprintln(os.Stdout, a...) 265 } 266 267 // Sprintln formats using the default formats for its operands and returns the resulting string. 268 // Spaces are always added between operands and a newline is appended. 269 func Sprintln(a ...interface{}) string { 270 p := newPrinter() 271 p.doPrint(a, true, true) 272 s := string(p.buf) 273 p.free() 274 return s 275 } 276 277 // getField gets the i'th field of the struct value. 278 // If the field is itself is an interface, return a value for 279 // the thing inside the interface, not the interface itself. 280 func getField(v reflect.Value, i int) reflect.Value { 281 val := v.Field(i) 282 if val.Kind() == reflect.Interface && !val.IsNil() { 283 val = val.Elem() 284 } 285 return val 286 } 287 288 // tooLarge reports whether the magnitude of the integer is 289 // too large to be used as a formatting width or precision. 290 func tooLarge(x int) bool { 291 const max int = 1e6 292 return x > max || x < -max 293 } 294 295 // parsenum converts ASCII to integer. num is 0 (and isnum is false) if no number present. 296 func parsenum(s string, start, end int) (num int, isnum bool, newi int) { 297 if start >= end { 298 return 0, false, end 299 } 300 for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ { 301 if tooLarge(num) { 302 return 0, false, end // Overflow; crazy long number most likely. 303 } 304 num = num*10 + int(s[newi]-'0') 305 isnum = true 306 } 307 return 308 } 309 310 func (p *pp) unknownType(v reflect.Value) { 311 if !v.IsValid() { 312 p.buf.Write(nilAngleBytes) 313 return 314 } 315 p.buf.WriteByte('?') 316 p.buf.WriteString(v.Type().String()) 317 p.buf.WriteByte('?') 318 } 319 320 func (p *pp) badVerb(verb rune) { 321 p.erroring = true 322 p.add('%') 323 p.add('!') 324 p.add(verb) 325 p.add('(') 326 switch { 327 case p.arg != nil: 328 p.buf.WriteString(reflect.TypeOf(p.arg).String()) 329 p.add('=') 330 p.printArg(p.arg, 'v', 0) 331 case p.value.IsValid(): 332 p.buf.WriteString(p.value.Type().String()) 333 p.add('=') 334 p.printValue(p.value, 'v', 0) 335 default: 336 p.buf.Write(nilAngleBytes) 337 } 338 p.add(')') 339 p.erroring = false 340 } 341 342 func (p *pp) fmtBool(v bool, verb rune) { 343 switch verb { 344 case 't', 'v': 345 p.fmt.fmt_boolean(v) 346 default: 347 p.badVerb(verb) 348 } 349 } 350 351 // fmtC formats a rune for the 'c' format. 352 func (p *pp) fmtC(c int64) { 353 r := rune(c) // Check for overflow. 354 if int64(r) != c { 355 r = utf8.RuneError 356 } 357 w := utf8.EncodeRune(p.runeBuf[0:utf8.UTFMax], r) 358 p.fmt.pad(p.runeBuf[0:w]) 359 } 360 361 func (p *pp) fmtInt64(v int64, verb rune) { 362 switch verb { 363 case 'b': 364 p.fmt.integer(v, 2, signed, ldigits) 365 case 'c': 366 p.fmtC(v) 367 case 'd', 'v': 368 p.fmt.integer(v, 10, signed, ldigits) 369 case 'o': 370 p.fmt.integer(v, 8, signed, ldigits) 371 case 'q': 372 if 0 <= v && v <= utf8.MaxRune { 373 p.fmt.fmt_qc(v) 374 } else { 375 p.badVerb(verb) 376 } 377 case 'x': 378 p.fmt.integer(v, 16, signed, ldigits) 379 case 'U': 380 p.fmtUnicode(v) 381 case 'X': 382 p.fmt.integer(v, 16, signed, udigits) 383 default: 384 p.badVerb(verb) 385 } 386 } 387 388 // fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or 389 // not, as requested, by temporarily setting the sharp flag. 390 func (p *pp) fmt0x64(v uint64, leading0x bool) { 391 sharp := p.fmt.sharp 392 p.fmt.sharp = leading0x 393 p.fmt.integer(int64(v), 16, unsigned, ldigits) 394 p.fmt.sharp = sharp 395 } 396 397 // fmtUnicode formats a uint64 in U+1234 form by 398 // temporarily turning on the unicode flag and tweaking the precision. 