Home | History | Annotate | Download | only in reflect
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package reflect
      6 
      7 import (
      8 	"math"
      9 	"runtime"
     10 	"unsafe"
     11 )
     12 
     13 const ptrSize = 4 << (^uintptr(0) >> 63) // unsafe.Sizeof(uintptr(0)) but an ideal const
     14 const cannotSet = "cannot set value obtained from unexported struct field"
     15 
     16 // Value is the reflection interface to a Go value.
     17 //
     18 // Not all methods apply to all kinds of values.  Restrictions,
     19 // if any, are noted in the documentation for each method.
     20 // Use the Kind method to find out the kind of value before
     21 // calling kind-specific methods.  Calling a method
     22 // inappropriate to the kind of type causes a run time panic.
     23 //
     24 // The zero Value represents no value.
     25 // Its IsValid method returns false, its Kind method returns Invalid,
     26 // its String method returns "<invalid Value>", and all other methods panic.
     27 // Most functions and methods never return an invalid value.
     28 // If one does, its documentation states the conditions explicitly.
     29 //
     30 // A Value can be used concurrently by multiple goroutines provided that
     31 // the underlying Go value can be used concurrently for the equivalent
     32 // direct operations.
     33 //
     34 // Using == on two Values does not compare the underlying values
     35 // they represent, but rather the contents of the Value structs.
     36 // To compare two Values, compare the results of the Interface method.
     37 type Value struct {
     38 	// typ holds the type of the value represented by a Value.
     39 	typ *rtype
     40 
     41 	// Pointer-valued data or, if flagIndir is set, pointer to data.
     42 	// Valid when either flagIndir is set or typ.pointers() is true.
     43 	ptr unsafe.Pointer
     44 
     45 	// flag holds metadata about the value.
     46 	// The lowest bits are flag bits:
     47 	//	- flagRO: obtained via unexported field, so read-only
     48 	//	- flagIndir: val holds a pointer to the data
     49 	//	- flagAddr: v.CanAddr is true (implies flagIndir)
     50 	//	- flagMethod: v is a method value.
     51 	// The next five bits give the Kind of the value.
     52 	// This repeats typ.Kind() except for method values.
     53 	// The remaining 23+ bits give a method number for method values.
     54 	// If flag.kind() != Func, code can assume that flagMethod is unset.
     55 	// If ifaceIndir(typ), code can assume that flagIndir is set.
     56 	flag
     57 
     58 	// A method value represents a curried method invocation
     59 	// like r.Read for some receiver r.  The typ+val+flag bits describe
     60 	// the receiver r, but the flag's Kind bits say Func (methods are
     61 	// functions), and the top bits of the flag give the method number
     62 	// in r's type's method table.
     63 }
     64 
     65 type flag uintptr
     66 
     67 const (
     68 	flagKindWidth        = 5 // there are 27 kinds
     69 	flagKindMask    flag = 1<<flagKindWidth - 1
     70 	flagRO          flag = 1 << 5
     71 	flagIndir       flag = 1 << 6
     72 	flagAddr        flag = 1 << 7
     73 	flagMethod      flag = 1 << 8
     74 	flagMethodShift      = 9
     75 )
     76 
     77 func (f flag) kind() Kind {
     78 	return Kind(f & flagKindMask)
     79 }
     80 
     81 // pointer returns the underlying pointer represented by v.
     82 // v.Kind() must be Ptr, Map, Chan, Func, or UnsafePointer
     83 func (v Value) pointer() unsafe.Pointer {
     84 	if v.typ.size != ptrSize || !v.typ.pointers() {
     85 		panic("can't call pointer on a non-pointer Value")
     86 	}
     87 	if v.flag&flagIndir != 0 {
     88 		return *(*unsafe.Pointer)(v.ptr)
     89 	}
     90 	return v.ptr
     91 }
     92 
     93 // packEface converts v to the empty interface.
     94 func packEface(v Value) interface{} {
     95 	t := v.typ
     96 	var i interface{}
     97 	e := (*emptyInterface)(unsafe.Pointer(&i))
     98 	// First, fill in the data portion of the interface.
     99 	switch {
    100 	case ifaceIndir(t):
    101 		if v.flag&flagIndir == 0 {
    102 			panic("bad indir")
    103 		}
    104 		// Value is indirect, and so is the interface we're making.
    105 		ptr := v.ptr
    106 		if v.flag&flagAddr != 0 {
    107 			// TODO: pass safe boolean from valueInterface so
    108 			// we don't need to copy if safe==true?
    109 			c := unsafe_New(t)
    110 			typedmemmove(t, c, ptr)
    111 			ptr = c
    112 		}
    113 		e.word = ptr
    114 	case v.flag&flagIndir != 0:
    115 		// Value is indirect, but interface is direct.  We need
    116 		// to load the data at v.ptr into the interface data word.
    117 		e.word = *(*unsafe.Pointer)(v.ptr)
    118 	default:
    119 		// Value is direct, and so is the interface.
    120 		e.word = v.ptr
    121 	}
    122 	// Now, fill in the type portion.  We're very careful here not
    123 	// to have any operation between the e.word and e.typ assignments
    124 	// that would let the garbage collector observe the partially-built
    125 	// interface value.
    126 	e.typ = t
    127 	return i
    128 }
    129 
    130 // unpackEface converts the empty interface i to a Value.
    131 func unpackEface(i interface{}) Value {
    132 	e := (*emptyInterface)(unsafe.Pointer(&i))
    133 	// NOTE: don't read e.word until we know whether it is really a pointer or not.
    134 	t := e.typ
    135 	if t == nil {
    136 		return Value{}
    137 	}
    138 	f := flag(t.Kind())
    139 	if ifaceIndir(t) {
    140 		f |= flagIndir
    141 	}
    142 	return Value{t, unsafe.Pointer(e.word), f}
    143 }
    144 
    145 // A ValueError occurs when a Value method is invoked on
    146 // a Value that does not support it.  Such cases are documented
    147 // in the description of each method.
    148 type ValueError struct {
    149 	Method string
    150 	Kind   Kind
    151 }
    152 
    153 func (e *ValueError) Error() string {
    154 	if e.Kind == 0 {
    155 		return "reflect: call of " + e.Method + " on zero Value"
    156 	}
    157 	return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
    158 }
    159 
    160 // methodName returns the name of the calling method,
    161 // assumed to be two stack frames above.
    162 func methodName() string {
    163 	pc, _, _, _ := runtime.Caller(2)
    164 	f := runtime.FuncForPC(pc)
    165 	if f == nil {
    166 		return "unknown method"
    167 	}
    168 	return f.Name()
    169 }
    170 
    171 // emptyInterface is the header for an interface{} value.
    172 type emptyInterface struct {
    173 	typ  *rtype
    174 	word unsafe.Pointer
    175 }
    176 
    177 // nonEmptyInterface is the header for a interface value with methods.
    178 type nonEmptyInterface struct {
    179 	// see ../runtime/iface.go:/Itab
    180 	itab *struct {
    181 		ityp   *rtype // static interface type
    182 		typ    *rtype // dynamic concrete type
    183 		link   unsafe.Pointer
    184 		bad    int32
    185 		unused int32
    186 		fun    [100000]unsafe.Pointer // method table
    187 	}
    188 	word unsafe.Pointer
    189 }
    190 
    191 // mustBe panics if f's kind is not expected.
    192 // Making this a method on flag instead of on Value
    193 // (and embedding flag in Value) means that we can write
    194 // the very clear v.mustBe(Bool) and have it compile into
    195 // v.flag.mustBe(Bool), which will only bother to copy the
    196 // single important word for the receiver.
    197 func (f flag) mustBe(expected Kind) {
    198 	if f.kind() != expected {
    199 		panic(&ValueError{methodName(), f.kind()})
    200 	}
    201 }
    202 
    203 // mustBeExported panics if f records that the value was obtained using
    204 // an unexported field.
    205 func (f flag) mustBeExported() {
    206 	if f == 0 {
    207 		panic(&ValueError{methodName(), 0})
    208 	}
    209 	if f&flagRO != 0 {
    210 		panic("reflect: " + methodName() + " using value obtained using unexported field")
    211 	}
    212 }
    213 
    214 // mustBeAssignable panics if f records that the value is not assignable,
    215 // which is to say that either it was obtained using an unexported field
    216 // or it is not addressable.
    217 func (f flag) mustBeAssignable() {
    218 	if f == 0 {
    219 		panic(&ValueError{methodName(), Invalid})
    220 	}
    221 	// Assignable if addressable and not read-only.
    222 	if f&flagRO != 0 {
    223 		panic("reflect: " + methodName() + " using value obtained using unexported field")
    224 	}
    225 	if f&flagAddr == 0 {
    226 		panic("reflect: " + methodName() + " using unaddressable value")
    227 	}
    228 }
    229 
    230 // Addr returns a pointer value representing the address of v.
    231 // It panics if CanAddr() returns false.
    232 // Addr is typically used to obtain a pointer to a struct field
    233 // or slice element in order to call a method that requires a
    234 // pointer receiver.
    235 func (v Value) Addr() Value {
    236 	if v.flag&flagAddr == 0 {
    237 		panic("reflect.Value.Addr of unaddressable value")
    238 	}
    239 	return Value{v.typ.ptrTo(), v.ptr, (v.flag & flagRO) | flag(Ptr)}
    240 }
    241 
    242 // Bool returns v's underlying value.
    243 // It panics if v's kind is not Bool.
    244 func (v Value) Bool() bool {
    245 	v.mustBe(Bool)
    246 	return *(*bool)(v.ptr)
    247 }
    248 
    249 // Bytes returns v's underlying value.
    250 // It panics if v's underlying value is not a slice of bytes.
    251 func (v Value) Bytes() []byte {
    252 	v.mustBe(Slice)
    253 	if v.typ.Elem().Kind() != Uint8 {
    254 		panic("reflect.Value.Bytes of non-byte slice")
    255 	}
    256 	// Slice is always bigger than a word; assume flagIndir.
    257 	return *(*[]byte)(v.ptr)
    258 }
    259 
    260 // runes returns v's underlying value.
    261 // It panics if v's underlying value is not a slice of runes (int32s).
    262 func (v Value) runes() []rune {
    263 	v.mustBe(Slice)
    264 	if v.typ.Elem().Kind() != Int32 {
    265 		panic("reflect.Value.Bytes of non-rune slice")
    266 	}
    267 	// Slice is always bigger than a word; assume flagIndir.
    268 	return *(*[]rune)(v.ptr)
    269 }
    270 
    271 // CanAddr reports whether the value's address can be obtained with Addr.
    272 // Such values are called addressable.  A value is addressable if it is
    273 // an element of a slice, an element of an addressable array,
    274 // a field of an addressable struct, or the result of dereferencing a pointer.
    275 // If CanAddr returns false, calling Addr will panic.
    276 func (v Value) CanAddr() bool {
    277 	return v.flag&flagAddr != 0
    278 }
    279 
    280 // CanSet reports whether the value of v can be changed.
    281 // A Value can be changed only if it is addressable and was not
    282 // obtained by the use of unexported struct fields.
    283 // If CanSet returns false, calling Set or any type-specific
    284 // setter (e.g., SetBool, SetInt) will panic.
    285 func (v Value) CanSet() bool {
    286 	return v.flag&(flagAddr|flagRO) == flagAddr
    287 }
    288 
    289 // Call calls the function v with the input arguments in.
    290 // For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).
    291 // Call panics if v's Kind is not Func.
    292 // It returns the output results as Values.
    293 // As in Go, each input argument must be assignable to the
    294 // type of the function's corresponding input parameter.
    295 // If v is a variadic function, Call creates the variadic slice parameter
    296 // itself, copying in the corresponding values.
    297 func (v Value) Call(in []Value) []Value {
    298 	v.mustBe(Func)
    299 	v.mustBeExported()
    300 	return v.call("Call", in)
    301 }
    302 
    303 // CallSlice calls the variadic function v with the input arguments in,
    304 // assigning the slice in[len(in)-1] to v's final variadic argument.
    305 // For example, if len(in) == 3, v.CallSlice(in) represents the Go call v(in[0], in[1], in[2]...).
    306 // CallSlice panics if v's Kind is not Func or if v is not variadic.
    307 // It returns the output results as Values.
    308 // As in Go, each input argument must be assignable to the
    309 // type of the function's corresponding input parameter.
    310 func (v Value) CallSlice(in []Value) []Value {
    311 	v.mustBe(Func)
    312 	v.mustBeExported()
    313 	return v.call("CallSlice", in)
    314 }
    315 
    316 var callGC bool // for testing; see TestCallMethodJump
    317 
    318 func (v Value) call(op string, in []Value) []Value {
    319 	// Get function pointer, type.