399 func (p *pp) fmtUnicode(v int64) { 400 precPresent := p.fmt.precPresent 401 sharp := p.fmt.sharp 402 p.fmt.sharp = false 403 prec := p.fmt.prec 404 if !precPresent { 405 // If prec is already set, leave it alone; otherwise 4 is minimum. 406 p.fmt.prec = 4 407 p.fmt.precPresent = true 408 } 409 p.fmt.unicode = true // turn on U+ 410 p.fmt.uniQuote = sharp 411 p.fmt.integer(int64(v), 16, unsigned, udigits) 412 p.fmt.unicode = false 413 p.fmt.uniQuote = false 414 p.fmt.prec = prec 415 p.fmt.precPresent = precPresent 416 p.fmt.sharp = sharp 417 } 418 419 func (p *pp) fmtUint64(v uint64, verb rune) { 420 switch verb { 421 case 'b': 422 p.fmt.integer(int64(v), 2, unsigned, ldigits) 423 case 'c': 424 p.fmtC(int64(v)) 425 case 'd': 426 p.fmt.integer(int64(v), 10, unsigned, ldigits) 427 case 'v': 428 if p.fmt.sharpV { 429 p.fmt0x64(v, true) 430 } else { 431 p.fmt.integer(int64(v), 10, unsigned, ldigits) 432 } 433 case 'o': 434 p.fmt.integer(int64(v), 8, unsigned, ldigits) 435 case 'q': 436 if 0 <= v && v <= utf8.MaxRune { 437 p.fmt.fmt_qc(int64(v)) 438 } else { 439 p.badVerb(verb) 440 } 441 case 'x': 442 p.fmt.integer(int64(v), 16, unsigned, ldigits) 443 case 'X': 444 p.fmt.integer(int64(v), 16, unsigned, udigits) 445 case 'U': 446 p.fmtUnicode(int64(v)) 447 default: 448 p.badVerb(verb) 449 } 450 } 451 452 func (p *pp) fmtFloat32(v float32, verb rune) { 453 switch verb { 454 case 'b': 455 p.fmt.fmt_fb32(v) 456 case 'e': 457 p.fmt.fmt_e32(v) 458 case 'E': 459 p.fmt.fmt_E32(v) 460 case 'f', 'F': 461 p.fmt.fmt_f32(v) 462 case 'g', 'v': 463 p.fmt.fmt_g32(v) 464 case 'G': 465 p.fmt.fmt_G32(v) 466 default: 467 p.badVerb(verb) 468 } 469 } 470 471 func (p *pp) fmtFloat64(v float64, verb rune) { 472 switch verb { 473 case 'b': 474 p.fmt.fmt_fb64(v) 475 case 'e': 476 p.fmt.fmt_e64(v) 477 case 'E': 478 p.fmt.fmt_E64(v) 479 case 'f', 'F': 480 p.fmt.fmt_f64(v) 481 case 'g', 'v': 482 p.fmt.fmt_g64(v) 483 case 'G': 484 p.fmt.fmt_G64(v) 485 default: 486 p.badVerb(verb) 487 } 488 } 489 490 func (p *pp) fmtComplex64(v complex64, verb rune) { 491 switch verb { 492 case 'b', 'e', 'E', 'f', 'F', 'g', 'G': 493 p.fmt.fmt_c64(v, verb) 494 case 'v': 495 p.fmt.fmt_c64(v, 'g') 496 default: 497 p.badVerb(verb) 498 } 499 } 500 501 func (p *pp) fmtComplex128(v complex128, verb rune) { 502 switch verb { 503 case 'b', 'e', 'E', 'f', 'F', 'g', 'G': 504 p.fmt.fmt_c128(v, verb) 505 case 'v': 506 p.fmt.fmt_c128(v, 'g') 507 default: 508 p.badVerb(verb) 509 } 510 } 511 512 func (p *pp) fmtString(v string, verb rune) { 513 switch verb { 514 case 'v': 515 if p.fmt.sharpV { 516 p.fmt.fmt_q(v) 517 } else { 518 p.fmt.fmt_s(v) 519 } 520 case 's': 521 p.fmt.fmt_s(v) 522 case 'x': 523 p.fmt.fmt_sx(v, ldigits) 524 case 'X': 525 p.fmt.fmt_sx(v, udigits) 526 case 'q': 527 p.fmt.fmt_q(v) 528 default: 529 p.badVerb(verb) 530 } 531 } 532 533 func (p *pp) fmtBytes(v []byte, verb rune, typ reflect.Type, depth int) { 534 if verb == 'v' || verb == 'd' { 535 if p.fmt.sharpV { 536 if v == nil { 537 if typ == nil { 538 p.buf.WriteString("[]byte(nil)") 539 } else { 540 p.buf.WriteString(typ.String()) 541 p.buf.Write(nilParenBytes) 542 } 543 return 544 } 545 if typ == nil { 546 p.buf.Write(bytesBytes) 547 } else { 548 p.buf.WriteString(typ.String()) 549 p.buf.WriteByte('{') 550 } 551 } else { 552 p.buf.WriteByte('[') 553 } 554 for i, c := range v { 555 if i > 0 { 556 if p.fmt.sharpV { 557 p.buf.Write(commaSpaceBytes) 558 } else { 559 p.buf.WriteByte(' ') 560 } 561 } 562 p.printArg(c, 'v', depth+1) 563 } 564 if p.fmt.sharpV { 565 p.buf.WriteByte('}') 566 } else { 567 p.buf.WriteByte(']') 568 } 569 return 570 } 571 switch verb { 572 case 's': 573 p.fmt.fmt_s(string(v)) 574 case 'x': 575 p.fmt.fmt_bx(v, ldigits) 576 case 'X': 577 p.fmt.fmt_bx(v, udigits) 578 case 'q': 579 p.fmt.fmt_q(string(v)) 580 default: 581 p.badVerb(verb) 582 } 583 } 584 585 func (p *pp) fmtPointer(value reflect.Value, verb rune) { 586 use0x64 := true 587 switch verb { 588 case 'p', 'v': 589 // ok 590 case 'b', 'd', 'o', 'x', 'X': 591 use0x64 = false 592 // ok 593 default: 594 p.badVerb(verb) 595 return 596 } 597 598 var u uintptr 599 switch value.Kind() { 600 case reflect.Chan, reflect.Func, reflect.Map, reflect.Ptr, reflect.Slice, reflect.UnsafePointer: 601 u = value.Pointer() 602 default: 603 p.badVerb(verb) 604 return 605 } 606 607 if p.fmt.sharpV { 608 p.add('(') 609 p.buf.WriteString(value.Type().String()) 610 p.add(')') 611 p.add('(') 612 if u == 0 { 613 p.buf.Write(nilBytes) 614 } else { 615 p.fmt0x64(uint64(u), true) 616 } 617 p.add(')') 618 } else if verb == 'v' && u == 0 { 619 p.buf.Write(nilAngleBytes) 620 } else { 621 if use0x64 { 622 p.fmt0x64(uint64(u), !p.fmt.sharp) 623 } else { 624 p.fmtUint64(uint64(u), verb) 625 } 626 } 627 } 628 629 var ( 630 intBits = reflect.TypeOf(0).Bits() 631 uintptrBits = reflect.TypeOf(uintptr(0)).Bits() 632 ) 633 634 func (p *pp) catchPanic(arg interface{}, verb rune) { 635 if err := recover(); err != nil { 636 // If it's a nil pointer, just say "<nil>". The likeliest causes are a 637 // Stringer that fails to guard against nil or a nil pointer for a 638 // value receiver, and in either case, "<nil>" is a nice result. 639 if v := reflect.ValueOf(arg); v.Kind() == reflect.Ptr && v.IsNil() { 640 p.buf.Write(nilAngleBytes) 641 return 642 } 643 // Otherwise print a concise panic message. Most of the time the panic 644 // value will print itself nicely. 645 if p.panicking { 646 // Nested panics; the recursion in printArg cannot succeed. 647 panic(err) 648 } 649 p.fmt.clearflags() // We are done, and for this output we want default behavior. 650 p.buf.Write(percentBangBytes) 651 p.add(verb) 652 p.buf.Write(panicBytes) 653 p.panicking = true 654 p.printArg(err, 'v', 0) 655 p.panicking = false 656 p.buf.WriteByte(')') 657 } 658 } 659 660 // clearSpecialFlags pushes %#v back into the regular flags and returns their old state. 661 func (p *pp) clearSpecialFlags() (plusV, sharpV bool) { 662 plusV = p.fmt.plusV 663 if plusV { 664 p.fmt.plus = true 665 p.fmt.plusV = false 666 } 667 sharpV = p.fmt.sharpV 668 if sharpV { 669 p.fmt.sharp = true 670 p.fmt.sharpV = false 671 } 672 return 673 } 674 675 // restoreSpecialFlags, whose argument should be a call to clearSpecialFlags, 676 // restores the setting of the plusV and sharpV flags. 