    320 	t := v.typ
    321 	var (
    322 		fn       unsafe.Pointer
    323 		rcvr     Value
    324 		rcvrtype *rtype
    325 	)
    326 	if v.flag&flagMethod != 0 {
    327 		rcvr = v
    328 		rcvrtype, t, fn = methodReceiver(op, v, int(v.flag)>>flagMethodShift)
    329 	} else if v.flag&flagIndir != 0 {
    330 		fn = *(*unsafe.Pointer)(v.ptr)
    331 	} else {
    332 		fn = v.ptr
    333 	}
    334 
    335 	if fn == nil {
    336 		panic("reflect.Value.Call: call of nil function")
    337 	}
    338 
    339 	isSlice := op == "CallSlice"
    340 	n := t.NumIn()
    341 	if isSlice {
    342 		if !t.IsVariadic() {
    343 			panic("reflect: CallSlice of non-variadic function")
    344 		}
    345 		if len(in) < n {
    346 			panic("reflect: CallSlice with too few input arguments")
    347 		}
    348 		if len(in) > n {
    349 			panic("reflect: CallSlice with too many input arguments")
    350 		}
    351 	} else {
    352 		if t.IsVariadic() {
    353 			n--
    354 		}
    355 		if len(in) < n {
    356 			panic("reflect: Call with too few input arguments")
    357 		}
    358 		if !t.IsVariadic() && len(in) > n {
    359 			panic("reflect: Call with too many input arguments")
    360 		}
    361 	}
    362 	for _, x := range in {
    363 		if x.Kind() == Invalid {
    364 			panic("reflect: " + op + " using zero Value argument")
    365 		}
    366 	}
    367 	for i := 0; i < n; i++ {
    368 		if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) {
    369 			panic("reflect: " + op + " using " + xt.String() + " as type " + targ.String())
    370 		}
    371 	}
    372 	if !isSlice && t.IsVariadic() {
    373 		// prepare slice for remaining values
    374 		m := len(in) - n
    375 		slice := MakeSlice(t.In(n), m, m)
    376 		elem := t.In(n).Elem()
    377 		for i := 0; i < m; i++ {
    378 			x := in[n+i]
    379 			if xt := x.Type(); !xt.AssignableTo(elem) {
    380 				panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + op)
    381 			}
    382 			slice.Index(i).Set(x)
    383 		}
    384 		origIn := in
    385 		in = make([]Value, n+1)
    386 		copy(in[:n], origIn)
    387 		in[n] = slice
    388 	}
    389 
    390 	nin := len(in)
    391 	if nin != t.NumIn() {
    392 		panic("reflect.Value.Call: wrong argument count")
    393 	}
    394 	nout := t.NumOut()
    395 
    396 	// Compute frame type.
    397 	frametype, _, retOffset, _, framePool := funcLayout(t, rcvrtype)
    398 
    399 	// Allocate a chunk of memory for frame.
    400 	var args unsafe.Pointer
    401 	if nout == 0 {
    402 		args = framePool.Get().(unsafe.Pointer)
    403 	} else {
    404 		// Can't use pool if the function has return values.
    405 		// We will leak pointer to args in ret, so its lifetime is not scoped.
    406 		args = unsafe_New(frametype)
    407 	}
    408 	off := uintptr(0)
    409 
    410 	// Copy inputs into args.
    411 	if rcvrtype != nil {
    412 		storeRcvr(rcvr, args)
    413 		off = ptrSize
    414 	}
    415 	for i, v := range in {
    416 		v.mustBeExported()
    417 		targ := t.In(i).(*rtype)
    418 		a := uintptr(targ.align)
    419 		off = (off + a - 1) &^ (a - 1)
    420 		n := targ.size
    421 		addr := unsafe.Pointer(uintptr(args) + off)
    422 		v = v.assignTo("reflect.Value.Call", targ, addr)
    423 		if v.flag&flagIndir != 0 {
    424 			typedmemmove(targ, addr, v.ptr)
    425 		} else {
    426 			*(*unsafe.Pointer)(addr) = v.ptr
    427 		}
    428 		off += n
    429 	}
    430 
    431 	// Call.
    432 	call(frametype, fn, args, uint32(frametype.size), uint32(retOffset))
    433 
    434 	// For testing; see TestCallMethodJump.
    435 	if callGC {
    436 		runtime.GC()
    437 	}
    438 
    439 	var ret []Value
    440 	if nout == 0 {
    441 		memclr(args, frametype.size)
    442 		framePool.Put(args)
    443 	} else {
    444 		// Zero the now unused input area of args,
    445 		// because the Values returned by this function contain pointers to the args object,
    446 		// and will thus keep the args object alive indefinitely.
    447 		memclr(args, retOffset)
    448 		// Copy return values out of args.
    449 		ret = make([]Value, nout)
    450 		off = retOffset
    451 		for i := 0; i < nout; i++ {
    452 			tv := t.Out(i)
    453 			a := uintptr(tv.Align())
    454 			off = (off + a - 1) &^ (a - 1)
    455 			fl := flagIndir | flag(tv.Kind())
    456 			ret[i] = Value{tv.common(), unsafe.Pointer(uintptr(args) + off), fl}
    457 			off += tv.Size()
    458 		}
    459 	}
    460 
    461 	return ret
    462 }
    463 
    464 // callReflect is the call implementation used by a function
    465 // returned by MakeFunc. In many ways it is the opposite of the
    466 // method Value.call above. The method above converts a call using Values
    467 // into a call of a function with a concrete argument frame, while
    468 // callReflect converts a call of a function with a concrete argument
    469 // frame into a call using Values.
    470 // It is in this file so that it can be next to the call method above.
    471 // The remainder of the MakeFunc implementation is in makefunc.go.
    472 //
    473 // NOTE: This function must be marked as a "wrapper" in the generated code,
    474 // so that the linker can make it work correctly for panic and recover.
    475 // The gc compilers know to do that for the name "reflect.callReflect".
    476 func callReflect(ctxt *makeFuncImpl, frame unsafe.Pointer) {
    477 	ftyp := ctxt.typ
    478 	f := ctxt.fn
    479 
    480 	// Copy argument frame into Values.
    481 	ptr := frame
    482 	off := uintptr(0)
    483 	in := make([]Value, 0, len(ftyp.in))
    484 	for _, arg := range ftyp.in {
    485 		typ := arg
    486 		off += -off & uintptr(typ.align-1)
    487 		addr := unsafe.Pointer(uintptr(ptr) + off)
    488 		v := Value{typ, nil, flag(typ.Kind())}
    489 		if ifaceIndir(typ) {
    490 			// value cannot be inlined in interface data.
    491 			// Must make a copy, because f might keep a reference to it,
    492 			// and we cannot let f keep a reference to the stack frame
    493 			// after this function returns, not even a read-only reference.
    494 			v.ptr = unsafe_New(typ)
    495 			typedmemmove(typ, v.ptr, addr)
    496 			v.flag |= flagIndir
    497 		} else {
    498 			v.ptr = *(*unsafe.Pointer)(addr)
    499 		}
    500 		in = append(in, v)
    501 		off += typ.size
    502 	}
    503 
    504 	// Call underlying function.
    505 	out := f(in)
    506 	if len(out) != len(ftyp.out) {
    507 		panic("reflect: wrong return count from function created by MakeFunc")
    508 	}
    509 
    510 	// Copy results back into argument frame.
    511 	if len(ftyp.out) > 0 {
    512 		off += -off & (ptrSize - 1)
    513 		if runtime.GOARCH == "amd64p32" {
    514 			off = align(off, 8)
    515 		}
    516 		for i, arg := range ftyp.out {
    517 			typ := arg
    518 			v := out[i]
    519 			if v.typ != typ {
    520 				panic("reflect: function created by MakeFunc using " + funcName(f) +
    521 					" returned wrong type: have " +
    522 					out[i].typ.String() + " for " + typ.String())
    523 			}
    524 			if v.flag&flagRO != 0 {
    525 				panic("reflect: function created by MakeFunc using " + funcName(f) +
    526 					" returned value obtained from unexported field")
    527 			}
    528 			off += -off & uintptr(typ.align-1)
    529 			addr := unsafe.Pointer(uintptr(ptr) + off)
    530 			if v.flag&flagIndir != 0 {
    531 				typedmemmove(typ, addr, v.ptr)
    532 			} else {
    533 				*(*unsafe.Pointer)(addr) = v.ptr
    534 			}
    535 			off += typ.size
    536 		}
    537 	}
    538 }
    539 
    540 // methodReceiver returns information about the receiver
    541 // described by v. The Value v may or may not have the
    542 // flagMethod bit set, so the kind cached in v.flag should
    543 // not be used.
    544 // The return value rcvrtype gives the method's actual receiver type.
    545 // The return value t gives the method type signature (without the receiver).
    546 // The return value fn is a pointer to the method code.
    547 func methodReceiver(op string, v Value, methodIndex int) (rcvrtype, t *rtype, fn unsafe.Pointer) {
    548 	i := methodIndex
    549 	if v.typ.Kind() == Interface {
    550 		tt := (*interfaceType)(unsafe.Pointer(v.typ))
    551 		if uint(i) >= uint(len(tt.methods)) {
    552 			panic("reflect: internal error: invalid method index")
    553 		}
    554 		m := &tt.methods[i]
    555 		if m.pkgPath != nil {
    556 			panic("reflect: " + op + " of unexported method")
    557 		}
    558 		iface := (*nonEmptyInterface)(v.ptr)
    559 		if iface.itab == nil {
    560 			panic("reflect: " + op + " of method on nil interface value")
    561 		}
    562 		rcvrtype = iface.itab.typ
    563 		fn = unsafe.Pointer(&iface.itab.fun[i])
    564 		t = m.typ
    565 	} else {
    566 		rcvrtype = v.typ
    567 		ut := v.typ.uncommon()
    568 		if ut == nil || uint(i) >= uint(len(ut.methods)) {
    569 			panic("reflect: internal error: invalid method index")
    570 		}
    571 		m := &ut.methods[i]
    572 		if m.pkgPath != nil {
    573 			panic("reflect: " + op + " of unexported method")
    574 		}
    575 		fn = unsafe.Pointer(&m.ifn)
    576 		t = m.mtyp
    577 	}
    578 	return
    579 }
    580 
    581 // v is a method receiver.  Store at p the word which is used to
    582 // encode that receiver at the start of the argument list.
    583 // Reflect uses the "interface" calling convention for
    584 // methods, which always uses one word to record the receiver.
    585 func storeRcvr(v Value, p unsafe.Pointer) {
    586 	t := v.typ
    587 	if t.Kind() == Interface {
    588 		// the interface data word becomes the receiver word
    589 		iface := (*nonEmptyInterface)(v.ptr)
    590 		*(*unsafe.Pointer)(p) = unsafe.Pointer(iface.word)
    591 	} else if v.flag&flagIndir != 0 && !ifaceIndir(t) {
    592 		*(*unsafe.Pointer)(p) = *(*unsafe.Pointer)(v.ptr)
    593 	} else {
    594 		*(*unsafe.Pointer)(p) = v.ptr
    595 	}
    596 }
    597 
    598 // align returns the result of rounding x up to a multiple of n.
    599 // n must be a power of two.
    600 func align(x, n uintptr) uintptr {
    601 	return (x + n - 1) &^ (n - 1)
    602 }
    603 
    604 // callMethod is the call implementation used by a function returned
    605 // by makeMethodValue (used by v.Method(i).Interface()).
    606 // It is a streamlined version of the usual reflect call: the caller has
    607 // already laid out the argument frame for us, so we don't have
    608 // to deal with individual Values for each argument.
    609 // It is in this file so that it can be next to the two similar functions above.
    610 // The remainder of the makeMethodValue implementation is in makefunc.go.
    611 //
    612 // NOTE: This function must be marked as a "wrapper" in the generated code,
    613 // so that the linker can make it work correctly for panic and recover.
    614 // The gc compilers know to do that for the name "reflect.callMethod".
    615 func callMethod(ctxt *methodValue, frame unsafe.Pointer) {
    616 	rcvr := ctxt.rcvr
    617 	rcvrtype, t, fn := methodReceiver("call", rcvr, ctxt.method)
    618 	frametype, argSize, retOffset, _, framePool := funcLayout(t, rcvrtype)
    619 
    620 	// Make a new frame that is one word bigger so we can store the receiver.
    621 	args := framePool.Get().(unsafe.Pointer)
    622 
    623 	// Copy in receiver and rest of args.
    624 	storeRcvr(rcvr, args)
    625 	typedmemmovepartial(frametype, unsafe.Pointer(uintptr(args)+ptrSize), frame, ptrSize, argSize-ptrSize)
    626 
    627 	// Call.
    628 	call(frametype, fn, args, uint32(frametype.size), uint32(retOffset))
    629 
    630 	// Copy return values. On amd64p32, the beginning of return values
    631 	// is 64-bit aligned, so the caller's frame layout (which doesn't have
    632 	// a receiver) is different from the layout of the fn call, which has
    633 	// a receiver.
    634 	// Ignore any changes to args and just copy return values.
    635 	callerRetOffset := retOffset - ptrSize
    636 	if runtime.GOARCH == "amd64p32" {
    637 		callerRetOffset = align(argSize-ptrSize, 8)
    638 	}
    639 	typedmemmovepartial(frametype,
    640 		unsafe.Pointer(uintptr(frame)+callerRetOffset),
    641 		unsafe.Pointer(uintptr(args)+retOffset),
    642 		retOffset,
    643 		frametype.size-retOffset)
    644 
    645 	memclr(args, frametype.size)
    646 	framePool.Put(args)
    647 }
    648 
    649 // funcName returns the name of f, for use in error messages.
    650 func funcName(f func([]Value) []Value) string {
    651 	pc := *(*uintptr)(unsafe.Pointer(&f))
    652 	rf := runtime.FuncForPC(pc)
    653 	if rf != nil {
    654 		return rf.Name()
    655 	}
    656 	return "closure"
    657 }
    658 
    659 // Cap returns v's capacity.
    660 // It panics if v's Kind is not Array, Chan, or Slice.
    661 func (v Value) Cap() int {
    662 	k := v.kind()
    663 	switch k {
    664 	case Array:
    665 		return v.typ.Len()
    666 	case Chan:
    667 		return int(chancap(v.pointer()))
    668 	case Slice:
    669 		// Slice is always bigger than a word; assume flagIndir.
    670 		return (*sliceHeader)(v.ptr).Cap
    671 	}
    672 	panic(&ValueError{"reflect.Value.Cap", v.kind()})
    673 }
    674 
    675 // Close closes the channel v.
    676 // It panics if v's Kind is not Chan.
    677 func (v Value) Close() {
    678 	v.mustBe(Chan)
    679 	v.mustBeExported()
    680 	chanclose(v.pointer())
    681 }
    682 
    683 // Complex returns v's underlying value, as a complex128.
    684 // It panics if v's Kind is not Complex64 or Complex128
    685 func (v Value) Complex() complex128 {
    686 	k := v.kind()
    687 	switch k {
    688 	case Complex64:
    689 		return complex128(*(*complex64)(v.ptr))
    690 	case Complex128:
    691 		return *(*complex128)(v.ptr)
    692 	}
    693 	panic(&ValueError{"reflect.Value.Complex", v.kind()})
    694 }
    695 
    696 // Elem returns the value that the interface v contains
    697 // or that the pointer v points to.
    698 // It panics if v's Kind is not Interface or Ptr.
    699 // It returns the zero Value if v is nil.
    700 func (v Value) Elem() Value {
    701 	k := v.kind()
    702 	switch k {
    703 	case Interface:
    704 		var eface interface{}
    705 		if v.typ.NumMethod() == 0 {
    706 			eface = *(*interface{})(v.ptr)
    707 		} else {
    708 			eface = (interface{})(*(*interface {
    709 				M()
    710 			})(v.ptr))
    711 		}
    712 		x := unpackEface(eface)
    713 		if x.flag != 0 {
    714 			x.flag |= v.flag & flagRO
    715 		}
    716 		return x
    717 	case Ptr:
    718 		ptr := v.ptr
    719 		if v.flag&flagIndir != 0 {
    720 			ptr = *(*unsafe.Pointer)(ptr)
    721 		}
    722 		// The returned value's address is v's value.
    723 		if ptr == nil {
    724 			return Value{}
    725 		}
    726 		tt := (*ptrType)(unsafe.Pointer(v.typ))
    727 		typ := tt.elem
    728 		fl := v.flag&flagRO | flagIndir | flagAddr
    729 		fl |= flag(typ.Kind())
    730 		return Value{typ, ptr, fl}
    731 	}
    732 	panic(&ValueError{"reflect.Value.Elem", v.kind()})
    733 }
    734 
    735 // Field returns the i'th field of the struct v.
    736 // It panics if v's Kind is not Struct or i is out of range.
    737 func (v Value) Field(i int) Value {
    738 	if v.kind() != Struct {
    739 		panic(&ValueError{"reflect.Value.Field", v.kind()})
    740 	}
    741 	tt := (*structType)(unsafe.Pointer(v.typ))
    742 	if uint(i) >= uint(len(tt.fields)) {
    743 		panic("reflect: Field index out of range")
    744 	}
    745 	field := &tt.fields[i]
    746 	typ := field.typ
    747 
    748 	// Inherit permission bits from v.
    749 	fl := v.flag&(flagRO|flagIndir|flagAddr) | flag(typ.Kind())
    750 	// Using an unexported field forces flagRO.
    751 	if field.pkgPath != nil {
    752 		fl |= flagRO
    753 	}
    754 	// Either flagIndir is set and v.ptr points at struct,
    755 	// or flagIndir is not set and v.ptr is the actual struct data.
    756 	// In the former case, we want v.ptr + offset.
    757 	// In the latter case, we must have field.offset = 0,
    758 	// so v.ptr + field.offset is still okay.
    759 	ptr := unsafe.Pointer(uintptr(v.ptr) + field.offset)
    760 	return Value{typ, ptr, fl}
    761 }
    762 
    763 // FieldByIndex returns the nested field corresponding to index.
    764 // It panics if v's Kind is not struct.
    765 func (v Value) FieldByIndex(index []int) Value {
    766 	if len(index) == 1 {
    767 		return v.Field(index[0])
    768 	}
    769 	v.mustBe(Struct)
    770 	for i, x := range index {
    771 		if i > 0 {
    772 			if v.Kind() == Ptr && v.typ.Elem().Kind() == Struct {
    773 				if v.IsNil() {
    774 					panic("reflect: indirection through nil pointer to embedded struct")
    775 				}
    776 				v = v.Elem()
    777 			}
    778 		}
    779 		v = v.Field(x)
    780 	}
    781 	return v
    782 }
    783 
    784 // FieldByName returns the struct field with the given name.
    785 // It returns the zero Value if no field was found.
    786 // It panics if v's Kind is not struct.
    787 func (v Value) FieldByName(name string) Value {
    788 	v.mustBe(Struct)
    789 	if f, ok := v.typ.FieldByName(name); ok {
    790 		return v.FieldByIndex(f.Index)
    791 	}
    792 	return Value{}
    793 }
    794 
    795 // FieldByNameFunc returns the struct field with a name
    796 // that satisfies the match function.
    797 // It panics if v's Kind is not struct.
    798 // It returns the zero Value if no field was found.
    799 func (v Value) FieldByNameFunc(match func(string) bool) Value {
    800 	if f, ok := v.typ.FieldByNameFunc(match); ok {
    801 		return v.FieldByIndex(f.Index)
    802 	}
    803 	return Value{}
    804 }
    805 
    806 // Float returns v's underlying value, as a float64.
    807 // It panics if v's Kind is not Float32 or Float64
    808 func (v Value) Float() float64 {
    809 	k := v.kind()
    810 	switch k {
    811 	case Float32:
    812 		return float64(*(*float32)(v.ptr))
    813 	case Float64:
    814 		return *(*float64)(v.ptr)
    815 	}
    816 	panic(&ValueError{"reflect.Value.Float", v.kind()})
    817 }
    818 
    819 var uint8Type = TypeOf(uint8(0)).(*rtype)
    820 
    821 // Index returns v's i'th element.
    822 // It panics if v's Kind is not Array, Slice, or String or i is out of range.
    823 func (v Value) Index(i int) Value {
    824 	switch v.kind() {
    825 	case Array:
    826 		tt := (*arrayType)(unsafe.Pointer(v.typ))
    827 		if uint(i) >= uint(tt.len) {
    828 			panic("reflect: array index out of range")
    829 		}
    830 		typ := tt.elem
    831 		offset := uintptr(i) * typ.size
    832 
    833 		// Either flagIndir is set and v.ptr points at array,
    834 		// or flagIndir is not set and v.ptr is the actual array data.
    835 		// In the former case, we want v.ptr + offset.
    836 		// In the latter case, we must be doing Index(0), so offset = 0,
    837 		// so v.ptr + offset is still okay.
    838 		val := unsafe.Pointer(uintptr(v.ptr) + offset)
    839 		fl := v.flag&(flagRO|flagIndir|flagAddr) | flag(typ.Kind()) // bits same as overall array
    840 		return Value{typ, val, fl}
    841 
    842 	case Slice:
    843 		// Element flag same as Elem of Ptr.
    844 		// Addressable, indirect, possibly read-only.
    845 		s := (*sliceHeader)(v.ptr)
    846 		if uint(i) >= uint(s.Len) {
    847 			panic("reflect: slice index out of range")
    848 		}
    849 		tt := (*sliceType)(unsafe.Pointer(v.typ))
    850 		typ := tt.elem
    851 		val := arrayAt(s.Data, i, typ.size)
    852 		fl := flagAddr | flagIndir | v.flag&flagRO | flag(typ.Kind())
    853 		return Value{typ, val, fl}
    854 
    855 	case String:
    856 		s := (*stringHeader)(v.ptr)
    857 		if uint(i) >= uint(s.Len) {
    858 			panic("reflect: string index out of range")
    859 		}
    860 		p := arrayAt(s.Data, i, 1)
    861 		fl := v.flag&flagRO | flag(Uint8) | flagIndir
    862 		return Value{uint8Type, p, fl}
    863 	}
    864 	panic(&ValueError{"reflect.Value.Index", v.kind()})
    865 }
    866 
    867 // Int returns v's underlying value, as an int64.
    868 // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
    869 func (v Value) Int() int64 {
    870 	k := v.kind()
    871 	p := v.ptr
    872 	switch k {
    873 	case Int:
    874 		return int64(*(*int)(p))
    875 	case Int8:
    876 		return int64(*(*int8)(p))
    877 	case Int16:
    878 		return int64(*(*int16)(p))
    879 	case Int32:
    880 		return int64(*(*int32)(p))
    881 	case Int64:
    882 		return int64(*(*int64)(p))
    883 	}
    884 	panic(&ValueError{"reflect.Value.Int", v.kind()})
    885 }
    886 
    887 // CanInterface reports whether Interface can be used without panicking.
    888 func (v Value) CanInterface() bool {
    889 	if v.flag == 0 {
    890 		panic(&ValueError{"reflect.Value.CanInterface", Invalid})
    891 	}
    892 	return v.flag&flagRO == 0
    893 }
    894 
    895 // Interface returns v's current value as an interface{}.
    896 // It is equivalent to:
    897 //	var i interface{} = (v's underlying value)
    898 // It panics if the Value was obtained by accessing
    899 // unexported struct fields.
    900 func (v Value) Interface() (i interface{}) {
    901 	return valueInterface(v, true)
    902 }
    903 
    904 func valueInterface(v Value, safe bool) interface{} {
    905 	if v.flag == 0 {
    906 		panic(&ValueError{"reflect.Value.Interface", 0})
    907 	}
    908 	if safe && v.flag&flagRO != 0 {
    909 		// Do not allow access to unexported values via Interface,
    910 		// because they might be pointers that should not be
    911 		// writable or methods or function that should not be callable.
    912 		panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
    913 	}
    914 	if v.flag&flagMethod != 0 {
    915 		v = makeMethodValue("Interface", v)
    916 	}
    917 
    918 	if v.kind() == Interface {
    919 		// Special case: return the element inside the interface.
    920 		// Empty interface has one layout, all interfaces with
    921 		// methods have a second layout.
    922 		if v.NumMethod() == 0 {
    923 			return *(*interface{})(v.ptr)
    924 		}
    925 		return *(*interface {
    926 			M()
    927 		})(v.ptr)
    928 	}
    929 
    930 	// TODO: pass safe to packEface so we don't need to copy if safe==true?
    931 	return packEface(v)
    932 }
    933 
    934 // InterfaceData returns the interface v's value as a uintptr pair.
    935 // It panics if v's Kind is not Interface.
    936 func (v Value) InterfaceData() [2]uintptr {
    937 	// TODO: deprecate this
    938 	v.mustBe(Interface)
    939 	// We treat this as a read operation, so we allow
    940 	// it even for unexported data, because the caller
    941 	// has to import "unsafe" to turn it into something
    942 	// that can be abused.
    943 	// Interface value is always bigger than a word; assume flagIndir.
    944 	return *(*[2]uintptr)(v.ptr)
    945 }
    946 
    947 // IsNil reports whether its argument v is nil. The argument must be
    948 // a chan, func, interface, map, pointer, or slice value; if it is
    949 // not, IsNil panics. Note that IsNil is not always equivalent to a
    950 // regular comparison with nil in Go. For example, if v was created
    951 // by calling ValueOf with an uninitialized interface variable i,
    952 // i==nil will be true but v.IsNil will panic as v will be the zero
    953 // Value.