677 func (p *pp) restoreSpecialFlags(plusV, sharpV bool) { 678 if plusV { 679 p.fmt.plus = false 680 p.fmt.plusV = true 681 } 682 if sharpV { 683 p.fmt.sharp = false 684 p.fmt.sharpV = true 685 } 686 } 687 688 func (p *pp) handleMethods(verb rune, depth int) (handled bool) { 689 if p.erroring { 690 return 691 } 692 // Is it a Formatter? 693 if formatter, ok := p.arg.(Formatter); ok { 694 handled = true 695 defer p.restoreSpecialFlags(p.clearSpecialFlags()) 696 defer p.catchPanic(p.arg, verb) 697 formatter.Format(p, verb) 698 return 699 } 700 701 // If we're doing Go syntax and the argument knows how to supply it, take care of it now. 702 if p.fmt.sharpV { 703 if stringer, ok := p.arg.(GoStringer); ok { 704 handled = true 705 defer p.catchPanic(p.arg, verb) 706 // Print the result of GoString unadorned. 707 p.fmt.fmt_s(stringer.GoString()) 708 return 709 } 710 } else { 711 // If a string is acceptable according to the format, see if 712 // the value satisfies one of the string-valued interfaces. 713 // Println etc. set verb to %v, which is "stringable". 714 switch verb { 715 case 'v', 's', 'x', 'X', 'q': 716 // Is it an error or Stringer? 717 // The duplication in the bodies is necessary: 718 // setting handled and deferring catchPanic 719 // must happen before calling the method. 720 switch v := p.arg.(type) { 721 case error: 722 handled = true 723 defer p.catchPanic(p.arg, verb) 724 p.printArg(v.Error(), verb, depth) 725 return 726 727 case Stringer: 728 handled = true 729 defer p.catchPanic(p.arg, verb) 730 p.printArg(v.String(), verb, depth) 731 return 732 } 733 } 734 } 735 return false 736 } 737 738 func (p *pp) printArg(arg interface{}, verb rune, depth int) (wasString bool) { 739 p.arg = arg 740 p.value = reflect.Value{} 741 742 if arg == nil { 743 if verb == 'T' || verb == 'v' { 744 p.fmt.pad(nilAngleBytes) 745 } else { 746 p.badVerb(verb) 747 } 748 return false 749 } 750 751 // Special processing considerations. 752 // %T (the value's type) and %p (its address) are special; we always do them first. 753 switch verb { 754 case 'T': 755 p.printArg(reflect.TypeOf(arg).String(), 's', 0) 756 return false 757 case 'p': 758 p.fmtPointer(reflect.ValueOf(arg), verb) 759 return false 760 } 761 762 // Some types can be done without reflection. 763 switch f := arg.(type) { 764 case bool: 765 p.fmtBool(f, verb) 766 case float32: 767 p.fmtFloat32(f, verb) 768 case float64: 769 p.fmtFloat64(f, verb) 770 case complex64: 771 p.fmtComplex64(f, verb) 772 case complex128: 773 p.fmtComplex128(f, verb) 774 case int: 775 p.fmtInt64(int64(f), verb) 776 case int8: 777 p.fmtInt64(int64(f), verb) 778 case int16: 779 p.fmtInt64(int64(f), verb) 780 case int32: 781 p.fmtInt64(int64(f), verb) 782 case int64: 783 p.fmtInt64(f, verb) 784 case uint: 785 p.fmtUint64(uint64(f), verb) 786 case uint8: 787 p.fmtUint64(uint64(f), verb) 788 case uint16: 789 p.fmtUint64(uint64(f), verb) 790 case uint32: 791 p.fmtUint64(uint64(f), verb) 792 case uint64: 793 p.fmtUint64(f, verb) 794 case uintptr: 795 p.fmtUint64(uint64(f), verb) 796 case string: 797 p.fmtString(f, verb) 798 wasString = verb == 's' || verb == 'v' 799 case []byte: 800 p.fmtBytes(f, verb, nil, depth) 801 wasString = verb == 's' 802 case reflect.Value: 803 return p.printReflectValue(f, verb, depth) 804 default: 805 // If the type is not simple, it might have methods. 