    954 func (v Value) IsNil() bool {
    955 	k := v.kind()
    956 	switch k {
    957 	case Chan, Func, Map, Ptr:
    958 		if v.flag&flagMethod != 0 {
    959 			return false
    960 		}
    961 		ptr := v.ptr
    962 		if v.flag&flagIndir != 0 {
    963 			ptr = *(*unsafe.Pointer)(ptr)
    964 		}
    965 		return ptr == nil
    966 	case Interface, Slice:
    967 		// Both interface and slice are nil if first word is 0.
    968 		// Both are always bigger than a word; assume flagIndir.
    969 		return *(*unsafe.Pointer)(v.ptr) == nil
    970 	}
    971 	panic(&ValueError{"reflect.Value.IsNil", v.kind()})
    972 }
    973 
    974 // IsValid reports whether v represents a value.
    975 // It returns false if v is the zero Value.
    976 // If IsValid returns false, all other methods except String panic.
    977 // Most functions and methods never return an invalid value.
    978 // If one does, its documentation states the conditions explicitly.
    979 func (v Value) IsValid() bool {
    980 	return v.flag != 0
    981 }
    982 
    983 // Kind returns v's Kind.
    984 // If v is the zero Value (IsValid returns false), Kind returns Invalid.
    985 func (v Value) Kind() Kind {
    986 	return v.kind()
    987 }
    988 
    989 // Len returns v's length.
    990 // It panics if v's Kind is not Array, Chan, Map, Slice, or String.
    991 func (v Value) Len() int {
    992 	k := v.kind()
    993 	switch k {
    994 	case Array:
    995 		tt := (*arrayType)(unsafe.Pointer(v.typ))
    996 		return int(tt.len)
    997 	case Chan:
    998 		return chanlen(v.pointer())
    999 	case Map:
   1000 		return maplen(v.pointer())
   1001 	case Slice:
   1002 		// Slice is bigger than a word; assume flagIndir.
   1003 		return (*sliceHeader)(v.ptr).Len
   1004 	case String:
   1005 		// String is bigger than a word; assume flagIndir.
   1006 		return (*stringHeader)(v.ptr).Len
   1007 	}
   1008 	panic(&ValueError{"reflect.Value.Len", v.kind()})
   1009 }
   1010 
   1011 // MapIndex returns the value associated with key in the map v.
   1012 // It panics if v's Kind is not Map.
   1013 // It returns the zero Value if key is not found in the map or if v represents a nil map.
   1014 // As in Go, the key's value must be assignable to the map's key type.
   1015 func (v Value) MapIndex(key Value) Value {
   1016 	v.mustBe(Map)
   1017 	tt := (*mapType)(unsafe.Pointer(v.typ))
   1018 
   1019 	// Do not require key to be exported, so that DeepEqual
   1020 	// and other programs can use all the keys returned by
   1021 	// MapKeys as arguments to MapIndex.  If either the map
   1022 	// or the key is unexported, though, the result will be
   1023 	// considered unexported.  This is consistent with the
   1024 	// behavior for structs, which allow read but not write
   1025 	// of unexported fields.
   1026 	key = key.assignTo("reflect.Value.MapIndex", tt.key, nil)
   1027 
   1028 	var k unsafe.Pointer
   1029 	if key.flag&flagIndir != 0 {
   1030 		k = key.ptr
   1031 	} else {
   1032 		k = unsafe.Pointer(&key.ptr)
   1033 	}
   1034 	e := mapaccess(v.typ, v.pointer(), k)
   1035 	if e == nil {
   1036 		return Value{}
   1037 	}
   1038 	typ := tt.elem
   1039 	fl := (v.flag | key.flag) & flagRO
   1040 	fl |= flag(typ.Kind())
   1041 	if ifaceIndir(typ) {
   1042 		// Copy result so future changes to the map
   1043 		// won't change the underlying value.
   1044 		c := unsafe_New(typ)
   1045 		typedmemmove(typ, c, e)
   1046 		return Value{typ, c, fl | flagIndir}
   1047 	} else {
   1048 		return Value{typ, *(*unsafe.Pointer)(e), fl}
   1049 	}
   1050 }
   1051 
   1052 // MapKeys returns a slice containing all the keys present in the map,
   1053 // in unspecified order.
   1054 // It panics if v's Kind is not Map.
   1055 // It returns an empty slice if v represents a nil map.
   1056 func (v Value) MapKeys() []Value {
   1057 	v.mustBe(Map)
   1058 	tt := (*mapType)(unsafe.Pointer(v.typ))
   1059 	keyType := tt.key
   1060 
   1061 	fl := v.flag&flagRO | flag(keyType.Kind())
   1062 
   1063 	m := v.pointer()
   1064 	mlen := int(0)
   1065 	if m != nil {
   1066 		mlen = maplen(m)
   1067 	}
   1068 	it := mapiterinit(v.typ, m)
   1069 	a := make([]Value, mlen)
   1070 	var i int
   1071 	for i = 0; i < len(a); i++ {
   1072 		key := mapiterkey(it)
   1073 		if key == nil {
   1074 			// Someone deleted an entry from the map since we
   1075 			// called maplen above.  It's a data race, but nothing
   1076 			// we can do about it.
   1077 			break
   1078 		}
   1079 		if ifaceIndir(keyType) {
   1080 			// Copy result so future changes to the map
   1081 			// won't change the underlying value.
   1082 			c := unsafe_New(keyType)
   1083 			typedmemmove(keyType, c, key)
   1084 			a[i] = Value{keyType, c, fl | flagIndir}
   1085 		} else {
   1086 			a[i] = Value{keyType, *(*unsafe.Pointer)(key), fl}
   1087 		}
   1088 		mapiternext(it)
   1089 	}
   1090 	return a[:i]
   1091 }
   1092 
   1093 // Method returns a function value corresponding to v's i'th method.
   1094 // The arguments to a Call on the returned function should not include
   1095 // a receiver; the returned function will always use v as the receiver.
   1096 // Method panics if i is out of range or if v is a nil interface value.
   1097 func (v Value) Method(i int) Value {
   1098 	if v.typ == nil {
   1099 		panic(&ValueError{"reflect.Value.Method", Invalid})
   1100 	}
   1101 	if v.flag&flagMethod != 0 || uint(i) >= uint(v.typ.NumMethod()) {
   1102 		panic("reflect: Method index out of range")
   1103 	}
   1104 	if v.typ.Kind() == Interface && v.IsNil() {
   1105 		panic("reflect: Method on nil interface value")
   1106 	}
   1107 	fl := v.flag & (flagRO | flagIndir)
   1108 	fl |= flag(Func)
   1109 	fl |= flag(i)<<flagMethodShift | flagMethod
   1110 	return Value{v.typ, v.ptr, fl}
   1111 }
   1112 
   1113 // NumMethod returns the number of methods in the value's method set.
   1114 func (v Value) NumMethod() int {
   1115 	if v.typ == nil {
   1116 		panic(&ValueError{"reflect.Value.NumMethod", Invalid})
   1117 	}
   1118 	if v.flag&flagMethod != 0 {
   1119 		return 0
   1120 	}
   1121 	return v.typ.NumMethod()
   1122 }
   1123 
   1124 // MethodByName returns a function value corresponding to the method
   1125 // of v with the given name.
   1126 // The arguments to a Call on the returned function should not include
   1127 // a receiver; the returned function will always use v as the receiver.
   1128 // It returns the zero Value if no method was found.
   1129 func (v Value) MethodByName(name string) Value {
   1130 	if v.typ == nil {
   1131 		panic(&ValueError{"reflect.Value.MethodByName", Invalid})
   1132 	}
   1133 	if v.flag&flagMethod != 0 {
   1134 		return Value{}
   1135 	}
   1136 	m, ok := v.typ.MethodByName(name)
   1137 	if !ok {
   1138 		return Value{}
   1139 	}
   1140 	return v.Method(m.Index)
   1141 }
   1142 
   1143 // NumField returns the number of fields in the struct v.
   1144 // It panics if v's Kind is not Struct.
   1145 func (v Value) NumField() int {
   1146 	v.mustBe(Struct)
   1147 	tt := (*structType)(unsafe.Pointer(v.typ))
   1148 	return len(tt.fields)
   1149 }
   1150 
   1151 // OverflowComplex reports whether the complex128 x cannot be represented by v's type.
   1152 // It panics if v's Kind is not Complex64 or Complex128.
   1153 func (v Value) OverflowComplex(x complex128) bool {
   1154 	k := v.kind()
   1155 	switch k {
   1156 	case Complex64:
   1157 		return overflowFloat32(real(x)) || overflowFloat32(imag(x))
   1158 	case Complex128:
   1159 		return false
   1160 	}
   1161 	panic(&ValueError{"reflect.Value.OverflowComplex", v.kind()})
   1162 }
   1163 
   1164 // OverflowFloat reports whether the float64 x cannot be represented by v's type.
   1165 // It panics if v's Kind is not Float32 or Float64.
   1166 func (v Value) OverflowFloat(x float64) bool {
   1167 	k := v.kind()
   1168 	switch k {
   1169 	case Float32:
   1170 		return overflowFloat32(x)
   1171 	case Float64:
   1172 		return false
   1173 	}
   1174 	panic(&ValueError{"reflect.Value.OverflowFloat", v.kind()})
   1175 }
   1176 
   1177 func overflowFloat32(x float64) bool {
   1178 	if x < 0 {
   1179 		x = -x
   1180 	}
   1181 	return math.MaxFloat32 < x && x <= math.MaxFloat64
   1182 }
   1183 
   1184 // OverflowInt reports whether the int64 x cannot be represented by v's type.
   1185 // It panics if v's Kind is not Int, Int8, int16, Int32, or Int64.
   1186 func (v Value) OverflowInt(x int64) bool {
   1187 	k := v.kind()
   1188 	switch k {
   1189 	case Int, Int8, Int16, Int32, Int64:
   1190 		bitSize := v.typ.size * 8
   1191 		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
   1192 		return x != trunc
   1193 	}
   1194 	panic(&ValueError{"reflect.Value.OverflowInt", v.kind()})
   1195 }
   1196 
   1197 // OverflowUint reports whether the uint64 x cannot be represented by v's type.
   1198 // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
   1199 func (v Value) OverflowUint(x uint64) bool {
   1200 	k := v.kind()
   1201 	switch k {
   1202 	case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
   1203 		bitSize := v.typ.size * 8
   1204 		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
   1205 		return x != trunc
   1206 	}
   1207 	panic(&ValueError{"reflect.Value.OverflowUint", v.kind()})
   1208 }
   1209 
   1210 // Pointer returns v's value as a uintptr.
   1211 // It returns uintptr instead of unsafe.Pointer so that
   1212 // code using reflect cannot obtain unsafe.Pointers
   1213 // without importing the unsafe package explicitly.
   1214 // It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
   1215 //
   1216 // If v's Kind is Func, the returned pointer is an underlying
   1217 // code pointer, but not necessarily enough to identify a
   1218 // single function uniquely. The only guarantee is that the
   1219 // result is zero if and only if v is a nil func Value.
   1220 //
   1221 // If v's Kind is Slice, the returned pointer is to the first
   1222 // element of the slice.  If the slice is nil the returned value
   1223 // is 0.  If the slice is empty but non-nil the return value is non-zero.
   1224 func (v Value) Pointer() uintptr {
   1225 	// TODO: deprecate
   1226 	k := v.kind()
   1227 	switch k {
   1228 	case Chan, Map, Ptr, UnsafePointer:
   1229 		return uintptr(v.pointer())
   1230 	case Func:
   1231 		if v.flag&flagMethod != 0 {
   1232 			// As the doc comment says, the returned pointer is an
   1233 			// underlying code pointer but not necessarily enough to
   1234 			// identify a single function uniquely. All method expressions
   1235 			// created via reflect have the same underlying code pointer,
   1236 			// so their Pointers are equal. The function used here must
   1237 			// match the one used in makeMethodValue.
   1238 			f := methodValueCall
   1239 			return **(**uintptr)(unsafe.Pointer(&f))
   1240 		}
   1241 		p := v.pointer()
   1242 		// Non-nil func value points at data block.
   1243 		// First word of data block is actual code.
   1244 		if p != nil {
   1245 			p = *(*unsafe.Pointer)(p)
   1246 		}
   1247 		return uintptr(p)
   1248 
   1249 	case Slice:
   1250 		return (*SliceHeader)(v.ptr).Data
   1251 	}
   1252 	panic(&ValueError{"reflect.Value.Pointer", v.kind()})
   1253 }
   1254 
   1255 // Recv receives and returns a value from the channel v.
   1256 // It panics if v's Kind is not Chan.
   1257 // The receive blocks until a value is ready.
   1258 // The boolean value ok is true if the value x corresponds to a send
   1259 // on the channel, false if it is a zero value received because the channel is closed.
   1260 func (v Value) Recv() (x Value, ok bool) {
   1261 	v.mustBe(Chan)
   1262 	v.mustBeExported()
   1263 	return v.recv(false)
   1264 }
   1265 
   1266 // internal recv, possibly non-blocking (nb).