806 if handled := p.handleMethods(verb, depth); handled { 807 return false 808 } 809 // Need to use reflection 810 return p.printReflectValue(reflect.ValueOf(arg), verb, depth) 811 } 812 p.arg = nil 813 return 814 } 815 816 // printValue is like printArg but starts with a reflect value, not an interface{} value. 817 func (p *pp) printValue(value reflect.Value, verb rune, depth int) (wasString bool) { 818 if !value.IsValid() { 819 if verb == 'T' || verb == 'v' { 820 p.buf.Write(nilAngleBytes) 821 } else { 822 p.badVerb(verb) 823 } 824 return false 825 } 826 827 // Special processing considerations. 828 // %T (the value's type) and %p (its address) are special; we always do them first. 829 switch verb { 830 case 'T': 831 p.printArg(value.Type().String(), 's', 0) 832 return false 833 case 'p': 834 p.fmtPointer(value, verb) 835 return false 836 } 837 838 // Handle values with special methods. 839 // Call always, even when arg == nil, because handleMethods clears p.fmt.plus for us. 840 p.arg = nil // Make sure it's cleared, for safety. 841 if value.CanInterface() { 842 p.arg = value.Interface() 843 } 844 if handled := p.handleMethods(verb, depth); handled { 845 return false 846 } 847 848 return p.printReflectValue(value, verb, depth) 849 } 850 851 var byteType = reflect.TypeOf(byte(0)) 852 853 // printReflectValue is the fallback for both printArg and printValue. 854 // It uses reflect to print the value. 855 func (p *pp) printReflectValue(value reflect.Value, verb rune, depth int) (wasString bool) { 856 oldValue := p.value 857 p.value = value 858 BigSwitch: 859 switch f := value; f.Kind() { 860 case reflect.Invalid: 861 p.buf.WriteString("<invalid reflect.Value>") 862 case reflect.Bool: 863 p.fmtBool(f.Bool(), verb) 864 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 865 p.fmtInt64(f.Int(), verb) 866 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 867 p.fmtUint64(f.Uint(), verb) 868 case reflect.Float32, reflect.Float64: 869 if f.Type().Size() == 4 { 870 p.fmtFloat32(float32(f.Float()), verb) 871 } else { 872 p.fmtFloat64(f.Float(), verb) 873 } 874 case reflect.Complex64, reflect.Complex128: 875 if f.Type().Size() == 8 { 876 p.fmtComplex64(complex64(f.Complex()), verb) 877 } else { 878 p.fmtComplex128(f.Complex(), verb) 879 } 880 case reflect.String: 881 p.fmtString(f.String(), verb) 882 case reflect.Map: 883 if p.fmt.sharpV { 884 p.buf.WriteString(f.Type().String()) 885 if f.IsNil() { 886 p.buf.WriteString("(nil)") 887 break 888 } 889 p.buf.WriteByte('{') 890 } else { 891 p.buf.Write(mapBytes) 892 } 893 keys := f.MapKeys() 894 for i, key := range keys { 895 if i > 0 { 896 if p.fmt.sharpV { 897 p.buf.Write(commaSpaceBytes) 898 } else { 899 p.buf.WriteByte(' ') 900 } 901 } 902 p.printValue(key, verb, depth+1) 903 p.buf.WriteByte(':') 904 p.printValue(f.MapIndex(key), verb, depth+1) 905 } 906 if p.fmt.sharpV { 907 p.buf.WriteByte('}') 908 } else { 909 p.buf.WriteByte(']') 910 } 911 case reflect.Struct: 