   1267 // v is known to be a channel.
   1268 func (v Value) recv(nb bool) (val Value, ok bool) {
   1269 	tt := (*chanType)(unsafe.Pointer(v.typ))
   1270 	if ChanDir(tt.dir)&RecvDir == 0 {
   1271 		panic("reflect: recv on send-only channel")
   1272 	}
   1273 	t := tt.elem
   1274 	val = Value{t, nil, flag(t.Kind())}
   1275 	var p unsafe.Pointer
   1276 	if ifaceIndir(t) {
   1277 		p = unsafe_New(t)
   1278 		val.ptr = p
   1279 		val.flag |= flagIndir
   1280 	} else {
   1281 		p = unsafe.Pointer(&val.ptr)
   1282 	}
   1283 	selected, ok := chanrecv(v.typ, v.pointer(), nb, p)
   1284 	if !selected {
   1285 		val = Value{}
   1286 	}
   1287 	return
   1288 }
   1289 
   1290 // Send sends x on the channel v.
   1291 // It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
   1292 // As in Go, x's value must be assignable to the channel's element type.
   1293 func (v Value) Send(x Value) {
   1294 	v.mustBe(Chan)
   1295 	v.mustBeExported()
   1296 	v.send(x, false)
   1297 }
   1298 
   1299 // internal send, possibly non-blocking.
   1300 // v is known to be a channel.
   1301 func (v Value) send(x Value, nb bool) (selected bool) {
   1302 	tt := (*chanType)(unsafe.Pointer(v.typ))
   1303 	if ChanDir(tt.dir)&SendDir == 0 {
   1304 		panic("reflect: send on recv-only channel")
   1305 	}
   1306 	x.mustBeExported()
   1307 	x = x.assignTo("reflect.Value.Send", tt.elem, nil)
   1308 	var p unsafe.Pointer
   1309 	if x.flag&flagIndir != 0 {
   1310 		p = x.ptr
   1311 	} else {
   1312 		p = unsafe.Pointer(&x.ptr)
   1313 	}
   1314 	return chansend(v.typ, v.pointer(), p, nb)
   1315 }
   1316 
   1317 // Set assigns x to the value v.
   1318 // It panics if CanSet returns false.
   1319 // As in Go, x's value must be assignable to v's type.
   1320 func (v Value) Set(x Value) {
   1321 	v.mustBeAssignable()
   1322 	x.mustBeExported() // do not let unexported x leak
   1323 	var target unsafe.Pointer
   1324 	if v.kind() == Interface {
   1325 		target = v.ptr
   1326 	}
   1327 	x = x.assignTo("reflect.Set", v.typ, target)
   1328 	if x.flag&flagIndir != 0 {
   1329 		typedmemmove(v.typ, v.ptr, x.ptr)
   1330 	} else {
   1331 		*(*unsafe.Pointer)(v.ptr) = x.ptr
   1332 	}
   1333 }
   1334 
   1335 // SetBool sets v's underlying value.
   1336 // It panics if v's Kind is not Bool or if CanSet() is false.
   1337 func (v Value) SetBool(x bool) {
   1338 	v.mustBeAssignable()
   1339 	v.mustBe(Bool)
   1340 	*(*bool)(v.ptr) = x
   1341 }
   1342 
   1343 // SetBytes sets v's underlying value.
   1344 // It panics if v's underlying value is not a slice of bytes.
   1345 func (v Value) SetBytes(x []byte) {
   1346 	v.mustBeAssignable()
   1347 	v.mustBe(Slice)
   1348 	if v.typ.Elem().Kind() != Uint8 {
   1349 		panic("reflect.Value.SetBytes of non-byte slice")
   1350 	}
   1351 	*(*[]byte)(v.ptr) = x
   1352 }
   1353 
   1354 // setRunes sets v's underlying value.
   1355 // It panics if v's underlying value is not a slice of runes (int32s).
   1356 func (v Value) setRunes(x []rune) {
   1357 	v.mustBeAssignable()
   1358 	v.mustBe(Slice)
   1359 	if v.typ.Elem().Kind() != Int32 {
   1360 		panic("reflect.Value.setRunes of non-rune slice")
   1361 	}
   1362 	*(*[]rune)(v.ptr) = x
   1363 }
   1364 
   1365 // SetComplex sets v's underlying value to x.
   1366 // It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
   1367 func (v Value) SetComplex(x complex128) {
   1368 	v.mustBeAssignable()
   1369 	switch k := v.kind(); k {
   1370 	default:
   1371 		panic(&ValueError{"reflect.Value.SetComplex", v.kind()})
   1372 	case Complex64:
   1373 		*(*complex64)(v.ptr) = complex64(x)
   1374 	case Complex128:
   1375 		*(*complex128)(v.ptr) = x
   1376 	}
   1377 }
   1378 
   1379 // SetFloat sets v's underlying value to x.
   1380 // It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
   1381 func (v Value) SetFloat(x float64) {
   1382 	v.mustBeAssignable()
   1383 	switch k := v.kind(); k {
   1384 	default:
   1385 		panic(&ValueError{"reflect.Value.SetFloat", v.kind()})
   1386 	case Float32:
   1387 		*(*float32)(v.ptr) = float32(x)
   1388 	case Float64:
   1389 		*(*float64)(v.ptr) = x
   1390 	}
   1391 }
   1392 
   1393 // SetInt sets v's underlying value to x.
   1394 // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
   1395 func (v Value) SetInt(x int64) {
   1396 	v.mustBeAssignable()
   1397 	switch k := v.kind(); k {
   1398 	default:
   1399 		panic(&ValueError{"reflect.Value.SetInt", v.kind()})
   1400 	case Int:
   1401 		*(*int)(v.ptr) = int(x)
   1402 	case Int8:
   1403 		*(*int8)(v.ptr) = int8(x)
   1404 	case Int16:
   1405 		*(*int16)(v.ptr) = int16(x)
   1406 	case Int32:
   1407 		*(*int32)(v.ptr) = int32(x)
   1408 	case Int64:
   1409 		*(*int64)(v.ptr) = x
   1410 	}
   1411 }
   1412 
   1413 // SetLen sets v's length to n.
   1414 // It panics if v's Kind is not Slice or if n is negative or
   1415 // greater than the capacity of the slice.
   1416 func (v Value) SetLen(n int) {
   1417 	v.mustBeAssignable()
   1418 	v.mustBe(Slice)
   1419 	s := (*sliceHeader)(v.ptr)
   1420 	if uint(n) > uint(s.Cap) {
   1421 		panic("reflect: slice length out of range in SetLen")
   1422 	}
   1423 	s.Len = n
   1424 }
   1425 
   1426 // SetCap sets v's capacity to n.
   1427 // It panics if v's Kind is not Slice or if n is smaller than the length or
   1428 // greater than the capacity of the slice.
   1429 func (v Value) SetCap(n int) {
   1430 	v.mustBeAssignable()
   1431 	v.mustBe(Slice)
   1432 	s := (*sliceHeader)(v.ptr)
   1433 	if n < int(s.Len) || n > int(s.Cap) {
   1434 		panic("reflect: slice capacity out of range in SetCap")
   1435 	}
   1436 	s.Cap = n
   1437 }
   1438 
   1439 // SetMapIndex sets the value associated with key in the map v to val.
   1440 // It panics if v's Kind is not Map.
   1441 // If val is the zero Value, SetMapIndex deletes the key from the map.
   1442 // Otherwise if v holds a nil map, SetMapIndex will panic.
   1443 // As in Go, key's value must be assignable to the map's key type,
   1444 // and val's value must be assignable to the map's value type.
   1445 func (v Value) SetMapIndex(key, val Value) {
   1446 	v.mustBe(Map)
   1447 	v.mustBeExported()
   1448 	key.mustBeExported()
   1449 	tt := (*mapType)(unsafe.Pointer(v.typ))
   1450 	key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil)
   1451 	var k unsafe.Pointer
   1452 	if key.flag&flagIndir != 0 {
   1453 		k = key.ptr
   1454 	} else {
   1455 		k = unsafe.Pointer(&key.ptr)
   1456 	}
   1457 	if val.typ == nil {
   1458 		mapdelete(v.typ, v.pointer(), k)
   1459 		return
   1460 	}
   1461 	val.mustBeExported()
   1462 	val = val.assignTo("reflect.Value.SetMapIndex", tt.elem, nil)
   1463 	var e unsafe.Pointer
   1464 	if val.flag&flagIndir != 0 {
   1465 		e = val.ptr
   1466 	} else {
   1467 		e = unsafe.Pointer(&val.ptr)
   1468 	}
   1469 	mapassign(v.typ, v.pointer(), k, e)
   1470 }
   1471 
   1472 // SetUint sets v's underlying value to x.
   1473 // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
   1474 func (v Value) SetUint(x uint64) {
   1475 	v.mustBeAssignable()
   1476 	switch k := v.kind(); k {
   1477 	default:
   1478 		panic(&ValueError{"reflect.Value.SetUint", v.kind()})
   1479 	case Uint:
   1480 		*(*uint)(v.ptr) = uint(x)
   1481 	case Uint8:
   1482 		*(*uint8)(v.ptr) = uint8(x)
   1483 	case Uint16:
   1484 		*(*uint16)(v.ptr) = uint16(x)
   1485 	case Uint32:
   1486 		*(*uint32)(v.ptr) = uint32(x)
   1487 	case Uint64:
   1488 		*(*uint64)(v.ptr) = x
   1489 	case Uintptr:
   1490 		*(*uintptr)(v.ptr) = uintptr(x)
   1491 	}
   1492 }
   1493 
   1494 // SetPointer sets the unsafe.Pointer value v to x.
   1495 // It panics if v's Kind is not UnsafePointer.
   1496 func (v Value) SetPointer(x unsafe.Pointer) {
   1497 	v.mustBeAssignable()
   1498 	v.mustBe(UnsafePointer)
   1499 	*(*unsafe.Pointer)(v.ptr) = x
   1500 }
   1501 
   1502 // SetString sets v's underlying value to x.
   1503 // It panics if v's Kind is not String or if CanSet() is false.
   1504 func (v Value) SetString(x string) {
   1505 	v.mustBeAssignable()
   1506 	v.mustBe(String)
   1507 	*(*string)(v.ptr) = x
   1508 }
   1509 
   1510 // Slice returns v[i:j].
   1511 // It panics if v's Kind is not Array, Slice or String, or if v is an unaddressable array,
   1512 // or if the indexes are out of bounds.
   1513 func (v Value) Slice(i, j int) Value {
   1514 	var (
   1515 		cap  int
   1516 		typ  *sliceType
   1517 		base unsafe.Pointer
   1518 	)
   1519 	switch kind := v.kind(); kind {
   1520 	default:
   1521 		panic(&ValueError{"reflect.Value.Slice", v.kind()})
   1522 
   1523 	case Array:
   1524 		if v.flag&flagAddr == 0 {
   1525 			panic("reflect.Value.Slice: slice of unaddressable array")
   1526 		}
   1527 		tt := (*arrayType)(unsafe.Pointer(v.typ))
   1528 		cap = int(tt.len)
   1529 		typ = (*sliceType)(unsafe.Pointer(tt.slice))
   1530 		base = v.ptr
   1531 
   1532 	case Slice:
   1533 		typ = (*sliceType)(unsafe.Pointer(v.typ))
   1534 		s := (*sliceHeader)(v.ptr)
   1535 		base = unsafe.Pointer(s.Data)
   1536 		cap = s.Cap
   1537 
   1538 	case String:
   1539 		s := (*stringHeader)(v.ptr)
   1540 		if i < 0 || j < i || j > s.Len {
   1541 			panic("reflect.Value.Slice: string slice index out of bounds")
   1542 		}
   1543 		t := stringHeader{arrayAt(s.Data, i, 1), j - i}
   1544 		return Value{v.typ, unsafe.Pointer(&t), v.flag}
   1545 	}
   1546 
   1547 	if i < 0 || j < i || j > cap {
   1548 		panic("reflect.Value.Slice: slice index out of bounds")
   1549 	}
   1550 
   1551 	// Declare slice so that gc can see the base pointer in it.
   1552 	var x []unsafe.Pointer
   1553 
   1554 	// Reinterpret as *sliceHeader to edit.
   1555 	s := (*sliceHeader)(unsafe.Pointer(&x))
   1556 	s.Len = j - i
   1557 	s.Cap = cap - i
   1558 	if cap-i > 0 {
   1559 		s.Data = arrayAt(base, i, typ.elem.Size())
   1560 	} else {
   1561 		// do not advance pointer, to avoid pointing beyond end of slice
   1562 		s.Data = base
   1563 	}
   1564 
   1565 	fl := v.flag&flagRO | flagIndir | flag(Slice)
   1566 	return Value{typ.common(), unsafe.Pointer(&x), fl}
   1567 }
   1568 
   1569 // Slice3 is the 3-index form of the slice operation: it returns v[i:j:k].