912 if p.fmt.sharpV { 913 p.buf.WriteString(value.Type().String()) 914 } 915 p.add('{') 916 v := f 917 t := v.Type() 918 for i := 0; i < v.NumField(); i++ { 919 if i > 0 { 920 if p.fmt.sharpV { 921 p.buf.Write(commaSpaceBytes) 922 } else { 923 p.buf.WriteByte(' ') 924 } 925 } 926 if p.fmt.plusV || p.fmt.sharpV { 927 if f := t.Field(i); f.Name != "" { 928 p.buf.WriteString(f.Name) 929 p.buf.WriteByte(':') 930 } 931 } 932 p.printValue(getField(v, i), verb, depth+1) 933 } 934 p.buf.WriteByte('}') 935 case reflect.Interface: 936 value := f.Elem() 937 if !value.IsValid() { 938 if p.fmt.sharpV { 939 p.buf.WriteString(f.Type().String()) 940 p.buf.Write(nilParenBytes) 941 } else { 942 p.buf.Write(nilAngleBytes) 943 } 944 } else { 945 wasString = p.printValue(value, verb, depth+1) 946 } 947 case reflect.Array, reflect.Slice: 948 // Byte slices are special: 949 // - Handle []byte (== []uint8) with fmtBytes. 950 // - Handle []T, where T is a named byte type, with fmtBytes only 951 // for the s, q, an x verbs. For other verbs, T might be a 952 // Stringer, so we use printValue to print each element. 953 if typ := f.Type(); typ.Elem().Kind() == reflect.Uint8 && (typ.Elem() == byteType || verb == 's' || verb == 'q' || verb == 'x') { 954 var bytes []byte 955 if f.Kind() == reflect.Slice { 956 bytes = f.Bytes() 957 } else if f.CanAddr() { 958 bytes = f.Slice(0, f.Len()).Bytes() 959 } else { 960 // We have an array, but we cannot Slice() a non-addressable array, 961 // so we build a slice by hand. This is a rare case but it would be nice 962 // if reflection could help a little more. 963 bytes = make([]byte, f.Len()) 964 for i := range bytes { 965 bytes[i] = byte(f.Index(i).Uint()) 966 } 967 } 968 p.fmtBytes(bytes, verb, typ, depth) 969 wasString = verb == 's' 970 break 971 } 972 if p.fmt.sharpV { 973 p.buf.WriteString(value.Type().String()) 974 if f.Kind() == reflect.Slice && f.IsNil() { 975 p.buf.WriteString("(nil)") 976 break 977 } 978 p.buf.WriteByte('{') 979 } else { 980 p.buf.WriteByte('[') 981 } 982 for i := 0; i < f.Len(); i++ { 983 if i > 0 { 984 if p.fmt.sharpV { 985 p.buf.Write(commaSpaceBytes) 986 } else { 987 p.buf.WriteByte(' ') 988 } 989 } 990 p.printValue(f.Index(i), verb, depth+1) 991 } 992 if p.fmt.sharpV { 993 p.buf.WriteByte('}') 994 } else { 995 p.buf.WriteByte(']') 996 } 997 case reflect.Ptr: 998 v := f.Pointer() 999 // pointer to array or slice or struct? ok at top level 1000 // but not embedded (avoid loops) 1001 if v != 0 && depth == 0 { 1002 switch a := f.Elem(); a.Kind() { 1003 case reflect.Array, reflect.Slice: 1004 p.buf.WriteByte('&') 1005 p.printValue(a, verb, depth+1) 1006 break BigSwitch 1007 case reflect.Struct: 1008 p.buf.WriteByte('&') 1009 p.printValue(a, verb, depth+1) 1010 break BigSwitch 1011 case reflect.Map: 1012 p.buf.WriteByte('&') 1013 p.printValue(a, verb, depth+1) 1014 break BigSwitch 1015 } 1016 } 1017 fallthrough 1018 case reflect.Chan, reflect.Func, reflect.UnsafePointer: 1019 p.fmtPointer(value, verb) 1020 default: 1021 p.unknownType(f) 1022 } 1023 p.value = oldValue 1024 return wasString 1025 } 1026 1027 // intFromArg gets the argNumth element of a. On return, isInt reports whether the argument has type int. 1028 func intFromArg(a []interface{}, argNum int) (num int, isInt bool, newArgNum int) { 1029 newArgNum = argNum 1030 if argNum < len(a) { 1031 num, isInt = a[argNum].