   1570 // It panics if v's Kind is not Array or Slice, or if v is an unaddressable array,
   1571 // or if the indexes are out of bounds.
   1572 func (v Value) Slice3(i, j, k int) Value {
   1573 	var (
   1574 		cap  int
   1575 		typ  *sliceType
   1576 		base unsafe.Pointer
   1577 	)
   1578 	switch kind := v.kind(); kind {
   1579 	default:
   1580 		panic(&ValueError{"reflect.Value.Slice3", v.kind()})
   1581 
   1582 	case Array:
   1583 		if v.flag&flagAddr == 0 {
   1584 			panic("reflect.Value.Slice3: slice of unaddressable array")
   1585 		}
   1586 		tt := (*arrayType)(unsafe.Pointer(v.typ))
   1587 		cap = int(tt.len)
   1588 		typ = (*sliceType)(unsafe.Pointer(tt.slice))
   1589 		base = v.ptr
   1590 
   1591 	case Slice:
   1592 		typ = (*sliceType)(unsafe.Pointer(v.typ))
   1593 		s := (*sliceHeader)(v.ptr)
   1594 		base = s.Data
   1595 		cap = s.Cap
   1596 	}
   1597 
   1598 	if i < 0 || j < i || k < j || k > cap {
   1599 		panic("reflect.Value.Slice3: slice index out of bounds")
   1600 	}
   1601 
   1602 	// Declare slice so that the garbage collector
   1603 	// can see the base pointer in it.
   1604 	var x []unsafe.Pointer
   1605 
   1606 	// Reinterpret as *sliceHeader to edit.
   1607 	s := (*sliceHeader)(unsafe.Pointer(&x))
   1608 	s.Len = j - i
   1609 	s.Cap = k - i
   1610 	if k-i > 0 {
   1611 		s.Data = arrayAt(base, i, typ.elem.Size())
   1612 	} else {
   1613 		// do not advance pointer, to avoid pointing beyond end of slice
   1614 		s.Data = base
   1615 	}
   1616 
   1617 	fl := v.flag&flagRO | flagIndir | flag(Slice)
   1618 	return Value{typ.common(), unsafe.Pointer(&x), fl}
   1619 }
   1620 
   1621 // String returns the string v's underlying value, as a string.
   1622 // String is a special case because of Go's String method convention.
   1623 // Unlike the other getters, it does not panic if v's Kind is not String.
   1624 // Instead, it returns a string of the form "<T value>" where T is v's type.
   1625 // The fmt package treats Values specially. It does not call their String
   1626 // method implicitly but instead prints the concrete values they hold.
   1627 func (v Value) String() string {
   1628 	switch k := v.kind(); k {
   1629 	case Invalid:
   1630 		return "<invalid Value>"
   1631 	case String:
   1632 		return *(*string)(v.ptr)
   1633 	}
   1634 	// If you call String on a reflect.Value of other type, it's better to
   1635 	// print something than to panic. Useful in debugging.
   1636 	return "<" + v.Type().String() + " Value>"
   1637 }
   1638 
   1639 // TryRecv attempts to receive a value from the channel v but will not block.
   1640 // It panics if v's Kind is not Chan.
   1641 // If the receive delivers a value, x is the transferred value and ok is true.
   1642 // If the receive cannot finish without blocking, x is the zero Value and ok is false.
   1643 // If the channel is closed, x is the zero value for the channel's element type and ok is false.
   1644 func (v Value) TryRecv() (x Value, ok bool) {
   1645 	v.mustBe(Chan)
   1646 	v.mustBeExported()
   1647 	return v.recv(true)
   1648 }
   1649 
   1650 // TrySend attempts to send x on the channel v but will not block.
   1651 // It panics if v's Kind is not Chan.
   1652 // It reports whether the value was sent.
   1653 // As in Go, x's value must be assignable to the channel's element type.
   1654 func (v Value) TrySend(x Value) bool {
   1655 	v.mustBe(Chan)
   1656 	v.mustBeExported()
   1657 	return v.send(x, true)
   1658 }
   1659 
   1660 // Type returns v's type.
   1661 func (v Value) Type() Type {
   1662 	f := v.flag
   1663 	if f == 0 {
   1664 		panic(&ValueError{"reflect.Value.Type", Invalid})
   1665 	}
   1666 	if f&flagMethod == 0 {
   1667 		// Easy case
   1668 		return v.typ
   1669 	}
   1670 
   1671 	// Method value.
   1672 	// v.typ describes the receiver, not the method type.
   1673 	i := int(v.flag) >> flagMethodShift
   1674 	if v.typ.Kind() == Interface {
   1675 		// Method on interface.
   1676 		tt := (*interfaceType)(unsafe.Pointer(v.typ))
   1677 		if uint(i) >= uint(len(tt.methods)) {
   1678 			panic("reflect: internal error: invalid method index")
   1679 		}
   1680 		m := &tt.methods[i]
   1681 		return m.typ
   1682 	}
   1683 	// Method on concrete type.
   1684 	ut := v.typ.uncommon()
   1685 	if ut == nil || uint(i) >= uint(len(ut.methods)) {
   1686 		panic("reflect: internal error: invalid method index")
   1687 	}
   1688 	m := &ut.methods[i]
   1689 	return m.mtyp
   1690 }
   1691 
   1692 // Uint returns v's underlying value, as a uint64.
   1693 // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
   1694 func (v Value) Uint() uint64 {
   1695 	k := v.kind()
   1696 	p := v.ptr
   1697 	switch k {
   1698 	case Uint:
   1699 		return uint64(*(*uint)(p))
   1700 	case Uint8:
   1701 		return uint64(*(*uint8)(p))
   1702 	case Uint16:
   1703 		return uint64(*(*uint16)(p))
   1704 	case Uint32:
   1705 		return uint64(*(*uint32)(p))
   1706 	case Uint64:
   1707 		return uint64(*(*uint64)(p))
   1708 	case Uintptr:
   1709 		return uint64(*(*uintptr)(p))
   1710 	}
   1711 	panic(&ValueError{"reflect.Value.Uint", v.kind()})
   1712 }
   1713 
   1714 // UnsafeAddr returns a pointer to v's data.
   1715 // It is for advanced clients that also import the "unsafe" package.
   1716 // It panics if v is not addressable.
   1717 func (v Value) UnsafeAddr() uintptr {
   1718 	// TODO: deprecate
   1719 	if v.typ == nil {
   1720 		panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})
   1721 	}
   1722 	if v.flag&flagAddr == 0 {
   1723 		panic("reflect.Value.UnsafeAddr of unaddressable value")
   1724 	}
   1725 	return uintptr(v.ptr)
   1726 }
   1727 
   1728 // StringHeader is the runtime representation of a string.
   1729 // It cannot be used safely or portably and its representation may
   1730 // change in a later release.
   1731 // Moreover, the Data field is not sufficient to guarantee the data
   1732 // it references will not be garbage collected, so programs must keep
   1733 // a separate, correctly typed pointer to the underlying data.
   1734 type StringHeader struct {
   1735 	Data uintptr
   1736 	Len  int
   1737 }
   1738 
   1739 // stringHeader is a safe version of StringHeader used within this package.
   1740 type stringHeader struct {
   1741 	Data unsafe.Pointer
   1742 	Len  int
   1743 }
   1744 
   1745 // SliceHeader is the runtime representation of a slice.
   1746 // It cannot be used safely or portably and its representation may
   1747 // change in a later release.
   1748 // Moreover, the Data field is not sufficient to guarantee the data
   1749 // it references will not be garbage collected, so programs must keep
   1750 // a separate, correctly typed pointer to the underlying data.
   1751 type SliceHeader struct {
   1752 	Data uintptr
   1753 	Len  int
   1754 	Cap  int
   1755 }
   1756 
   1757 // sliceHeader is a safe version of SliceHeader used within this package.
   1758 type sliceHeader struct {
   1759 	Data unsafe.Pointer
   1760 	Len  int
   1761 	Cap  int
   1762 }
   1763 
   1764 func typesMustMatch(what string, t1, t2 Type) {
   1765 	if t1 != t2 {
   1766 		panic(what + ": " + t1.String() + " != " + t2.String())
   1767 	}
   1768 }
   1769 
   1770 // arrayAt returns the i-th element of p, a C-array whose elements are
   1771 // eltSize wide (in bytes).
   1772 func arrayAt(p unsafe.Pointer, i int, eltSize uintptr) unsafe.Pointer {
   1773 	return unsafe.Pointer(uintptr(p) + uintptr(i)*eltSize)
   1774 }
   1775 
   1776 // grow grows the slice s so that it can hold extra more values, allocating
   1777 // more capacity if needed. It also returns the old and new slice lengths.
   1778 func grow(s Value, extra int) (Value, int, int) {
   1779 	i0 := s.Len()
   1780 	i1 := i0 + extra
   1781 	if i1 < i0 {
   1782 		panic("reflect.Append: slice overflow")
   1783 	}
   1784 	m := s.Cap()
   1785 	if i1 <= m {
   1786 		return s.Slice(0, i1), i0, i1
   1787 	}
   1788 	if m == 0 {
   1789 		m = extra
   1790 	} else {
   1791 		for m < i1 {
   1792 			if i0 < 1024 {
   1793 				m += m
   1794 			} else {
   1795 				m += m / 4
   1796 			}
   1797 		}
   1798 	}
   1799 	t := MakeSlice(s.Type(), i1, m)
   1800 	Copy(t, s)
   1801 	return t, i0, i1
   1802 }
   1803 
   1804 // Append appends the values x to a slice s and returns the resulting slice.
   1805 // As in Go, each x's value must be assignable to the slice's element type.
   1806 func Append(s Value, x ...Value) Value {
   1807 	s.mustBe(Slice)
   1808 	s, i0, i1 := grow(s, len(x))
   1809 	for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
   1810 		s.Index(i).Set(x[j])
   1811 	}
   1812 	return s
   1813 }
   1814 
   1815 // AppendSlice appends a slice t to a slice s and returns the resulting slice.
   1816 // The slices s and t must have the same element type.
   1817 func AppendSlice(s, t Value) Value {
   1818 	s.mustBe(Slice)
   1819 	t.mustBe(Slice)
   1820 	typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
   1821 	s, i0, i1 := grow(s, t.Len())
   1822 	Copy(s.Slice(i0, i1), t)
   1823 	return s
   1824 }
   1825 
   1826 // Copy copies the contents of src into dst until either
   1827 // dst has been filled or src has been exhausted.
   1828 // It returns the number of elements copied.
   1829 // Dst and src each must have kind Slice or Array, and
   1830 // dst and src must have the same element type.
   1831 func Copy(dst, src Value) int {
   1832 	dk := dst.kind()
   1833 	if dk != Array && dk != Slice {
   1834 		panic(&ValueError{"reflect.Copy", dk})
   1835 	}
   1836 	if dk == Array {
   1837 		dst.mustBeAssignable()
   1838 	}
   1839 	dst.mustBeExported()
   1840 
   1841 	sk := src.kind()
   1842 	if sk != Array && sk != Slice {
   1843 		panic(&ValueError{"reflect.Copy", sk})
   1844 	}
   1845 	src.mustBeExported()
   1846 
   1847 	de := dst.typ.Elem()
   1848 	se := src.typ.Elem()
   1849 	typesMustMatch("reflect.Copy", de, se)
   1850 
   1851 	var ds, ss sliceHeader
   1852 	if dk == Array {
   1853 		ds.Data = dst.ptr
   1854 		ds.Len = dst.Len()
   1855 		ds.Cap = ds.Len
   1856 	} else {
   1857 		ds = *(*sliceHeader)(dst.ptr)
   1858 	}
   1859 	if sk == Array {
   1860 		ss.Data = src.ptr
   1861 		ss.Len = src.Len()
   1862 		ss.Cap = ss.Len
   1863 	} else {
   1864 		ss = *(*sliceHeader)(src.ptr)
   1865 	}
   1866 
   1867 	return typedslicecopy(de.common(), ds, ss)
   1868 }
   1869 
   1870 // A runtimeSelect is a single case passed to rselect.
   1871 // This must match ../runtime/select.go:/runtimeSelect
   1872 type runtimeSelect struct {
   1873 	dir uintptr        // 0, SendDir, or RecvDir
   1874 	typ *rtype         // channel type
   1875 	ch  unsafe.Pointer // channel
   1876 	val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir)
   1877 }
   1878 
   1879 // rselect runs a select.  It returns the index of the chosen case.
   1880 // If the case was a receive, val is filled in with the received value.
   1881 // The conventional OK bool indicates whether the receive corresponds
   1882 // to a sent value.
   1883 //go:noescape
   1884 func rselect([]runtimeSelect) (chosen int, recvOK bool)
   1885 
   1886 // A SelectDir describes the communication direction of a select case.