(int) 1032 newArgNum = argNum + 1 1033 if tooLarge(num) { 1034 num = 0 1035 isInt = false 1036 } 1037 } 1038 return 1039 } 1040 1041 // parseArgNumber returns the value of the bracketed number, minus 1 1042 // (explicit argument numbers are one-indexed but we want zero-indexed). 1043 // The opening bracket is known to be present at format[0]. 1044 // The returned values are the index, the number of bytes to consume 1045 // up to the closing paren, if present, and whether the number parsed 1046 // ok. The bytes to consume will be 1 if no closing paren is present. 1047 func parseArgNumber(format string) (index int, wid int, ok bool) { 1048 // There must be at least 3 bytes: [n]. 1049 if len(format) < 3 { 1050 return 0, 1, false 1051 } 1052 1053 // Find closing bracket. 1054 for i := 1; i < len(format); i++ { 1055 if format[i] == ']' { 1056 width, ok, newi := parsenum(format, 1, i) 1057 if !ok || newi != i { 1058 return 0, i + 1, false 1059 } 1060 return width - 1, i + 1, true // arg numbers are one-indexed and skip paren. 1061 } 1062 } 1063 return 0, 1, false 1064 } 1065 1066 // argNumber returns the next argument to evaluate, which is either the value of the passed-in 1067 // argNum or the value of the bracketed integer that begins format[i:]. It also returns 1068 // the new value of i, that is, the index of the next byte of the format to process. 1069 func (p *pp) argNumber(argNum int, format string, i int, numArgs int) (newArgNum, newi int, found bool) { 1070 if len(format) <= i || format[i] != '[' { 1071 return argNum, i, false 1072 } 1073 p.reordered = true 1074 index, wid, ok := parseArgNumber(format[i:]) 1075 if ok && 0 <= index && index < numArgs { 1076 return index, i + wid, true 1077 } 1078 p.goodArgNum = false 1079 return argNum, i + wid, ok 1080 } 1081 1082 func (p *pp) doPrintf(format string, a []interface{}) { 1083 end := len(format) 1084 argNum := 0 // we process one argument per non-trivial format 1085 afterIndex := false // previous item in format was an index like [3]. 1086 p.reordered = false 1087 for i := 0; i < end; { 1088 p.goodArgNum = true 1089 lasti := i 1090 for i < end && format[i] != '%' { 1091 i++ 1092 } 1093 if i > lasti { 1094 p.buf.WriteString(format[lasti:i]) 1095 } 1096 if i >= end { 1097 // done processing format string 1098 break 1099 } 1100 1101 // Process one verb 1102 i++ 1103 1104 // Do we have flags? 1105 p.fmt.clearflags() 1106 F: 1107 for ; i < end; i++ { 1108 switch format[i] { 1109 case '#': 1110 p.fmt.sharp = true 1111 case '0': 1112 p.fmt.zero = true 1113 case '+': 1114 p.fmt.plus = true 1115 case '-': 1116 p.fmt.minus = true 1117 case ' ': 1118 p.fmt.space = true 1119 default: 1120 break F 1121 } 1122 } 1123 1124 // Do we have an explicit argument index? 1125 argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a)) 1126 1127 // Do we have width? 