   1887 type SelectDir int
   1888 
   1889 // NOTE: These values must match ../runtime/select.go:/selectDir.
   1890 
   1891 const (
   1892 	_             SelectDir = iota
   1893 	SelectSend              // case Chan <- Send
   1894 	SelectRecv              // case <-Chan:
   1895 	SelectDefault           // default
   1896 )
   1897 
   1898 // A SelectCase describes a single case in a select operation.
   1899 // The kind of case depends on Dir, the communication direction.
   1900 //
   1901 // If Dir is SelectDefault, the case represents a default case.
   1902 // Chan and Send must be zero Values.
   1903 //
   1904 // If Dir is SelectSend, the case represents a send operation.
   1905 // Normally Chan's underlying value must be a channel, and Send's underlying value must be
   1906 // assignable to the channel's element type. As a special case, if Chan is a zero Value,
   1907 // then the case is ignored, and the field Send will also be ignored and may be either zero
   1908 // or non-zero.
   1909 //
   1910 // If Dir is SelectRecv, the case represents a receive operation.
   1911 // Normally Chan's underlying value must be a channel and Send must be a zero Value.
   1912 // If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value.
   1913 // When a receive operation is selected, the received Value is returned by Select.
   1914 //
   1915 type SelectCase struct {
   1916 	Dir  SelectDir // direction of case
   1917 	Chan Value     // channel to use (for send or receive)
   1918 	Send Value     // value to send (for send)
   1919 }
   1920 
   1921 // Select executes a select operation described by the list of cases.
   1922 // Like the Go select statement, it blocks until at least one of the cases
   1923 // can proceed, makes a uniform pseudo-random choice,
   1924 // and then executes that case. It returns the index of the chosen case
   1925 // and, if that case was a receive operation, the value received and a
   1926 // boolean indicating whether the value corresponds to a send on the channel
   1927 // (as opposed to a zero value received because the channel is closed).
   1928 func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) {
   1929 	// NOTE: Do not trust that caller is not modifying cases data underfoot.
   1930 	// The range is safe because the caller cannot modify our copy of the len
   1931 	// and each iteration makes its own copy of the value c.
   1932 	runcases := make([]runtimeSelect, len(cases))
   1933 	haveDefault := false
   1934 	for i, c := range cases {
   1935 		rc := &runcases[i]
   1936 		rc.dir = uintptr(c.Dir)
   1937 		switch c.Dir {
   1938 		default:
   1939 			panic("reflect.Select: invalid Dir")
   1940 
   1941 		case SelectDefault: // default
   1942 			if haveDefault {
   1943 				panic("reflect.Select: multiple default cases")
   1944 			}
   1945 			haveDefault = true
   1946 			if c.Chan.IsValid() {
   1947 				panic("reflect.Select: default case has Chan value")
   1948 			}
   1949 			if c.Send.IsValid() {
   1950 				panic("reflect.Select: default case has Send value")
   1951 			}
   1952 
   1953 		case SelectSend:
   1954 			ch := c.Chan
   1955 			if !ch.IsValid() {
   1956 				break
   1957 			}
   1958 			ch.mustBe(Chan)
   1959 			ch.mustBeExported()
   1960 			tt := (*chanType)(unsafe.Pointer(ch.typ))
   1961 			if ChanDir(tt.dir)&SendDir == 0 {
   1962 				panic("reflect.Select: SendDir case using recv-only channel")
   1963 			}
   1964 			rc.ch = ch.pointer()
   1965 			rc.typ = &tt.rtype
   1966 			v := c.Send
   1967 			if !v.IsValid() {
   1968 				panic("reflect.Select: SendDir case missing Send value")
   1969 			}
   1970 			v.mustBeExported()
   1971 			v = v.assignTo("reflect.Select", tt.elem, nil)
   1972 			if v.flag&flagIndir != 0 {
   1973 				rc.val = v.ptr
   1974 			} else {
   1975 				rc.val = unsafe.Pointer(&v.ptr)
   1976 			}
   1977 
   1978 		case SelectRecv:
   1979 			if c.Send.IsValid() {
   1980 				panic("reflect.Select: RecvDir case has Send value")
   1981 			}
   1982 			ch := c.Chan
   1983 			if !ch.IsValid() {
   1984 				break
   1985 			}
   1986 			ch.mustBe(Chan)
   1987 			ch.mustBeExported()
   1988 			tt := (*chanType)(unsafe.Pointer(ch.typ))
   1989 			if ChanDir(tt.dir)&RecvDir == 0 {
   1990 				panic("reflect.Select: RecvDir case using send-only channel")
   1991 			}
   1992 			rc.ch = ch.pointer()
   1993 			rc.typ = &tt.rtype
   1994 			rc.val = unsafe_New(tt.elem)
   1995 		}
   1996 	}
   1997 
   1998 	chosen, recvOK = rselect(runcases)
   1999 	if runcases[chosen].dir == uintptr(SelectRecv) {
   2000 		tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ))
   2001 		t := tt.elem
   2002 		p := runcases[chosen].val
   2003 		fl := flag(t.Kind())
   2004 		if ifaceIndir(t) {
   2005 			recv = Value{t, p, fl | flagIndir}
   2006 		} else {
   2007 			recv = Value{t, *(*unsafe.Pointer)(p), fl}
   2008 		}
   2009 	}
   2010 	return chosen, recv, recvOK
   2011 }
   2012 
   2013 /*
   2014  * constructors
   2015  */
   2016 
   2017 // implemented in package runtime
   2018 func unsafe_New(*rtype) unsafe.Pointer
   2019 func unsafe_NewArray(*rtype, int) unsafe.Pointer
   2020 
   2021 // MakeSlice creates a new zero-initialized slice value
   2022 // for the specified slice type, length, and capacity.
   2023 func MakeSlice(typ Type, len, cap int) Value {
   2024 	if typ.Kind() != Slice {
   2025 		panic("reflect.MakeSlice of non-slice type")
   2026 	}
   2027 	if len < 0 {
   2028 		panic("reflect.MakeSlice: negative len")
   2029 	}
   2030 	if cap < 0 {
   2031 		panic("reflect.MakeSlice: negative cap")
   2032 	}
   2033 	if len > cap {
   2034 		panic("reflect.MakeSlice: len > cap")
   2035 	}
   2036 
   2037 	s := sliceHeader{unsafe_NewArray(typ.Elem().(*rtype), cap), len, cap}
   2038 	return Value{typ.common(), unsafe.Pointer(&s), flagIndir | flag(Slice)}
   2039 }
   2040 
   2041 // MakeChan creates a new channel with the specified type and buffer size.
   2042 func MakeChan(typ Type, buffer int) Value {
   2043 	if typ.Kind() != Chan {
   2044 		panic("reflect.MakeChan of non-chan type")
   2045 	}
   2046 	if buffer < 0 {
   2047 		panic("reflect.MakeChan: negative buffer size")
   2048 	}
   2049 	if typ.ChanDir() != BothDir {
   2050 		panic("reflect.MakeChan: unidirectional channel type")
   2051 	}
   2052 	ch := makechan(typ.(*rtype), uint64(buffer))
   2053 	return Value{typ.common(), ch, flag(Chan)}
   2054 }
   2055 
   2056 // MakeMap creates a new map of the specified type.
   2057 func MakeMap(typ Type) Value {
   2058 	if typ.Kind() != Map {
   2059 		panic("reflect.MakeMap of non-map type")
   2060 	}
   2061 	m := makemap(typ.(*rtype))
   2062 	return Value{typ.common(), m, flag(Map)}
   2063 }
   2064 
   2065 // Indirect returns the value that v points to.
   2066 // If v is a nil pointer, Indirect returns a zero Value.
   2067 // If v is not a pointer, Indirect returns v.
   2068 func Indirect(v Value) Value {
   2069 	if v.Kind() != Ptr {
   2070 		return v
   2071 	}
   2072 	return v.Elem()
   2073 }
   2074 
   2075 // ValueOf returns a new Value initialized to the concrete value
   2076 // stored in the interface i.  ValueOf(nil) returns the zero Value.
   2077 func ValueOf(i interface{}) Value {
   2078 	if i == nil {
   2079 		return Value{}
   2080 	}
   2081 
   2082 	// TODO(rsc): Eliminate this terrible hack.
   2083 	// In the call to unpackEface, i.typ doesn't escape,
   2084 	// and i.word is an integer.  So it looks like
   2085 	// i doesn't escape.  But really it does,
   2086 	// because i.word is actually a pointer.
   2087 	escapes(i)
   2088 
   2089 	return unpackEface(i)
   2090 }
   2091 
   2092 // Zero returns a Value representing the zero value for the specified type.
   2093 // The result is different from the zero value of the Value struct,
   2094 // which represents no value at all.
   2095 // For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
   2096 // The returned value is neither addressable nor settable.
   2097 func Zero(typ Type) Value {
   2098 	if typ == nil {
   2099 		panic("reflect: Zero(nil)")
   2100 	}
   2101 	t := typ.common()
   2102 	fl := flag(t.Kind())
   2103 	if ifaceIndir(t) {
   2104 		return Value{t, unsafe_New(typ.(*rtype)), fl | flagIndir}
   2105 	}
   2106 	return Value{t, nil, fl}
   2107 }
   2108 
   2109 // New returns a Value representing a pointer to a new zero value
   2110 // for the specified type.  That is, the returned Value's Type is PtrTo(typ).
   2111 func New(typ Type) Value {
   2112 	if typ == nil {
   2113 		panic("reflect: New(nil)")
   2114 	}
   2115 	ptr := unsafe_New(typ.(*rtype))
   2116 	fl := flag(Ptr)
   2117 	return Value{typ.common().ptrTo(), ptr, fl}
   2118 }
   2119 
   2120 // NewAt returns a Value representing a pointer to a value of the
   2121 // specified type, using p as that pointer.
   2122 func NewAt(typ Type, p unsafe.Pointer) Value {
   2123 	fl := flag(Ptr)
   2124 	return Value{typ.common().ptrTo(), p, fl}
   2125 }
   2126 
   2127 // assignTo returns a value v that can be assigned directly to typ.
   2128 // It panics if v is not assignable to typ.
   2129 // For a conversion to an interface type, target is a suggested scratch space to use.
   2130 func (v Value) assignTo(context string, dst *rtype, target unsafe.Pointer) Value {
   2131 	if v.flag&flagMethod != 0 {
   2132 		v = makeMethodValue(context, v)
   2133 	}
   2134 
   2135 	switch {
   2136 	case directlyAssignable(dst, v.typ):
   2137 		// Overwrite type so that they match.
   2138 		// Same memory layout, so no harm done.
   2139 		v.typ = dst
   2140 		fl := v.flag & (flagRO | flagAddr | flagIndir)
   2141 		fl |= flag(dst.Kind())
   2142 		return Value{dst, v.ptr, fl}
   2143 
   2144 	case implements(dst, v.typ):
   2145 		if target == nil {
   2146 			target = unsafe_New(dst)
   2147 		}
   2148 		x := valueInterface(v, false)
   2149 		if dst.NumMethod() == 0 {
   2150 			*(*interface{})(target) = x
   2151 		} else {
   2152 			ifaceE2I(dst, x, target)
   2153 		}
   2154 		return Value{dst, target, flagIndir | flag(Interface)}
   2155 	}
   2156 
   2157 	// Failed.
   2158 	panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
   2159 }
   2160 
   2161 // Convert returns the value v converted to type t.
   2162 // If the usual Go conversion rules do not allow conversion
   2163 // of the value v to type t, Convert panics.
   2164 func (v Value) Convert(t Type) Value {
   2165 	if v.flag&flagMethod != 0 {
   2166 		v = makeMethodValue("Convert", v)
   2167 	}
   2168 	op := convertOp(t.common(), v.typ)
   2169 	if op == nil {
   2170 		panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String())
   2171 	}
   2172 	return op(v, t)
   2173 }
   2174 
   2175 // convertOp returns the function to convert a value of type src
   2176 // to a value of type dst. If the conversion is illegal, convertOp returns nil.