1128 if i < end && format[i] == '*' { 1129 i++ 1130 p.fmt.wid, p.fmt.widPresent, argNum = intFromArg(a, argNum) 1131 1132 if !p.fmt.widPresent { 1133 p.buf.Write(badWidthBytes) 1134 } 1135 1136 // We have a negative width, so take its value and ensure 1137 // that the minus flag is set 1138 if p.fmt.wid < 0 { 1139 p.fmt.wid = -p.fmt.wid 1140 p.fmt.minus = true 1141 } 1142 afterIndex = false 1143 } else { 1144 p.fmt.wid, p.fmt.widPresent, i = parsenum(format, i, end) 1145 if afterIndex && p.fmt.widPresent { // "%[3]2d" 1146 p.goodArgNum = false 1147 } 1148 } 1149 1150 // Do we have precision? 1151 if i+1 < end && format[i] == '.' { 1152 i++ 1153 if afterIndex { // "%[3].2d" 1154 p.goodArgNum = false 1155 } 1156 argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a)) 1157 if i < end && format[i] == '*' { 1158 i++ 1159 p.fmt.prec, p.fmt.precPresent, argNum = intFromArg(a, argNum) 1160 // Negative precision arguments don't make sense 1161 if p.fmt.prec < 0 { 1162 p.fmt.prec = 0 1163 p.fmt.precPresent = false 1164 } 1165 if !p.fmt.precPresent { 1166 p.buf.Write(badPrecBytes) 1167 } 1168 afterIndex = false 1169 } else { 1170 p.fmt.prec, p.fmt.precPresent, i = parsenum(format, i, end) 1171 if !p.fmt.precPresent { 1172 p.fmt.prec = 0 1173 p.fmt.precPresent = true 1174 } 1175 } 1176 } 1177 1178 if !afterIndex { 1179 argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a)) 1180 } 1181 1182 if i >= end { 1183 p.buf.Write(noVerbBytes) 1184 continue 1185 } 1186 c, w := utf8.DecodeRuneInString(format[i:]) 1187 i += w 1188 // percent is special - absorbs no operand 1189 if c == '%' { 1190 p.buf.WriteByte('%') // We ignore width and prec. 1191 continue 1192 } 1193 if !p.goodArgNum { 1194 p.buf.Write(percentBangBytes) 1195 p.add(c) 1196 p.buf.Write(badIndexBytes) 1197 continue 1198 } else if argNum >= len(a) { // out of operands 1199 p.buf.Write(percentBangBytes) 1200 p.add(c) 1201 p.buf.Write(missingBytes) 1202 continue 1203 } 1204 arg := a[argNum] 1205 argNum++ 1206 1207 if c == 'v' { 1208 if p.fmt.sharp { 1209 // Go syntax. Set the flag in the fmt and clear the sharp flag. 1210 p.fmt.sharp = false 1211 p.fmt.sharpV = true 1212 } 1213 if p.fmt.plus { 1214 // Struct-field syntax. Set the flag in the fmt and clear the plus flag. 1215 p.fmt.plus = false 1216 p.fmt.plusV = true 1217 } 1218 } 1219 p.printArg(arg, c, 0) 1220 } 1221 1222 // Check for extra arguments unless the call accessed the arguments 1223 // out of order, in which case it's too expensive to detect if they've all 1224 // been used and arguably OK if they're not. 1225 if !p.reordered && argNum < len(a) { 1226 p.buf.Write(extraBytes) 1227 for ; argNum < len(a); argNum++ { 1228 arg := a[argNum] 1229 if arg != nil { 1230 p.buf.WriteString(reflect.TypeOf(arg).String()) 1231 p.buf.WriteByte('=') 1232 } 1233 p.printArg(arg, 'v', 0) 1234 if argNum+1 < len(a) { 1235 p.buf.Write(commaSpaceBytes) 1236 } 1237 } 1238 p.buf.WriteByte(')') 1239 } 1240 } 1241 1242 func (p *pp) doPrint(a []interface{}, addspace, addnewline bool) { 1243 prevString := false 1244 for argNum := 0; argNum < len(a); argNum++ { 1245 p.fmt.clearflags() 1246 // always add spaces if we're doing Println 1247 arg := a[argNum] 1248 if argNum > 0 { 1249 isString := arg != nil && reflect.TypeOf(arg).Kind() == reflect.String 1250 if addspace || !isString && !prevString { 1251 p.buf.WriteByte(' ') 1252 } 1253 } 1254 prevString = p.printArg(arg, 'v', 0) 1255 } 1256 if addnewline { 1257 p.buf.WriteByte('\n') 1258 } 1259 } 1260