   2177 func convertOp(dst, src *rtype) func(Value, Type) Value {
   2178 	switch src.Kind() {
   2179 	case Int, Int8, Int16, Int32, Int64:
   2180 		switch dst.Kind() {
   2181 		case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
   2182 			return cvtInt
   2183 		case Float32, Float64:
   2184 			return cvtIntFloat
   2185 		case String:
   2186 			return cvtIntString
   2187 		}
   2188 
   2189 	case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
   2190 		switch dst.Kind() {
   2191 		case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
   2192 			return cvtUint
   2193 		case Float32, Float64:
   2194 			return cvtUintFloat
   2195 		case String:
   2196 			return cvtUintString
   2197 		}
   2198 
   2199 	case Float32, Float64:
   2200 		switch dst.Kind() {
   2201 		case Int, Int8, Int16, Int32, Int64:
   2202 			return cvtFloatInt
   2203 		case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
   2204 			return cvtFloatUint
   2205 		case Float32, Float64:
   2206 			return cvtFloat
   2207 		}
   2208 
   2209 	case Complex64, Complex128:
   2210 		switch dst.Kind() {
   2211 		case Complex64, Complex128:
   2212 			return cvtComplex
   2213 		}
   2214 
   2215 	case String:
   2216 		if dst.Kind() == Slice && dst.Elem().PkgPath() == "" {
   2217 			switch dst.Elem().Kind() {
   2218 			case Uint8:
   2219 				return cvtStringBytes
   2220 			case Int32:
   2221 				return cvtStringRunes
   2222 			}
   2223 		}
   2224 
   2225 	case Slice:
   2226 		if dst.Kind() == String && src.Elem().PkgPath() == "" {
   2227 			switch src.Elem().Kind() {
   2228 			case Uint8:
   2229 				return cvtBytesString
   2230 			case Int32:
   2231 				return cvtRunesString
   2232 			}
   2233 		}
   2234 	}
   2235 
   2236 	// dst and src have same underlying type.
   2237 	if haveIdenticalUnderlyingType(dst, src) {
   2238 		return cvtDirect
   2239 	}
   2240 
   2241 	// dst and src are unnamed pointer types with same underlying base type.
   2242 	if dst.Kind() == Ptr && dst.Name() == "" &&
   2243 		src.Kind() == Ptr && src.Name() == "" &&
   2244 		haveIdenticalUnderlyingType(dst.Elem().common(), src.Elem().common()) {
   2245 		return cvtDirect
   2246 	}
   2247 
   2248 	if implements(dst, src) {
   2249 		if src.Kind() == Interface {
   2250 			return cvtI2I
   2251 		}
   2252 		return cvtT2I
   2253 	}
   2254 
   2255 	return nil
   2256 }
   2257 
   2258 // makeInt returns a Value of type t equal to bits (possibly truncated),
   2259 // where t is a signed or unsigned int type.
   2260 func makeInt(f flag, bits uint64, t Type) Value {
   2261 	typ := t.common()
   2262 	ptr := unsafe_New(typ)
   2263 	switch typ.size {
   2264 	case 1:
   2265 		*(*uint8)(unsafe.Pointer(ptr)) = uint8(bits)
   2266 	case 2:
   2267 		*(*uint16)(unsafe.Pointer(ptr)) = uint16(bits)
   2268 	case 4:
   2269 		*(*uint32)(unsafe.Pointer(ptr)) = uint32(bits)
   2270 	case 8:
   2271 		*(*uint64)(unsafe.Pointer(ptr)) = bits
   2272 	}
   2273 	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
   2274 }
   2275 
   2276 // makeFloat returns a Value of type t equal to v (possibly truncated to float32),
   2277 // where t is a float32 or float64 type.
   2278 func makeFloat(f flag, v float64, t Type) Value {
   2279 	typ := t.common()
   2280 	ptr := unsafe_New(typ)
   2281 	switch typ.size {
   2282 	case 4:
   2283 		*(*float32)(unsafe.Pointer(ptr)) = float32(v)
   2284 	case 8:
   2285 		*(*float64)(unsafe.Pointer(ptr)) = v
   2286 	}
   2287 	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
   2288 }
   2289 
   2290 // makeComplex returns a Value of type t equal to v (possibly truncated to complex64),
   2291 // where t is a complex64 or complex128 type.
   2292 func makeComplex(f flag, v complex128, t Type) Value {
   2293 	typ := t.common()
   2294 	ptr := unsafe_New(typ)
   2295 	switch typ.size {
   2296 	case 8:
   2297 		*(*complex64)(unsafe.Pointer(ptr)) = complex64(v)
   2298 	case 16:
   2299 		*(*complex128)(unsafe.Pointer(ptr)) = v
   2300 	}
   2301 	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
   2302 }
   2303 
   2304 func makeString(f flag, v string, t Type) Value {
   2305 	ret := New(t).Elem()
   2306 	ret.SetString(v)
   2307 	ret.flag = ret.flag&^flagAddr | f
   2308 	return ret
   2309 }
   2310 
   2311 func makeBytes(f flag, v []byte, t Type) Value {
   2312 	ret := New(t).Elem()
   2313 	ret.SetBytes(v)
   2314 	ret.flag = ret.flag&^flagAddr | f
   2315 	return ret
   2316 }
   2317 
   2318 func makeRunes(f flag, v []rune, t Type) Value {
   2319 	ret := New(t).Elem()
   2320 	ret.setRunes(v)
   2321 	ret.flag = ret.flag&^flagAddr | f
   2322 	return ret
   2323 }
   2324 
   2325 // These conversion functions are returned by convertOp
   2326 // for classes of conversions. For example, the first function, cvtInt,
   2327 // takes any value v of signed int type and returns the value converted
   2328 // to type t, where t is any signed or unsigned int type.
   2329 
   2330 // convertOp: intXX -> [u]intXX
   2331 func cvtInt(v Value, t Type) Value {
   2332 	return makeInt(v.flag&flagRO, uint64(v.Int()), t)
   2333 }
   2334 
   2335 // convertOp: uintXX -> [u]intXX
   2336 func cvtUint(v Value, t Type) Value {
   2337 	return makeInt(v.flag&flagRO, v.Uint(), t)
   2338 }
   2339 
   2340 // convertOp: floatXX -> intXX
   2341 func cvtFloatInt(v Value, t Type) Value {
   2342 	return makeInt(v.flag&flagRO, uint64(int64(v.Float())), t)
   2343 }
   2344 
   2345 // convertOp: floatXX -> uintXX
   2346 func cvtFloatUint(v Value, t Type) Value {
   2347 	return makeInt(v.flag&flagRO, uint64(v.Float()), t)
   2348 }
   2349 
   2350 // convertOp: intXX -> floatXX
   2351 func cvtIntFloat(v Value, t Type) Value {
   2352 	return makeFloat(v.flag&flagRO, float64(v.Int()), t)
   2353 }
   2354 
   2355 // convertOp: uintXX -> floatXX
   2356 func cvtUintFloat(v Value, t Type) Value {
   2357 	return makeFloat(v.flag&flagRO, float64(v.Uint()), t)
   2358 }
   2359 
   2360 // convertOp: floatXX -> floatXX
   2361 func cvtFloat(v Value, t Type) Value {
   2362 	return makeFloat(v.flag&flagRO, v.Float(), t)
   2363 }
   2364 
   2365 // convertOp: complexXX -> complexXX
   2366 func cvtComplex(v Value, t Type) Value {
   2367 	return makeComplex(v.flag&flagRO, v.Complex(), t)
   2368 }
   2369 
   2370 // convertOp: intXX -> string
   2371 func cvtIntString(v Value, t Type) Value {
   2372 	return makeString(v.flag&flagRO, string(v.Int()), t)
   2373 }
   2374 
   2375 // convertOp: uintXX -> string
   2376 func cvtUintString(v Value, t Type) Value {
   2377 	return makeString(v.flag&flagRO, string(v.Uint()), t)
   2378 }
   2379 
   2380 // convertOp: []byte -> string
   2381 func cvtBytesString(v Value, t Type) Value {
   2382 	return makeString(v.flag&flagRO, string(v.Bytes()), t)
   2383 }
   2384 
   2385 // convertOp: string -> []byte
   2386 func cvtStringBytes(v Value, t Type) Value {
   2387 	return makeBytes(v.flag&flagRO, []byte(v.String()), t)
   2388 }
   2389 
   2390 // convertOp: []rune -> string
   2391 func cvtRunesString(v Value, t Type) Value {
   2392 	return makeString(v.flag&flagRO, string(v.runes()), t)
   2393 }
   2394 
   2395 // convertOp: string -> []rune
   2396 func cvtStringRunes(v Value, t Type) Value {
   2397 	return makeRunes(v.flag&flagRO, []rune(v.String()), t)
   2398 }
   2399 
   2400 // convertOp: direct copy
   2401 func cvtDirect(v Value, typ Type) Value {
   2402 	f := v.flag
   2403 	t := typ.common()
   2404 	ptr := v.ptr
   2405 	if f&flagAddr != 0 {
   2406 		// indirect, mutable word - make a copy
   2407 		c := unsafe_New(t)
   2408 		typedmemmove(t, c, ptr)
   2409 		ptr = c
   2410 		f &^= flagAddr
   2411 	}
   2412 	return Value{t, ptr, v.flag&flagRO | f} // v.flag&flagRO|f == f?
   2413 }
   2414 
   2415 // convertOp: concrete -> interface
   2416 func cvtT2I(v Value, typ Type) Value {
   2417 	target := unsafe_New(typ.common())
   2418 	x := valueInterface(v, false)
   2419 	if typ.NumMethod() == 0 {
   2420 		*(*interface{})(target) = x
   2421 	} else {
   2422 		ifaceE2I(typ.(*rtype), x, target)
   2423 	}
   2424 	return Value{typ.common(), target, v.flag&flagRO | flagIndir | flag(Interface)}
   2425 }
   2426 
   2427 // convertOp: interface -> interface
   2428 func cvtI2I(v Value, typ Type) Value {
   2429 	if v.IsNil() {
   2430 		ret := Zero(typ)
   2431 		ret.flag |= v.flag & flagRO
   2432 		return ret
   2433 	}
   2434 	return cvtT2I(v.Elem(), typ)
   2435 }
   2436 
   2437 // implemented in ../runtime
   2438 func chancap(ch unsafe.Pointer) int
   2439 func chanclose(ch unsafe.Pointer)
   2440 func chanlen(ch unsafe.Pointer) int
   2441 
   2442 //go:noescape
   2443 func chanrecv(t *rtype, ch unsafe.Pointer, nb bool, val unsafe.Pointer) (selected, received bool)
   2444 
   2445 //go:noescape
   2446 func chansend(t *rtype, ch unsafe.Pointer, val unsafe.Pointer, nb bool) bool
   2447 
   2448 func makechan(typ *rtype, size uint64) (ch unsafe.Pointer)
   2449 func makemap(t *rtype) (m unsafe.Pointer)
   2450 
   2451 //go:noescape
   2452 func mapaccess(t *rtype, m unsafe.Pointer, key unsafe.Pointer) (val unsafe.Pointer)
   2453 
   2454 func mapassign(t *rtype, m unsafe.Pointer, key, val unsafe.Pointer)
   2455 
   2456 //go:noescape
   2457 func mapdelete(t *rtype, m unsafe.Pointer, key unsafe.Pointer)
   2458 
   2459 // m escapes into the return value, but the caller of mapiterinit
   2460 // doesn't let the return value escape.
   2461 //go:noescape
   2462 func mapiterinit(t *rtype, m unsafe.Pointer) unsafe.Pointer
   2463 
   2464 //go:noescape
   2465 func mapiterkey(it unsafe.Pointer) (key unsafe.Pointer)
   2466 
   2467 //go:noescape
   2468 func mapiternext(it unsafe.Pointer)
   2469 
   2470 //go:noescape
   2471 func maplen(m unsafe.Pointer) int
   2472 
   2473 // call calls fn with a copy of the n argument bytes pointed at by arg.
   2474 // After fn returns, reflectcall copies n-retoffset result bytes
   2475 // back into arg+retoffset before returning. If copying result bytes back,
   2476 // the caller must pass the argument frame type as argtype, so that
   2477 // call can execute appropriate write barriers during the copy.
   2478 func call(argtype *rtype, fn, arg unsafe.Pointer, n uint32, retoffset uint32)
   2479 
   2480 func ifaceE2I(t *rtype, src interface{}, dst unsafe.Pointer)
   2481 
   2482 // typedmemmove copies a value of type t to dst from src.
   2483 //go:noescape
   2484 func typedmemmove(t *rtype, dst, src unsafe.Pointer)
   2485 
   2486 // typedmemmovepartial is like typedmemmove but assumes that
   2487 // dst and src point off bytes into the value and only copies size bytes.
   2488 //go:noescape
   2489 func typedmemmovepartial(t *rtype, dst, src unsafe.Pointer, off, size uintptr)
   2490 
   2491 // typedslicecopy copies a slice of elemType values from src to dst,
   2492 // returning the number of elements copied.
   2493 //go:noescape
   2494 func typedslicecopy(elemType *rtype, dst, src sliceHeader) int
   2495 
   2496 //go:noescape
   2497 func memclr(ptr unsafe.Pointer, n uintptr)
   2498 
   2499 // Dummy annotation marking that the value x escapes,
   2500 // for use in cases where the reflect code is so clever that
   2501 // the compiler cannot follow.
   2502 func escapes(x interface{}) {
   2503 	if dummy.b {
   2504 		dummy.x = x
   2505 	}
   2506 }
   2507 
   2508 var dummy struct {
   2509 	b bool
   2510 	x interface{}
   2511 }
   2512